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speed of light c   3.00 × 108 m / s

gravitational constant G   6.67 × 10 –11N⋅m2 / kg2

permittivity constant  ε0
  8.85 × 10 – 12F / m

permeability constant   µ0
  1.26 × 10 – 6H / m

elementary charge e   1.60 × 10 –19C

electron volt eV   1.60 × 10 –19J

electron rest mass  me
  9.11 × 10 – 31kg

proton rest mass  mp
  1.67 × 10 – 27kg

Planck constant h   6.63 × 10 – 34J⋅ s

Planck constant / 2π     h          1.06 × 10 – 34J⋅ s

Bohr radius  rb   5.29 × 10 – 11m

Bohr magneton   µb
  9.27 × 10 – 24J / T

Boltzmann constant k   1.38 × 10 –23J / K

Avogadro constant  NA
  6.02 × 1023mol– 1

universal gas constant R   8.31 J /mol⋅K
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Power Prefix Symbol

 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10– 1 deci d
 10– 2 centi c
 10– 3 milli m
 10– 6 micro µ
 10– 9 nano n
 10– 12 pico p
 10– 15 femto f

MKS Units  (link to CGS Units)
m = meters kg = kilograms s = seconds
N = newtons J = joules C = coulombs
T = tesla F = farads H = henrys
A = amperes K = kelvins mol = mole
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• s2
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ABOUT THE COURSE
Physics2000 is a calculus based, college level introduc-
tory physics course that is designed to include twentieth
century physics throughout. This is made possible by
introducing Einstein’s special theory of relativity in the
first chapter. This way, students start off with a modern
picture of how space and time behave, and are prepared
to approach topics such as mass and energy from a
modern point of view.

The course, which was developed during 30 plus years
working with premedical students, makes very gentle
assumptions about the student’s mathematical back-
ground. All the calculus needed for studying Phys-
ics2000 is contained in a supplementary chapter which
is the first chapter of a physics based calculus text. We
can cover all the necessary calculus in one reasonable
length chapter because the concepts are introduced in
the physics text and the calculus text only needs to
handle the formalism. (The remaining chapters of the
calculus text introduce the mathematical tools and con-
cepts used in advanced introductory courses for physics
and engineering majors. These chapters will appear on
a later version of the Physics2000 CD, hopefully next
year.)

In the physics text, the concepts of velocity and accelera-
tion are introduced through the use of strobe photo-
graphs in Chapter 3.  How these definitions can be used
to predict motion is discussed in Chapter 4 on calculus
and Chapter 5 on the use of the computer.

Students themselves have made major contributions to
the organization and content of the text.  Student’s
enthusiasm for the use of Fourier analysis to study
musical instruments led to the development of the
MacScope™ program. The program makes it easy to
use Fourier analysis to study such topics as the normal
modes of a coupled aircart system and how the energy-
time form of the uncertainty principle arises from the
particle-wave nature of matter.

Most students experience difficulty when they first
encounter abstract concepts like vector fields and Gauss’
law.  To provide a familiar model for a vector field, we
begin the section on electricity and magnetism with a
chapter on fluid dynamics.  It is easy to visualize the
velocity field of a fluid, and Gauss’ law is simply the
statement that the fluid is incompressible.  We then show
that the electric field has mathematical properties simi-
lar to those of the velocity field.

The format of the standard calculus based introductory
physics text is to put a chapter on special relativity
following Maxwell’s equations, and then put modern
physics after that, usually in an extended edition.  This
format suggests that the mathematics required to under-
stand special relativity may be even more difficult than
the integral-differential equations encountered in
Maxwell’s theory.  Such fears are enhanced by the
strangeness of the concepts in special relativity, and are
driven home by the fact that relativity appears at the end
of the course where there is no time to comprehend it.
This format is a disaster.

Special relativity does involve strange ideas, but the
mathematics required is only the Pythagorean theorem.
By placing relativity at the beginning of the course you
let the students know that the mathematics is not diffi-
cult, and that there will be plenty of time to become
familiar with the strange ideas.  By the time students
have gone through Maxwell’s equations in Physics2000,
they are thoroughly familiar with special relativity, and
are well prepared to study the particle-wave nature of
matter and the foundations of quantum mechanics.  This
material is not in an extended edition because there is of
time to cover it in a comfortably paced course.

Preface
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ABOUT THE PHYSICS2000 CD
The Physics2000 CD contains the complete Physics2000
text in Acrobat™ form along with a supplementary
chapter covering all the calculus needed for the text.
Included on the CD is a motion picture on the time
dilation of the Muon lifetime, and short movie segments
of various physics demonstrations.  Also a short cook-
book on several basic dishes of Caribbean cooking.   The
CD is available at the web site

www.physics2000.com

The cost is $10.00 postpaid.

Also available is a black and white printed copy of the
text, including the calculus chapter and the CD, at a cost
of $39 plus shipping.

The supplementary calculus chapter is the first chapter
of a physics based calculus text which will appear on a
later edition of the Physics2000 CD.  As the chapters are
ready, they will be made available on the web site.

Use of the Text Material
Because we are trying to change the way physics is
taught, Chapter 1 on special relativity, although copy-
righted, may be used freely (except for the copyrighted
photograph of Andromeda and frame of the muon film).
All chapters may be printed and distributed to a class on
a non profit basis.

ABOUT THE AUTHOR
E. R. Huggins has taught physics at Dartmouth College
since 1961.  He was an undergraduate at MIT and got his
Ph.D. at Caltech.  His Ph.D. thesis under Richard
Feynman was on aspects of the quantum theory of
gravity and the non uniqueness of energy momentum
tensors.  Since then most of his research has been on
superfluid dynamics and the development of new teach-
ing tools like the student built electron gun and
MacScope™.  He wrote the non calculus introductory
physics text Physics1 in 1968 and the computer based
text Graphical Mechanics in 1973.  The Physics2000
text, which summarizes over thirty years of experiment-
ing with ways to teach physics, was written and class
tested over the period from 1990 to 1998.  All the work
of producing the text was done by the author, and his
wife, Anne Huggins. The text layout and design was
done by the author’s daughter Cleo Huggins who de-
signed eWorld™ for Apple Computer and the Sonata™
music font for Adobe Systems.

The author’s eMail address is

lish.huggins@dartmouth.edu

The author is glad to receive any comments.
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INTRODUCTION—AN OVERVIEW OF PHYSICS

With a brass tube and a few pieces of glass, you can
construct either a microscope or a telescope.  The
difference is essentially where you place the lenses.
With the microscope, you look down into the world of
the small, with the telescope out into the world of the
large.

In the twentieth century, physicists and astronomers
have constructed ever larger machines to study matter
on even smaller or even larger scales of distance.  For
the physicists, the new microscopes are the particle
accelerators that provide views well inside atomic
nuclei.  For the astronomers, the machines are radio
and optical telescopes whose large size allows them to
record the faintest signals from space.  Particularly
effective is the Hubble telescope that sits above the
obscuring curtain of the earth’s atmosphere.

The new machines do not provide a direct image like
the ones you see through brass microscopes or tele-
scopes.  Instead a good analogy is to the Magnetic
Resonance Imaging (MRI) machines that first collect a
huge amount of data, and then through the use of a
computer program construct the amazing images show-
ing cross sections through the human body.  The
telescopes and particle accelerators collect the vast
amounts of data.  Then through the use of the theories
of quantum mechanics and relativity, the data is put
together to construct meaningful images.

Some of the images have been surprising.  One of the
greatest surprises is the increasingly clear image of the
universe starting out about fourteen billion years ago
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as an incredibly small, incredibly hot speck that has
expanded to the universe we see today.  By looking
farther and farther out, astronomers have been
looking farther and farther back in time, closer to
that hot, dense beginning.  Physicists, by looking at
matter on a smaller and smaller scale with the even
more powerful accelerators, have been studying
matter that is even hotter and more dense.  By the
end of the twentieth century, physicists and astrono-
mers have discovered that they are looking at the
same image.

It is likely that telescopes will end up being the most
powerful microscopes.  There is a limit, both finan-
cial and physical, to how big and powerful an
accelerator we can build.   Because of this limit, we
can use accelerators to study matter only up to a
certain temperature and density.  To study matter
that is still hotter and more dense, which is the same
as looking at still smaller scales of distance, the only
“machine” we have available is the universe itself.
We have found that the behavior of matter under the
extreme conditions of the very early universe have
left an imprint that we can study today with tele-
scopes.

In the rest of this introduction we will show you some
of the pictures that have resulted from looking at
matter with the new machines.  In the text itself we
will begin to learn how these pictures were con-
structed.
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SPACE AND TIME
The images of nature we see are images in both space
and time, for we have learned from the work of Einstein
that the two cannot be separated.  They are connected
by the speed of light, a quantity we designate by the
letter c, which has the value of a billion (1,000,000,000)
feet (30 cm) in a second.  Einstein’s remarkable discov-
ery in 1905 was that the speed of light is an absolute
speed limit.  Nothing in the current universe can travel
faster than the speed c.

Because the speed of light provides us with an absolute
standard that can be measured accurately, we use the
value of c to relate the definitions of time and distance.
The meter is defined as the distance light travels in an
interval of 1/299,792.458 of a second.  The length of a
second itself is provided by an atomic standard.  It is the
time interval occupied by 9,192,631,770 vibrations of
a particular wavelength of light radiated by a cesium
atom.

Using the speed of light for conversion, clocks often
make good meter sticks, especially for measuring
astronomical distances.  It takes light 1.27 seconds to
travel from the earth to the moon.  We can thus say that
the moon is 1.27 light seconds away.  This is simpler
than saying that the moon is 1,250,000,000 feet or
382,000 kilometers away.  Light takes 8 minutes to
reach us from the sun, thus the earth’s orbit about the
sun has a radius of 8 light minutes.  Radio signals,
which also travel at the speed of light, took 2 1/2 hours
to reach the earth when Voyager II passed the planet
Uranus (temporarily the most distant planet).  Thus
Uranus is 2 1/2 light hours away and our solar system

has a diameter of 5 light hours (not including the cloud
of comets that lie out beyond the planets.)

The closest star, Proxima Centauri, is 4.2 light years
away.  Light from this star, which started out when you
entered college as a freshman, will arrive at the earth
shortly after you graduate (assuming all goes well).
Stars in our local area are typically 2 to 4 light years
apart, except for the so called binary stars which are
pairs of stars orbiting each other at distances as small as
light days or light hours.

On a still larger scale, we find that stars form island
structures called galaxies.  We live in a fairly typical
galaxy called the Milky Way.  It is a flat disk of stars
with a slight bulge at the center much like the Sombrero
Galaxy seen edge on in Figure (1) and the neighboring
spiral galaxy Andromeda seen in Figure (2).  Our
Milky Way is a spiral galaxy much like Andromeda,
with the sun located about 2/3 of the way out in one of
the spiral arms.  If you look at the sky on a dark clear
night you can see the band of stars that cross the sky
called the Milky Way.  Looking at these stars you are
looking sideways through the disk of the Milky Way
galaxy.

Figure 2
The Andromeda galaxy.

Figure 1
The Sombrero galaxy.



Int-3

 Our galaxy and the closest similar galaxy, Androm-
eda, are both about 100,000 light years (.1 million light
years) in diameter, contain about a billion stars, and are
about one million light years apart.  These are more or
less typical numbers for the average size, population
and spacing of galaxies in the universe.

To look at the universe over still larger distances, first
imagine that you are aboard a rocket leaving the earth
at night.  As you leave the launch pad, you see the
individual lights around the launch pad and street lights
in neighboring roads.  Higher up you start to see the
lights from the neighboring city.  Still higher you see
the lights from a number of cities and it becomes harder
and harder to see individual street lights.  A short while
later all the bright spots you see are cities, and you can
no longer see individual lights.  At this altitude you
count cities instead of light bulbs.

Similarly on our trip out to larger and larger distances
in the universe, the bright spots are the galaxies for we
can no longer see the individual stars inside.  On
distances ranging from millions up to billions of light
years, we see galaxies populating the universe.  On this
scale they are small but not quite point like.  Instru-
ments like the Hubble telescope in space can view
structure in the most distant galaxies, like those shown
in Figure (3) .

The Expanding Universe
In the 1920s, Edwin Hubble made the surprising dis-
covery that, on average, the galaxies are all moving
away from us.  The farther away a galaxy is, the faster
it is moving away.  Hubble found a simple rule for this
recession, a galaxy twice as far away is receding twice
as fast.

At first you might think that we are at the exact center
of the universe if the galaxies are all moving directly
away from us.  But that is not the case.  Hubble’s
discovery indicates that the universe is expanding
uniformly.  You can see how a uniform expansion
works by blowing up a balloon part way, and drawing
a number of uniformly spaced dots on the balloon.
Then pick any dot as your own dot, and watch it as you
continue to blow the balloon up.  You will see that the
neighboring dots all move away from your dot, and you
will also observe Hubble’s rule that dots twice as far
away move away twice as fast.

Hubble’s discovery provided the first indication that
there is a limit to how far away we can see things.  At
distances of about fourteen billion light years, the
recessional speed approaches the speed of light.  Re-
cent photographs taken by the Hubble telescope show
galaxies receding at speeds in excess of 95% the speed
of light, galaxies close to the edge of what we call the
visible universe.

The implications of Hubble’s rule are more dramatic if
you imagine that you take a moving picture of the
expanding universe and then run the movie backward
in time.  The rule that galaxies twice as far away are
receding twice as fast become the rule that galaxies
twice as far away are approaching you twice as fast.  A
more distant galaxy, one at twice the distance but
heading toward you at twice the speed, will get to you
at the same time as a closer galaxy.  In fact, all the
galaxies will reach you at the same instant of time.

Now run the movie forward from that instant of time,
and you see all the galaxies flying apart from what
looks like a single explosion.  From Hubble’s law you
can figure that the explosion should have occurred
about fourteen billion years ago.

Figure 3
Hubble photograph of the most distant galaxies.
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Did such an explosion really happen, or are we simply
misreading the data?  Is there some other way of
interpreting the expansion without invoking such a
cataclysmic beginning?  Various astronomers thought
there was.  In their continuous creation theory they
developed a model of the universe that was both
unchanging and expanding at the same time.  That
sounds like an impossible trick because as the universe
expands and the galaxies move apart, the density of
matter has to decrease.  To keep the universe from
changing, the model assumed that matter was being
created throughout space at just the right rate to keep the
average density of matter constant.

With this theory one is faced with the question of which
is harder to accept—the picture of the universe starting
in an explosion which was derisively called the Big
Bang, or the idea that matter is continuously being
created everywhere?  To provide an explicit test of the
continuous creation model, it was proposed that all
matter was created in the form of hydrogen atoms, and
that all the elements we see around us today, the carbon,
oxygen, iron, uranium, etc., were made as a result of
nuclear reactions inside of stars.

To test this hypothesis, physicists studied in the labo-
ratory those nuclear reactions which should be relevant
to the synthesis of the elements.  The results were quite
successful.  They predicted the correct or nearly correct
abundance of all the elements but one.  The holdout was
helium.  There appeared to be more helium in the
universe than they could explain.

By 1960, it was recognized that, to explain the abun-
dance of the elements as a result of nuclear reactions
inside of stars, you have to start with a mixture of
hydrogen and helium.  Where did the helium come
from?  Could it have been created in a Big Bang?

As early as 1948, the Russian physicist George Gamov
studied the consequences of the Big Bang model of the
universe.  He found that if the conditions in the early
universe were just right, there should be light left over
from the explosion, light that would now be a faint glow
at radio wave frequencies.  Gamov talked about this
prediction with several experimental physicists and
was told that the glow would be undetectable.  Gamov’s
prediction was more or less ignored until 1964 when
the glow was accidently detected as noise in a radio
telescope.  Satellites have now been used to study this
glow in detail, and the results leave little doubt about
the explosive nature of the birth of the universe.

What was the universe like at the beginning?  In an
attempt to find out, physicists have applied the laws of
physics, as we have learned them here on earth, to the
collapsing universe seen in the time reversed motion
picture of the galaxies.  One of the main features that
emerges as we go back in time and the universe gets
smaller and smaller, is that it also becomes hotter and
hotter.  The obvious question in constructing a model
of the universe is how small and how hot do we allow
it to get?  Do we stop our model, stop our calculations,
when the universe is down to the size of a galaxy?  a
star? a grapefruit? or a proton?  Does it make any sense
to apply the laws of physics to something as hot and
dense as the universe condensed into something smaller
than, say, the size of a grapefruit?  Surprisingly, it may.
One of the frontiers of physics research is to test the
application of the laws of physics to this model of the
hot early universe.
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We will start our disruption of the early universe at a
time when the universe was about a billionth of a
second old and the temperature was three hundred
thousand billion (   3×1014 ) degrees.  While this sounds
like a preposterously short time and unbelievably high
temperature, it is not the shortest time or highest
temperature that has been quite carefully considered.
For our overview, we are arbitrarily choosing that time
because of the series of pictures we can paint which
show the universe evolving.  These pictures all involve
the behavior of matter as it has been studied in the
laboratory.  To go back earlier relies on theories that we
are still formulating and trying to test.

To recognize what we see in this evolving picture of the
universe, we first need a reasonably good picture of
what the matter around us is like.  With an understand-
ing of the building blocks of matter, we can watch the
pieces fit together as the universe evolves.  Our discus-
sion of these building blocks will begin with atoms
which appear only late in the universe, and work down
to smaller particles which play a role at earlier times.
To understand what is happening, we also need a
picture of how matter interacts via the basic forces in
nature.

When you look through a microscope and change the
magnification, what you see and how you interpret it,
changes, even though you are looking at the same
sample.  To get a preliminary idea of what matter is
made from and how it behaves, we will select a
particular sample and magnify it in stages.  At each
stage we will provide a brief discussion to help interpret
what we see.  As we increase the magnification, the
interpretation of what we see changes to fit and to
explain the new picture.  Surprisingly, when we get
down to the smallest scales of distance using the
greatest magnification, we see the entire universe at its
infancy.  We have reached the point where studying
matter on the very smallest scale requires an under-
standing of the very largest, and vice versa.

STRUCTURE OF MATTER
We will start our trip down to small scales with a rather
large, familiar example—the earth in orbit about the
sun.  The earth is attracted to the sun by a force called
gravity, and its motion can be accurately forecast, using
a set of rules called Newtonian mechanics.  The basic
concepts involved in Newtonian mechanics are force,
mass, velocity and acceleration, and the rules tell us
how these concepts are related.  (Half of the traditional
introductory physics courses is devoted to learning
these rules.)

Atoms
We will avoid much of the complexity we see around
us by next focusing in on a single hydrogen atom.  If we
increase the magnification so that a garden pea looks as
big as the earth, then one of the hydrogen atoms inside
the pea would be about the size of a basketball.  How
we interpret what we see inside the atom depends upon
our previous experience with physics.  With a back-
ground in Newtonian mechanics, we would see a
miniature solar system with the nucleus at the center
and an electron in orbit.  The nucleus in hydrogen
consists of a single particle called the proton, and the
electron is held in orbit by an electric force.  At this
magnification, the proton and electron are tiny points,
too small to show any detail.

Figure 8-25a
Elliptical orbit of an earth satellite calculated
using Newtonian mechanics.
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There are similarities and striking differences between
the gravitational force that holds our solar system
together and the electric force that holds the hydrogen
atom together.  Both forces in these two examples are
attractive, and both forces decrease as the square of the
distance between the particles.  That means that if you
double the separation, the force is only one quarter as
strong.  The strength of the gravitational force depends
on the mass of the objects, while the electric force
depends upon the charge of the objects.

One of the major differences between electricity and
gravity is that all gravitational forces are attractive,
while there are both attractive and repulsive electric
forces.  To account for the two types of electric force,
we say that there are two kinds of electric charge, which
Benjamin Franklin called positive charge and negative
charge.  The rule is that like charges repel while
opposite charges attract.  Since the electron and the
proton have opposite charge they attract each other.  If
you tried to put two electrons together, they would repel
because they have like charges.  You get the same
repulsion between two protons.  By the accident of
Benjamin Franklin’s choice, protons are positively
charged and electrons are negatively charged.

Another difference between the electric and gravita-
tional forces is their strengths.  If you compare the
electric to the gravitational force between the proton
and electron in a hydrogen atom, you find that the
electric force is 227000000000000000000000000
0000000000000 times stronger than the gravitational
force.  On an atomic scale, gravity is so weak that it is
essentially undetectable.

On a large scale, gravity dominates because of the
cancellation of electric forces.  Consider, for example,
the net electric force between two complete hydrogen
atoms separated by some small distance.  Call them
atom A and atom B.  Between these two atoms there are
four distinct forces, two attractive and two repulsive.
The attractive forces are between the proton in atom A
and the electron in atom B, and between the electron in
atom A and the proton in atom B.  However, the two

protons repel each other and the electrons repel to give
the two repulsive forces.  The net result is that the
attractive and repulsive forces cancel and we end up
with essentially no electric force between the atoms.

Rather than counting individual forces, it is easier to
add up electric charge.  Since a proton and an electron
have opposite charges, the total charge in a hydrogen
atom adds up to zero.  With no net charge on either of
the two hydrogen atoms in our example, there is no net
electric force between them.  We say that a complete
hydrogen atom is electrically neutral.

While complete hydrogen atoms are neutral, they can
attract each other if you bring them too close together.
What happens is that the electron orbits are distorted by
the presence of the neighboring atom, the electric
forces no longer exactly cancel, and we are left with a
small residual force called a molecular force.  It is the
molecular force that can bind the two hydrogen atoms
together to form a hydrogen molecule.  These molecu-
lar forces are capable of building very complex objects,
like people.  We are the kind of structure that results
from electric forces, in much the same way that solar
systems and galaxies are the kind of structures that
result from gravitational forces.

Chemistry deals with reactions between about 100
different elements, and each element is made out of a
different kind of atom.  The basic distinction between
atoms of different elements is the number of protons in
the nucleus.  A hydrogen nucleus has one proton, a
helium nucleus 2 protons, a lithium nucleus 3 protons,
on up to the largest naturally occurring nucleus, ura-
nium with 92 protons.

Complete atoms are electrically neutral, having as
many electrons orbiting outside as there are protons in
the nucleus.  The chemical properties of an atom are
determined almost exclusively by the structure of the
orbiting electrons, and their electron structure depends
very much on the number of electrons.  For example,
helium with 2 electrons is an inert gas often breathed by
deep sea divers.  Lithium with 3 electrons is a reactive
metal that bursts into flame when exposed to air.  We
go from an inert gas to a reactive metal by adding one
electron.
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Light
The view of the hydrogen atom as a miniature solar
system, a view of the atom seen through the “lens” of
Newtonian mechanics, fails to explain much of the
atom’s behavior.  When you heat hydrogen gas, it
glows with a reddish glow that consists of three distinct
colors or so called spectral lines.  The colors of the lines
are bright red, swimming pool blue, and deep violet.
You need more than Newtonian mechanics to under-
stand why hydrogen emits light, let alone explain these
three special colors.

In the middle of the 1800s, Michael Faraday went a
long way in explaining electric and magnetic phenom-
ena in terms of electric and magnetic fields.  These
fields are essentially maps of electric and magnetic
forces.  In 1860 James Clerk Maxwell discovered that
the four equations governing the behavior of electric
and magnetic fields could be combined to make up
what is called a wave equation.  Maxwell could con-
struct his wave equation after making a small but
crucial correction to one of the underlying equations.

The importance of Maxwell’s wave equation was that
it predicted that a particular combination of electric and
magnetic fields could travel through space in a wave-
like manner.  Equally important was the fact that the
wave equation allowed Maxwell to calculate what the
speed of the wave should be, and the answer was about
a billion feet per second.  Since only light was known
to travel that fast, Maxwell made the guess that he had
discovered the theory of light, that light consisted of a
wave of electric and magnetic fields of force.

Visible light is only a small part of what we call the
electromagnetic spectrum.  Our eyes are sensitive to
light waves whose wavelength varies only over a very
narrow range.  Shorter wavelengths lie in the ultravio-
let or x ray region, while at increasingly longer wave-
lengths are infra red light, microwaves, and radio
waves.  Maxwell’s theory made it clear that these other
wavelengths should exist, and within a few years, radio
waves were discovered.  The broadcast industry is now
dependent on Maxwell’s equations for the design of
radio and television transmitters and receivers.
(Maxwell’s theory is what is usually taught in the
second half of an introductory physics course.  That
gets you all the way up to 1860.)

While Maxwell’s theory works well for the design of
radio antennas, it does not do well in explaining the
behavior of a hydrogen atom.  When we apply
Maxwell’s theory to the miniature solar system model
of hydrogen, we do predict that the orbiting electron
will radiate light.  But we also predict that the atom will
self destruct.  The unambiguous prediction is that the
electron will continue to radiate light of shorter and
shorter wavelength while spiraling in faster and faster
toward the nucleus, until it crashes.  The combination
of Newton’s laws and Maxwell’s theory is known as
Classical Physics.  We can easily see that classical
physics fails when applied even to the simplest of
atoms.
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Figure 32-24
The electromagnetic spectrum.
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Photons
In the late 1890’s, it was discovered that a beam of light
could knock electrons out of a hydrogen atom.  The
phenomenon became known as the photoelectric ef-
fect.  You can use Maxwell’s theory to get a rough idea
of why a wave of electric and magnetic force might be
able to pull electrons out of a surface, but the details all
come out wrong.  In 1905, in the same year that he
developed his theory of relativity, Einstein explained
the photoelectric effect by proposing that light con-
sisted of a beam of particles we now call photons.
When a metal surface is struck by a beam of photons,
an electron can be knocked out of the surface if it is
struck by an individual photon.  A simple formula for
the energy of the photons led to an accurate explanation
of all the experimental results related to the photoelec-
tric effect.

Despite its success in explaining the photoelectric
effect, Einstein’s photon picture of light was in conflict
not only with Maxwell’s theory, it conflicted with over
100 years of experiments which had conclusively
demonstrated that light was a wave.  This conflict was
not to be resolved in any satisfactory way until the
middle 1920s.

The particle nature of light helps but does not solve the
problems we have encountered in understanding the
behavior of the electron in hydrogen.  According to
Einstein’s photoelectric formula, the energy of a pho-
ton is inversely proportional to its wavelength.  The
longer wavelength red photons have less energy than
the shorter wavelength blue ones.  To explain the
special colors of light emitted by hydrogen, we have to
be able to explain why only photons with very special
energies can be emitted.

The Bohr Model
In 1913, the year after the nucleus was discovered,
Neils Bohr developed a somewhat ad hoc model that
worked surprisingly well in explaining hydrogen.  Bohr
assumed that the electron in hydrogen could travel on
only certain allowed orbits.  There was a smallest,
lowest energy orbit that is occupied by an electron in
cool hydrogen atoms.  The fact that this was the
smallest allowed orbit meant that the electron would
not spiral in and crush into the nucleus.

Using Maxwell’s theory, one views the electron as
radiating light continuously as it goes around the orbit.
In Bohr’s picture the electron does not radiate while in
one of the allowed orbits.  Instead it radiates, it emits a
photon, only when it jumps from one orbit to another.

To see why heated hydrogen radiates light, we need a
picture of thermal energy.  A gas, like a bottle of
hydrogen or the air around us, consists of molecules
flying around, bouncing into each other.  Any moving
object has extra energy due to its motion.  If all the parts
of the object are moving together, like a car traveling
down the highway, then we call this energy of motion
kinetic energy.  If the motion is the random motion of
molecules bouncing into each other, we call it thermal
energy.

The temperature of a gas is proportional to the average
thermal energy of the gas molecules.  As you heat a gas,
the molecules move faster, and their average thermal
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Figure 35-6
The allowed orbits of the Bohr Model.
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energy and temperature rises.  At the increased speed
the collisions between molecules are also stronger.

Consider what happens if we heat a bottle of hydrogen
gas.  At room temperature, before we start heating, the
electrons in all the atoms are sitting in their lowest
energy orbits.  Even at this temperature the atoms are
colliding but the energy involved in a room tempera-
ture collision is not great enough to knock an electron
into one of the higher energy orbits.  As a result, room
temperature hydrogen does not emit light.

When you heat the hydrogen, the collisions between
atoms become stronger.  Finally you reach a tempera-
ture in which enough energy is involved in a collision
to knock an electron into one of the higher energy
orbits.  The electron then falls back down, from one
allowed orbit to another until it reaches the bottom,
lowest energy orbit.  The energy that the electron loses
in each fall, is carried out by a photon.  Since there are
only certain allowed orbits, there are only certain
special amounts of energy that the photon can carry out.

To get a better feeling for how the model works,
suppose we number the orbits, starting at orbit 1 for the
lowest energy orbit, orbit 2 for the next lowest energy
orbit, etc.  Then it turns out that the photons in the red
spectral line are radiated when the electron falls from
orbit 3 to orbit 2.  The red photon’s energy is just equal
to the energy the electron loses in falling between these
orbits.  The more energetic blue photons carry out the
energy an electron loses in falling from orbit 4 to orbit
2, and the still more energetic violet photons corre-
spond to a fall from orbit 5 to orbit 2.  All the other jumps
give rise to photons whose energy is too large or too
small to be visible.  Those with too much energy are
ultraviolet photons, while those with too little are in the
infra red part of the spectrum.  The jump down to orbit
1 is the biggest jump with the result that all jumps down
to the lowest energy orbit results in ultraviolet photons.

It appears rather ad hoc to propose a theory where you
invent a large number of special orbits to explain what
we now know as a large number of spectral lines.  One
criterion for a successful theory in science is that you
get more out of the theory than you put in.  If Bohr had
to invent a new allowed orbit for each spectral line
explained, the theory would be essentially worthless.

However this is not the case for the Bohr model.  Bohr
found a simple formula for the electron energies of all
the allowed orbits.  This one formula in a sense explains
the many spectral lines of hydrogen.  A lot more came
out of Bohr’s model than Bohr had to put in.

The problem with Bohr’s model is that it is essentially
based on Newtonian mechanics, but there is no excuse
whatsoever in Newtonian mechanics for identifying
any orbit as special.  Bohr focused the problem by
discovering that the allowed orbits had special values
of a quantity called angular momentum.

Angular momentum is related to rotational motion, and
in Newtonian mechanics angular momentum increases
continuously and smoothly as you start to spin an
object.  Bohr could explain his allowed orbits by
proposing that there was a special unique value of
angular momentum—call it a unit of angular momen-
tum.  Bohr found, using standard Newtonian calcula-
tions, that his lowest energy orbit had one unit of
angular momentum, orbit 2 had two units, orbit 3 three
units, etc.  Bohr could explain his entire model by the
one assumption that angular momentum was quan-
tized, i.e., came only in units.

Bohr’s quantization of angular momentum is counter
intuitive, for it leads to the picture that when we start to
rotate an object, the rotation increases in a jerky fashion
rather than continuously.  First the object has no
angular momentum, then one unit, then 2 units, and on
up.  The reason we do not see this jerky motion when
we start to rotate something large like a bicycle wheel,
is that the basic unit of angular momentum is very
small.  We cannot detect the individual steps in angular
momentum, it seems continuous.  But on the scale of an
atom, the steps are big and have a profound effect.

With Bohr’s theory of hydrogen and Einstein’s theory
of the photoelectric effect, it was clear that classical
physics was in deep trouble.  Einstein’s photons gave
a lumpiness to what should have been a smooth wave
in Maxwell’s theory of light and Bohr’s model gave a
jerkiness to what should be a smooth change in angular
momentum.  The bumps and jerkiness needed a new
picture of the way matter behaves, a picture that was
introduced in 1924 by the graduate student Louis de
Broglie.
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PARTICLE-WAVE NATURE OF
MATTER
Noting the wave and particle nature of light,
de Broglie proposed that the electron had both a wave
and a particle nature.  While electrons had clearly
exhibited a particle behavior in various experiments, de
Broglie suggested that it was the wave nature of the
electron that was responsible for the special allowed
orbits in Bohr’s theory.  De Broglie presented a simple
wave picture where, in the allowed orbits, an integer
number of wavelengths fit around the orbit.  Orbit 1 had
one wavelength, orbit 2 had two wavelengths, etc.  In
De Broglie’s picture, electron waves in non allowed
orbits would cancel themselves out.  Borrowing some
features of Einstein’s photon theory of light waves, de
Broglie could show that the angular momentum of the
electron would have the special quantized values when
the electron wave was in one of the special, non
cancelling orbits.

With his simple wave picture, de Broglie had hit upon
the fundamental idea that was missing in classical
physics.  The idea is that all matter, not just light, has
a particle wave nature.

It took a few years to gain a satisfactory interpretation
of the dual particle wave nature of matter.  The current
interpretation is that things like photons are in fact
particles, but their motion is governed, not by Newto-
nian mechanics, but by the laws of wave motion.  How

this works in detail is the subject of our chapter on
Quantum Mechanics.  One fundamental requirement
of our modern interpretation of the particle wave is that,
for the interpretation to be meaningful, all forms of
matter, without exception, must have this particle wave
nature.  This general requirement is summarized by a
rule discovered by Werner Heisinberg, a rule known as
the uncertainty principle.  How the rule got that name
is also discussed in our chapter on quantum mechanics.

In 1925, after giving a seminar describing de Broglie’s
model of electron waves in hydrogen, Erwin
Schrödinger was chided for presenting such a “child-
ish” model.  A colleague reminded him  that waves do
not work that way, and suggested that since Schrödinger
had nothing better to do, he should work out a real wave
equation for the electron waves, and present the results
in a couple of weeks.

It took Schrödinger longer than a couple of weeks, but
he did succeed in constructing a wave equation for the
electron.   In many ways Schrödinger’s wave equation
for the electron is analogous to Maxwell’s wave equa-
tion for light.  Schrödinger’s wave equation for the
electron allows one to calculate the behavior of elec-
trons in all kinds of atoms.  It allows one to explain and
predict an atom’s electron structure and chemical
properties.  Schrödinger’s equation has become the
fundamental equation of chemistry.

r

Figure 35-9
De Broglie picture of an electron
wave cancelling itself out.

Figure 35-10
If the circumference of the orbit is an integer
number of wavelengths, the electron wave will go
around without any cancellation.
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CONSERVATION OF ENERGY
Before we go on with our investigation of the hydrogen
atom, we will take a short break to discuss the idea of
conservation of energy.  This idea, which originated in
Newtonian mechanics, survives more or less intact  in
our modern particle-wave picture of matter.

Physicists pay attention to the concept of energy only
because energy is conserved.  If energy disappears
from one place, it will show up in another.  We saw this
in the Bohr model of hydrogen.  When the electron lost
energy falling down from one allowed orbit to a lower
energy orbit, the energy lost by the electron was carried
out by a photon.

You can store energy in an object by doing work on the
object.  When you lift a ball off the floor, for example,
the work you did lifting the ball, the energy you
supplied, is stored in a form we call gravitational
potential energy.  Let go of the ball and it falls to the
floor, loosing its gravitational potential energy.  But
just before it hits the floor, it has a lot of energy of
motion, what we have called kinetic energy.  All the
gravitational potential energy the ball had before we
dropped it has been converted to kinetic energy.

After the ball hits the floor and is finally resting there,
it is hard to see where the energy has gone.  One place
it has gone is into thermal energy, the floor and the ball
are a tiny bit warmer as a result of your dropping the
ball.

Another way to store energy is to compress a spring.
When you release the spring you can get the energy
back.  For example, compress a watch spring by
winding up the watch, and the energy released as the
spring unwinds will run the watch for a day.  We could
call the energy stored in the compressed spring spring
potential energy.  Physicists invent all sorts of names
for the various forms of energy.

One of the big surprises in physics was Einstein’s
discovery of the equivalence of mass and energy, a
relationship expressed by the famous equation

 E = mc2 .  In that equation, E stands for the energy of
an object, m its mass, and c is the speed of light.  Since
the factor  c2  is a constant, Einstein’s equation is
basically saying that mass is a form of energy.  The  c2

is there because mass and energy were initially thought
to be different quantities with different units like kilo-
grams and joules.  The  c2  simply converts mass units
into energy units.

What is amazing is the amount of energy that is in the
form of mass.  If you could convert all the mass of a
pencil eraser into electrical energy, and sell the electri-
cal energy at the going rate of 10¢ per kilowatt hour,
you would get about 10 million dollars for it.  The
problem is converting the mass to another, more useful,
form of energy.  If you can do the conversion, however,
the results can be spectacular or terrible.  Atomic and
hydrogen bombs get their power from the conversion
of a small fraction of their mass energy into thermal
energy.  The sun gets its energy by “burning” hydrogen
nuclei to form helium nuclei.  The energy comes from
the fact that a helium nucleus has slightly less mass than
the hydrogen nuclei out of which it was formed.

If you have a particle at rest and start it moving, the
particle gains kinetic energy.  In Einstein’s view the
particle at rest has energy due to its rest mass.  When
you start the particle moving, it gains energy, and since
mass is equivalent to energy, it also gains mass.  For
most familiar speeds the increase in mass due to kinetic
energy is very small.  Even at the speeds travelled by
rockets and spacecraft, the increase in mass due to
kinetic energy is hardly noticeable.  Only when a
particle’s speed gets up near the speed of light does the
increase in mass become significant.
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One of the first things we discussed about the behavior
of matter is that nothing can travel faster than the speed
of light.  You might have wondered if nature had traffic
cops to enforce this speed limit.  It does not need one,
it uses a law of nature instead.  As the speed of an object
approaches the speed of light, its mass increases.  The
closer to the speed of light, the greater increase in mass.
To push a particle up to the speed of light would give
it an infinite mass and therefore require an infinite
amount of energy.  Since that much energy is not
available, no particle is going to exceed nature’s speed
limit.

This raises one question.  What about photons?  They
are particles of light and therefore travel at the speed of
light.  But their energy is not infinite.  It depends instead
on the wavelength or color of the photon.  Photons
escape the rule about mass increasing with speed by
starting out with no rest mass.  You stop a photon and
nothing is left.  Photons can only exist by traveling at
the speed of light.

When a particle is traveling at speeds close enough to
the speed of light that its kinetic energy approaches its
rest mass energy, the particle behaves differently than
slowly moving particles.  For example, push on a
slowly moving particle and you can make the particle
move faster.  Push on a particle already moving at
nearly the speed of light, and you merely make the
particle more massive since it cannot move faster.
Since the relationship between mass and energy came
out of Einstein’s theory of relativity, we say that
particles moving near the speed of light obey relativis-
tic mechanics while those moving slowly are nonrela-
tivistic.  Light is always relativistic, and all automobiles
on the earth are nonrelativistic.

ANTI-MATTER
Schrödinger’s equation for electron waves is a nonrela-
tivistic theory.  It accurately describes electrons that are
moving at speeds small compared to the speed of light.
This is fine for most studies in chemistry, where
chemical energies are much much less than rest mass
energies.  You can see the difference for example by
comparing the energy released by a conventional chemi-
cal bomb and an atomic bomb.

Schrödinger of course knew Einstein’s theory of rela-
tivity, and initially set out to derive a relativistic wave
equation for the electron.  This would be an equation
that would correctly explain the behavior of electrons
even as the speed of the electrons approached the speed
of light and their kinetic energy became comparable to
or even exceeded their rest mass energy.

Schrödinger did construct a relativistic wave equation.
The problem was that the equation had two solutions,
one representing ordinary electrons, the other an appar-
ently impossible particle with a negative rest mass.  In
physics and mathematics we are often faced with
equations with two or more solutions.  For example, the
formula for the hypotenuse c of a right triangle with
sides of lengths a and b is

  c2 = a2 + b2

This equation has two solutions, namely
 c = + a2 + b2  and  c = – a2 + b2 .  The negative

solution does not give us much of a problem, we simply
ignore it.

Schrödinger could not ignore the negative mass solu-
tions in his relativistic wave equation for the following
reason.  If he started with just ordinary positive mass
electrons and let them interact, the equation predicted
that the negative mass solutions would be created!  The
peculiar solutions could not be ignored if the equation
was to be believed.  Only by going to his nonrelativistic
equation could Schrödinger avoid the peculiar solu-
tions.

a

b
c
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A couple years later, Dirac tried again to develop a
relativistic wave equation for the electron.  At first it
appeared that Dirac’s equation would avoid the nega-
tive mass solutions, but with little further work, Dirac
found that the negative mass solutions were still there.
Rather than giving up on his new equation, Dirac found
a new interpretation of these peculiar solutions.  Instead
of viewing them as negatively charged electrons with
a negative mass, he could interpret them as positive
mass particles with a positive electric charge.  Accord-
ing to Dirac’s equation, positive and negative charged
solutions could be created or destroyed in pairs.  The
pairs could be created any time enough energy was
available.

Dirac predicted the existence of this positively charged
particle in 1929.  It was not until 1933 that Carl
Anderson at Caltech, who was studying the elementary
particles that showered down from the sky (particles
called cosmic rays), observed a positively charged
particle whose mass was the same as that of the
electron.  Named the positron, this particle was imme-
diately identified as the positive particle expected from
Dirac’s  equation.

In our current view of matter, all particles are described
by relativistic wave equations, and all relativistic wave
equations have two kinds of solutions.  One solution is
for ordinary matter particles like electrons, protons,
and neutrons.  The other solution, which we now call
antimatter, describes anti particles, the antielectron
which is the positron, and the antiproton and the
antineutron.  Since all antiparticles can be created or
destroyed in particle-anti particle pairs, the antiparticle
has to have the opposite conserved property so that the
property will remain conserved.  As an example, the
positron has the opposite charge as the electron so that
electric charge is neither created or destroyed when
electron-positron pairs appear or disappear.

While all particles have antiparticles, some particles
like the photon, have no conserved properties other
than energy.  As a result, these particles are indistin-
guishable from their antiparticles.

PARTICLE NATURE OF FORCES
De Broglie got his idea for the wave nature of the
electron from the particle-wave nature of light.  The
particle of light is the photon which can knock electrons
out of a metal surface.  The wave nature is the wave of
electric and magnetic force that was predicted by
Maxwell’s theory.  When you combine these two
aspects of light, you are led to the conclusion that
electric and magnetic forces are ultimately caused by
photons.  We call any force resulting from electric or
magnetic forces as being due to the electric interaction.
The photon is the particle responsible for the electric
interaction.

Let us see how our picture of the hydrogen atom has
evolved as we have learned more about the particles
and forces involved.  We started with a miniature solar
system with the heavy proton at the center and an
electron in orbit.  The force was the electric force that
in many ways resembled the gravitational force that
keeps the earth in orbit around the sun.  This picture
failed, however, when we tried to explain the light
radiated by heated hydrogen.

The next real improvement comes with Schrödinger’s
wave equation describing the behavior of the electron
in hydrogen.  Rather than there being allowed orbits as
in Bohr’s model, the electron in Schrödinger’s picture
has allowed standing wave patterns.  The chemical
properties of atoms can be deduced from these wave
patterns, and Schrödinger’s equation leads to accurate
predictions of the wavelengths of light radiated not
only by hydrogen but other atoms as well.

There are two limitations to Schrödinger’s equation.
One of the limitations we have seen is that it is a non
relativistic equation, an equation that neglects any
change in the electron’s mass due to motion.  While this
is a very good approximation for describing the slow
speed electron in hydrogen, the wavelengths of light
radiated by hydrogen can be measured so accurately
that tiny relativistic effects can be seen.  Dirac’s relativ-
istic wave equation is required to explain these tiny
relativistic corrections.
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The second limitation is that neither Schrödinger’s or
Dirac’s equations take into account the particle nature
of the electric force holding hydrogen together.  In the
hydrogen atom, the particle nature of the electric force
has only the very tiniest effect on the wavelength of the
radiated light.  But even these effects can be measured
and the particle nature must be taken into account.  The
theory that takes into account both the wave nature of
the electron and the particle nature of the electric force
is called quantum electrodynamics, a theory finally
developed in 1947 by Richard Feynman and Julian
Schwinger.  Quantum electrodynamics is the most
precisely tested theory in all of science.

In our current picture of the hydrogen atom, as de-
scribed by quantum electrodynamics, the force be-
tween the electron and the proton nucleus is caused by
the continual exchange of photons between the two
charged particles.  While being exchanged, the photon
can do some subtle things like create a positron electron
pair which quickly annihilates.  These subtle things
have tiny but measurable effects on the radiated wave-
lengths, effects that correctly predicted by the theory.

The development of quantum electrodynamics came
nearly 20 years after Dirac’s equation because of
certain mathematical problems the theory had to over-
come.  In this theory, the electron is treated as a point
particle with no size.  The accuracy of the predictions
of quantum electrodynamics is our best evidence that
this is the correct picture.  In other words, we have no
evidence that the electron has a finite size, and a very
accurate theory which assumes that it does not.  How-
ever, it is not easy to construct a mathematical theory in
which a finite amount of mass and energy is crammed
into a region of no size.  For one thing you are looking
at infinite densities of mass and energy.

Renormalization
The early attempts to construct the theory of quantum
electrodynamics were plagued by infinities.  What
would happen is that you would do an initial approxi-
mate calculation and the results would be good.  You
would then try to improve the results by calculating
what were supposed to be tiny corrections, and the
corrections turned out to be infinitely large.  One of the
main accomplishments of Feynman and Schwinger
was to develop a mathematical procedure, sort of a
mathematical slight of hand, that got rid of the infini-
ties.  This mathematical procedure became known as
renormalization.

Feynman always felt that renormalization was simply
a trick to cover up our ignorance of a deeper more
accurate picture of the electron.  I can still hear him
saying this during several seminars.  It turned out
however that renormalization became an important
guide in developing theories of other forces.  We will
shortly encounter two new forces as we look down into
the atomic nucleus, forces called the nuclear interac-
tion and the weak interaction.  Both of these forces
have a particle-wave nature like the electric interaction,
and the successful theories of these forces used
renormalization as a guide.

Figure 8-33
Einstein’s theory of gravity predicted that Mercury’s
elliptical orbit “precessed” or rotated somewhat like the
rotation seen in the above orbit. Mercury’s precession
is much, much smaller.
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Gravity
The one holdout, the one force for which we do not
have a successful theory, is gravity.  We have come a
long way since Newton’s law of gravity.  After Einstein
developed his theory of relativity in 1905, he spent the
next 12 years working on a relativistic theory of
gravity.  The result, known as general relativity is a
theory of gravity that is in many ways similar to
Maxwell’s theory of electricity.  Einstein’s theory
predicts, for example, that a planet in orbit about a star
should emit gravitational waves in much the same way
that Maxwell’s theory predicts that an electron in orbit
about a nucleus should emit electromagnetic radiation
or light.

One of the difficulties working with Einstein’s theory
of gravity is that Newton’s theory of gravity explains
almost everything we see, and you have to look very
hard in places where Newton’s law is wrong and
Einstein’s theory is right.  There is an extremely small
but measurable correction to the orbit of Mercury that
Newton’s theory cannot explain and Einstein’s theory
does.

Einstein’s theory also correctly predicts how much
light will be deflected by the gravitational attraction of
a star.  You can argue that because light has energy and
energy is equivalent to mass, Newton’s law of gravity
should also predict that starlight should be deflected by
the gravitational pull of a star.  But this Newtonian
argument leads to half the deflection predicted by
Einstein’s theory, and the deflection predicted by Ein-
stein is observed.

The gravitational radiation predicted by Einstein’s
theory has not been detected directly, but we have very
good evidence for its existence.  In 1974 Joe Taylor
from the University of Massachusetts, working at the
large radio telescope at Arecibo discovered a pair of
neutron stars in close orbit about each other.  We will
have more to say about neutron stars later.  The point is
that the period of the orbit of these stars can be
measured with extreme precision.

Einstein’s theory predicts that the orbiting stars should
radiate gravitational waves and spiral in toward each
other.  This is reminiscent of what we got by applying
Maxwell’s theory to the electron in hydrogen, but in the
case of the pair of neutron stars the theory worked.  The
period of the orbit of these stars is changing in exactly
the way one would expect if the stars were radiating
gravitational waves.

If our wave-particle picture of the behavior of matter is
correct, then the gravitational waves must have a
particle nature like electromagnetic waves.  Physicists
call the gravitational particle the graviton.  We think we
know a lot about the graviton even though we have not
yet seen one.  The graviton should, like the photon,
have no rest mass, travel at the speed of light, and have
the same relationship between energy and wavelength.

One difference is that because the graviton has energy
and therefore mass, and because gravitons interact with
mass, gravitons interact with themselves.  This self
interaction significantly complicates the theory of grav-
ity.  In contrast photons interact with electric charge,
but photons themselves do not carry charge.  As a
result, photons do not interact with each other which
considerably simplifies the theory of the electric inter-
action.

An important difference between the graviton and the
photon, what has prevented the graviton from being
detected, is its fantastically weak interaction with mat-
ter.  You saw that the gravitational force between the
electron and a proton is a thousand billion billion billion
billion times weaker than the electric force.  In effect
this makes the graviton a thousand billion billion
billion billion times harder to detect.  The only reason
we know that this very weak force exists at all is that it
gets stronger and stronger as we put more and more
mass together, to form large objects like planets and
stars.
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Not only do we have problems thinking of a way to
detect gravitons, we have run into a surprising amount
of difficulty constructing a theory of gravitons.  The
theory would be known as the quantum theory of
gravity, but we do not yet have a quantum theory of
gravity.  The problem is that the theory of gravitons
interacting with point particles,  the gravitational anal-
ogy of quantum electrodynamics, does not work.  The
theory is not renormalizable, you cannot get rid of the
infinities.  As in the case of the electric interaction the
simple calculations work well, and that is why we think
we know a lot about the graviton.  But when you try to
make what should be tiny relativistic corrections, the
correction turns out to be infinite.  No mathematical
slight of hand has gotten rid of the infinities.

The failure to construct a consistent quantum theory of
gravity interacting with point particles has suggested to
some theoretical physicists that our picture of the
electron and some other particles being point particles
is wrong.  In a new approach called string theory, the
elementary particles are view not as point particles but
instead as incredibly small one dimensional objects
called strings.  The strings vibrate, with different
modes of vibration corresponding to different elemen-
tary particles.

String theory is complex.  For example, the strings exist
in a world of 10 dimensions, whereas we live in a world
of 4 dimensions.  To make string theory work, you have
to explain what happened to the other six dimensions.

Another problem with string theory is that it has not led
to any predictions that distinguish it from other theo-
ries.  There are as yet no tests, like the deflection of
starlight by the sun, to demonstrate that string theory is
right and other theories are wrong.

String theory does, however, have one thing going for
it.  By spreading the elementary particles out from zero
dimensions (points) to one dimensional objects (strings),
the infinities in the theory of gravity can be avoided.

A SUMMARY
Up to this point our focus has been on the hydrogen
atom.  The physical magnification has not been too
great, we are still picturing the atom as an object
magnified to the size of a basketball with two particles,
the electron and proton, that are too small to see.  They
may or may not have some size, but we cannot tell at
this scale.

What we have done is change our perception of the
atom.  We started with a picture that Newton would
recognize, of a small solar system with the massive
proton at the center and the lighter electron held in orbit
by the electric force.  When we modernize the picture
by including Maxwell’s theory of electricity and mag-
netism, we run into trouble.  We end up predicting that
the electron will lose energy by radiating light, soon
crashing into the proton.  Bohr salvaged the picture by
introducing his allowed orbits and quantized angular
momentum, but the success of Bohr’s theory only
strengthened the conviction that something was funda-
mentally wrong with classical physics.

Louis de Broglie pointed the way to a new picture of the
behavior of matter by proposing that all matter, not just
light, had a particle-wave nature.  Building on de
Broglie’s idea, Schrödinger developed a wave equa-
tion that not only describes the behavior of the electron
in hydrogen, but in larger and more complex atoms as
well.

While Schrödinger’s non relativistic wave equation
adequately explains most classical phenomena, even in
the hydrogen atom, there are tiny but observable rela-
tivistic effects that Dirac could explain with his relativ-
istic wave equation for the electron.  Dirac handled the
problem of all relativistic wave equations having two
solutions by reinterpreting the second solution as rep-
resenting antimatter.
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Dirac’s equation is still not the final theory for hydro-
gen because it does not take into account the fact that
electric forces are ultimately caused by photons.  The
wave theory of the electron that takes the photon nature
of the electric force into account is known as quantum
electrodynamics.  The predictions of quantum electro-
dynamics are in complete agreement with experiment,
it is the most precisely tested theory in science.

The problems resulting from treating the electron as a
point particle were handled in quantum electrodynam-
ics by renormalization.  Renormalization does not
work, however, when one tries to formulate a quantum
theory of gravity where the gravitational force par-
ticle—the graviton—interacts with point particles.  This
has led some theorists to picture the electron not as a
point but as an incredibly small one dimensional object
called a string.  While string theory is renormalizable,
there have been no experimental tests to show that
string theory is right and the point particle picture is
wrong.  This is as far as we can take our picture of the
hydrogen atom without taking a closer look at the
nucleus.

THE NUCLEUS
To see the nucleus we have to magnify our hydrogen
atom to a size much larger than a basketball.  When the
atom is enlarged so that it would just fill a football
stadium, the nucleus, the single proton, would be about
the size of a pencil eraser.  The proton is clearly not a
point particle like the electron.  If we enlarge the atom
further to get a better view of the nucleus, to the point
where the proton looks as big as a grapefruit, the atom
is about 10 kilometers in diameter.  This grapefruit
sized object weighs 1836 times as much as the electron,
but it is the electron wave that occupies the 10 kilometer
sphere of space surrounding the proton.

Before we look inside the proton, let us take a brief look
at the nuclei of some other atoms.  Once in a great while
you will find a hydrogen nucleus with two particles.
One is a proton and the other is the electrically neutral
particles called the neutron.  Aside from the electric
charge, the proton and neutron look very similar.  They
are about the same size and about the same mass.  The
neutron is a fraction of a percent heavier than the
proton, a small mass difference that will turn out to have
some interesting consequences.

As we mentioned, the type of element is determined by
the number of protons in the nucleus.  All hydrogen
atoms have one proton, all helium atoms 2 protons, etc.
But for the same element there can be different num-
bers of neutrons in the nucleus.  Atoms with the same
numbers of protons but different numbers of neutrons
are called different isotopes of the element.  Another
isotope of hydrogen, one that is unstable and decays in
roughly 10 years, is a nucleus with one proton and two
neutrons called tritium.

The most stable isotope of helium is helium 4, with 2
protons and 2 neutrons.  Helium 3 with 2 protons and
one neutron is stable but very rare.  Once we get beyond
hydrogen we name the different isotopes by adding a
number after the name, a number representing the total
number of protons and neutrons.  For example the
heaviest, naturally occurring atom is the isotope Ura-
nium 238, which has 92 protons and 146 neutrons for
a total of 238 nuclear particles, or nucleons as we
sometimes refer to them.
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Figure 19-2
Isotopes of hydrogen and helium.
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The nucleons in a nucleus pack together much like the
grapes in a bunch, or like a bag of grapefruit.  At our
enlargement where a proton looks as big as a grapefruit,
the uranium nucleus would be just over half a meter in
diameter, just big enough to hold 238 grapefruit.

When you look at a uranium nucleus with its 92
positively charged protons mixed in with electrically
neutral neutrons, then you have to wonder, what holds
the thing together?  The protons, being all positively
charged, all repel each other.  And because they are so
close together in the nucleus, the repulsion is extremely
strong. It is much stronger than the attractive force felt
by the distant negative electrons.  There must be
another kind of force, and attractive force, that keeps
the protons from flying apart.

The attractive force is not gravity.  Gravity is so weak
that it is virtually undetectable on an atomic scale.  The
attractive force that overpowers the electric repulsion is
called the nuclear force.  The nuclear force between
nucleons is attractive, and essentially blind to the
difference between a proton and a neutron.  To the
nuclear force, a proton and a neutron look the same.
The nuclear force has no effect whatsoever on an
electron.

One of the important features of the nuclear force
between nucleons is that it has a short range.  Compared
to the longer range electric force, the nuclear force is
more like a contact cement.  When two protons are next
to each other, the attractive nuclear force is stronger
than the electric repulsion.  But separate the protons by
more than about 4 protons diameters and the electric
force is stronger.

If you make nuclei by adding nucleons to a small
nucleus, the object becomes more and more stable
because all the nucleons are attracting each other.  But
when you get to nuclei whose diameter exceeds around
4 proton diameters, protons on opposite sides of the
nucleus start to repel each other.  As a result nuclei
larger than that become less stable as you make them
bigger.  The isotope Iron 56 with 26 protons and 30
neutrons, is about 4 proton diameters across and is the
most stable of all nuclei.  When you reach Uranium
which is about 6 proton diameters across, the nucleus
has become so unstable that if you jostle it by hitting it
with a proton, it will break apart into two roughly equal
sized more stable nuclei.  Once apart, the smaller nuclei
repel each other electrically and fly apart releasing
electric potential energy.  This process is called nuclear
fission and is the source of energy in an atomic bomb.

While energy is released when you break apart the
large unstable nuclei, energy is also released when you
add nucleons to build up the smaller, more stable
nuclei.  For example, if you start with four protons (four
hydrogen nuclei), turn two of the protons into neutrons
(we will see how to do this shortly) and put them
together to form stable helium 4 nucleus, you get a
considerable release of energy.  You can easily figure
out how much energy is released by noting that 4
protons have a mass that is about .7 percent greater than
a helium nucleus.  As a result when the protons
combine to form helium, about .7 percent of their mass
is converted to other forms of energy.  Our sun is
powered by this energy release as it “burns” hydrogen
to form helium.  This process is called nuclear fusion
and is the source of the energy of the powerful hydro-
gen bombs.

Figure 19-1
Styrofoam ball model of the uranium nucleus..
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STELLAR EVOLUTION
Our sun is about half way through burning up the
hydrogen in its hot, inner core.  When the hydrogen is
exhausted in another 5 billion years, the sun will
initially cool and start to collapse.  But the collapse will
release gravitational potential energy that makes the
smaller sun even hotter than it was before running out
of hydrogen.  The hotter core will emit so much light
that the pressure of the light will expand the surface of
the sun out beyond the earth’s orbit, and the sun will
become what is known as a red giant star.  Soon, over
the astronomically short time of a few million years, the
star will cool off becoming a dying, dark ember about
the size of the earth.  It will become what is known as
a black dwarf.

If the sun had been more massive when the hydrogen
ran out and the star started to collapse, then more
gravitational potential energy would have been re-
leased. The core would have become hotter, hot enough
to ignite the helium to form the heavier nucleus carbon.
Higher temperatures are required to burn helium be-
cause the helium nuclei, with two protons, repel each
other with four times the electric repulsion than hydro-
gen nuclei.  As a result more thermal energy is required
to slam the helium nuclei close enough for the attractive
nuclear force to take over.

Once the helium is burned up, the star again starts to
cool and contract, releasing more gravitational poten-
tial energy until it becomes hot enough to burn the
carbon to form oxygen nuclei.  This cycle keeps
repeating, forming one element after another until we
get to Iron 56.  When you have an iron core and the star
starts to collapse and gets hotter, the iron does not burn.
You do not get a release of energy by making nuclei
larger than iron.  As a result the collapse continues
resulting in a huge implosion.

Once the center collapses, a strong shock wave races
out through the outer layers of the star, tearing the star
apart.  This is called a supernova explosion.  It is in
these supernova explosions with their extremely high
temperatures that nuclei larger than iron are formed.
All the elements inside of you that are down the
periodic table from iron were created in a supernova.
Part of you has already been through a supernova
explosion.

What is left behind of the core of the star depends on
how massive the star was to begin with.  If what remains
of the core is 1.4 times as massive as our sun, then the
gravitational force will be strong enough to cram the
electrons into the nuclei, turning all the protons into
neutrons, and leaving behind a ball of neutrons about
20 kilometers in diameter.  This is called a neutron star.
A neutron star is essentially a gigantic nucleus held
together by gravity instead of the nuclear force.

If you think that squeezing the mass of a star into a ball
20 kilometers in diameter is hard to picture (at this
density all the people on the earth would fit into the
volume of a raindrop), then consider what happens if
the remaining core is about six times as massive as the
sun.  With such mass, the gravitational force is so strong
that the neutrons are crushed and the star becomes
smaller and smaller.

The matter in a neutron star is about as rigid as matter
can get.  The more rigid a substance is, the faster sound
waves travel through the substance.  For example,
sound travels considerably faster through steel than air.
The matter in a neutron star is so rigid, or shall we say
so incompressible, that the speed of sound approaches
the speed of light.

Figure 4
1987 supernova as seen by the Hubble telescope.
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When gravity has crushed the neutrons in a neutron
star, it has overcome the strongest resistance any
known force can possibly resist.  But, as the collapse
continues, gravity keeps getting stronger.  According
to our current picture of the behavior of matter, a rather
unclear picture in this case, the collapse continues until
the star becomes a point with no size.  Well before it
reaches that end, gravity has become so strong that light
can no longer escape, with the result that these objects
are known as black holes.

We have a fuzzy picture of what lies at the center of a
black hole because we do not have a quantum theory of
gravity.  Einstein’s classical theory of gravity predicts
that the star collapses to a point, but before that happens
we should reach a state where the quantum effects of
gravity are important.  Perhaps string theory will give
us a clue as to what is happening.  We will not learn by
looking because light cannot get out.

The formation of neutron stars and black holes empha-
sizes an important feature of gravity.  On an atomic
scale, gravity is the weakest of the forces we have
discussed so far.  The gravitational force between an
electron and a proton is a thousand billion billion billion
billion (  1039 ) times weaker than the electric force.  Yet
because gravity is long range like the electric force, and
has no cancellation, it ends up dominating all other
forces, even crushing matter as we know it, out of
existence.

The Weak Interaction
In addition to gravity, the electric interaction and the
nuclear force, there is one more basic force or interac-
tion in nature given the rather bland name the weak
interaction.  While considerably weaker than electric
or nuclear forces, it is far far stronger than gravity on a
nuclear scale.

A distinctive feature of the weak interaction is its very
short range.  A range so short that only with the
construction of the large accelerators since 1970 has
one been able to see the weak interaction behave more
like the other forces.  Until then, the weak interaction
was known only by reactions it could cause, like
allowing a proton to turn into a neutron or vice versa.

Because of the weak interaction, an individual neutron
is not stable.  Within an average time of about 10
minutes it decays into a proton and an electron.  Some-
times neutrons within an unstable nucleus also decay
into a proton and electron.  This kind of nuclear decay
was observed toward the end of the nineteenth century
when knowledge of elementary particles was very
limited, and the electrons that came out in these nuclear
decays were identified as some kind of a ray called a
beta ray.  (There were alpha rays which turned out to
be helium nuclei, beta rays which were electrons, and
gamma rays which were photons.)  Because the elec-
trons emitted during a neutron decay were called beta
rays, the process is still known as the beta decay
process.

The electron is emitted when a neutron decays in order
to conerve electric charge.  When the neutral neutron
decays into a positive proton, a negatively charged
particle must also be emitted so that the total charge
does not change.  The lightest particle available to carry
out the negative charge is the electron.

Early studies of the beta decay process indicated that
while electric charge was conserved, energy was not.
For example, the rest mass of a neutron is nearly 0.14
percent greater than the rest mass of a proton.  This
mass difference is about four times larger than the rest
mass of the electron, thus there is more than enough

Figure 5
Hubble telescope’s first view of a lone neutron star in
visible light. This star is no greater than 16.8 miles (28
kilometers) across.
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mass energy available to create the electron when the
neutron decays.  If energy is conserved, you would
expect that the energy left over after the electron is
created would appear as kinetic energy of the electron.

Careful studies of the beta decay process showed that
sometimes the electron carried out the expected amount
of energy and sometimes it did not.  These studies were
carried out in the 1920s, when not too much was known
about nuclear reactions.  There was a serious debate
about whether energy was actually conserved on the
small scale of the nucleus.

In 1929, Wolfgang Pauli proposed that energy was
conserved, and that the apparenty missing energy was
carried out by an elusive particle that had not yet been
seen.  This elusive particle, which became known as the
neutrino or “little neutral one”, had to have some rather
peculiar properties.  Aside from being electrically
neutral, it had to have essentially no rest mass because
in some reactions the electron was seen to carry out all
the energy, leaving none to create a neutrino rest mass.

The most bizarre property f the neutrino was its
undetectability.  It had to pass through matter leaving
no trace.  It was hard to believe such a particle could
exist, yet on the other hand, it was hard to believe
energy was not conserved.  The neutrino was finally
detected thirty years later and we are now quite confi-
dent that energy is conserved on the nuclear scale.

The neutrino is elusive because it interacts with matter
only through the weak interaction (and gravity).  Pho-
tons interact via the strong electric interaction and are
quickly stopped when they encounter the electric charges
in matter.  Neutrinos can pass through light years of
lead before there is a good chance that they will be
stopped.  Only in the collapsing core of an exploding
star or in the very early universe is matter dense enough
to significantly absorb neutrinos.  Because neutrinos
have no rest mass, they, like photons, travel at the speed
of light.

Leptons
We now know that neutrinos are emitted in the beta
decay process because of another conservation law, the
conservation of leptons.  The leptons are a family of
light particles that include the electron and the neutrino.
When an electron is created, an anti neutrino is also
created so that the number of leptons does not change.

Actually there are three distinct conservation laws for
leptons.  The lepton family consists of six particles, the
electron, two more particles with rest mass and three
different kinds of neutrino.  The other massive particles
are the muon which is 207 times as massive as the
electron, and the recently discovered tau particle which
is 3490 times heavier.  The three kinds of neutrino are
the electron type neutrino, the muon type neutrino
and the tau type neutrino.  The names come from the
fact that each type of particle is separately conserved.
For example when a neutron decays into a proton and
an electron is created, it is an anti electron type neu-
trino that is created at the same time to conserve
electron type particles.

In the other common beta decay process, where a
proton turns into a neutron, a positron is created to
conserve electric charge.  Since the positron is the anti
particle of the electron, its opposite, the electron type
neutrino, must be created to conserve leptons.
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Nuclear Structure
The light nuclei, like helium, carbon, oxygen, gener-
ally have about equal numbers of protons and neutrons.
As the nuclei become larger we find a growing excess
of neutrons over protons.  For example when we get up
to Uranium 238, the excess has grown to 146 neutrons
to 92 protons.

The most stable isotope of a given element is the one
with the lowest possible energy.  Because the weak
interaction allows protons to change into neutrons and
vice versa, the number of protons and neutrons in a
nucleus can shift until the lowest energy combination
is reached.

Two forms of energy that play an important role in their
proess are the extra mass energy of the neutrons, and
the electric potential energy of the protons.  It takes a lot
f to shove two protons together against their electric
repulsion.  The work you do in shoving them together
is stored as electric potential energy which will be
released if you let go and the particles fly apart.  This
energy will not be released, however, if the protons are
latched together by the nuclear force.  But in that case
the electric potential energy can be released by turning
one of the protons into a neutron.  This will happen if
enough electric potential energy is available not only to
create the extra neutron rest mass energy, but also the
positron required to conserve electric charge.

The reason that the large nuclei have an excess of
neutrons over protons is that electric potential energy
increases faster with increasing number of protons than
neutron mass energy does with increasing numbers of
neutrons.  The amount of extra neutron rest mass
energy is more or less proportional to the number of
neutrons.  But the increase in electric potential energy
as you add a proton depends on the number of protons
already in the nucleus.  The more protons already there,
the stronger the electric repulsion when you try to add
another proton, and the greater the potential energy
stored.  As a result of this increasing energy cost of
adding more protons, the large nuclei find their lowest
energy balance having an excess of neutrons.

A CONFUSING PICTURE
By 1932, the basic picture of matter looked about as
simple as it can possibly get.  The elementary particles
were the proton, neutron, and electron.  Protons and
neutrons were held together in the nucleus by the
nuclear force, electrons were bound to nuclei by the
electric force to form atoms, a residual of the electric
force held atoms together to form molecules, crystals
and living matter, and gravity held large chunks of
matter together for form planets, stars and galaxies.
The rules governing the behavior of all this was quan-
tum mechanics on a small scale, which became New-
tonian mechanics on the larger scale of our familiar
world.  There were a few things still to be straightened
out, such as the question as to whether energy was
conserved in beta decays, and in fact why beta decays
occurred at all, but it looked as if these loose ends
should be soon tied up.

The opposite happened.  By 1960, there were well over
100 so called elementary particles, all of them unstable
except for the familiar electron, proton and neutron.
Some lived long enough to travel kilometers down
through the earth’s atmosphere, others long enough to
be observed in particle detectors.  Still others had such
short lifetimes that, even moving at nearly the speed of
light, they could travel only a few proton diameters
before decaying. With few exceptions, these particles
were unexpected and their behavior difficult to explain.
Where they were expected, they were incorrectly iden-
tified.

One place to begin the story of the progression of
unexpected particles is with a prediction made in 1933
by Heidi Yukawa.  Yukawa proposed a new theory of
the nuclear force.  Noting that the electric force was
ultimately caused by a particle, Yukawa proposed that
the nuclear force holding the protons and neutrons
together in the nucleus was also caused by a particle, a
particle that became known as the nuclear force me-
son.  The zero rest mass photon gives rise to the long
range electric force.  Yukawa developed a wave equa-
tion for the nuclear force meson in which the range of
the force depends on the rest mass of the meson.  The
bigger the rest mass of the meson, the shorter the range.
(Later in the text, we will use the uncertainty principle
to explain this relationship between the range of a force
and the rest mass of the particle causing it.)
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From the fact that iron is the most stable nucleus,
Yukawa could estimate that the range of the nuclear
force is about equal to the diameter of an iron nucleus,
about four proton diameters.  From this, he predicted
that the nuclear force meson should have a rest mass
bout 300 times the rest mass of the electron (about 1/6
the rest mass of a proton).

Shortly after Yukawa’s prediction, the muon was
discovered in the rain of particles that continually strike
the earth called cosmic rays.  The rest mass of the muon
was found to be about 200 times that of the electron, not
too far off the predicted mass of Yukawa’s particle.  For
a while the muon was hailed as Yukawa’s nuclear force
meson.  But further studies showed that muons could
travel considerable distances through solid matter.  If
the muon were the nuclear force meson, it should
interact strongly with nuclei and be stopped rapidly.
Thus the muon was seen as not being Yukawa’s
particle.  Then there was the question of what role the
muon played.  Why did nature need it?

In 1947 another particle called the π  meson was
discovered.  (There were actually three π  mesons, one
with a positive charge, the   π+ , one neutral, the  π° , and
one with a negative charge, the   π– .)  The π  mesons
interacted strongly with nuclei, and had the mass close
to that predicted by Yukawa, 274 electron masses.  The
π  mesons were then hailed as Yukawa’s nuclear force
meson.

However, at almost the same time, another particle
called the K meson, 3.5 times heavier than the π
meson, was discovered.  It also interacted strongly with
nuclei and clearly played a role in the nuclear force.
The nuclear force was becoming more complex than
Yukawa had expected.

Experiments designed to study the π  and K mesons
revealed other particles more massive than protons and
neutrons that eventually decayed into protons and
neutrons.  It became clear that the proton and neutron
were just the lightest members of a family of proton like
particles.  The number of particles in the proton family
was approaching 100 by 1960.  During this time it was
also found that the π  and K mesons were just the
lightest members of another family of particles whose
number exceeded 100 by 1960.  It was rather mind

boggling to think of the nuclear force as being caused
by over 100 different kinds of mesons, while the
electric force had only one particle, the photon.

One of the helpful ways of viewing matter at that time
was to identify each of the particle decays with one of
the four basic forces.  The very fastest decays were
assumed to be caused by the strong nuclear force.
Decays that were about 100 times slower were identi-
fied with the slightly weaker electric force.  Decays that
took as long as a billionth of a second, a relatively long
lifetime, were found to be caused by the weak interac-
tion.  The general scheme was the weaker the force, the
longer it took to cause a particle decay.
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First bubble chamber
photograph of the   Ω–

particle. The   Ω–,Ξ0,Λ0

and   p + are all members
of the proton family, the
K’s and π’s are mesons,
the γ ’s are photons and
the  e–  and  e+ are
electrons and positrons.
Here we see two
examples of the creation
of an electron-positron
pair by a photon.
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QUARKS
The mess seen in 1960 was cleaned up, brought into
focus, primarily by the work of Murray Gell-Mann.  In
1961 Gell-Mann and Yval Neuman found a scheme
that allowed one to see symmetric patterns in the
masses and charges of the various particles.  In 1964
Gell-Mann and George Zweig discovered what they
thought was the reason for the symmetries.  The
symmetries would be the natural result if the proton and
meson families of particles were made up of smaller
particles which Gell-Mann called quarks.

Initially Gell-Mann proposed that there were three
different kinds of quark, but the number has since
grown to six. The lightest pair of the quarks, the so
called up quark and down quark are found in protons
and neutrons.  If the names “up quark” and “down
quark” seem a bit peculiar, they are not nearly as
confusing as the names strange quark, charm quark,
bottom quark and top quark given the other four
members of the quark family. It is too bad that the
Greek letters had been used up naming other particles.

In the quark model, all members of the proton family
consist of three quarks.  The proton and neutron, are
made from the up and down quarks.  The proton
consists of two up and one down quark, while the
neutron is made from one up and two down quarks.  The
weak interaction, which as we saw can change protons
into neutrons, does so by changing one of the proton’s
up quarks into a down quark.

The π  meson type of particles, which were thought to
be Yukawa’s nuclear force particles, turned out instead
to be quark-antiquark pairs.  The profusion of what
were thought to be elementary particles in 1960 re-
sulted from the fact that there are many ways to
combine three quarks to produce members of the

proton family or a quark and an antiquark to create a
meson.  The fast elementary particle reactions were the
result of the rearrangement of the quarks within the
particle, while the slow reactions resulted when the
weak interaction changed one kind of quark into an-
other.

A peculiar feature of the quark model is that quarks
have a fractional charge.  In all studies of all elemen-
tary particles, charge was observed to come in units of
the amount of charge on the electron.  The electron had
(–1) units, and the neutron (0) units.  All of the more
than 100 “elementary” particles had either +1, 0, or –1
units of change.  Yet in the quark model, quarks had a
charge of either (+2/3) units like the up quark or (-1/3)
units like the down quark.  (The anti particles have the
opposite charge, -2/3 and +1/3 units respectively.)  You
can see that a proton with two up and one down quark
has a total charge of (+2/3  +2/3 -1/3) = (+1) units, and
the neutron with two down and one up quark has a total
charge (-1/3 -1/3 +2/3) = (0) units.

The fact that no one had ever detected an individual
quark, or ever seen a particle with a fractional charge,
made the quark model hard to accept at first.  When
Gell-Mann initially proposed the model in 1963, he
presented it as a mathematical construct to explain the
symmetries he had earlier observed.

The quark model gained acceptance in the early 1970s
when electrons at the Stanford high energy accelerator
were used to probe the structure of the proton.  This
machine had enough energy, could look in sufficient
detail to detect the three quarks inside.  The quarks were
real.

In 1995, the last and heaviest of the six quarks, the top
quark, was finally detected at the Fermi Lab Accelera-
tor.  The top quark was difficult to detect because it is
185 times as massive as a proton.  A very high energy
accelerator was needed to create and observe this
massive particle.
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With the quark model, our view of matter has become
relatively simple again: there are two families of par-
ticles called quarks and leptons.  Each family contains
six particles.  It is not a coincidence that there are the
same number of particles in each family.  In the current
theory of matter called the standard model, each pair
of leptons is intimately connected to a pair of quarks.
The electron type leptons are associated with the down
and up quarks, the muon and muon type neutrino with
the strange and charm quarks, and the tau and tau type
neutrino with the bottom and top quarks.

Are there more than six quarks and six leptons?  Are
there still heavier lepton neutrino pairs associated with
still heavier quarks?  That the answer is no, that six is
the limit, first came not from accelerator experiments,
but from studies of the early universe.  Here we have a
question concerning the behavior of matter on the very
smallest of scales of distance, at the level of quarks
inside proton like particles, and we find the answer by
looking at matter on the very largest of scales, the entire
universe.  The existence of more than six leptons and
quarks would have altered the relative abundance of
hydrogen, deuterium, and helium remaining after the
big bang.  It would have led to an abundance that is not
consistent with what we see now.  Later experiments
with particle accelerators confirmed the results we first
learned from the early universe.

Our picture of the four basic interactions has also
become clearer since the early 1930s.  The biggest
change is in our view of the nuclear force.  The basic
nuclear force is now seen to be the force between
quarks that holds them together to form protons, neu-
trons and other particles.  What we used to call the
nuclear force, that short range force binding protons
and neutrons together in a nucleus, is now seen as a
residual effect of the force between quarks.  The old
nuclear force is analogous to the residual electric force
that binds complete atoms together to form molecules.

As the electric interaction is caused by a particle, the
photon, the nuclear force is also caused by particles,
eight different ones called gluons.  The nuclear force is
much more complex than the electric force because
gluons not only interact with quarks, they also interact
with themselves.  This gives rise to a very strange force
between quarks.  Other forces get weaker as you
separate the interacting particles.  The nuclear force
between quarks gets stronger!  As a result quarks are
confined to live inside particles like protons, neutrons
and mesons.  This is why we have still never seen an
individual quark or an isolated particle with a fractional
charge.

Figure 28-28
Fermi Lab accelerator magnets.

Figure 28-29
Fermi Lab accelerator where the
top quark was first observed.
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THE ELECTROWEAK THEORY
Another major advance in our understanding of the
nature of the basic interactions came in 1964 when
Steven Weinberg, Abdus Salam and Sheldon Glashow
discovered a basic connection between the electric and
weak interactions.  Einstein had spent the latter part of
his life trying without success to unify, find a common
basis for, the electric and the gravitational force.  It
came somewhat as a surprise that the electric and weak
interactions, which appear so different, had common
origins.  Their theory of the two forces is known as the
electroweak theory.

In the electroweak theory, if we heat matter to a
temperature higher than 1000 billion degrees, we will
find that the electric and weak interaction are a single
force. If we then let the matter cool, this single
electroweak force splits into the two separate forces,
the electric interaction and the weak interaction.  This
splitting of the forces is viewed as a so called phase
transition, a transition in the state of matter like the one
we see when water turns to ice at a temperature of 0°C.
The temperature of the phase transition for the
electroweak force sounds impossibly hot, but it is
attainable if we build a big enough accelerator.  The

cancelled superconducting supercollider was supposed
to allow us to study the behavior of matter at these
temperatures.

One of the major predictions of the electroweak theory
was that after the electric and weak interactions had
separated, electric forces should be caused by zero rest
mass photons and the weak interaction should be
caused by three rather massive particles given the
names  W+ ,  W–  and   Z0  mesons.  These mesons were
found, at their predicted mass, in a series of experi-
ments performed at CERN in the late 1970s.

We have discussed Yukawa’s meson theory of forces,
a theory in which the range of the force is related to the
rest mass of the particle responsible for the force.  As
it turns out, Yukawa’s theory does not work for nuclear
forces for which it was designed.  The gluons have zero
rest mass but because of their interaction, gives rise to
a force unlike any other.  What Yukawa’s theory does
describe fairly well is the weak interaction.  The very
short range of the weak interaction is a consequence of
the large masses of the weak interaction mesons  W+ ,

 W–  and   Z0 . (The W mesons are 10 times as massive
as a proton, the   Z0 is 11 times as massive.)

Figure 28-30
Paths for the large particle accelerators at CERN. The Geneva airport is in the foreground.
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THE EARLY UNIVERSE
In the reverse motion picture of the expanding uni-
verse, the universe becomes smaller and smaller and
hotter as we approach the big bang that created it.  How
small and how hot are questions we are still studying.
But it now seems that with reasonable confidence we
can apply the laws of physics to a universe that is about
one nanosecond old and at a temperature of three
hundred thousand billion degrees.  This is the tempera-
ture of the electroweak transition where the weak and
electric interactions become separate distinct forces.
We have some confidence in our knowledge of the
behavior of matter at this temperature because this
temperature is being approached in the largest of the
particle accelerators.

  3×1014 degrees

At three hundred thousand billion degrees the only
structures that survive the energetic thermal collisions
are the elementary particles themselves.  At this time
the universe consists of a soup of quarks and anti
quarks, leptons and anti leptons, gravitons and gluons.
Photons and the weak interaction mesons  W+ ,  W–

and   Z°  are just emerging from the particle that gave
rise to the electroweak force.  The situation may not
actually be that simple.  When we get to that tempera-
ture we may find some of the exotic elementary par-
ticles suggested by some recent attempts at a quantum
theory of gravity.

 1013 degrees

When the universe reaches the ripe old age of a
millionth of a second, the time it takes light to travel
1000 feet, the temperature has dropped to 10 thousand
billion degrees.  At these temperatures the gluons are
able to hold the quarks together to form protons,
neutrons, mesons, and their anti particles.  It is still
much too hot, however, for protons and neutrons to
stick together to form nuclei.

When we look closely at the soup of particles at 10
thousand billion degrees, there is activity in the form of
the annihilation and creation of particle-antiparticle
pairs.  Proton-antiproton pairs, for example, are rapidly
annihilating, turning into photons and mesons.  But just
as rapidly photons and mesons are creating proton-
antiproton pairs.

In the next 10 millionths of a second the universe
expands and cools to a point where the photons and
mesons no longer have enough energy to recreate the
rapidly annihilating proton and neutron pairs.  Soon the
protons and neutrons and their antiparticles will have
essentially disappeared from the universe.

Matter particles survive
The protons and neutrons will have almost disappeared
but not quite.  For some reason, not yet completely
understood, there was a tiny excess of protons
over antiprotons and neutrons over
antineutrons.  The estimate is that there were
100,000,000,001 matter particles for every
100,000,000,000 antimatter particles.  It was
the tiny excess of matter over antimatter that survived
the proton and neutron annihilation.

  3×1010 degrees

After this annihilation, nothing much happens until the
universe approaches the age of a tenth of a second and
the temperature has dropped to 30 billion degrees.
During this time the particles we see are photons,
neutrinos and antineutrinos and electrons and positrons.
These particles exist in roughly equal numbers.  The
electron-positron pairs are rapidly annihilating to pro-
duce photons, but the photons are equally rapidly
creating electron positron pairs.

38% neutrons
There are still the relatively few protons and neutrons
that survived the earlier annihilation.  The weak inter-
action allows the protons to turn into neutrons and vice
versa, with the result there are roughly equal numbers
of protons and neutrons.  The numbers are not quite
equal, however, because at those temperatures there is
a slightly greater chance for the heavier neutron to
decay into a lighter proton than vice versa.  It is
estimated that the ratio of neutrons to protons has
dropped to 38% by the time the universe is .11 seconds
old.  The temperature is still too high  for protons and
neutrons to combine to form nuclei.
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Neutrinos escape at one second
As we noted, neutrinos are special particles in that the
only way they interact with matter is through the weak
interaction.  Neutrinos pass right through the earth with
only the slightest chance of being stopped.  But the
early universe is so dense that the neutrinos interact
readily with all the other particles.

When the universe reaches an age of about one second,
the expansion has reduced the density of matter to the
point that neutrinos can pass undisturbed through
matter.  We can think of the neutrinos as decoupling
from matter and going on their own independent way.
From a time of one second on, the only thing that will
happen to the neutrinos is that they will continue to cool
as the universe expands.  At an age of 1 second, the
neutrinos were at a temperature of 10 billion degrees.
By today they have cooled to only a few degrees above
absolute zero. This is our prediction, but these cool
neutrinos are too elusive to have been directly ob-
served.

24% neutrons
Some other interesting things are also beginning to
happen at the time of 1 second.  The photons have
cooled to a point that they just barely have enough
energy to create electron-positron pairs to replace those
that are rapidly annihilating.  The result is that the
electrons and positrons are beginning to disappear.  At
these temperatures it is also more favorable for neu-
trons to turn into protons rather than vice versa, with the
result that the ratio of neutrons to protons has dropped
to 24%.

  3×109 degrees (13.8 seconds)

When the temperature of the universe has dropped to 3
billion degrees, at the time of 13.8 seconds, the energy
of the photons has dropped below the threshold of
being able to create electron-positron pairs and the
electrons and the positrons begin to vanish from the
universe.  There was the same tiny excess of electrons
over positrons as there had been of protons over
antiprotons.  Only the excess of electrons will survive.

Positrons annihilated
After about three minutes the positrons are gone and
from then on the universe consists of photons, neutri-
nos, anti neutrinos and the few matter particles.  The
neutrinos are not interacting with anything, and the
matter particles are outnumbered by photons in a ration
of 100,000,000,000 to one.  The photons essentially
dominate the universe.

Deuterium bottleneck
At the time of 13.8 seconds the temperature was 3
billion degrees, cool enough for helium nuclei to
survive.  But helium nuclei cannot be made without
first making deuterium, and deuterium is not stable at
that temperature.  Thus while there are still neutrons
around, protons and neutrons still cannot form nuclei
because of this deuterium bottleneck.

Helium created
When the universe reaches an age of three minutes and
2 seconds, and the ratio of neutrons to protons has
dropped to 13%, finally deuterium is stable.  These
surviving neutrons are quickly swallowed up to form
deuterium which in turn combine to form the very
stable helium nuclei.  Since there are equal numbers of
protons and neutrons in a helium nucleus, the 13% of
neutrons combined with an equal number of protons to
give 26% by weight of helium nuclei and 74% protons
or hydrogen nuclei.

By the time the helium nuclei form, the universe has
become too cool to burn the helium to form heavier
elements.  The creation of the heavier elements has to
wait until stars begin to form one third of a million years
later.

The formation of elements inside of stars was the basis
of the continuous creation theory.  As we mentioned,
one could explain the abundance of all the elements
except helium as being a by product of the evolution of
stars.  To explain the helium abundance it was neces-
sary to abandon his continuous creation theory and
accept that there might have been a big bang after all.
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The Thermal Photons
After the electron positron pairs had vanished, what is
left in the universe are the photons, neutrinos, anti
neutrinos, and the few matter particles consisting of
protons, helium nuclei and a trace of deuterium and
lithium.  There are enough electrons to balance the
charge on the hydrogen and helium nuclei, but the
photons are energetic enough to break up any atoms
that might try to form.  The neutrinos have stopped
interacting with anything and the matter particles are
outnumbered by photons in a ratio of 100 billion to one.
At this time the photons dominate the universe.

One way to understand why the universe cools as it
expands is to picture the expansion of the universe as
stretching the wavelength of the photons.  Since the
energy of a photon is related to its wavelength (the
longer the wavelength the lower the energy), this
stretching of wavelengths lowers the photon energies.
Because the photons dominate the young universe,
when the photons lose energy and cool down, so does
everything else that the photons are interacting with.

.7 million years
Until the universe reaches the age of nearly a million
years, the photons are knocking the matter particles
around, preventing them from forming whole atoms or
gravitational structures like stars.  But at the age of .7
million years the temperature has dropped to 3000
degrees, and something very special happens at that
point.  The matter particles are mostly hydrogen, and if
you cool hydrogen below 3000 degrees it becomes
transparent.  The transition in going from above 3000
degrees to below, is like going from inside the surface
of the sun to outside.  We go from an opaque, glowing
universe to a transparent one.

Transparent universe
When the universe becomes transparent, the photons
no longer have any effect on the matter particles and the
matter can begin to form atoms, stars, and galaxies.
Everything we see today, except for the primordial
hydrogen and helium, was formed after the universe
became transparent.

Think about what it means that the universe became
transparent at an age of .7 million years.  In our
telescopes, as we look at more and more distant galax-
ies, the light from these galaxies must have taken more
and more time to reach us.  As we look farther out we
are looking farther back in time.  With the Hubble
telescope we are now looking at galaxies formed when
the universe was less than a billion years old, less than
10% of its current age.

Imagine that you could build a telescope even more
powerful than the Hubble, one that was able to see as
far out, as far back to when the universe was .7 million
years old.  If you could look that far out what would you
see?  You would be staring into a wall of heated opaque
hydrogen.  You would see this wall in every direction
you looked.  If you tried to see through the wall, you
would be trying to look at the universe at earlier, hotter
times. It would be as futile as trying to look inside the
sun with a telescope.

Although this wall at .7 million light years consists of
essentially the same heated hydrogen as the surface of
the sun, looking at it would not be the same as looking
at the sun.  The light from this wall has been traveling
toward us for the last 14 billion years, during which
time the expansion of the universe has stretched the
wavelength and cooled the photons to a temperature of
less than 3 degrees, to a temperature of 2.74 degrees
above absolute zero to be precise.

Photons at a temperature of 2.74 degrees can be ob-
served, not by optical telescopes but by radio antennas
instead.  In 1964 the engineers Arno Penzias and
Robert Wilson were working with the radio antenna
that was communicating with the Telstar satellite.  The
satellite was a large aluminized balloon that was sup-
posed to reflect radio signals back to earth.  The radio
antenna had to be very sensitive to pick up the weak
reflected signals.
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In checking out the antenna, Penzias and Wilson were
troubled by a faint noise that they could not eliminate.
Further study showed that the noise was characteristic
of a thermal bath of photons whose temperature was
around 3 degrees.  After hearing a seminar on the theory
of the big bang and on the possibility that there might
be some light remaining from the explosion, Penzias
and Wilson immediately realized that the noise in their
antenna was that light.  Their antenna in effect was
looking at light from the time the universe became
transparent.  At that time, only a few astronomers and
physicists were taking the big bang hypothesis seri-
ously.  The idea of the universe beginning in an
explosion seemed too preposterous.  After  Penzias and
Wilson saw the light left over from the hotter universe,
no other view has been acceptable.

The fact that the universe became transparent at an age
of .7 million years, means that the photons, now called
the cosmic background radiation, travelled undis-
turbed by matter.  By studying these photons carefully,
which we are now doing in various rocket and satellite
experiments, we are in a sense, taking an accurate
photograph of the universe when the universe was .7
million years old.

This photograph shows an extremely uniform uni-
verse.  The smoothness shows us that stars and galaxies
had not yet begun to form.  In fact the universe was so
smooth that it is difficult to explain how galaxies did
form in the time between when the universe went
transparent and when we see galaxies in the most
distant Hubble telescope photographs.  The COBE
(Cosmic Background Explorer) satellite was able to
detect tiny fluctuations in the temperatures of the
background radiation, indicating that there was per-
haps just enough structure in the early hot universe to
give us the stars, galaxies and clustering of galaxies we
see today.

One of the questions you may have had reading our
discussion of the early universe, is how do we know
that the photons, and earlier the particle-anti particle
pairs outnumbered the matter particles by a ratio of 100
billion to one?  How do we estimate the tiny excess of
matter over anti matter that left behind all the matter we
see today?  The answer is that the thermal photons we
see today outnumber protons and neutrons by a factor
of 100 billion to one and that ratio should not have
changed since the universe was a few minutes old.

We also mentioned that it would be futile to try to look
under the surface of the sun using a telescope.  That is
true if we try to use a photon telescope.  However we
can, in effect, see to the very core of the sun using
neutrinos.  In the burning of hydrogen to form helium,
for each helium nucleus created, two protons are con-
verted to neutrons via the weak interaction.  In the
process two neutrinos are emitted.  As a result the core
of the sun is a bright source of neutrinos which we can
detect and study here on earth.

While it would be futile to use photons to see farther
back to when the universe was about .7 million years
old, we should be able to see through that barrier using
neutrinos.  The universe became transparent to neutri-
nos at the end of the first second.  If we could detect
these neutrinos, we would have a snapshot of the
universe as it looked when it was one second old.  Thus
far, we have not found a way to detect these cosmic
background neutrinos.Figure 34-11

Penzias and Wilson, and the Holmdel radio telescope.



The subject of this book is the behavior of matter—the
particles that make up matter, the interactions between
particles, and the structures that these interactions
create.  There is a wondrous variety of activity, as
patterns and structures form and dissipate, and all of
this activity takes place in an arena we call space and
time.  The subject of this chapter is that arena —space
and time itself.

Initially, one might think that a chapter on space and
time would either be extraordinarily dull, or too eso-
teric to be of any use.  From the it’s too dull point of
view, distance is measured by meter sticks, and there
are relationships like the Pythagorean theorem and
various geometric and trigonometric rules already
familiar to the reader.  Time appears to be less chal-
lenging—it is measured by clocks and seems to march
inexorably forward.

On the too esoteric side are the theories like Einstein’s
General Theory of Relativity which treats gravity as a
distortion of space and time, the Feynman-Wheeler
picture of antimatter as being matter traveling back-
ward in time, and recent “super symmetry” theories
which assume a ten dimensional space.  All of these
theories are interesting, and we will briefly discuss
them.  We will do that later in the text after we have built
up enough of a background to understand why these
theories were put forth.

What can we say in an introductory chapter about
space and time that is interesting, or useful, or neces-
sary for a physics text?  Why not follow the traditional

approach and begin with the development of Newton’s
theory of mechanics.  You do not need a very sophisti-
cated picture of space and time to understand Newto-
nian mechanics, and this theory explains an enormous
range of phenomena, more than you can learn in one
or several years.  There are three main reasons why we
will not start off with the Newtonian picture.  The first
is that the simple Newtonian view of space and time is
approximate, and the approximation fails badly in
many examples we will discuss in this text.  By starting
with a more accurate picture of space and time, we can
view these examples as successful predictions rather
than failures of the Newtonian theory.

The second reason is that the more accurate picture of
space and time is based on the simplest, yet perhaps
most general law in all of physics—the principle of
relativity.  The principle of relativity not only underlies
all basic theories of physics, it was essential in the
discovery of many of these theories.  Of all possible
ways matter could behave, only a very, very few are
consistent with the principle of relativity, and by con-
centrating on these few we have been able to make
enormous strides in understanding how matter inter-
acts.  By beginning the text with the principle of
relativity, the reader starts off with one of the best
examples of a fundamental physical law.

Our third reason for starting with the principle of
relativity and the nature of space and time, is that it is
fun.  The math required is simple – only the Pythagorean
theorem.  Yet results like clocks running slow, lengths
contracting, the existence of an ultimate speed, and

Chapter 1
Principle of Relativity

CHAPTER 1 PRINCIPLE  OF  RELATIVITY
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questions of causality, are stimulating topics.  Many of
these results are counter intuitive.  Your effort will not
be in struggling with mathematical formulas, but in
visualizing yourself in new and strange situations.  This
visualization starts off slowly, but you will get used to
it and become quite good at it.  By the end of the course
the principle of relativity, and the consequences known
as Einstein’s special theory of relativity will be second
nature to you.

THE PRINCIPLE OF RELATIVITY
In this age of jet travel, the principle of relativity is not
a strange concept.  It says that you cannot feel motion
in a straight line at constant speed.  Recall a smooth
flight where the jet you were in was traveling at perhaps
500 miles per hour.  A moving picture is being shown
and all the window shades are closed.  As you watch the
movie are you aware of the motion of the jet?  Do you
feel the jet hurtling through the air at 500 miles per
hour?  Does everything inside the jet crash to the rear
of the plane because of this immense speed?

No—the only exciting thing going on is the movie.  The
smooth motion of the jet causes no excitement whatso-
ever.  If you spill a diet Coke, it lands in your lap just as
it would if the plane were sitting on the ground.  The
problem with walking around the plane is the food and
drink cart blocking the aisles, not the motion of the
plane.  Because the window shades are closed, you
cannot even be sure that the plane is moving.  If you
open your window shade and look out, and if it is
daytime and clear, you can look down and see the land
move by.  Flying over the Midwestern United States
you will see all those square 40 acre plots of land move
by, and this tells you that you are moving.  If someone
suggested to you that maybe the farms were moving
and you were at rest, you would know that was ridicu-
lous, the plane has the jet engines, not the farms.

Despite the dull experience in a jumbo jet, we often are
able to sense motion.  There is no problem in feeling
motion when we start, stop, or go around a sharp curve.
But starting, stopping, and going around a curve are not
examples of motion at constant speed in a straight line,
the kind of motion we are talking about.  Changes in
speed or in direction of motion are called accelera-
tions, and we can feel accelerations.  (Note: In physics
a  decrease in speed is referred to as a negative
acceleration.)

Even without accelerations, even when we are moving
at constant speed in a straight line, we can have a strong
sense of motion.  Driving down a freeway at 60 miles
per hour in a low-slung, open sports car can be a
notable, if not scary, experience.
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This sense of motion can be misleading.  The first wide
screen moving pictures took the camera along on a
roller coaster ride.  Most people in the audience found
watching this ride to be almost as nerve wracking as
actually riding a roller coaster.  Some even became
sick.  Yet the audience was just sitting at rest in the
movie theater.

Exercise 1
Throughout this text we will insert various exercises
where we want you to stop and think about or work with
the material.  At this point we want you to stop reading
and think about various times you have experienced
motion.  Then eliminate all those that involved accelera-
tions, where you speeded up, slowed down, or went
around a curve.  What do you have left, and how real
were the sensations?

One of my favorite examples occurred while I was at a
bus station in Boston.  A number of busses were lined
up side by side waiting for their scheduled departure
times.  I recall that after a fairly long wait, I observed that
we were moving past the bus next to us.  I was glad that
we were finally leaving.  A few seconds later I looked out
the window again; the bus next to us had left and we
were still sitting in the station.  I had mistaken that bus’s
motion for our own!

A Thought Experiment
Not only can you feel accelerated motion, you can
easily see relative motion.  I had no problem seeing the
bus next to us move relative to us.  My only difficulty
was in telling whether they were moving or we were
moving.

An example of where it is more obvious who is moving
is the example of the jet flying over the Midwestern
plains.  In the daytime the passengers can see the farms
go by; it is easy to detect the relative motion of the plane
and the farms.  And it is quite obvious that it is the plane
moving and the farms are at rest.  Or is it?

To deal with this question we will go through what is
called a thought experiment where we solve a prob-
lem by imagining a sometimes contrived situation, and
then figure out what the consequences would be if we
were actually in that situation.  Galileo is well known
for his use of thought experiments to explain the
concepts of the new mechanics he was discovering.

sun sun

supersonic jet

San 
Francisco

Boston

rotating 
earth

San Francisco

Boston
rotating 

earth

supersonic jet
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Figure 1
One view of a three hour trip from Boston to San
Francisco.  It is possible, even logical, to think of
the jet as hovering at rest while the earth turns
underneath.

b) Supersonic jet
three hours later
over San Francisco.

a) Supersonic jet over
Boston just after takeoff.

For our thought experiment, imagine that we are going
to take the Concorde supersonic jet from Boston,
Massachusetts to San Francisco, California.  The jet
has been given special permission to fly across the
country at supersonic speeds so that the trip, which is
scheduled to leave at noon, takes only three hours.

When we arrive in San Francisco we reset our watches
to Pacific Standard Time to make up for the 3 hour
difference between Boston and San Francisco.  We
reset our watches to noon.  When we left, it was noon
and the sun was overhead.  When we arrive it is still
noon and the sun is still overhead.  One might say that
the jet flew fast enough to follow the sun, the 3 hour trip
just balancing the 3 hours time difference.

But there is another view of the trip shown in Figure (1).
When we took off at noon, the earth, the airplane and
sun were lined up as shown in Figure (1a).  Three hours
later the earth, airplane and sun are still lined up as
shown in Figure (1b).  The only difference between
(1a) and (1b) is that the earth has been rotating for three
hours so that San Francisco, rather than Boston is now
under the plane.  The view in Figure (1) is what an
astronaut approaching the earth in a spacecraft might
see.
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In the above definition the capsule can use anything you
want as an example—a jet plane, a car, or a room in a
building.  Generally, think of it as a sealed capsule like
the jet plane where the moving picture is being shown
and all of the window shades are shut.  Of course you can
look outside, and you may see things going by.  But, as
shown in Figure (1), seeing things outside go by does not
prove that you and the capsule are moving.  That cannot
be used as evidence of your own uniform motion.

Think about what kind of experiments you might per-
form in the sealed capsule to detect your uniform mo-
tion.  One experiment is to drop a coin on the floor.  If you
are at rest, the coin falls straight down.  But if you are in
a jet travelling 500 miles per hours and the flight is
smooth, and you drop a coin, the coin still falls straight
down.  Dropping a coin does not distinguish between
being at rest or moving at 500 miles per hour; this is one
experiment that does not violate the principle of relativ-
ity.

There are many other experiments you can perform.
You could use gyroscopes, electronic circuits, nuclear
reactions, gravitational wave detectors, anything you
want.  The principle of relativity states that none of these
will allow you to detect your uniform motion.

Exercise 2

Think about what you might put inside the capsule and
what experiments you might perform to detect the
motion of the capsule.  Discuss your ideas with others
and see if you can come up with some way of violating
the principle of relativity.

Basic Law of Physics
We mentioned that one of the incentives for beginning
the text with the principle of relativity is that it is an
excellent example of a basic law of physics.  It is simple
and easy to state—there is no experiment that you can
perform that allows you to detect your own uniform
motion.  Yet it is general—there is no experiment that
can be done at any time, at any place, using anything,
that can detect your uniform motion.  And most impor-
tant, it is completely subject to experimental test on an
all-or-nothing basis.  Just one verifiable experiment
detecting one’s own uniform motion, and the principle
of relativity is no longer a basic law.  It may become a
useful approximation, but not a basic law.

For someone inside the jet, looking down at the Mid-
western farms going by, who is really moving?  Are the
farms really at rest and the plane moving?  Or is the plane
at rest and the farms going by?  Figure (1) suggests that
the latter point of view may be more accurate, at least
from the perspective of one who sees the bigger picture
including the earth, airplane, and sun.

But, you might ask, what about the jet engines and all the
fuel that is being expended to move the jet at 1000 miles/
hour?  Doesn’t that prove that it is the jet that is moving?
Not necessarily.  When the earth rotates, it drags the
atmosphere around with it creating a  1000 mi hrmi hr wind
that the plane has to fly through in order to stand still.
Without the jet engines and fuel, the plane would be
dragged back with the land and never reach San Fran-
cisco.

This thought experiment has one purpose.  To loosen
what may have been a firmly held conviction that when
you are in a plane or car, you are moving and the land that
you see go by must necessarily be at rest.  Perhaps, under
some circumstances it is more logical to think of your-
self at rest and the ground as moving.  Or, perhaps it
does not make any difference.  The principle of relativ-
ity allows us to take this last point of view.

Statement of the
Principle of Relativity
Earlier we defined uniform motion as motion at constant
speed in a straight line.  And we mentioned that the
principle of relativity said that you could not feel this
uniform motion.  Since it is not exactly clear what is
meant by “feeling” uniform motion, a more precise
statement of the principle of relativity is needed, a
statement that can be tested by experiment.  The follow-
ing is the definition we will use in this text.

Imagine that you are in a capsule and
you may have any equipment you
wish inside the capsule.  The principle
of relativity states that there is no
experiment you can perform that will
allow you to tell whether or not the
capsule is moving with uniform mo-
tion—motion in a straight line at con-
stant speed.
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Once a fundamental law like the principle of relativity
is discovered or accepted, it has a profound effect on the
way we think about things.  In this case, if there is no way
that we can detect our own uniform motion, then we
might as well ignore our motion and always assume that
we are at rest.  Nature is usually easier to explain if we
take the point of view that we are at rest and that other
people and things are moving by.  It is the principle of
relativity that allows us to take this self-centered point of
view.

It is a shock, a lot of excitement is generated, when what
was accepted as a basic law of physics is discovered not
to be exactly true.  The discovery usually occurs in some
obscure corner of science where no one thought to look
before.  And it will probably have little effect on most
practical applications.  But the failure of a basic law
changes the way we think.

Suppose, for example, that it was discovered that the
principle of relativity did not apply to the decay of an
esoteric elementary particle created only in the gigantic
particle accelerating machines physicists have recently
built.  This violation of the principle of relativity would
have no practical effect on our daily lives, but it would
have a profound psychological effect.  We would then
know that our uniform motion could be detected, and
therefore on a fundamental basis we could no longer
take the point of view that we are at rest and others are
moving.  There would be legitimate debates as to who
was moving and who was at rest.  We would search for
a formulation of the laws of physics that made it
intuitively clear who was moving and who was at rest.

This is almost what happened in 1860.  In that year,
James Clerk Maxwell summarized the laws of electric-
ity and magnetism in four short equations.  He then
solved these equations to predict the existence of a wave
of electric and magnetic force that should travel at a
speed of approximately   3 × 108  meters per second.
The predicted speed, which we will call c, could be
determined from simple measurements of the behavior
of an electric circuit.

Before Maxwell, no one had considered the possibility
that electric and magnetic forces could combine in a
wavelike structure that could travel through space.  The
first question Maxwell had to answer was what this
wave was.  Did it really exist?  Or was it some spurious
solution of his equations?

The clue was that the speed c of this wave was so fast
that only light had a comparable speed.  And more
remarkably the known speed of light, and the speed c
of his wave were very close—to within experimental
error they were equal.  As a consequence Maxwell
proposed that he had discovered the theory of light, and
that this wave of electric and magnetic force was light
itself.

Maxwell’s theory explained properties of light such as
polarization, and made predictions like the existence of
radio waves.  Many predictions were soon verified, and
within a few years there was little doubt that Maxwell
had discovered the theory of light.

One problem with Maxwell’s theory is that by mea-
surements of the speed of light, it appears that one
should be able to detect one’s own uniform motion.  In
the next section we shall see why.  This had two
immediate consequences.  One was a change in the
view of nature to make it easy to see who was moving
and who was not.  The second was a series of experi-
ments to see if the earth were moving or not.

In the resulting view of nature, all of space was filled
with an invisible substance called ether.  Light was
pictured as a wave in the ether medium just as ocean
waves are waves in the medium of water.  The experi-
ments, initiated by Michaelson and Morley, were de-
signed to detect the motion of the earth by measuring
how fast the earth was moving through the ether
medium.

The problem with the ether theory was that all experi-
ments designed to detect ether, or to detect motion
through it, seemed to fail.  The more clever the experi-
ment, the more subtle the apparent reason for the
failure.  We will not engage in any further discussion of
the ether theory, because ether still has never been
detected.  But we will take a serious look in the next
section at how the measurement of the speed of a pulse
of light should allow us to detect our own uniform
motion.  And then in the rest of the chapter we will
discuss how a young physicist, working in a patent
office in 1905, handled the problem.

Principle of Relativity
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Although you cannot see them, sound waves are a more
familiar form of wave motion.  Sound moving through
air, waves moving over water, and light, all have certain
common features and ways of behaving which we
classify as wave motion.  In later chapters we will study
the subject of wave motion in considerable detail.  For
now we will limit our discussion to a few of the features
we need to understand the impact of Maxwell’s theory.

Two examples of wave motion that are easy to study are
a wave pulse traveling down a rope as indicated in
Figure (4) or down a stretched Slinky®  (the toy coil
that ‘climbs’ down stairs) as shown in Figure (5).  The
advantage of using a stretched Slinky is that the waves
travel so slowly that you can study them as they move.
It turns out that the speed of a wave pulse depends upon
the medium along which, or through which, it is
traveling.  For example, the speed of a wave pulse along
a rope or Slinky is given by the formula

Figure 2
Rain drops creating circular waves on the surface of a
puddle.  (Courtesy Bill Jack Rodgers, Los Alamos
Scientific Laboratory.)

Figure 4
Wave pulse traveling along a rope.

Figure 3
This ocean wave traveled hundreds of miles from
Hurricane Bertha to the Maine coast (July 31, 1990).

WAVE MOTION
We do not need to know the details of Maxwell’s theory
to appreciate how one should be able to use the theory
to violate the principle of relativity.  All we need is an
understanding of some of the basic properties of wave
motion.

The most familiar examples of wave motion are the
waves on the surface of water.  We have seen the waves
that spread out in circles when a stone is dropped in a
pond, or rain hits a puddle in a sidewalk as shown in
Figure (2).  And most of us have seen the ocean waves
destroying themselves as they crash into the beach.
The larger ocean waves often originate at a storm far
out to sea, and have traveled hundreds or even a
thousand miles to reach you (see Figure (3)).  The very
largest ocean waves, created by earthquakes or explod-
ing volcanos have been known to travel almost around
the earth.

Figure 5
Wave pulse traveling along a Slinky.
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Speed of 
wave pulse

  =  τ
µ

(1)

where τ is the tension in the rope or Slinky, and µ the
mass per unit length.  Do not worry about precise
definitions of tension or mass, the important point is
that there is a formula for the speed of the wave pulse,
a formula that depends only on the properties of the
medium along which the pulse is moving.

The speed does not depend upon the shape of the pulse
or how the pulse was created.  For example, the Slinky
pulse travels much more slowly than the pulse on the
rope because the suspended Slinky has very little
tension τ.  We can slow the Slinky wave down even
more by hanging crumpled pieces of lead on each end
of the coils of the Slinky to increase its mass per unit
length µ.

Another kind of wave we can create in the Slinky is the
so called compressional wave shown in Figure (6).
Here the end of the Slinky was pulled back and
released, giving a moving pulse of compressed coils.
The formula for the speed of the compression wave is
still given by Equation (1), if we interpret τ as the
stiffness (Youngs modulus) of the suspended Slinky.

If we use a loudspeaker to produce a compressional
pulse in air, we get a sound wave that travels out from
the loudspeaker at the speed of sound.  The formula for
the speed of a sound wave is

Speed of 
sound

  =  B
ρ (2)

where B is  the bulk modulus  which can be thought of
as the rigidness of the material, and the mass per unit
length µ is replaced by the mass per unit volume ρ.

A substance like air, which is relatively compressible,
has a small rigidity B, while substances like steel and
granite are very rigid and have large values of B.  As a
result sound travels much faster in steel and granite
than in air.  For air at room temperature and one
atmosphere of pressure, the speed of sound is 343
meters or 1125 feet per second.  Sound travels about 20
times faster in steel and granite.  Again the important
point is that the speed of a wave depends on the
properties of the medium through which it is moving,
and not on the shape of the wave or the way it was
produced.

Measurement of the Speed of Waves
If you want to know how fast your car is traveling you
look at the speedometer.  Some unknown machinery in
the car makes the needle of the speedometer point at the
correct speed.  Since the wave pulses we are discussing
do not have speedometers, we have to carry out a series
of measurements in order to determine their speed.  In
this section we wish to discuss precisely how the
measurements can be made using meter sticks and
clocks so that there will be no ambiguity, no doubt
about precisely what we mean when we talk about the
speed of a wave pulse.  We will use the Slinky wave
pulse as our example, because the wave travels slowly
enough to actually carry out these measurements in a
classroom demonstration.

The first experiment, shown in Figure (7), involves two
students and the instructor.  One student stands at the
end of the stretched Slinky and releases a wave pulse
like that shown in Figure (6).  The instructor holds a
meter stick up beside the Slinky as shown.  The other
student has a stopwatch and measures the length of
time it takes the pulse to travel from the front to the back
of the stick.  (She presses the button once when the
pulse reaches the front of the meter stick, presses it
again when the pulse gets to the back, and reads the
elapsed time T.)  The speed of the pulse is then defined
to be

Speed of
Slinky pulse

  =  1 meter
T seconds

(3)

Wave Motion

Figure 6
To create a compressional wave on a  suspended
Slinky, pull the end back a bit and let go.
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Later in the course, when we have discussed ways of
measuring tension τ and mass per unit length µ, we can
compare the experimental result we get from Equation
(3) with the theoretically predicted result of Equation
(1).  With a little practice using the stopwatch, it is not
difficult to get reasonable agreement between theory
and experiment .

In our second experiment, shown in Figure (8a) every-
thing is the same except that the instructor has been
replaced by a student, let us say it is Bill, holding the
meter stick and running toward the student who re-
leases the wave pulse.  Again the second student
measures the length of time it takes the pulse to travel
from the front to the back of the meter stick.  Let us call

this the time T1.  This time T1 is less than T because Bill
and the meter stick are moving toward the pulse.

To Bill, the pulse passes his one meter long stick in a
time T1, therefore the speed of the pulse past him is

 v1 =
1 meter

T1 seconds
=

speed of pulse
relative to Bill

(4a)

Bill should also have carried the stopwatch so that v1
would truly represent his measurement of the speed of
the pulse.  But it is too awkward to hold the meter stick,
and run and observe when the pulse is passing the ends
of the stick.

The speed v1 measured by Bill is not the same as the
speed v measured by the instructor in Figure (7).  v1 is
greater than v because Bill is moving toward the wave
pulse.  This is not surprising:  if you are on a freeway
and everyone is traveling at a speed v = 55 miles per
hour, the oncoming traffic in the opposite lane is
traveling past you at a speed of 110 miles per hour
because you are moving toward them.

In Figure (8b) we again have the same situation as in
Figure (7) except that Bill is now replaced by Joan who
is running away from the student who releases the
pulse.  Joan is moving in the same direction as the pulse
and it takes a longer time T2 for the pulse to pass her.
(Assume that Joan is not running faster than the pulse.)
The speed of the pulse relative to Joan is

v2  =   1 meter
T2 seconds

  =  speed of pulse
relative to Joan

(4b)

Joan’s speed  v2 will be considerably less than the speed
v observed by the instructor.

Figure 7
Experiment to measure the speed of a wave
pulse on a suspended Slinky.  Here the
instructor holds the meter stick at rest.

Figure 8b
Joan runs away from the source of
the pulse while measuring its speed.

Figure 8a
Bill runs toward the source of the
pulse while measuring its speed.
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In these three experiments, the instructor is special
(wouldn’t you know it).  Only the instructor measures
the speed v predicted by theory, only for the instructor
is the speed given by v  = τ/µ   .  Both the students Bill
and Joan observe different speeds, one larger and one
smaller than the theoretical value.

What is special about the instructor?  In this case the
instructor gets the predicted answer because she is at
rest relative to the Slinky.  If we hadn’t seen the
experiment, but just looked at the answers, we could
tell that the instructor was at rest because her result
agreed with the predicted speed of a Slinky wave.  Bill
got too high a value because he was moving toward the
pulse; Joan, too low a value because she was moving in
the same direction.

The above set of experiments is not strikingly pro-
found.  In a sense, we have developed a new and rather
cumbersome way to tell who is not moving relative to
the Slinky.  But the same procedures can be applied to
a series of experiments that gives more interesting
results.  In the new series of experiments, we will use
a pulse of light rather than a wave pulse on a Slinky.

Since the equipment is not likely to be available among
the standard set of demonstration apparatus, and since
it will be difficult to run at speeds comparable to the
speed of light we will do this as a thought experiment.
We will imagine that we can measure the time it takes
a light pulse to go from the front to the back of a meter
stick.  We will imagine the kind of results we expect to

get, and then see what the consequences would be if we
actually got those results.

The apparatus for  our new thought experiment is
shown in Figure (9).  We have a laser which can
produce a very short pulse of light – only a few
millimeters long.  The meter stick now has photo
detectors and clocks mounted on each end, so that we
can accurately record the times at which the pulse of
light passed each end.  These clocks were synchro-
nized, so the time difference is the length of time T it
takes the pulse of light to pass the meter stick.

Before the experiment, the instructor gives a short
lecture to the class.  She points out that according to
Maxwell’s theory of light, a light wave should travel at
a speed c given by the formula

c  =  1
µ0ε0

(5)

where µ0 and  εo are constants in the theory of electric-
ity.  She says that later on in the year, the students will
perform an experiment in which they measure the
value of the product µ0ε0.  This experiment involves
measuring the size of coils of wire and plates of
aluminum, and timing the oscillation of an electric
current sloshing back and forth between the plates and
the coil.  The important point is that these measure-
ments do not involve light.  It is analogous to the Slinky
where the predicted speed τ/µ of a Slinky wave
involved measurements of the stiffness τ  and mass per
unit length   µ, and had nothing to do with observations
of a Slinky wave pulse.

Wave Motion

Figure 9
Apparatus for the thought experiment.  Now we wish
to measure the speed of a laser wave pulse, rather
than the speed of a Slinky wave pulse.  The photo
detectors are used to measure the length of time the
laser pulse takes to pass by the meter stick.

meter stick

laser

photo detectors
with clocks

laser pulse

Figure 10a
Plates and coil for
measuring the
experimental value
of µ0ε0.

electric
current

plates

coil

Figure 10b
The plates and coil we
use in the laboratory.
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Although she is giving out the answer to the lab
experiment, she points out that the value of  c from these
measurements is

c  =  1
µ0ε0

  =  3 × 108 meters/second (6)

which is a well-known but uncomfortably large and
hard to remember number.  However, she points out,
3 × 108 meters is almost exactly one billion (109) feet.
If you measure time, not in seconds, but in billionths of
a second, or nanoseconds, where

 1 nanosecond  ≡  10-9 seconds (7)

then since light travels only one foot in a nanosecond,
the speed of light is simply

Figure 12b
Joan runs away from the source of
the pulse while measuring its speed.

laser pulse
laser

Figure 12a
Bill runs toward the source of the
pulse while measuring its speed.

  c = 3 × 108 meter
sec = 109 feet

sec

c = 1 foot
10–9sec

c = 1
foot

nanosecond

(8)

She says that because this is such an easy number to
remember, she will use it throughout the rest of the
course.

The lecture on Maxwell’s theory being over, the in-
structor starts in on the thought experiment.  In the first
run she stands still, holding the meter stick, and the
student with the laser emits a pulse of light as shown in
Figure (11).  The pulse passes the 3.28 foot length of the
meter stick in an elapsed time of 3.28 nanoseconds, for
a measured speed

v  light pulse   =  3.28 feet
3.28 nanoseconds

                        =  1 foot
nanosecond

(9)

The teacher notes, with a bit of complacency, that she
got the predicted speed of 1 foot/nanosecond.  Again,
the instructor is special.

Then the instructor invites Bill to hold the meter stick
and run toward the laser as shown in Figure (12a).
Since this is a thought experiment, she asks Bill to run
at nearly the speed of light, so that the time should be
cut in half and Bill should see light pass him at nearly
a speed of 2c.

laser pulse
laser

Figure 11
Experiment to measure the speed of a light
wave pulse from a laser.  Here the
instructor holds the meter stick at rest.

laser pulse
laser
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Then she invites Joan to hold the meter stick and run at
about half the speed of light in the other direction as
shown in Figure (12b).  One would expect that the light
would take twice as long to pass Joan as it did the
instructor and that Joan should obtain a value of about
c/2 for the speed of light.

Suppose it turned out this way.  Suppose that the
instructor got the predicted answer 1 foot/nanosecond,
while Bill who is running toward the pulse got a higher
value and Joan, running with the pulse got a lower value.
Just as in our Slinky pulse experiment we could say that
the instructor was at rest while both Bill and Joan were
moving.

But, moving relative to what?  In the Slinky experiment,
the instructor was at rest relative to the Slinky – the
medium through which a Slinky wave moves.  Light
pulses travel through empty space.  Light comes to us
from stars 10 billion light years away, almost across the
entire universe.  The medium through which light
moves is empty space.

If the experiment came out the way we described, the
instructor would have determined that she was at rest
relative to empty space, while Bill and Joan would have
determined that they were moving.  They would have
violated the principle of relativity, which says that you
cannot detect your own motion relative to empty space.

The alert student might argue that the pulses of light
come out of the laser like bullets from a gun at a definite
muzzle velocity, and that all the instructor, Bill and Joan
are doing is measuring their speed relative to the laser.
Experiments have carefully demonstrated that the speed
of a pulse of light depends in no way on the motion of
the emitter just as the Slinky pulse depended in no way
on how the student started the pulse.  Maxwell’s theory
predicts that light is a wave, and many experiments have
verified the wave nature of light, including the fact that
its speed does not depend on how it was emitted.

From the logical simplicity of the above thought experi-
ment, from the ease with which we should be able to
violate the principle of relativity (if we could accurately
measure the speed of a pulse of light passing us), it is not
surprising that after Maxwell developed this theory of
light, physicists did not take the principle of relativity
seriously, at least for the next 45 years.

Michaelson-Morley Experiment
The period from 1860 to 1905 saw a number of
attempts to detect one’s own or the earth’s motion
through space by measuring the speed of pulses of
light.  Actually it was easier and far more accurate to
compare the speeds of light traveling in different
directions.  If you were moving forward through space
(like Bill in our thought experiment), you should see
light coming from in front of you traveling faster than
light from behind or even from the side.

Michaelson and Morley used a device called a
Michaelson interferometer which compared the speeds
of pulses of light traveling at right angles to each other.
A detailed analysis of their device is not hard, just a bit
lengthy.  But the result was that the device should be
able to detect small differences in speeds, small enough
differences so that the motion of the earth through
space should be observable -- even the motion caused
by the earth orbiting the sun.

At this point we can summarize volumes of the history
of science by pointing out that no experiment using the
Michaelson interferometer, or any device based on
measuring or comparing the speed of light pulses, ever
succeeded in detecting the motion of the earth.

Exercise 3
Units of time we will often use in this course are the
millisecond, the microsecond, and the nanosecond,
where

    
 1 millisecond = 10– 3 seconds (one thousandth)

1 microsecond = 10– 6 seconds (one millionth)
1 nanosecond = 10– 9 seconds (one billionth)

How many feet does light travel in

     a)  one millisecond   (1ms)?
     b)  one microsecond (1µs )?
     c)  one nanosecond  (1ns )?

Wave Motion
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EINSTEIN’S PRINCIPLE
OF RELATIVITY
In 1905 Albert Einstein provided a new perspective on
the problems we have been discussing.  He was appar-
ently unaware of the Michaelson-Morley experiments.
Instead, Einstein was familiar with Maxwell’s equa-
tions for electricity and magnetism, and noted that
these equations had a far simpler form if you took the
point of view that you are at rest.  He suggested that
these equations took this simple form, not just for some
privileged observer, but for everybody.  If the principle
of relativity were correct after all, then everyone, no
matter how they were moving, could take the point of
view that they were at rest and use the simple form of
Maxwell’s equations.

How did Einstein deal with measurements of the speed
of light?  We have seen that if someone, like Bill in our
thought experiment, detects a pulse of light coming at
them at a speed faster than c = 1 foot/nanosecond, then
that person could conclude that they themselves were
moving in the direction from which the light was
coming.  They would have thereby violated the prin-
ciple of relativity.

Einstein’s solution to that problem was simple.  He
noted that any measurement of the speed of a pulse of
light that gave an answer different from c = 1 foot/
nanosecond could be used to violate the principle of
relativity. Thus if the principle of relativity were cor-
rect, all measurements of the speed of light must give
the answer c.

Let us put this in terms of our thought experiment.
Suppose the instructor observed that the light pulse
passed the 3.24 foot long meter stick in precisely 3.24
nanoseconds.  And suppose that Bill, moving at nearly
the speed of light toward the laser, also observed that
the light took 3.24 nanoseconds to pass by his meter
stick.  And suppose that Joan, moving away from the
laser at half the speed of light, also observed that the
pulse of light took 3.24 nanoseconds to pass by her
meter stick.  If the instructor, Bill and Joan all got
precisely the same answer for the speed of light, then
none of their results could be used to prove that one was
at rest and the others moving.  Since their answer of
3.24 feet in 3.24 nanoseconds or 1 foot/nanosecond is
in agreement with the predicted value c = 1/ µ0ε0

from Maxwell’s theory, they could all safely assume
that they were at rest.  At the very least, their measure-
ments of the speed of the light pulse could not be used
to detect their own motion.

As we said, the idea is simple.  You always get the
answer c whenever you measure the speed of a light
pulse moving past you.  But the idea is horrendous.
Einstein went against more than 200 years of physics
and centuries of observation with this suggestion.

Suppose, for example, we heard about a freeway where
all cars traveled at precisely 55 miles per hour – no
exceptions.  Hearing about this freeway, our three
people in the thought experiment decide to test the rule.
The instructor sets up measuring equipment in the
median strip and observes that the rule is correct.  Cars
in the north bound lane travel north at 55 miles per hour,
and cars in the south bound lane go south at 55 miles per
hour.

For his part of the experiment, Bill gets into one of the
north bound cars.  Since Bill knows about the principle
of relativity he takes the point of view that he is at rest.
If the 55 miles per hour speed is truly a fundamental
law, then he, who is at rest, should see the south bound
cars pass at 55 miles per hour.

Likewise, Joan, who is in a south bound car, can take
the point of view that she is at rest.  She knows that if
the 55 miles per hour speed limit is a fundamental law,
then north bound cars must pass her at precisely 55
miles per hour.  If the instructor, Bill and Joan all
observe that every car on the freeway always passes
them at the same speed of 55 miles per hour, then none
of them can use this observation to detect their own
motion.

Freeways do not work that way.  Bill will see south
bound cars passing him at 110 miles per hour.  And
Joan will see north bound cars passing at 110 miles per
hour.  From these observations Bill and Joan will
conclude that in fact they are moving – at least relative
to the freeway.

Measurements of the speed of a pulse of light differ,
however, in two significant ways from measurements
of the speed of a car on a freeway.  First of all, light
moves through empty space, not relative to anything.
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Secondly, light moves at enormous speeds, speeds that
lie completely outside the realm of common experi-
ence.  Perhaps, just perhaps, the rules we have learned
so well from common experience, do not apply to this
realm.  The great discoveries in physics often came
when we look in some new realm on the very large
scale, or the very small scale, or in this case on the scale
of very large, unfamiliar speeds.

The Special Theory of Relativity
Einstein developed his special theory of relativity from
two assumptions:

1) The principle of relativity is correct.

2) Maxwell’s theory of light is correct.

As we have seen, the only way Maxwell’s theory of
light can be correct and not violate the principle of
relativity, is that every observer who measures the
speed of light, must get the predicted answer
c = 1/ µ0ε0   =  1 foot/nanosecond.  Temporarily we
will use this as the statement of Einstein’s second
postulate:

2a) Everyone, no matter how he or she is moving,
must observe that light passes them at
precisely the speed c.

Postulates  (1) and (2a) salvage both the principle of
relativity and Maxwell’s theory, but what else do they
predict?  We have seen that measurements of the speed
of a pulse of light do not behave in the same way as
measurements of the speed of cars on a freeway.
Something peculiar seems to be happening at speeds
near the speed of light.  What are these peculiar things?
How do we find out?

To determine the consequences of his two postulates,
Einstein borrowed a technique from Galileo and used
a series of thought experiments.  Einstein did this so
clearly, explained the consequences so well in his 1905
paper, that we will follow essentially the same line of
reasoning.  The main difference is that Einstein made
a number of strange predictions that in 1905 were hard
to believe.  But these predictions were not only verified,
they became the cornerstone of much of 20th century
physics.  We will be able to cite numerous tests of all the
predictions.

Moving Clocks
Our first thought experiment for Einstein’s special
relativity will deal with the behavior of clocks.  We saw
that the measurement of the speed of a pulse of light
required a timing device, and perhaps the peculiar
results can be explained by the peculiar behavior of the
timing device.

Also the peculiar behavior seems to happen at high
speeds near the speed of light, not down at freeway
speeds.  Thus the question we would like to ask is what
happens to a clock that is moving at a high speed, near
the speed of light?

That is a tough question.  There are many kinds of
clocks, ranging from hour glasses dripping sand, to the
popular digital quartz watches, to the atomic clocks
used by the National Bureau of Standards.  The oldest
clock, from which we derive our unit of time, is the
motion of the earth on its axis each 24 hours.  We have
both the problem of deciding which kind of clock we
wish to consider moving at high speeds, and then figure
out how that clock behaves.

The secret of working with thought experiments is to
keep everything as simple as possible and do not try to
do too much at once.  If we want to understand what
happens to a moving clock, we should start with the
simplest clock we can find.  If we cannot understand
that one, we will imagine an even simpler one.

A clock that is fairly easy to understand is the old
grandfather’s clock shown in Figure (13), where the
timing device is the swinging pendulum.  There are also
wheels, gears, and hands, but these merely count
swings of the pendulum.  The pendulum itself is what
is important.  If you shorten the pendulum it swings
faster and the hands go around faster.

swinging
pendulum

wheels &
gears

hands

Moving Clocks

Figure 13
Grandfather’s clock.
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For our thought experiment it is convenient to construct
two identical light pulse clocks as shown in Figure (15).
We wish to take great care that they are identical, or at
least that they run at precisely the same rate.  Once they
are finished, we adjust them so that the pulses bounce
up and down together for weeks on end.

Now we get to the really hypothetical part of our
thought experiment.  We give one of the clocks to an
astronaut, and we keep the other for reference.  The
astronaut is instructed to carefully pack his clock,
accelerate up to nearly the speed of light, unpack his
clock, and go by us at a constant speed so that we can
compare our reference clock to his moving clock.

Before we describe what we see, let us take a look at a
brief summary of the astronaut’s log  book of the trip.
The astronaut writes, “ I carefully packed the light pulse
clock because I did not want it damaged during the
accelerations.  My ship can maintain an acceleration of
5gs, and even then it took about a month to get up to our
final speed of just over half the speed of light.”

“Once the accelerations were over and I was coasting,
I took the light pulse clock out of its packing and set it
up beside the window, so that the class could see the
clock as it went by.  Before the trip I was worried that
I might have some trouble getting the light pulse into
the clock, but it was no problem at all.  I couldn't even
tell that I was moving!  The light pulse went in and the
clock started ticking just the way it did back in the lab,
before we started the trip.”

“It was not long after I started coasting, that the class
went by.  After that, I packed everything up again,
decelerated, and returned to earth.”

We could ask what we would see if we observed a
grandfather's clock moving past us at a high speed, near
the speed of light.  The answer is likely to be “I don’t
know”.  The grandfather’s clock, with its swinging
pendulum mechanism, is still too complicated.

A simpler timing device was considered by Einstein,
namely a bouncing pulse of light.  Suppose, we took the
grandfather’s clock of Figure (13), and replaced the
pendulum by two mirrors and a pulse of light as shown
in Figure (14).  Space the mirrors 1 foot apart so that the
pulse of light will take precisely one nanosecond to
bounce either up or down.  Leave the rest of the
machinery of the grandfather’s clock more or less
intact.  In other words have the wheels and gears now
count bounces of the pulse of light rather than swings
of the pendulum.  And recalibrate the face of the clock
so that for each bounce, the hand advances one nano-
second.  (The marvelous thing about thought experi-
ments is that you can get away with this.  You do not
have to worry about technical feasibility, only logical
consistency.)

The advantage of replacing the pendulum with a bounc-
ing light pulse is that, so far, the only thing whose
behavior we understand when moving at nearly the
speed of light is light itself.  We know that light always
moves at the speed c in all circumstances, to any
observer.  If we use a bouncing light pulse as a timing
device, and can figure out how the pulse behaves, then
we can figure out how the clock behaves.

mirror

pulse of light
bouncing 
between mirrors

mirror

1 ft

Figure 14
Light pulse clock.  We can construct a clock by
having a pulse of light bounce between two mirrors.
If the mirrors are one foot apart, then the time
between bounces will be one nanosecond.  The face
of the clock displays the number of bounces.

Figure 15
Two identical light pulse clocks.
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What we saw as the astronaut went by is illustrated in
the sketch of Figure (16). On the left is our reference
clock, on the right the astronaut’s clock moving by.
You will recall that the astronaut had no difficulty
getting the light pulse to bounce, and as a result we saw
his clock go by with the pulse bouncing inside.

For his pulse to stay in his clock, his pulse had to travel
along the saw-tooth path shown in Figure (16).  The
saw-tooth path is longer than the up and down path
taken by the pulse in our reference clock.  His pulse had
to travel farther than our pulse to tick off one nanosec-
ond.

Here is what is peculiar.  If Einstein’s postulate is right,
if the speed of a pulse of light is always c under any
circumstances, then our pulse bouncing up and down,

and the astronaut’s pulse traveling along the saw tooth
path are both traveling at the same speed c.  Since the
astronaut’s pulse travels farther, the astronaut’s clock
must take longer to tick off a nanosecond.  The
astronaut’s clock must be running slower!

Because there are no budget constraints in a thought
experiment, we are able to get a better understanding of
how the astronaut’s clock was behaving by having the
astronaut repeat the trip, this time going faster, about
.95 c.  What we saw is shown in Figure (17).  The
astronaut’s clock is moving so fast that the saw tooth
path is stretched way out.  The astronaut’s pulse takes
a long time to climb from the bottom to the top mirror
in his clock, his nanoseconds take a long time, and his
clock runs very slowly.

c cc c

our clock astronaut's moving clock

c

astronautv

Figure 16
In order to stay in the astronaut’s moving clock, the light pulse must follow a longer, saw-tooth, path.

Figure 17
When the astronaut goes faster, his light pulse has to go farther in order to register a bounce.  Since the speed of
light does not change, it takes longer for one bounce to register, and the astronaut's moving clock runs slower.

c

c

our clock astronaut's moving clock

c

astronautv

c

Moving Clocks
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distance vT'  as shown.  This gives us a right triangle
whose base is vT' , whose hypotenuse is cT' , and
whose height, determined from our clock, is cT.  Ac-
cording to the Pythagorean theorem, these sides are
related by

cT' 2  =  vT' 2 + cT 2 (10)

Carrying out the squares, and collecting the terms with
T'  on one side, we get

c2T' 2 - v2T' 2  =  c2 - v2 T' 2  =  c2T2

  
T'2 =

c2T2

c2 - v2
=

c2T2 × 1/c2

c2 - v2 × 1/c2
=

T2

1 - v2/c2

Taking the square root of both sides gives

 
T' =

T

1 - v2/c2
(11)

Equation (11) gives a precise relationship between the
length of our nanosecond T and the astronaut’s longer
nanosecond T' .  We see that the astronaut’s basic time
unit T'  is longer than our basic time unit T by a factor
1/ 1 - v2 /c2.

The factor 1/ 1 - v2 /c2 appears in a number of calcu-
lations involving Einstein’s special theory of relativity.
As a result, it is essential to develop an intuitive feeling
for this number.  Let us consider several examples to
begin to build this intuition.  If v = 0, then

 
T' =

T

1 - v2/c2
=

T

1 - 0

T' =
T
1

= T (v = 0) (12)

It does not take too much imagination to see that if the
astronaut came by at the speed of light c, the light pulse,
also traveling at a speed c, would have to go straight
ahead just to stay in the clock.  It would never be able
to get from the bottom to the top mirror, and his clock
would never tick off a nanosecond.  His clock would
stop!

Exercise 4

Discuss what the astronaut should have seen when the
class of students went by.  In particular, draw the
astronaut's version of Figure (16) and describe the
situation from the astronaut's point of view.

It is not particularly difficult to calculate the amount by
which the astronaut’s clock runs slow.  All that is
required is the Pythagorean theorem.  In Figure (18),  on
the left,  we show the path of the light pulse in our
reference clock, and on the right the path in the
astronaut’s moving clock.  Let T be the length of time
it takes our pulse to go from the bottom to the top
mirror, and T'  the longer time light takes to travel along
the diagonal line from his bottom mirror to his top
mirror.  We can think of T as the length of one of our
nanoseconds, and T'  as the length of one of the
astronaut’s longer nanoseconds.

The distance an object, moving at a speed v, travels in
a time T, is  vT.   (If you go 30 miles per hour for 3 hours,
you travel 90 miles.)  Thus,  in Figure (18), the distance
our light pulse travels in going from the bottom to the
top mirror is cT as shown.  The astronaut’s light pulse,
which takes a time T'  to travel the diagonal path, must
have gone a distance cT'  as shown.

During the time T' , while the astronaut’s light pulse is
going along the diagonal path, the astronaut’s clock,
which is traveling at a speed v, moves forward a

cT
' cc c

our clock astronaut's clock

cT

vT'

time for one
bounce, T

time for one
bounce, T'

Figure 18
In our clock, the light pulse
travels a distance cT  in one
bounce.  In the astronaut's
clock, the pulse travels a
distance cT'  while the clock
moves forward a distance vT'
during one bounce.
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and we see that a clock at rest keeps the same time as
ours.  If the astronaut goes by at one tenth the speed of
light, v = .1 c, and we get

 
T' =

T

1 - .1c
2
/c2

=
T

1 - .01

T' =
T

.99
= 1.005T (v = c/10) (13)

In this case the astronaut’s seconds lengthen only by a
factor 1.005 which represents only a .5% increase.  If
the astronaut’s speed is increased to half the speed of
light, we get

 
T' =

T

1 - .5c
2
/c2

=
T

1 - .25

T' =
T

.75
= 1.15T (v = c/2) (14)

Now we are getting a 15% increase in the length of the
astronaut’s seconds.

When we work with atomic or subatomic particles, it is
not difficult to accelerate these particles to speeds close
to the speed of light.  Shortly we will consider a particle
called a muon, that is traveling at a speed v = .994 c.  For
this particle we have

 
T' =

T

1 - .994c
2
/c2

=
T

1 - .988

T' =
T

.012
= 9T (v = .994c)

(15)

Here we are beginning to see some large effects.  If the
astronaut were traveling this fast, his seconds would be
9 times longer than ours, his clock would be running
only 1/9th as fast.

If we go all the way to v = c, Equation (11) gives

  
T' =

T

1 - c2/c2
=

T

1 - 1

T' =
T

0
= ∞ (v = c) (16)

In this case, the astronaut’s seconds would be infinitely
long and the astronaut’s clock would stop.  This agrees
with our earlier observation that if the astronaut went
by at the speed of light, the light pulse in his clock would
have to go straight ahead just to stay in the clock.  It
would not have time to move up or down, and therefore
not be able to tick off any seconds.

So far we have been able to use a pocket calculator to
evaluate 1/ 1 - v2 /c2.  But if the astronaut were flying
in a commercial jet plane at a speed of 500 miles per
hour, you have problems because 1/ 1 - v2 /c2 is so
close to 1 that the calculator cannot tell the difference.
In a little while we will show you how to do such
calculations, but for now we will just state the answer.

   1

1 - v2/c2
= 1 + 2.7 × 10–13 for a speed

of 500 mi/hr
(17)

To put this result in perspective suppose the astronaut
flew on the jet for what we thought was a time T = 1 hour
or 3600 seconds.  The astronaut’s light pulse clock
would show a longer time T'  given by

  
T' =

T

1 - v2/c2

= 1 + 2.7 × 10-13 × 3600 seconds

= 1 hour + .97 × 10–9 seconds

Since .97 x 10-9 seconds is close to a nanosecond, we
can write

T'   ≈  1 hour + 1 nanosecond (18)

The astronaut’s clock takes 1 hour plus 1 nanosecond
to move its hand forward 1 hour.  We would say that his
light pulse clock is losing a nanosecond per hour.

Students have a tendency to memorize formulas, and
Equation (11), T'  =  T/ 1 - v2 /c2 looks like a good
candidate.  But don’t!  If you memorize this formula,
you will mix up  T' and T, forgetting which seconds
belong to whom.  There is a much easier way to always
get the right answer.

Moving Clocks
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the rate of the moving clock is reduced by a factor
1 - v2 /c2 .

The factor 1 - v2 /c2  will appear numerous times
throughout the text.  But in every case you should have
an intuitive idea of whether the quantity under consid-
eration should increase or decrease.  If it increases,
divide by the 1 - v2 /c2 , and if it decreases, multiply
by 1 - v2 /c2.  This approach gives the right answer,
reduces memorization, and eliminates obscure nota-
tion like T'  and T.

Other Clocks
So far we have an interesting but limited result.  We
have predicted that if someone carrying a light pulse
clock moves by us at a speed v, we will see that their
light pulse clock runs slow by a factor 1 - v2 /c2.  Up
until now we have said nothing about any other kind of
clock, and we have the problem that no one has actually
constructed a light pulse clock.  But we can easily
generalize our result with another thought experiment
fairly similar to the one we just did.

For the new thought experiment let us rejoin the
discussion between the astronaut and the class of
students.  We begin just after the students have told the
astronaut what they saw.  “I was afraid of that,” the
astronaut replies.  “I never did trust that light pulse
clock.  I am not at all surprised that it ran slow.  But now
my digital watch,  it’s really good.  It is based on a quartz
crystal and keeps really good time.  It wouldn’t run
slow like the light pulse clock.”

For any speed v less than or equal to c (which is all we
will need to consider) the quantity 1 - v2 /c2 is always
a number less than or equal to 1, and 1/ 1 - v2 /c2 is
always greater than or equal to 1.  For the examples we
have considered so far, we have

    Table 1

v 1 - v2 /c2 1/ 1 - v2 /c2

0 1 1

500 mi/hr 1 -   2.7 × 10-13 1 +   2.7 × 10-13

c/10 .995 1.005

c/2 .87 1.15

.994c 1/9 9

c 0 ∞

You also know intuitively that for the moving light
pulse clock, the light pulse travels a longer path, and
therefore the moving clock’s seconds are longer.

If you remember that 1 - v2 /c2  appears somewhere
in the formula, all you have to do is ask yourself what
to do with a number less than one to make the answer
bigger; clearly, you have to divide by it.

As an example of this way of reasoning, note that if a
moving clock’s seconds are longer, then the rate of the
clock is slower.  The number of ticks per unit time is
less.  If we want to talk about the rate of a moving clock,
do we multiply or divide by 1 - v2 /c2?  To get a
reduced rate, we multiply by 1 - v2 /c2 since that
number is always less than one.  Thus we can say that
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“Are you insinuating,” the astronaut continued, “that
the reason I did not detect my light pulse running slow
was because my digital watch was also running slow?”

“Almost,” replied Bill,  “but you have other timing
devices in your capsule.  You shave once a day because
you do not like the feel of a beard.  This is a cyclic
process that could be used as the basis of a new kind of
clock.  If your shaving cycle clock did not slow down
just like the light pulse clock, you could time your
shaving cycle with the light pulse clock and detect your
motion.  You would notice that you had to shave more
times per light pulse month when you were moving
than when you were at rest.  This would violate the
principle of relativity.”

“Wow,” the astronaut exclaimed, “if the principle of
relativity is correct, and the light pulse clock runs
slow, then every process, all timing devices in my ship
have to run slow in precisely the same way so that I
cannot detect the motion of the ship.”

The astronaut’s observation highlights the power and
generality of the principle of relativity.  It turns a limited
theory about the behavior of one special kind of clock
into a general theory about the behavior of all possible
clocks.  If the light pulse clock in the astronaut’s
capsule is running slow by a factor 1 - v2 /c2 , then all
clocks must run  slow by exactly the same factor so that
the astronaut cannot detect his motion.

“I’ll bet it would,” Bill interrupts.  “How much?,” the
astronaut responds indignantly.  “The cost of one more
trip,” Bill answers.

In the new trip, the astronaut is to place his digital watch
right next to the light pulse clock so that the astronaut
and the class can see both the digital watch and the light
pulse clock at the same time.  The idea is to compare the
rates of the two timing devices.

“Look what would happen,” Bill continues, “if your
digital watch did not slow down.  When you come by,
your digital watch would be keeping “God’s time” as
you call it, while your light pulse clock would be
running slower.”

“The important part of this experiment is that because
the faces of the two clocks are together, if we see them
running at different rates, you will too.  You would
notice that here on earth, when you are at rest, the two
clocks ran at the same rate.  But when you were
moving at high speed, they would run at different
rates.  You could use this difference in rates to detect
your own motion, and therefore violate the principle
of relativity.”

The astronaut thought about this for a bit, and then
responded, “I’ll grant that you are partly right.  On my
previous trips, after the accelerations ceased and I
started coasting toward the class, I did not feel any
motion.  I had no trouble unpacking the equipment and
setting it up.  The light pulse went in just as it had back
in the lab, and I was sure that the light pulse clock was
working just fine.  I certainly would have noticed any
difference in the rates of the two clocks.”

Moving Clocks
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Real Clocks
Our theory still has a severe limitation.  We have to
assume that the light pulse clock runs slow.  But no one
has yet built a light pulse clock.  Thus our theory is still
based on thought experiments and conjectures about
the behavior of light.  If we had just one real clock that
ran slow by a factor 1 - v2 /c2, then the principle of
relativity would guarantee that all other clocks ran slow
in precisely the same way.  Then we would not need any
conjectures about the behavior of light.  The principle
of relativity would do it all!

In 1905 when Einstein proposed the special theory of
relativity, he did not have any examples of moving
clocks that were observed to run slow.  He had to rely
on his intuition and the two postulates.  It was not until
the early 1930s, in studies of the behavior of an
elementary particle called the muon, that experimental
evidence was obtained showing that a real moving
clock actually ran slow.

A muon at rest has a half life of 2.2 microseconds or
2,200 nanoseconds.  That means that if we start with
1000 muons, 2.2 microseconds later about half will
have decayed and only about 500 will be left.  Wait
another 2.2 microseconds and half of the remaining
muons will decay and we will have only about 250 left,
etc.  If we wait 5 half lives, just over 10  microseconds,
only one out of 32 of the original particles remain

  (1/2 × 1/2 × 1/2 × 1/2 × 1/2 = 1/32).

Muons are created when cosmic rays from outer space
strike the upper atmosphere.  Few cosmic rays make it
down to the lower atmosphere, so that most muons are
created in the upper atmosphere, several miles up.  The
interesting results, observed in the 1930s was that there
were almost as many high energy muons striking the
surface of the earth as there were several miles up.  This
indicated that most of the high energy muons seemed
to be surviving the several mile trip down through the
earth’s atmosphere.

Suppose we have a muon traveling at almost the speed
of light, almost 1 foot per nanosecond.  To go a mile,
5280 feet, would take 5,280 nanoseconds or about 5
microseconds.  Therefore a 2 mile trip takes at least 10
microseconds, which is 5 half lives.  One would expect
that in this 2 mile trip, only one out of every 32 muons
that started the trip would survive.  Yet the evidence
was that most of the high energy muons, those traveling
close to the speed of light, survived.  How did they do
this?

We can get an idea of why the muons survive when we
realize that the muon half life can be used as a timing
device for a clock.  Imagine that we have a box with a
dial on the front as shown in Figure (19).  We set the
hand to 0 and put 1000 muons in the box.  We wait until
half the muons decay, whereupon we advance the hand
2.2 microseconds, replace the decayed muons so that
we again have 1000 muons, and then wait until half
have decayed again.  If we keep repeating this process
the hand will advance one muon half life in each cycle.
Here we have a clock based on the muon half life rather
than the swings of a pendulum or the vibrations of a
quartz crystal.

The fact that most high energy muons raining down
through the atmosphere survive the trip means that
their half life is in excess of 10 microseconds, much
longer than the 2.2 microsecond half life of a muon at
rest.  A clock based on these moving muons would run
much slower than a muon clock at rest.  Thus the
experimental observation that the muons survive the
trip down through the atmosphere gives us our first
example of a real clock that runs slow when moving.

muons go
into box

MUON CLOCK

2.2
4.4

6.6
8.

8
11

0

Figure 19
In our muon clock, every time half of the muons
inside decay, we replace them and move the
hand on the face forward by 2.2 microseconds.
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In the early 1960s, a motion picture was made that
carefully studied the decay of muons in the trip down
from the top of Mount Washington in New Hampshire
to sea level (the sea level measurements were made in
Cambridge, Massachusetts), a trip of about 6000 feet.
Muons traveling at a speed of v = .994c were studied
and from the number surviving the trip, it was deter-
mined that the muon half life was lengthened to about
20 microseconds, a factor of 9 times longer than the 2.2
microsecond lifetime of muons at rest.  Since
1/ 1 - v2 /c2 = 9 for v = .994c, a result we got back in
Equation (16), we see that the moving picture provides
an explicit example of a moving clock that runs slow by
a factor 1 - v2 /c2 .

At the present time there are two ways to observe the
slowing down of real clocks.  One is to use elementary
particles like the muon, whose lifetimes are lengthened
significantly when the particle moves at nearly the
speed of light.  The second way is to use modern atomic
clocks which are so accurate that one can detect the tiny
slowing down that occurs when the clock rides on a
commercial jet.  We calculated that a clock traveling

500 miles per hour should lose one nanosecond every
hour.  This loss was detected to an accuracy of 1% when
physicists at the University of Maryland in the early
1980s flew an atomic clock for 15 hours over Chesa-
peake Bay.

In more recent times atomic clocks have become so
accurate that the slowing down of the clock has become
a nuisance.  When these clocks are moved from one
location to another, they have to be corrected for the
time that was lost due to their motion.  For these clocks,
even a one nanosecond error is too much.

Thus today the slowing down of moving clocks is no
longer a hypothesis but a common observational fact.
The slowing down by 1 - v2 /c2 has been seen both
for clocks moving at the slow speeds of a commercial
jet and the high speeds travelled by elementary par-
ticles.  We now have real clocks that run slow by a
factor 1 - v2 /c2 and no longer need to hypothesize
about the behavior of light pulses.  All of our conjec-
tures in this chapter hinge on the principle of relativ-
ity alone.

Figure 19a -- Muon Lifetime Movie
The lifetimes of 568 muons, traveling at a speed of .994c, were plotted as vertical
lines. If the muon’s clocks did not run slow, these lines would show how far the
muons could travel before decaying. One can see that very few of the muons
would survive the trip from the top of Mt. Washington to sea level. Yet the
majority do survive.

Movie
To play the movie, click the
cursor in the photo to the
left. Use up or down arrows
on the keyboard to raise or
lower volume. Left and right
arrows step one frame
foreward or back and esc
stops it. The movie is 36
minutes long. The Movie
Time Dilation: An
Experiment with Mu-Mesons
is presented with the
permission of Education
Development Center Inc.,
Newton, Massachusetts.



1-22 Principle of Relativity

Figure 20
The Andromeda galaxy, about a million light years
away, and about 1/10 million light years in diameter.

Time Dilation
If all moving clocks run slow, does time itself run slow
for the moving observer?  That raises the question of
how we define time.  If time is nothing more than what
we measure by clocks, and all clocks run slow, we might
as well say that time runs slow.  And we can give this
effect a name like time dilation, the word dilation
referring to the stretching out of seconds in a moving
clock.

But time is such a personal concept, it plays such a basic
role in our lives, that it seems almost demeaning that
time should be nothing more than what we measure by
clocks.  We have all had the experience that time runs
slow when we are bored, and fast when we are busy.
Time is associated with all aspects of our life, including
death.  Can such an important concept be abstracted to
be nothing more than the results of a series of measure-
ments?

Let us take the following point of view.  Let physicists’
time be that which is measured by clocks.  Physicists’
time is what runs slow for an object moving by.  If your
sense of time does not agree with physicists’ time, think
of that as a challenge.  Try to devise some experiment to
show that your sense of time is measurably different
from physicists’ time.  If it is, you might be able to devise
an experiment that violates the principle of relativity.

Space Travel
In human terms, time dilation should have its greatest
effect on space travelers who need to travel long dis-
tances and therefore must go at high speeds.  To get an
idea of the distances involved in space travel, we note
that light takes 1.25 seconds to travel from the earth to
the moon (the moon is 1.25 billion feet away), and 8
minutes to travel from the sun to the earth.  We can say
that the moon is 1.25 light seconds away and the sun is
8 light minutes distant.

Currently Neptune is the most distant planet (Pluto will
be the most distant again in a few years).  When Voyager
II passed Neptune, the television signals from Voyager,
which travel at the speed of light, took 2.5 hours to reach
us.  Thus our solar system has a radius of 2.5 light hours.
It takes 4 years for light to reach us from the nearest star
from our sun; stars are typically one to a few light years
apart.

If you look up at the sky at night and can see the Milky
Way, you will see part of our galaxy, a spiral structure
of stars that looks much like our neighboring galaxy
Andromeda shown in Figure (20).  Galaxies are about
100,000 light years across, and typically spaced about a
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million light years apart.  As we will see  there are even
larger structures in space;  there are interesting things to
study on an even grander scale.

Could anyone who is reading this text survive a trip to
explore our neighboring galaxy Andromeda, or just
survive a trip to some neighboring star, say, only 200
light years away?

Before Einstein’s theory, one would guess that the best
way to get to a distant star would be to go so fast that the
trip would not take very long.  But now we have a
problem.  In Einstein’s theory, the speed of light is a
special speed.  If we had the astronaut carry our light
pulse clock at a speed greater than the speed of light, the
light pulse could not remain in the clock.  The astronaut
would also notice that he could not keep the light pulse
in the clock, and could use that fact to detect his own
uniform motion.  In other words, the principle of relativ-
ity implies that we or the astronaut cannot travel faster
than the speed of light.

That the speed of light is a limiting speed is common
knowledge to physicists working with elementary par-
ticles.  Small particle accelerators about a meter in
diameter can accelerate electrons up to speeds ap-
proaching v = . 9999c.  The two mile-long accelerator
at Stanford University, which holds the speed record
for accelerating elementary particles here on earth, can
only get electrons up to a speed v = . 999999999c.  The
speed of light is Nature’s speed limit, how this speed
limit is enforced is discussed in Chapter 6.

Does Einstein’s theory preclude the possibility that we
could visit a distant world in our lifetime; are we
confined to our local neighborhood of stars by Nature’s
speed limit?  The behavior of the muons raining down
through the atmosphere suggests that we are not con-
fined.  The muons, you will recall, live only 2.2
microseconds (on the average) when at rest.  Yet the
muons go much farther than the 2200 feet that light
could travel in a muon half life.  They survive the trip
down through the atmosphere because their clocks are
running slow.

If humans could accompany muons on a trip at a speed
v = .994c, the human clocks should also run slow, their
lifetimes should also expand by the same factor of 9.  If
the human clocks did not run slow and the muon clocks
did, the difference in rates could be used to detect
uniform motion in violation of the principle of
relativity.

The survival of the muons suggest that we should be
able to travel to a distant star in our own lifetime.
Suppose, for example, we wish to travel to the star Zeta
(we made up that name) which is 200 light years away.
If we traveled at the speed v = .994c, our clocks should
run slow by a factor 1/ 1 - v2 /c2 = 1/9, and the trip
should only take us   200 × 1 91 9 = 22.4  years.  We
would be only 22.4 years older when we get there.  A
healthy, young crew should be able to survive that.

Space Travel
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The Lorentz Contraction
A careful study of this proposed trip to star Zeta
uncovers a consequence of Einstein’s theory that we
have not discussed so far.  To see what this effect is, to
see that it is just as real as the slowing down of moving
clocks, we will treat this proposed trip as a new thought
experiment which will be analyzed from several points
of view.

In this thought experiment, the instructor and the class,
who participated in the previous thought experiments,
decide to travel to Zeta at a speed of v = .994c.  They
have a space ship constructed which on the inside looks
just like their classroom, so that classroom discussions
can be continued during the trip.

On the earth, a permanent government subagency of
NASA is established to record transmissions from the
space capsule and maintain an earth bound log of the
trip.  Since the capsule, traveling at less than the speed
of light, will take over 200 years to get to Zeta,  and since
the transmissions upon arrival will take 200 years to get
back, the NASA agency has to remain in operation for
over 400 years to complete its assignment.  NASA’s
summary of the trip, written in the year 2406, reads as
follows:  “The spacecraft took off in the year 2001 and
spent four years accelerating up to a speed of v = .994c.
During this acceleration everything was packed away,
but when they got up to the desired speed, the rocket
engines were shut off and they started the long coast to
the Zeta.  This coast started with a close fly-by of the
earth in late January of the year 2005.  The NASA
mission control officer who recorded the fly-by noted
that his great, great, great, grandchildren would be alive
when the spacecraft reached its destination.”

The mission control officer then wrote down the fol-
lowing calculations that were later verified in detail.
“The spacecraft is traveling at a speed v = .994c, so that
it will take 1/.994 times longer than it takes a pulse of
light to reach the star.  Since the star is 200 light years
away, the spacecraft should take 200/.994 = 201.2
years to get there.

But the passengers inside are also moving at a speed
v = .994c, their clocks and biological processes run
slow by a factor 1 - v2 /c2 = 1/9, and the amount of
time they will age is

  amount of time
space travelers
age

= 201.2 years × 1
9

= 22.4 years

Even the oldest member of the crew, the instructor, will
be able to survive.”

The 2406 entry continued;  “During the intervening
years we maintained communication with the capsule
and everything seemed to go well.  There were some
complaints about our interpretation of what was hap-
pening but that did not matter, everything worked out
just as we had predicted.  The spacecraft flew past Zeta
in March of the year 2206, and we received the commu-
nications of the arrival this past March.  The instructor
said she planned to retire after they decelerated and the
spacecraft landed on a planet orbiting Zeta.  She was
not quite sure what her class of middle aged students
would do.”
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NASA’s predictions may have come true, but from the
point of view of the class in the capsule, not everything
worked out the way NASA said it did.

As NASA mentioned, a few years were spent acceler-
ating the space capsule to the speed v = .994c.  The
orbit was chosen so that just after the engines were shut
off and the coast to Zeta began, the spacecraft would
pass close to the earth for one final good-by.

There was quite a change from the acceleration phase
to the coasting phase.  During the acceleration every-
thing had to be securely fastened, and there was the
constant vibration of the engines.  But when the engines
were shut off, you couldn’t feel motion any more;
everything floated as in the TV pictures of the early
astronauts orbiting the earth.

When the coasting started, the instructor and class
settled down to the business of monitoring the trip.  The
first step was to test the principle of relativity.  Was
there any experiment that they could do inside the
capsule that could detect the motion of the capsule?
Various experiments were tried, but none demon-
strated that the capsule itself was moving.  As a result
the students voted to take the point of view that they and
the capsule were at rest, and the things outside were
moving by.

Very shortly after the engines were shut off, the earth
went by.  This was expected, and the students were
ready to measure the speed of the earth as it passed.
There were two windows 100 feet apart on the back
wall of the classroom, as shown in Figure (21).  When
the earth came by, there was an orbiting spacecraft,
essentially at rest relative to the earth, that passed close
to the windows.  The students measured the time it took
the front edge of this orbiting craft to travel the 100 feet
between the windows.  They got 100.6 nanoseconds
and therefore concluded that the orbiting craft and the
earth itself were moving by at a speed

vearth  =  100 feet
100.6 nanoseconds

          =  .994 feet
nanosecond

  =  .994 c

So far so good.  That was supposed to be the relative
speed of the earth.

In the first communications with earth, NASA mission
control said that the space capsule passed by the earth
at noon, January 17, 2005.  Since all the accurate clocks
had been dismantled to protect them from the accelera-
tion, and only put back together when the coasting
started, the class was not positive about what time it
was.  They were willing to accept NASA’s statement
that the fly-by occurred on January 17, 2005.  From
then on, however, the class had their own clocks in
order—light pulse clocks, digital clocks and an atomic
clock.  From then on they would keep their own time.

For the next 22 years the trip went smoothly.  There
were numerous activities, video movies, etc., to keep
the class occupied.  Occasionally, about once every
other month, a star went by.  As each star passed, its
speed v was measured and the class always got the
answer v = .994c.  This confirmed that the earth and the
neighboring stars were all moving together like bright
dots on a huge moving wall.

Figure 21
To measure the speed of the earth as it passes
by, the class measures the time it takes a small
satellite to pass by the windows in the back of
the classroom.  The windows are 100 feet apart.

100 ft

classroom in
space capsule

earth
vearth

Lorentz Contraction
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The big day was June 13, 2027, the 45th birthday of Jill
who was eighteen when the trip was planned.  This was
the day, 22.4 years after the earth fly-by, that Zeta went
by.  The students made one more speed measurement
and determined that Zeta went by at a speed v = .994c.
An arrival message was sent to NASA, one day was
allowed for summary discussions of the trip, and then
the deceleration was begun.

After a toast to Jill for her birthday, Bill began the
conversation.  “Over the past few years, the NASA
communications and even our original plans for the trip
have been bothering me.  The star charts say that Zeta
is 200 light years from the earth, but that cannot be
true.”

“Look at the problem this way.” Bill continues. “The
earth went by us at noon on January 17, 2005,  just 22.4
years ago.  When the earth went by, we observed that
it took 100.6 nanoseconds to pass by our 100 foot wide
classroom.  Thus the earth went by at a speed v = .994
feet/nanosecond, or .994c.  Where is the earth now,
22.4 years later?  How far could the earth have gotten,
traveling at a speed .994c for 22.4 years?  My answer
is

  distance of earth
from spaceship

= .994
light year

year
× 22.4 years

= 22 light years

“You’re right!” Joan interrupted, “Even if the earth had
gone by at the speed of light, it would have gone only
22.4 light years in the 22.4 years since fly-by.  The star
chart must be wrong.”

The instructor, who had just entered the room, said, “I
object to that remark.  As a graduate student I sat in on
part of a course in astronomy and they described how
the distance to Zeta was measured.”  The instructor
drew a sketch, Figure (22), and continued.  “Here is the
earth in its orbit about the sun, and two observations, six
months apart, are made of Zeta.  You see that the two
positions of the earth and the star form a triangle.
Telescopes can accurately measure the two angles I
labeled θ1 and θ2, and the distance across the earth’s
orbit is accurately known to be 16 light minutes.  If you
know two angles and one side of a triangle, then you can
calculate the other sides from simple geometry.  One
reason for choosing a trip to Zeta  is that we had accurate

measurements of the distance to that star.  We knew that
it was 200 light years away, and we knew that traveling
at a speed .994c, we could survive the trip in our
lifetime.”

Bill responded, “I think you entered the room too late
and missed my argument.  Let me summarize it.  Point
1:  the earth went by a little over 22 years ago.  Point 2:
we actually measured that the earth was traveling by us
at almost the speed of light.  Point 3:  even light cannot
go farther than 22 light years in 22 years.  The earth can
be no farther than about 22 light years away.  Point 4:
Zeta passed by us today, thus the distance from the
earth to Zeta is about 22 light years, not 200 light
years!”

“But what about NASA’s calculations and all their
plans,” the instructor said, interrupting a bit nervously.

“We do not care what NASA thinks,” responded Bill.
“We have had no acceleration since the earth went by.
Thus the principle of relativity guarantees that we can
take the point of view that we are at rest and that it is the
earth and NASA that are moving.  From our point of
view, the earth is 22 light years away.  What NASA
thinks is their business.”

Joan interrupts, “Let us not argue on this last day.  Let’s
figure out what is happening.  There is something more
important here than just how far away the earth is.”

earth's orbit

Sun01 02

03

Zeta

Figure 22
Instructor's sketch showing how the distance from the
earth to the star Zeta was measured.  (For a star 200
light years away,  θθ3  is 4.5 millionths of a degree.)
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“Remember in the old lectures on time dilation where
the astronaut carried a light pulse clock.  We used the
peculiar behavior of that clock and the principle of
relativity to deduce that time ran slow for a moving
observer."

“Now for us, NASA is the moving observer.  More than
that, the earth, sun,  and the stars, including Zeta, have
all passed us going in the same direction and the same
speed v = .994c.  We can think of them as all in the same
huge space ship.  Or we can think of the earth and the
stars as painted dots on a very long rod.  A very long rod
moving past us at a speed v = .994c.  See my sketch
(Figure 23)."

“To NASA, and the people on earth, this huge rod, with
the sun  at one end and Zeta at the other, is 200 light
years long.  Our instructor showed us how earth people
measured the length of the rod.  But as Bill has pointed
out, to us this huge rod is only 22 light years long.  That
moving rod is only 1/9th as long as the earth people
think it is.”

“But,” Bill interrupts, the factor of 1/9 is exactly the
factor 1 - v2 /c2 by which the earth people thought
our clocks were running slow.  Everyone sees some-
thing peculiar.  The earth people see our clocks running
slow by a factor 1 - v2 /c2, and we see this hypotheti-
cal rod stretched from the sun to Zeta contracted by a
factor 1 - v2 /c2.”

“But I still worry about the peculiar rod of Joan’s,”  Bill
continues,  “what about real rods, meter sticks, and so
forth?  Will they also contract?”

At this point Joan sees the answer to that.  “Remember,
Bill, when we first discussed moving clocks, we had
only the very peculiar light pulse clock that ran slow.
But then we could argue that all clocks, no matter how
they are constructed, had to run slow in exactly the
same way, or we could violate the principle of
relativity.”

“We have just seen that my ‘peculiar’ rod, as you call
it, contracts by a factor 1 - v2 /c2.  We should be able
to show with some thought experiments that all rods, no
matter what they are made of, must contract in exactly
the same way as my peculiar one or we could violate the
principle of relativity.”

“That’s easy,” replies Bill.  Just imagine that we string
high tensile carbon filament meter sticks between the
sun and Zeta.  I estimate (after a short calculation) that
it should take only 6 × 1017 of them.  As we go on our
trip, it doesn’t make any difference whether the meter
sticks are there or not, everything between the earth and
Zeta passes by in 22 years.  We still see 6 × 1017 meter
sticks.   But each one must have shortened by a factor

1 - v2 /c2 so that all of them fit in the shortened
distance of 22 light years.  It does not make any
difference what the sticks are made of.”

Jim, who had not said much up until now, said, “OK,
from your arguments I see that the length of the meter
sticks, the length in the direction of motion must
contract by a factor 1 - v2 /c2,  but what about the
width?  Do the meter sticks get skinnier too?”

The class decided that Jim’s question was an excellent
one, and that a new thought experiment was needed to
decide.

Let’s try this,” suggested Joan.  “Imagine that we have
a space ship 10 feet in diameter and we build a brick
wall with a circular hole in it 10 feet in diameter (Figure
(24)).  Let us assume that widths, as well as lengths,
contract.  To test the hypothesis, we hire an astronaut to

Lorentz Contraction

Sun

Zeta

hypothetical
measuring
rod between
our sun and
the star Zeta

v = .994c

Figure 23
Joan's sketch of the Sun and Zeta
moving by.  This “object” passed by in
about 22 years, moving at nearly the
speed of light.  Thus the “object” was
about 22 light years long.
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Leaving our thought experiment, it is interesting to note
that the discovery of the contraction of moving lengths
occurred before Einstein put forth the special theory of
relativity.  In the 1890s, physicist George Fitzgerald
assumed that the length of one of the arms in
Michaelson’s interferometer, the arm along the direc-
tion of motion, contracted by a factor 1 - v2 /c2.  This
was just the factor needed to keep the interferometer
from detecting the earth’s motion in the Michaelson-
Morley experiments.  It was a short while later that
H.A. Lorentz showed that if the atoms in the arm of the
Michaelson interferometer were held together by elec-
tric forces, then such a contraction would follow from
Maxwell’s theory of electricity.  The big step, however,
was Einstein’s assumption that the principle of relativ-
ity is correct.  Then, if one object happens to contract
when moving, all objects must contract in exactly the
same way so that the contraction could not be used to
detect one’s own motion.  This contraction is called the
Lorentz-Fitzgerald contraction, or Lorentz contrac-
tion, for short.

Relativistic Calculations
Although we have not quite finished with our discus-
sion of Einstein’s special theory of relativity, we have
covered two of the important consequences, time dila-
tion and the Lorentz contraction, which will play
important roles throughout the text.  At this point we
will take a short break to discuss easy ways to handle
calculations involving these relativistic effects.  Then
we will take another look at Einstein’s theory to see if
there are any more new effects to be discovered.

After our discussion of time dilation, we pointed out the
importance of the quantity 1 - v2 /c2 which is a
number always less than 1.  If we wanted to know how
much longer a moving observer’s time interval was, we
divided by 1 - v2 /c2 to get a bigger number.  If we
wanted to know how much less was the frequency of a
moving clock, we multiplied by 1 - v2 /c2 to get a
smaller number.

With the Lorentz contraction we have another effect
that depends upon 1 - v2 /c2.  If we see an object go
by us, the object will contract in length.  To predict its
contracted length, we multiply the uncontracted length
by 1 - v2 /c2 to get a smaller number.  If, on the other

fly the 10 foot diameter capsule through the 10 foot hole
at nearly the speed of light, say at v = .994c.  If widths
contract like lengths, the capsule should contract to 10/
9 of a foot; it should be just over 13 inches in diameter
when it gets to the 10 foot hole.  It should have no
trouble getting through.”

“But look at the situation from the astronaut’s point of
view.  He is sitting there at rest, and a brick wall is
approaching him at a speed v = .994c.  He has been told
that there is a 10 foot hole in the wall, but he has also
been told that the width of things contracts by a factor

1 - v2 /c2.  That means that the diameter of the hole
should contract from 10 feet to 13 inches.  He is sitting
there in a 10 foot diameter capsule, a brick wall with a
13 inch hole is approaching him, and he is supposed to
fit through.  No way!  He bails out and looks for another
job.”

“That’s a good way to do thought experiments, Joan,”
replied the instructor.  “Assume that what you want to
test is correct, and then see if you can come up with an
inconsistency.  In this case, by assuming that widths
contract, you predicted that the astronaut should easily
make it through the hole in the wall.  But the astronaut
faced disaster.  The crash, from the astronaut’s point of
view would have been an unfortunate violation of the
principle of relativity, which he could use as evidence
of his own uniform motion.”

“To sum it up,” the instructor added, “we now have
time dilation where moving clocks run slow by a factor

1 - v2 /c2, and we see that moving lengths contract by
the same factor.  Only lengths in the direction of motion
contract, widths are unchanged.”
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Figure 24
Do diameters contract?
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hand, an object moving by us had a contracted length
l, and we stop the object, the contraction is undone and
the length increases.  We get the bigger uncontracted
length by dividing by 1 - v2 /c2.

As we mentioned earlier, first determine intuitively
whether the number gets bigger or smaller, then either
multiply by or divide by the 1 - v2 /c2 as appropriate.
This always works for time dilation, the Lorentz con-
traction, and, as we shall see later, relativistic mass.

We will now work some examples involving the
Lorentz contraction to become familiar with how to
handle this effect.

Example 1   Muons and Mt Washington
In the Mt. Washington experiment, muons travel 6000
feet from the top of Mt. Washington to sea level at a
speed v = .994c.  Most of the muons survive despite the
fact that the trip should take about 6 microseconds
(6000 nanoseconds), and the muon half life is τ = 2.2
microseconds for muons at rest.

We say that the muons survive the trip because their
internal timing device runs slow and their half life
expands by a factor 1/ 1 - v2 /c2 = 9.  The half life of
the moving muons should be

half life of
moving muons  =  τ

1 - v2 /c2

  = 2.2 microseconds × 9

=  19.8 microseconds

This is plenty of time for the muons to make the trip.

From the muon’s point of view, they are sitting at rest
and it is Mt. Washington that is going by at a speed v =
.994c.  The muon’s clocks aren’t running slow, instead
the height of Mt. Washington is contracted.

To calculate the contracted length of the mountain, start
with the 6000 foot uncontracted length, multiply by

1 - v2 /c2 = 1/9 to get

  contracted height
of Mt. Washington

= 6000 feet × 1
9

= 667 feet

Traveling by at nearly the speed of light, the 667 foot
high Mt. Washington should take about 667 nanosec-
onds or .667 microseconds to go by.  Since this is
considerably less than the 2.2 microsecond half life of
the muons, most of them should survive until sea level
comes by.

Example 2   Slow Speeds
Joan walks by us slowly, carrying a meter stick point-
ing in the direction of her motion.  If her speed is v = 1
foot/second, what is the contracted length of her meter
stick as we see it?

This is an easy problem to set up.  Since her meter stick
is contracted, we multiply 1 meter times the 1 - v2 /c2

with v = 1 foot/second.  The problem comes in evalu-
ating the numbers.  Noting that 1 nanosecond = 10-9

seconds, we can use the conversion factor 10-9 sec-
onds/nanosecond to write

  
v = 1

ft
sec

× 10-9 sec
nanosecond

= 10-9 ft
nanosecond

= 10-9 c

Thus we have

v
c  =  10-9 ,   v

2

c2
  =  10-18

and for Joan’s slow walk we have

1 - v2 /c2   =  1 - 10-18 (19)

If we try to use a calculator to evaluate the square root
in Equation (19), we get the answer 1.  For the calcula-
tor, the number 10-18 is so small compared to 1, that it
is ignored.  It is as if the calculator is telling us that when
Joan’s meter stick is moving by at only 1 foot/second,
there is no noticeable contraction.

But there is some contraction, and we may want to
know the contraction no matter how small it is.  Since
calculators cannot handle numbers like 1 – 10-18 , we
need some other way to deal with such expressions.  For
this, there is a convenient set of approximation formu-
las which we will now derive.

Lorentz Contraction
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Approximation Formulas
The approximation formulas deal with numbers close
to 1, numbers that can be written in the form (1 + a) or
(1 – a) where a is a number much less than 1.  For
example the square root in Equation (19) can be written
as

1 - 10-18   =  1 - α
where α = 10-18 is truly a number much less than 1.

The idea behind the approximation formulas is that if
a is much less than 1, a2 is very much less than 1 and can
be neglected.  To see how this works, let us calculate (1
+ a)2 and see how we can neglect  a2  terms even when
a is as large as .01.  An exact calculation is

1 + α 2  =  1 + 2α + α 2

which for α  =  .01,  α2  =  .0001 is

  1 + α 2
= 1 + .02 + .0001

= 1.0201

If we want to know how much 1 + α 2 differs from 1,
but do not need too much precision, we could round off
1.0201 to 1.02 to get

1 + α 2  ≈  1.02

(The symbol ≈ means “approximately equal to”).  But
in replacing 1.0201 by 1.02, we are simply dropping the
α 2 term in Equation (19).  We can write

  1 + α 2 ≈ 1 + 2α = 1 +.02 = 1.02 (20)

Equation (20) is our first example of an approximation
formula.

In Equation (20) the smaller a is the better the approxi-
mation.  If a = .0001 we have

1.0001 2  =  1.00020001     exact

Equation (20) gives

  
1 + .0001

2 ≈ 1 + .0002 = 1.0002

and we see that the neglected α2 terms become less and
less important.

Some useful approximation formulas are the following

1 + α 2  ≈  1 + 2α (20)

1 - α 2  ≈  1 - 2α (21)

1
1 + α

     ≈  1 - α (22)

1
1 - α

      ≈  1 + α (23)

1 - α      ≈  1 - α
2

(24)

1
1 - α

    ≈  1 + α
2

(25)

We have already derived Equation (20).  Equation (21)
follows from (20) if we replace α by –α.

Equation (22) can be derived as follows.  Multiply the
quantity 1 – a by (1+a)/(1+a) which is 1 to get

  
1 - α = 1 - α ×

1 + α

1 + α
=

1 - α2

1 + α ≈ 1
1 + α

In the last step we dropped the α2 terms.

To derive the approximate formula for a square root,
start with

  
1 -

α
2

× 1 -
α
2

= 1- 2
α
2

+
α2

4
≈ 1- α (26)

taking the square root of Equation (26) gives

1 - α
2

  ≈  1 - α

which is the desired result.  Again we only neglected α2

terms.

To derive Equation (25), first use Equation (24) to get

1
1 - α

  ≈  1
1 - α

2
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Exercise 6
We saw that time dilation in a commercial jet was not a
big effect either—clocks losing only one nanosecond
per hour in a jet traveling at 500 miles per hour.  This was
not an unnoticed effect, however, because modern
atomic clocks can detect this loss.

In our derivation of the one nanosecond loss, we stated
in Equation (17) that

    1

1 - v2/c2
≈ 1 +2.7 × 10-13 fora speed of

500 miles/hour
(17)

Starting with

  v = 500
miles
hour

× 5280
feet
mile

× 1
3600sec/hour

use the approximation formulas to derive the result
stated in Equation (17).

Exercise 7

Here is an exercise where you do not need the approxi-
mation formulas, but which should get you thinking
about the Lorentz contraction. Suppose you observe
that the Mars-17 spacecraft, traveling by you at a speed
of v = .995c, passes you in 20 nanoseconds. Back on
earth,  the Mars-17 spacecraft is stored horizontally in
a hanger that is the same length as the spacecraft. How
long is the hanger?

Then use Equation (23), with a replaced by a/2 to get

  1

1 -
α
2

≈ 1 +
α
2

which is the desired result.

For those who are interested, the approximation formu-
las we have written are the first term of the so called
binomial expansion:

1 + α n  =  1 + n α + 
n n-1

2
 α2 +  (27)

where the coefficients of α, α2, etc. are known as the
binomial coefficients.  If you need more accurate
approximations, you can use Equation (27) and keep
terms in α2 ,  α3 , etc.  For all the work in this text, the
first term is adequate.

Exercise 5
Show that Equations (20) through (25) are all examples
of the first order binomial expansion

   1 +α n ≈ 1 +nα (27a)

We are now ready to apply our approximation for-
mulas to evaluate 1 - 10-18  that appeared in Equa-
tion (17).  Since α = 10-18 is very small compared to
1, we have

1 - 10-18   =  1 - α   ≈  1 - α
2

  =  1 - 10-18

2

Thus the length of Joan’s meter stick is

  length of Joan's
contracted meter stick

= 1 meter × 1 - v2/c2

=  1 meter 1 - 10-18

2

=  1 meter - 5 × 10-19 meters
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A CONSISTENT THEORY
As we gain experience with Einstein’s special theory of
relativity, we begin to see a consistent pattern emerge.
We are beginning to see that there is general agreement
on what happens, even if different observers have
different opinions as to how it happens.  A good
example is the Mt. Washington experiment observing
muons traveling from the top of Mt. Washington to sea
level.  Everyone agrees that the muons made it.  The
muons are actually seen down at sea level.  How they
made it is where we get the differing points of view.  We
say that they made it because their clocks ran slow.
They say they made it because the mountain was short.
Time dilation is used from one point of view, the
Lorentz contraction from another.

Do we have a complete, consistent theory now?  In any
new situation will we always agree on the predicted
outcome of an experiment, even if the explanations of
the outcome differ?  Or are there some new effects, in
addition to time dilation and the Lorentz contraction,
that we will have to take into account?

The answer is that there is one more effect, called the
lack of simultaneity which is a consequence of
Einstein’s theory.  When we take into account this lack
of simultaneity as well as time dilation and the Lorentz
contraction, we get a completely consistent theory.
Everyone will agree on the predicted outcome of any
experiment involving uniform motion.  No other new
effects are needed to explain inconsistencies.

The lack of simultaneity turns out to be the biggest
effect of special relativity, it involves two factors of

1 - v2 /c2 .  But in this case the formulas are not as
important as becoming familiar with some of the
striking consequences.  We will find ourselves dealing
with problems such as whether we can get answers to
questions that have not yet been asked, or whether
gravity can crush matter out of existence.  Strangely
enough, these problems are related.

LACK OF SIMULTANEITY
One of the foundations of our intuitive sense of time is
the concept of simultaneity.  “Where were you when
the murder was committed,” the prosecutor asks.  “At
the time of the murder,” the defendant replies, “I was
eating dinner across town at Harvey’s Restaurant.”  If
the defendant can prove that the murder and eating
dinner at Harvey’s were simultaneous events, the jury
will set him free.  Everyone knows what simultaneous
events are, or do they?

One of the most unsettling consequences of Einstein’s
theory is that the simultaneity of two events depends
upon the point of view of the observer.  Two events that
from our point of view occurred simultaneously, may
not be simultaneous to an observer moving by.  Worse
yet, two events that occurred one after the other to us,
may have occurred in the reverse order to a moving
observer.

To see what happens to the concept of simultaneous
events, we will return to our thought experiment in-
volving the instructor and the class.  The action takes
place on the earth before the trip to the star Zeta, and
Joan has just brought in a paperback book on relativity.

“I couldn’t understand that book either,”  the instructor
says to Joan, “he starts with Einstein’s analogy of trains
and lightening bolts, but then switches to wind and
sound waves, which completely confused me.  There
are many popular attempts to explain Einstein’s theory,
but most do not do very well when it comes to the lack
of simultaneity.”

“One of the problems with these popular accounts,” the
instructor continues, “is that we have to imagine too
much.  In today’s lecture I will try to avoid that.  In class
we are going to carry out a real experiment involving
two simultaneous events.  We are going to discuss that
experiment until everyone in class is completely clear
about what happened.  No imagining yet, just observe
what actually occurred.  When there are no questions
left, then we will look at our real experiment from the
point of view of someone moving by.  At that point the
main features of Einstein’s theory are easy to see.”
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Figure 25
Lecture demonstration experiment in which two
flashbulbs are fired simultaneously by trigger
signals from a laser.  The laser and beam splitter
are at the center of the lecture bench, so that the
laser light travels equal distances to reach the
red and green bulbs.  A photocell, battery and
relay are mounted in each flashbulb base.

Figure 26
Although Joan sees the light from the
green flash first, she knows that the two
flashes were simultaneous because of
the way the experiment was set up.
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Joan

trigger pulse trigger pulse

“The apparatus for our experiment is set up here on the
lecture bench (Figure 25).  On the left side of the bench
I have a red flash bulb and on the right side a green flash
bulb.  These flash bulbs are attached to batteries and
photocells so that when a light beam strikes their base,
they go off.”

“In the center of the desk is a laser and in front of it a
beam splitter that uses half silvered mirrors.  When I turn
the laser on, the laser beam comes out, strikes the beam
splitter, and divides into two beams.  One beam travels
to the left and sets off the red flash bulb, while the other
beam goes to the right and triggers the green flash bulb.
I will call the beams emerging from the beam splitter
‘trigger beams’ or ‘trigger pulses’.”

“Let us analyze the experiment before we carry it out,”
the instructor continues.  “We will use the Einstein
postulate that the speed of light is c to all observers.  Thus
the left trigger pulse travels at a speed c and so does the
right one as I showed on the sketch.  Since the beam
splitter is in the center of the desk, the trigger pulses
which start out together, travel the same distance at the
same speeds to reach the flash bulbs.  As a result the flash
bulbs must go off simultaneously.”

“The flashing of the flashbulbs are an example of what
I mean by simultaneous events,” the instructor adds
with emphasis.  “I know that they will be simultaneous
events because of the way I set up the experiment".

"OK, let’s do the experiment.”

While the instructor is adjusting the apparatus, one of
the flashbulbs goes off accidentally which amuses the
class, but finally the apparatus is ready, the laser beam
turned on, and both bulbs fire.

“Well, were they simultaneous flashes?” the instructor
asks the class.

“I guess so,” Bill responds, a bit hesitantly.

“How do you know,” the instructor asks.

“Because you set it up that way,” answers Bill.

Turning and pointing a finger at Joan who is sitting on
the right side of the room nearer the green flash bulb (as
in Figure 26), the instructor says, “Joan, for you which
flash was first?”  Joan thought for a second and replied,
“The green bulb is closer, I should have seen the green
light first.”

“But which occurred first?” the instructor interrupts.

“What are you trying to get at?” Joan asks.
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Figure 27a
In our thought experiment,  a Martian astronaut
passes by our lecture bench at a high speed v.

laser
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c cv v

v What the Martian sees

Figure 27b
The Martian astronaut sees the green flashbulb
running into its trigger signal and firing quickly.
The red flashbulb is running away from it's
trigger signal, and therefore will not fire for a
long time.  Clearly the green flash occurs first.

“Let me put it this way,” the instructor responds.  “Around
1000 BC, the city of Troy fell to the invading Greek
army.  About the same time, a star at the center of the
Crab Nebula exploded in what is known as a supernova
explosion.  Since the star is 2000 light years away, the
light from the supernova explosion took 2000 years to
get here.  The light arrived on July 4, 1057, about the
time of the Battle of Hastings.  Now which are simulta-
neous events?  The supernova explosion and the Battle
of Hastings, or the supernova explosion and the fall of
Troy”

“I get the point,” replied Joan.  “Just because they saw
the light from the supernova explosion at the time of the
Battle of Hastings, does not mean that the supernova
explosion and that battle occurred at the same time.  We
have to calculate back and figure out that the supernova
explosion occurred about the time the Greeks were
attacking Troy, 2000 years before the light reached us.”

“As I sit here looking at your experiment,” Joan
continues,  “I see the light from the green flash before
the light from the red flash, but I am closer to the green
bulb than the red bulb.  If I measure how much  sooner
the green light arrives, then measure the distances to the
two bulbs, and do some calculations, I’ll probably find
that the two flashes occurred at the same time.”

“It is much easier than that.” the instructor exclaimed,
“Don’t worry about when the light reaches you, just
look at the way I set up the experiment – two trigger
pulses, starting at the same time, traveling the same
distance at the same speed.  The flashes must have
occurred simultaneously.  I chose this experiment
because it is so easy to analyze when you look at the
trigger pulses.”

“Any other questions?” the instructor asks.  But by this
time the class is ready to go on.  “Now let us look at the
experiment from the point of view of a Martian moving
to the right a high speed v  (Figure 27a).  The Martian
sees the lecture bench, laser, beam splitter and two flash
bulbs all moving to the left as shown (Figure 27b).  The
lecture bench appears shortened by the Lorentz con-
traction, but the beam splitter is still in the middle of the
bench.  What is important is that the trigger pulses,
being light, both travel outward from the beam splitter
at a speed c .

As the bench passes by, the Martian sees that the green
flash bulb quickly runs into the trigger pulse like this
( c v ).  But on the other side there is a race
between the trigger pulse and the red flash bulb,
( cv ), and the race continues for a
long time after the green bulb has fired.  For the
Martian, the green bulb actually fired first, and the two
flashes were not simultaneous.”
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Figure 28a
Now a Venusian astronaut passes by our lecture
bench at a high speed v in the other direction.
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Figure 28b
The Venetian astronaut sees the red flashbulb
running into its trigger signal and firing quickly.
The green flashbulb is running away from its
trigger signal, and therefore will not fire for a
long time.  Clearly the red flash occurs first.

“How much later can the red flash occur?” asks Bill.

The instructor replied, “The faster the bench goes by, the
closer the race, and the longer it takes the trigger pulse to
catch the red flash bulb.  It isn’t too hard to calculate the
time difference.  In the notes I handed out before class, I
calculated that if the Martian sees our 12 foot long lecture
bench go by at a speed

v = .99999999999999999999999999999992c (28)

then the Martian will determine that the red flash occurred
one complete earth year after the green flash.  Not only
are the two flashes not simultaneous, there is no funda-
mental limit as to how far apart in time that the two flashes
can occur.”

The reader will find the instructor’s class notes in Appen-
dix A of this chapter.

At this point Joan asks a question.  “Suppose an astronaut
from the planet Venus passed our experiment traveling
the other way.  Wouldn’t she see the red flash first?”

“Let’s draw a sketch,” the instructor replies.  The
result is in Figure (28b).  “The Venetian astronaut
sees the lecture bench moving to the left.  Now the red
flash bulb runs into the trigger signal, and the race is
with the green flash bulb.  If the Venetian were going
by at the same speed as the Martian (Equation 30)
then the green flash would occur one year after the
red one.”

“With Einstein’s theory, not only does the simulta-
neity of two events depend upon the observer’s point
of view, even the order of the two events—which
one occurred first—depends upon how the observer
is moving!”
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Figure 30
To a Martian passing by, our computer is moving to
the left at a speed near the speed of light.  The race
between the red bulb and its trigger signal takes so
long that the green bulb fires first.  As a result,
Joan sees the answer to a question that Bill has not
yet thought of.  (This is what could happen if
information travels faster than the speed of light.)
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Figure 29
To test the speed of the computer,
Bill thinks of a question, and types it
in, when he sees the red flash.  Joan
checks to see if the answer arrives at
the same time as the green flash.

CAUSALITY
“You can reverse the order of two events that are years
apart!” Bill exclaimed.  “Couldn’t something weird
happen in that time?”

“What about cause and effect,” asked Joan.  “If you can
reverse the order of events, can't you  reverse cause and
effect?  Can’t the effect come before the cause?”

“In physics,” the instructor responds, “there is a prin-
ciple called causality which says that you cannot
reverse cause and effect.  Causality is not equivalent to
the principle of relativity, but it is closely related, as we
can see from the following thought experiment.”

“Suppose,” she said, “we read an ad for a brand new
IBM computer that is really fast.  The machine is so fast
that when you type a question in at one end, the answer
is printed out at the other end, 4 nanoseconds later.  We
look at the ad, see that the machine is 12 feet long, and
order one to replace our lecture bench.  After the
machine is installed, we decide to test the accuracy of
the ad.  Do we really get answers in 4 nanoseconds?  To
find out, we set up the laser, beam splitter and flash
bulbs on the computer instead of the lecture bench.  The

main difference in the setup is that the laser and beam
splitter have been moved from the center, over closer
to the end where we type in questions.  We have set it
up so that the trigger pulse travels 4 feet to the red bulb
and 8 feet to the green bulb as shown in the sketch
(Figure 29).  Since the trigger pulse takes 4 nanosec-
onds to get to the red bulb, and 8 nanoseconds to reach
the green bulb, the red flash will go off 4 nanoseconds
before the green one.  We will use these 4 nanoseconds
to time the speed of the computer.”

“Bill,” the instructor says, motioning to him, “you
come over here, and when you see the red flash think
of a question.  Then type it into the machine.  Do not
think of the question until after you see the red flash, but
then think of it and type it in quickly.  We will assume
that you can do that in much less than a nanosecond.
You can always do that kind of thing in a thought
experiment.”

“OK, Joan,” the instructor says, motioning to Joan,
“you come over here and look for the answer to Bill’s
question.  If the ad is correct, if the machine is so fast
that the answer comes out in 4 nanoseconds, then the
answer should arrive when the green flash goes off.”



1-37Causality

Figure 31
If the answer to Bill's question takes
12 nanoseconds to travel through
the 12 foot long computer, then this
is the setup required to check the
timing.  The red bulb fires
instantaneously, and everyone
agrees that the red flash occurs first,
and the answer appears later.
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The instructor positions Bill and Joan and the equip-
ment as shown in Figure (29), turns on the laser and
fires the flash bulbs.

“Did you type in the question,” the instructor asks Bill,
“when the red flash occurred?”

“Of course,” responds Bill, humoring the instructor.

“And did the answer arrive at the same time as the green
flash,” the instructor asks Joan.

“Sure,” replies Joan, “why not?”

“Suppose it did,” replied the instructor.  “Suppose the
ad is right, and the answer is printed when the green
flash goes off.  Let us now look at this situation from the
point of view of a Martian who is traveling to the right
at a very high speed.  The situation to the Martian looks
like this (Figure 30).  Although the red bulb is closer to
the beam splitter, it is racing away from the trigger
pulse ( cv  ).  If the computer is going
by fast enough, the race between the red bulb and its
trigger pulse will take much longer than the head-on
collision between the green bulb and its trigger pulse.
The green flash will occur before the red flash.”

“And I,” interrupts Joan, “will see the answer to a
question that Bill has not even thought of yet!”

“I thought you would be in real trouble if you could
reverse the order of events,” Joan added.

“It is not really so bad,” the instructor continued.  “If the
ad is right, if the 12 foot long computer can produce
answers that travel across the machine in 4 nanosec-
onds, we are in deep trouble.  In that case we could see

answers to questions that have not yet been asked.  That
machine can be used to violate the principle of causal-
ity.  But there was something peculiar about that
machine.  When the answer went through the machine,
information went through the machine at three times
the speed of light.  Light takes 12 nanoseconds to cross
the machine, while the answer went through in 4
nanoseconds.”

“Suppose,” asks Bill, “that the answer did not travel
faster than light.  Suppose it took 12 nanoseconds
instead of 4 nanoseconds for the answer to come out.”
The instructor replied, “To measure a 12 nanosecond
delay with our flash bulb apparatus, we would have to
set the beam splitter right up next to the red bulb like this
(Figure 31) in order for the trigger signal to reach the
green bulb 12 nanoseconds later.  But with this setup,
the red bulb flashes as soon as the laser is turned on.  No
one, no matter how they are moving by, sees a race
between the red bulb and the trigger signal.  Everybody
agrees that the green flash occurs after the red flash.”

“You mean,” interrupts Joan, “that you cannot violate
causality if information does not travel faster than the
speed of light?”

“That’s right,” the instructor replies, “that’s one of the
important and basic consequences of Einstein’s theory.”

“That’s interesting,” adds Bill.  “It would violate the
principle of relativity if we observed the astronaut’s
capsule, or probably any other object, traveling faster
than the speed of light.  The speed of light is beginning
to play an important role.”
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“That’s pretty far out,” replied Joan.  “I didn’t know
that physics could say anything about how information
– ideas – moved.”

Jim, who had been sitting in the back of the classroom
and not saying much, raised his hand.  “At the begin-
ning of the course when we were talking about sound
pulses, you said that the more rigid the material, the
faster the speed of sound in the material.  You used
Slinky pulses in your demonstrations because a Slinky
is so compressible that a Slinky pulse travels slowly.
You can’t compress air as easily as a Slinky, and sound
pulses travel faster in air.  Since steel is very rigid,
sound goes very fast in steel.”

“During these discussions about the speed of light, I
have been wondering.  Is there any kind of material that
is so rigid that sound waves travel at the speed of light?”

“What made you ask that?” the instructor asked.

“I’ve been reading a book about the life and death of
stars,” Jim replied.  I just finished the chapter on
neutron stars, and they said that the nuclear matter in a
neutron star was very incompressible.  It had to be to
resist the strong gravitational forces.  I was wondering,
how fast is the speed of sound in this nuclear matter?”

“Up close to the speed of light,” the instructor replied.

“If the nuclear matter were even more rigid, more
incompressible, would the speed of sound exceed the
speed of light?” Jim asked.

“It can’t,” the instructor replied.

“Then,” Jim asked, “doesn’t that put a limit on how
incompressible, how rigid matter can be?”

“That looks like one of the consequences of Einstein’s
theory,” the instructor replies.

“Then that explains what they were trying to say in the
next chapter on black holes.  They said that if you got
too much matter concentrated in a small region, the
gravitational force would become so great that it would
crush the matter out of existence.”

“I didn’t believe it, because I thought that the matter
would be squeezed down into a new form that is a lot
more incompressible than nuclear matter, and the
collapse of the star would stop.  But now I am beginning
to see that there may not be anything much more rigid
than nuclear matter.  Maybe black holes exist after all.”

“Will you tell us about neutron stars and black holes?”
Joan asks eagerly.

“Later in the course,” the instructor responds.
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APPENDIX A

Class Handout
To predict how long it takes for the trigger pulse to
catch the red bulb in Figure (27b), let l be the
uncontracted half length of the lecture bench (6 feet for
our discussion).  To the Martian, that half of the lecture
bench has contracted to a length  l 1 - v2 /c2.

In the race, the red bulb traveling at a speed v,  starts out
a distance  l 1 - v2 /c2 ahead of the trigger pulse,
which is traveling at a speed c.  Let us assume that the
race lasts a time t and that the trigger pulse catches the
red bulb a distance x from where the trigger pulse
started.  Then we have

x  = ct (30)

In the same time t, the green bulb only travels a distance
x -  l 1 - v2 /c2, but this must equal vt;

vt  =  x - l 1 - v2 /c2 (31)

Using Equation (30) in (31) gives

vt  =  ct - l 1 - v2 /c2

t c – v   =  l 1 – v2 /c2

Solving for t gives

t  =  l 1 - v2 /c2
c - v   =  

l 1 + v/c  1 - v/c
c 1 - v/c

 

   =  
l 1 + v/c

c 1 - v/c

If v is very close to c, then 1 + v/c   ≈  2 and we get

t  ≈  l 2
c  1

1 - v/c

If we plug in the numbers t  =  3 × 107 seconds (one
earth year), l = 6 feet, c = 109 feet/second, we get

   
1 - v/c =

l 2
ct

=
6 ft 2

109 ft/sec × 3 × 107 sec

= 2.8 × 10-16

Squaring this gives

  1 - v/c = 8 × 10-32

Thus if

v =  (1 - 8 × 10-32)c

    = .99999999999999999999999999999992c

then the race will last a whole year.  On the other side,
the trigger signal runs into the green flash bulb in far
less than a nanosecond because the lecture bench is
highly Lorentz contracted.



CHAPTER 2 VECTORS

In the first chapter on Einstein’s special theory of
relativity, we saw how much we could learn from the
simple concept of uniform motion.  Everything in the
special theory can be derived from (1) the idea that you
cannot detect your own uniform motion, and (2) the
existence of a real clock that runs slow by a factor

  1 – v2 c2v2 c2 .

We are now about to study more complicated kinds of
motion where either the speed, the direction of motion,
or both, are changing.  Our work with non-uniform
motion will be based to a large extent on a concept
discovered by Galileo about 300 years before Einstein
developed the special theory of relativity.  It is interest-
ing that after studying complex forms of motion for over
300 years, we still had so much to learn about simple
uniform motion.  But the history of science is like that.
Major discoveries often occur when we see the simple
underlying features after a long struggle with complex
situations.  If our goal is to present scientific ideas in the
orderly progression from the simple to the complex, we
must expect that the historical order of their discovery
will not necessarily follow the same route.

Galileo was studying the motion of projectiles, trying
to predict where cannon balls would land.  He devised
a set of experiments involving cannon balls rolling
along slightly inclined planes.  These experiments
effectively slowed down the action, allowing Galileo to
see the way the speed of a falling object changed as the
object fell.  To explain his results Galileo invented the
concept of acceleration and pointed out that the simple

feature of projectile motion is that projectiles move
with constant or uniform acceleration.  We can think of
this as one step up in complexity from the uniform
motion discussed in the previous chapter.

To study motion today, we have many tools that were
not available to Galileo.  In the laboratory we can slow
down the action, or stop it, using strobe photographs or
television cameras.  To describe and analyze motion
we have a number of mathematical tools, particularly
the concept of vectors and the subject of calculus.  And
to predict motion, to predict not only where cannon
balls land but also the trajectory of a spacecraft on a
mission to photograph the solar system, we now have
digital computers.

As we enter the study of more complex forms of motion,
you will notice a shift in the way ideas are presented.
Throughout the text, our goal is to construct a modern
view of nature starting as much as possible from the
basic underlying ideas.  In our study of special relativ-
ity, the underlying idea, the principle of relativity, is
more accurately expressed in terms of your experience
flying in a jet than it is by any formal set of equations.
As a result we were able to extract the content of the
theory in a series of discussions that drew upon your
experience.

In most other topics in physics, common experience is
either not very helpful or downright misleading.  If you
have driven a car, you know where the accelerator
pedal is located and have some idea about what

Chapter 2
Vectors
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VECTORS
In this chapter we will study the vector as a mathemati-
cal object.  The idea is to have the concept of vectors in
our bag of mathematical tools ready for use in our study
of more complex motion, ready to be applied to the
ideas of velocity, acceleration and later, force and
momentum.

In a sense, we will develop a new math for vectors. We
will begin with a definition of displacement vectors,
and will then explain how two vectors are added. From
this, we will develop a set of rules for the arithmetic of
vectors. In some ways, the rules are the same as those
for numbers, but in other ways they are different. We
will see that most of the rules of arithmetic apply to
vectors and that learning the vector convention is
relatively simple.

Displacement Vectors
A displacement vector is a mathematical way of ex-
pressing the separation or displacement between two
objects. To see what is involved in describing the
separation between objects, consider a map such as the
one in Figure (1), which shows the position of the two
cities, New York and Boston. If we are driving on well-
marked roads, it is sufficient, when planning a trip, to
know that these two cities are separated by a distance
of 190 miles. However, the pilot of a small plane flying
from New York to Boston in a fog must know in what
direction to fly; he must also know that Boston is
located at an angle of 54 degrees east of north from New
York.

Corning, NY

Pittsburgh

Boston

New York

acceleration is.  But unless you have already learned it
in a physics course, your view of acceleration will bear
little relationship to the concept of acceleration devel-
oped by Galileo and now used by physicists.  It is
perhaps unfortunate that we use the word acceleration
in physics, for we often have to spend more time
dismantling the students’ previous notions of accelera-
tion than we do building the concept as used in physics.
And sometimes we fail.

The physical ideas that we will study are often simply
expressed in terms of mathematical concepts like a
vector, a derivative, or an integral.  This does not mean
that we will drop physical intuition and rely on math-
ematics.  Instead we will use them both to our best
advantage.  In some examples, the physical situation is
obvious, and can be used to provide insight into the
related mathematics.  The best way, for example, to
obtain a solid grip on calculus is to see it applied to
physics problems.  On the other hand, the concept of a
vector, whose mathematical properties are easily de-
veloped, is an extremely powerful tool for explaining
many phenomena in physics.

Figure 1
Displacement vectors. Boston and Corning, N. Y., have
equal displacements from New York and Pittsburgh,
respectively. These displacements are located at different
parts of the map, but they are the same displacement.
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The statement that Boston is located a distance of 190
miles and at an angle of 54 degrees east of north from
New York provides sufficient information to allow a
pilot leaving New York to reach Boston in the thickest
fog. The separation or displacement between the two
cities is completely described by giving both the dis-
tance and the direction.

Looking again at Figure (1), we see that Corning, N.Y.,
is located 190 miles, at an angle of 54 degrees east of
north, from Pittsburgh. The very same instructions,
travel 190 miles at an angle of 54 degrees, will take a
pilot from either Pittsburgh to Corning or New York to
Boston. If we say that these instructions define what we
mean by the word displacement, then we see that
Corning has the same displacement from Pittsburgh as
Boston does from New York. (For our discussion we
will ignore the effects of the curvature of the earth.) The
displacement itself is completely described when we
give both the distance and direction, and does not
depend upon the point of origin.

The displacement we have been discussing can be
represented graphically by an arrow pointing in the
direction of the displacement (54 degrees east of north),
and whose length represents the distance (190 mi). An
arrow that represents a displacement is called a dis-
placement vector, or simply a vector. One thing you
should note is that a vector that defines a distance and
a direction does not depend on its point of origin. In
Figure (1) we have drawn two arrows; but they both
represent the same displacement, and thus are the same
vector.

Arithmetic of Vectors
Suppose that a pilot flies from New York to Boston and
then to Buffalo. To his original displacement from New
York to Boston he adds a displacement from Boston to
Buffalo. What is the sum of these two displacements?
After these displacements he will be 300 miles from
New York at an angle 57 degrees west of north, as
shown in Figure (2). This is the net displacement from
New York, which is what we mean by the sum of the
first two displacements.

If the pilot flies to five different cities, he is adding
together five displacements, which we can represent by
the vectors a, b, c, d, and e shown in Figure (3). (An
arrow placed over a symbol is used to indicate that the
symbol represents a vector.)  Since the pilot’s net
displacement from his point of origin, represented by
the bold vector, is simply the sum of his previous five
displacements, we will say that the bold vector is the
sum of the other five vectors. We will write this sum as
( a + b + c + d + e ), but remember that the addition of
vectors is defined graphically as illustrated in
Figure (3).

If the numbers 405 and 190 are added, the answer is
595. But, as seen in Figure (2), if you add the vector
representing the 405-mile displacement from Boston
to Buffalo to the vector representing the l90-mile
displacement from New York to Boston, the result is a
vector representing a 300-mile displacement. Clearly,
there is a difference between adding numbers and
vectors. The plus sign between two numbers has a
different meaning from that of the plus sign between
two vectors.

Boston

New York

405 mi

300 mi
190 m

i

Buffalo

57° 54°

e

d

c
b

a

a
b

c
d

e

+
+

+
+

Figure 2
Addition of vectors. The vector sum of the
displacement from New York to Boston plus
the displacement from Boston to Buffalo is
the displacement from New York to Buffalo.

Figure 3
The sum of five displacements

  a ,b, c, d, and e equals the
vector    a+b+c+d+e.
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+
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a(       )b+

a(       )b+

a(       )b+
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a (       )b++
c

a
(       )b+c c

b
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(       )b+c
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Although vectors differ from numbers, some similari-
ties between the two can be noted, particularly with
regard to the rules of arithmetic. First, we will review
the rules of arithmetic for numbers, and then see which
of these rules also apply to vectors.

Rules for Number Arithmetic
1.  Commutative law. In adding two numbers, a and b,
the order of addition makes no difference.

 a + b = b + a

2.  Associative law. In adding three or more numbers,
a, b, and c, we have

(a + b) + c = a + (b + c)

That is, if we first add a to b, and then add c, we get the
same result as if we had added a to the sum (b + c).

3.  The negative of a number is defined by

a + (– a) = 0

where (– a) is the negative of a.

4.   Subtraction is defined as the addition of the negative
number.

a – b = a + (– b)

These rules are so obvious when applied to numbers
that it is hard to realize that they are rules. Let us apply
the foregoing rules to vectors, using the method of
addition of displacements.

Rules for Vector Arithmetic
1. The commutative law implies that

a + b = b + a

Figure (4 ) verifies this rule graphically. The reader
should be able to see that a + b and b + a are the same
vectors.

2.  The associative law applied to vectors would imply

 ( a + b) + c = a + ( b + c )

From Figure (5 ) you should convince yourself that this
law works.

+

+

b

a a

a b

b

a

a

b

b

Figure 4

Figure 5
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3. The negative of a vector is defined by

a + –a = 0

The only way to get a zero displacement is to return to
the point of origin. Thus, the negative of a vector is a
vector of the same length but pointing in the opposite
direction (Figure 6).

4.  The subtraction of vectors is now easy.  If we want
a - b , we just find a + –b.  That is

a – b = a + –b

To subtract, we just add the negative vector  as shown
in Figure (7).

Multiplication of a
Vector by a Number
Suppose we multiply a vector a  by the number 5. What
do we mean by the result  5a? Let us again try to follow
the rules of arithmetic to answer this question. In
arithmetic we were taught that

5a=a+a+a+a+a

Let us try the same rule for vectors.

 5a = a + a + a + a + a

With this definition we see that  5a   is a vector in the
same direction as a but five times as long (see Figure 8).

We may also multiply a vector by a negative number
(see Figure 9); the minus sign just turns the vector
around. For example,

 – 3a = 3 – a = – a + – a + – a

When we multiply a vector by a positive number, we
merely change the length of the vector; multiplication
by a negative number changes the length and reverses
the direction.

Figure 6

a

–a

a

a
b

–b

(a – b) 
–b

a

a

5

Figure 8

(–3)a a

–a

–a

–a

Figure 9

Figure 7
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Example 1
The vector s  starts from point a and we would like to
redraw it starting from point b, as shown in Figure (11).

Solution: We want to draw a line through b that is
parallel to s  . This can be done with a straightedge and
triangle as shown in Figure (12).

Place the straight edge and triangle so that one side of
the triangle lies along the straight edge and the other
along the vector s. Then slide the triangle along the
straight edge until the side of the triangle that was
originally along s now passes through b. Draw this line
through b. If nothing has slipped, the line will be
parallel to s as shown in Figure (13).

Magnitude of a Vector
Often we will want to discuss only the length or
magnitude of a vector, regardless of the direction in
which it is pointing. For example, if we represent the
displacement of Boston from New York by the vector
s , then the magnitude of s  (the length of this displace-
ment) is 190 miles.  We use a vertical bar on each side
of the vector to represent the magnitude ; thus, we write

 s  = 190 mi (see Figure 10).

Vector Equations
Just as we can solve algebraic equations involving
numbers, we can do the same for vectors. Suppose, for
example, we would like to find the vector  x in the
vector equation

 2a + 3b + 2x = c

Solving this equation the same way we would any
other, we get

  x = 1/2c – a – 3/2b

Graphically, we find  (1/2)c,  –a , and  (–3/2)b ; we then
vectorially add these quantities together to get the
vector x.

Graphical Work
In the early sections of this text, we shall do a fair
amount of graphical work with vectors. As we can see
from the previous examples, the main problem in
graphical work is to move a vector accurately from one
part of the page to another. This is easily done with a
plastic triangle and ruler as described in the following
example.

Figure 10
New York

Boston

ss = 190 mi

b

a

s

Figure 12
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b
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s

b

a

s

Figure 13
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We now have the direction of s starting from b. Thus,
we have only to put in the length. This is most easily
done by marking the length of s on the edge of a piece
of paper and reproducing this length, starting from b as
shown in Figure (14).

By being careful, using a sharp pencil, and practicing,
you should have no difficulty in performing accurate
and rapid graphical work. The practice can be gained
by doing Problems 1 through 5. (Note that it is essential
to distinguish a vector from a number. Therefore, when
you are solving problems or working on a laboratory
experiment, it is recommended that you always place
an arrow over the symbol representing a vector.)

Exercise 1   Commutative law
The vectors a ,b,and c  of Figure 15 are shown enlarged
on the tear out page 2-19. Using that page for your work,
find

(a)   a + b + c     (in black);

(b)   b + c + a     (in red);

(c)  c + a + b     (in blue).

(Label all your work.)

Does the commutative law work?

b

a

s

s

Figure 14

Exercise 2   Associative law
Use the tear out page 2-20 for the vectors of Figure (16),
find

(a)   a + b              (in black);

(b)   (a + b) + c       (in red);

(c)   (b + c)            (in black);

(d)   a + (b + c)       (in blue).

Exercise 3   Subtraction
 Use the tear out page 2-21 for the three vectors a , b,
and c  shown in Figure (17), find the following vectors
graphically, labeling your results.

 (a)   a + b

 (b)   a – b

 (c)   b – a

 (d)   (a – b) + (b – a)

 (e)   b + c – a

Exercise  4   Equations
Suppose that a physical law is given by the vector
equation

 Pi =Pf

Suppose that Pf  is the sum of two vectors; that is,

 Pf = Pf1 + Pf2

Given the two vectors Pi and  Pf1 (Figure 18), find  Pf2.
(These vectors are found on the tear out page 2-22.)

c

a
b

c

a

b
Figure 16

Figure 17

ca

b

pi

p
f1Figure 18

Figure 15
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Exercise  5
Assume that the vectors Pf ,  Pf1, and  Pf2 are related by
the vector law:

 Pf = Pf1 + Pf2

In addition, the magnitudes of the vectors are related by

 Pf
2

= Pf1
2

+ Pf2
2

If you are given Pf  and only the direction  of  Pf1 (Figure
19), find  Pf1 and  Pf2 graphically. (These vectors are
found on the tear out page 2-22.)

COMPONENTS
Another way to work with vectors, one that is espe-
cially convenient for solving numerical problems, is
through the use of a coordinate system and compo-
nents.  To illustrate this method, suppose we were
giving instructions to a pilot on how to fly from New
York to Boston. One way, which we have mentioned,
would be to tell the pilot both the direction and the
distance she must fly, as “fly at an angle of 54 degrees
east of north for a distance of 190 miles.” But we could
also tell her “fly 132 miles due east and then fly 112
miles due north.” This second routing, which describes
the displacement in terms of its easterly and northerly
components, as illustrated in Figure (20), is less direct,
but will also lead the pilot to Boston.

We can use the same alternate technique to describe a
vector drawn on a piece of paper. In Figure (20), we
drew two lines to indicate easterly and northerly direc-
tions. We have drawn the same lines in Figure (21), but
now we will say that these lines represent the x and y
directions. The lines themselves are called the x and y
axes, respectively, and form what is called a coordinate
system.

Just as the displacement from New York to Boston had
both an easterly and northerly component, the vector a 
in Figure (21) has both an x and a y component. In fact,
the vector a  is just the sum of its component vectors ax

and ay:

a = ax + ay (1)

Figure 19

pf

f1

direction
     of  p

a

a

ay

x
x

y

θ

Figure 21
Component vectors.  The sum of the component
vectors  ax   and  ay   is equal to the vector a  .

north

Boston

New York
east

154 mi

54°

190 m
i

11
2 

m
i

Figure 20
Two ways to reach Boston from New York.
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Trigonometry can be used to find the length or magni-
tude of the component vectors; we get

ax ≡ ax  = a  cos θ (2)

ay ≡ ay  = a  sin θ (3)

Often we will represent the magnitude of a component
vector by not using the arrow, as was done in the
foregoing equations.  (The equal sign with three bars,
ax ≡ ax ,  simply means that  ax  is defined to be the same
symbol as ax .) It is common terminology to call the
magnitude of a component vector simply the compo-
nent; for example, ax ≡ ax   is called the x component
of the vector a.

Addition of Vectors by Adding Components
An important use of components is as a means for
handling vectors numerically rather than graphically.
We will show how this works by using an example of
the addition of vectors by adding components.

 Consider the three vectors shown in Figure (22). Since
each vector is the vector sum of its individual compo-
nents vectors, we have

 a = ax + ay          b = bx + by         c = cx + cy

By adding all three vectors  a,  b, and c  together, we get

 a + b + c = (ax + ay) + (bx + by) + (cx + cy)

The right-hand side of this equation may be rearranged
to give

a + b + c = (ax + bx + cx) + (ay + by + cy) (4)

Equation 4 gives us a new way to add vectors, as
illustrated in Figure (23). Previously we would have
added the vectors  a,  b, and c  directly, as shown in
Figure (24). The new rule shows how we can first add
the x components (ax + bx + cx) as shown in Figure
(23a), then separately add the y components
(ay + by + cy) as shown in Figure (23b), and then add
these vector sums vectorially, as shown in Figure (23c),
to get the vector (a + b + c).

Figure 24

Figure 22

Figure 23

b

b

ax

x

cx

ay

cy

a

c
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ax

(a   + b  + c  )x     x     x

(a   + b  + c  )x     x     x

(a   + b  + c  )y     y     y

(a   + b  + c  )y     y     y

(a   +  b  + c  )

cx

ay

cy

bx

by

(a)

(c)

(b)

ba

c

(a   +  b  + c  )
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 The advantage of using components is that we can
numerically add or subtract the lengths of vectors that
point in the same direction. Thus, to add 500 vectors,
we would compute the lengths of all the x components
and add (or subtract) these together. We would then
add the lengths of the y components, and finally, we
would vectorially add the resulting x and y compo-
nents. Since the x and y components are at right
angles, we may find the total length and final direc-
tion by using the Pythagorean theorem and trigo-
nometry, as shown in Figure (25).

It is not necessary to always choose the x components
horizontally and the y components vertically. We may
choose a coordinate system (x', y') tilted at an angle, as
shown in Figure (26). To use the language of the
mathematician, ax'  is the component of (or projection
of) a  in the direction x'. We see that the vector sum of
all the component vectors still adds up to the vector
itself.

y

θ
a

a
y

ax

x

aytan θ = 

a =2 ay
2+ax

2

ax

Figure 25

Exercise 6
Imagine you are given the vectors  a, b, andc  and the
two sets of coordinate axes (x1, y1) and (x2, y2) shown
in Figure (27). Using the vectors found on the tear out
page 2-23

a) Find  (a + b + c) by direct addition of vectors.

b) Choose  x1 and  y1 as your coordinate axes. Find (in
red) the  x1 and  y1 components of  a, b, c. Then

(i) Find  (ax1 + bx1 + cx1)

(ii) Find  (ay1 + by1 + cy1)

(iii) Find  (ax1 + bx1 + cx1) +  (ay1 + by1 + cy1).

How does this compare with  (a + b + c)?

c) Repeat part (b) for the coordinate axis   (x2, y2).

Vector Equations in Component Form
Often we will run into a situation where we have a
vector equation of the form

 c = a + b
but you have to solve the equation using components.
This is easy to do, because to go from a vector equation
to component equations, just rewrite the equation three
(or two) times, once for each component. The above
equation becomes

 cx = ax + bx

 cy = ay + by

 cz = az + bz

a

b
c

y

y

1

1

2

2x

x

Figure 27
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(x', y')

a ay'ax' +=

Figure 26
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VECTOR MULTIPLICATION
We have seen how the rules work for vector addition,
subtraction, and the multiplication of a vector by a
number.  Does it make any sense to multiply two
vectors together?  In considering the multiplication of
the two vectors, the first question to answer is: what is
the result?  What kind of a thing do we get if we multiply
a vector pointing east by a vector pointing north?  Do
we get a vector pointing in some third direction?   Do
we get a number that does not point?  Or do we get some
quantity more complex than a vector?  And perhaps a
more important question – why would one want to
multiply two vectors together?

We will see in the study of physics that there are various
reasons why we will want to multiply vectors, and we
can get various answers.  One kind of multiplication
produces a number; this is called scalar multiplication
or the dot product.  We will see examples of scalar
multiplication shortly.  A few chapters later we will
encounter the vector cross product where the result of
the multiplication of two vectors is itself a vector, one
that points in a direction perpendicular to the two
vectors being multiplied together.  Finally there is a
form of multiplication that leads to a quantity more
complex than a vector, an object called a tensor or a
matrix.  A tensor is an object that maintains the
directional nature of both vectors involved in the
product.  Tensors are useful in the formal mathematical
description of the basic laws of physics, but are not
needed and will not be used in this text.

The names scalar, vector, and tensor describe a hierar-
chy of mathematical quantities.  Scalars are numbers
like, 1, 3, and -7, that have a magnitude but do not point
anywhere.  Vectors have both a magnitude and a
direction.  Tensors have the basic properties of both
vectors used to construct them.  In fact there are higher
rank tensors that have the properties of 3, 4, or more
vectors.  People working with Einstein’s generalized
gravitational theory have to work all the time with
tensors.

One of the remarkable discoveries of the twentieth
century is that there is a close relationship between the
mathematical properties of scalars, vectors, and ten-
sors, and the physical properties of the various elemen-
tary particles.  Later on we will discuss particles such
as the π meson now used in cancer research, the photon
which is the particle of light (a beam of light is a beam
of photons), and the graviton, the particle hypothesized
to be responsible for the gravitational force.  It turns out
that the physical properties of the π meson resemble the
mathematical properties of a scalar, the properties of
the photon are described by a vector (we will see this
later in the text), and it requires a tensor to describe the
graviton (that is why people working with gravitational
theories have to work with tensors).

One of the surprises of physics and mathematics is that
there are particles like the electron, proton and neutron,
the basic constituents of atoms, that are not described
by scalars, vectors, or tensors.  To describe these
particles, a new kind of a mathematical object had to be
invented—an object called the spinor.  The spinor
describing the electron has properties half way be-
tween a scalar and a vector.  No one knew about the
existence of spinors until the discovery was forced by
the need to explain the behavior of electrons.  In this text
we will not go into the mathematics of spinors, but we
will encounter some of the unusual properties that
spinors have when we study the behavior of electrons
in atoms.  In a very real sense the spinor nature of
electrons is responsible for the periodic table of ele-
ments and the entire field of chemistry.

In this text we can discuss a great many physical
concepts using only scalars or vectors, and the two
kinds of vector products that give a scalar or vector as
a result.  We will first discuss the scalar or dot product
which is some ways is already a familiar concept, and
then the vector or cross product which plays a signifi-
cant role later in the text.
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The Scalar or Dot Product
In a scalar product, we start with two vectors, multiply
them together, and get a number as a result.  What kind
of a mathematical process does that involve?  The
Pythagorean theorem provides part of the answer.

Suppose that we have a vector a whose x and y
components are ax 

and ay  
as shown in Figure (28).

Then the magnitude or length a
  
of the vector is given

by the Pythagorean theorem as

a 2 = ax
2 + ay

2
(4)

In some sense  a 2 is the product of the vector a with
itself, and the answer is a number that is equal to the
square of the length of the vector a .

Now suppose that we use a different coordinate system
x' , y'

 
shown in Figure (29)  but have the same vector a.

In this new coordinate system the length of the vector
a is given by the formula

 a
2

= ax'
2 + ay'

2 (5)

The components  a'x  and  a'y  are different from ax and
ay, but we know that the length of a

 
 has not changed,

thus a 2
 
must be the same in Equations (4) and (5).  We

have found a quantity a 2
 
which has the same value in

all coordinate systems even though the pieces ax2 and
ay2 change from one coordinate system to another.
This is the key property of what we will call the scalar
product.

To formalize this concept, we will define the scalar
product of the vector a with itself as being the square
of the length of  a

 
.  We will denote the scalar product

by using the dot  symbol to denote scalar multiplica-
tion:

  Scalar product
of a with itself

≡ a ⋅a ≡ a
2

(6)

From Equations (4) and (6) we have in the (x, y)
coordinate system

a ⋅ a  =  ax2 + ay2 (7)

In the ( x' , y'
 
)

 
coordinate system we get

  a ⋅a = ax'
2 + ay'

2 (8)

The fact that the length of the vector a is the same in
both coordinate systems means that this scalar or “dot”
product of a with itself has the same value even though
the components or pieces ax2, ay2 or   ax'

2,  ay'
2

 
are

different.  In a more formal language, we can say that
the scalar product a ⋅ a  is unchanged by, or invariant
under changes in the coordinate system.  Basically we
can say that there is physical meaning to the quantity
a ⋅ a (i.e. the length of the vector) that does not depend
upon the coordinate system used to measure the vector.

Exercise 7

Find the dot product    a⋅a   for a vector with components
 ax, ay, az  in three dimensional space.  How does the

Pythagorean theorem enter in this case?

a ay

ax
x

y

Figure 28

Figure 29

a

a'y

a'x

x'

y'
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The example of calculating a ⋅ a
 
 above gives us a clue

to guessing a more general definition of dot or scalar
products when we have to deal with the product of two
different vectors a and b .  As a guess let us try as a
definition

a ⋅ b  ≡  axbx + ayby (9)

or in  three dimensions

a ⋅ b  ≡  axbx + ayby + azbz (10)

This definition of a dot product does not represent the
length of either a or b  but perhaps a ⋅ b has the special
property that its value is independent of the choice of
coordinate system, just as a ⋅ a

 
 had the same value in

any coordinate system.  To find out we need to calculate
the quantity   ax

′ bx
′ + ay

′ by
′ + az

′ bz
′  in another coordi-

nate system and see if we get the same answer.  We will
do a simple case to show that this is true, and leave the
more general case to the reader.

Suppose we have two vectors a  and b  separated by an
angle q as shown in Figure (30).  Let the lengths a

  
and

b  be denoted by  a and b respectively.  Choosing a
coordinate system (x, y) where the x axis lines up with
a , we have

  ax = a , ay = 0

bx = b cos θ , by = b sin θ

and the dot product, Equation 9, gives

  a ⋅b = axbx + ayby

= ab cos θ + 0

a
x

y
b

θ

ax = a          
bx = b cos θ
by = b sin θ

Figure 30

a

x'
y' b

θ

  ax′ = a sin θ
ay′ = a cos θ

bx
′ = 0

by
′ = b

Next choose a coordinate system   x′,y′ rotated from
 x,y by an angle   90 – θ as shown in Figure (31).

Here b lies along the y′ axis and the dot product is given
by

  a ⋅b = ax′bx′ + ay′by′
= ab cos θ + 0

Again we get the result

  
a ⋅b = ab cos θ (11)

Equation (11) holds no matter what coordinate system
we use, as you can see by working the following
exercise.

Exercise 8
Choose a coordinate system    x″, y″   where the x axis
is an angle φ  below the horizontal as shown in Figure
(32).  First calculate the components   ax″, ay″, bx″, by″  and
then show that you still get

   a⋅ b ≡ ax″ bx″ + ay″ by″ = abcos θ

To do this problem, you need the following relation-
ships.

   sin θ + φ = sin θ cos φ + cos θ sin φ

cos θ + φ = cos θ cos φ – sin θ sin φ

sin2 φ + cos2 φ = 1 for any angle φ

)

(This problem is much messier than the example we
did.)

Figure 31

Figure 32 ax''

y'' b
θ

φ
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a

b

a

b

θ = 90°

a

b
θ

Figure 33
Here cosθθ  is
negative.

Interpretation of the Dot Product
When a and b are the same vector, then we had

  a ⋅a = a
2
  which is just the square of the length of

the vector.  If  a and b are different vectors but parallel
to each other, then  θ = 0°,   cos θ = 1,  and we get

a ⋅ b  =  ab

In other words the dot product of parallel vectors is just
the product of the lengths of the vectors.

Another extreme is when
the vectors are perpendicu-
lar to each other.  In this
case   θ = 90° ,   cos θ = 0
and a ⋅ b  =  0.  The dot
product of perpendicular
vectors is zero.  In a sense
the dot product of two vectors measures the parallelism
of the vectors.  If the two vectors are parallel, the dot
product is equal to the full product ab.  If they are
perpendicular, we get nothing.  If they are at some
intermediate angle, we get a number between ab and
zero.

Increasing θ
more, we see
that if the vectors
are separated by an
angle between 90° and
180° as in Figure (33), then
the cos θ  and the dot prod-
uct are negative.  A nega-
tive dot product indicates
an anti-parallelism.  The
extreme case is θ  = 180°
where  a ⋅ b  =  –ab.

Physical Use of the Dot Product
We have seen that the dot product  a ⋅ b  is given by the
simple formula  a ⋅ b  =  a b cos θ  and it has the special
property that

a ⋅ b  ≡ axbx + ayby + azbz

has the same value in any coordinate system even
though the components ax,bx etc., are different in
different coordinate systems.  The fact that a ⋅ b is the
same number in different coordinate systems means
that it is truly a number with no dependence on direc-
tion.  That is what we mean by a scalar quantity.  This
is a special property because a ⋅ b is made up of the
vectors a and b that do depend upon direction and
whose values do change when we go to different
coordinate systems.

In physics there are quantities like displacements x,
velocities v, forces F that all behave like vectors.  All
point somewhere and have components that depend
upon our choice of direction.  Yet we will deal with
other quantities like energy which does not point
anywhere.  Energy has a magnitude but no direction.
Yet our formulas for energy involve the vectors x, v,
and F.  How can we construct numbers or scalars from
vectors?  The answer is - take dot or scalar products of
the vectors.  This is the mathematical reason why most
of our formulas for energy will involve dot products.
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Vector Cross Product
The other kind of vector product we will use in this
course is the vector cross product where we multiply
two vectors a and b together to get a third vector c.
The notation is

a × b  =  c (12)

where the name cross product comes from the cross we
place between the vectors we are multiplying together.
When you first encounter the cross product, it does not
seem particularly intuitive.  But we use it so much in
later chapters that you will get quite used to it.  Perhaps
the best procedure is to skim over this material now,
and refer back to it later when we start using it in various
physics applications.

To define the cross product
a × b  =  c, we have to define
not only the magnitude but
also the direction of the result-
ing vector c.  Starting with
two vectors a and b pointing
in different directions as in Figure 34, what unique
direction is there for c to point?  Should c point half way
between a and b, or should it be closer to a because a is
longer than b ?  No, there is
nothing particularly unique or
obvious about any of the direc-
tions in the plane defined by a
and b.  The only truly unique
direction is perpendicular to
this plane.  We will say that c
points in this unique direction
as shown in Figure 35.

The direction perpendicular to the plane of a  and b is
not quite unique.  The vector c could point either up or
down as indicated by the solid or dotted vector in Figure
35.  To select between these two choices, we use what
is called the right hand rule which can be stated as
follows:  Point the fingers of your right hand in the
direction of the first of the two vectors in the cross
product    a ×× b  (in this case the vector a).  Then curl
your fingers until they point in the direction of the
second vector (in this case b), as shown in Figure 36.
If you orient your right hand so that this curling is
physically possible, then your thumb will  point in the
direction of the cross product vector c.

Exercise 9

What direction would the vector c  point if you used your
left hand rather than your right hand in the above rule?

We said that the vector cross product was not a particu-
larly intuitive concept when you first encounter it.  In
the above exercise, you see that if by accident you use
your left hand rather than your right hand, c = a × b
will point the other way.  One can reasonably wonder
how a cross product could appear in any law of physics,
for why would nature prefer right hand rules over left
handed rules.  It seems unbelievable that any basic
concept should involve anything as arbitrary as the
right hand rule.

There are two answers to this problem.  One is that in
most cases, nature has no preference for right handed-
ness over left handedness.  In these cases it turns out that
any law of physics that involves right hand rules turns
out to involve an even number of them so that any
physical prediction does not depend upon whether you
used a right hand rule or a left hand rule, as long as you
use the same rule throughout.  Since there are more
right handed people than left handed people, the right
hand rule has been chosen as the standard convention.

a

b

a

b
θ

c = a   b

Figure 34

Figure 35

Figure 36
Right hand rule for the vector cross product.

a

b

c = a   b

c = a   b

b

a
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Exercise 10
There is left and right handedness in the direction of the
threads on a screw or bolt.  In Figure (37a) we show a
screw with a right handed thread.  By this, we mean that
if we turn the screw in the direction that we can curl the
fingers of our right hand, the screw will move through
wood in the direction that the thumb of our right hand
points.

In Figure (37b),  we have a left hand thread.  If we turn
the screw in the direction we can curl the fingers of our
left hand, the screw will move through the direction
pointed by our left thumb.

For this exercise find some screws and bolts, and
determine whether the threads are right handed or left
handed.  Manufacturers use one kind of thread pre-
dominately over the other.  Which is the predominant
thread?  Can you locate examples of the other kind of
thread?  (The best place to look for the other kind of
thread is in the mechanism of some water faucets.  Can
you find a water faucet where one side uses a right hand
thread and the other a left hand thread?  If you find one,
determine which is the right and which the left hand
thread.)

Until 1956 it was believed that the basic laws of physics
did not distinguish between left and right handedness.
The fact that there are more right handed than left
handed people, or that the DNA used by living organ-
isms had a right handed spiral structure (like a right
handed thread) was simply an historical accident.  But
then in 1956 it was discovered that the elementary
particle called the neutrino was fundamentally left
handed.  Neutrinos spin like a top.  If a neutrino is
passing by you and you point the thumb of your left
hand in the direction the neutrino is moving, the fingers
of your left hand curl in the direction that the neutrino
is spinning.  Or we may say that the neutrino turns in the
direction of a left handed thread,  as shown in Figure 38.

Another particle, called the anti-neutrino, is right handed.
If you point the thumb of your right hand in the
direction of motion of an anti-neutrino, the fingers of
your right hand can curl in the direction that the anti-
neutrino rotates. T.D. Lee and N.C. Yang received the
1957 Nobel prize in physics for their discovery that
some basic phenomena of physics can be used to
distinguish between left and right handedness.

The idea of right or left handedness in the laws of
physics will appear in several of our later discussions of
the basic laws of physics.  The point for now is that
having a quantity like the vector cross product that uses
the right hand convention may be a useful tool to
distinguish between left and right handedness.

Figure 38
The neutrino is inherently a left handed object.
When one passes by you, it spins in the direction
that the threads on a left handed screw turn.

direction
of motion

neutrino

direction 
of rotation

left-handed
screw

Figure 37a
Right handed thread.

Figure 37b
Left handed thread
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Exercise 11

Go back to Figure 34 where we show the vectors a and
b, and draw the vector c'  = b × a.  Use the right hand
rule as we stated it to determine the direction of c' .  From
your result, decide what happens when you reverse the
order in which you write the vectors in a cross product.
Which of the arithmetic rules does this violate?

Magnitude of the Cross Product
Now that we have the right hand rule to determine the
direction of c = a × b, we now need to specify the
magnitude of c.

A clue as to a consistent definition of the magnitude of
c is the fact that when a and b are parallel, they do not
define a plane.  In this special case there is an entire
plane perpendicular to both a and b, as shown in Figure
39.  Thus there is an infinite number of directions that
c  could point and still be perpendicular to both a and b.
We can avoid this mathematical ambiguity only if c has
zero magnitude when a and b are parallel.  We do not
care where c points if it has no length.

The simplest formula for the magnitude c   =  a × b ,
that is related to the product of a and b, yet has zero
length when a and b are parallel is

  
c = a × b = ab sinθ (13)

where a ≡ a   and b ≡ b   are the lengths of a and b
respectively, and θ is the angle between them.  Equa-
tion 13 is the definition we will use for the magnitude
of the vector cross product.

In Equation 13, we see that not only is the cross product
zero when the vectors are parallel, but is a maximum
when the vectors are perpendicular.  In the sense that
the dot product  a ⋅ b  was a measure of the parallelism
of the vectors a and b, the cross product is a measure of
their perpendicularity.  If a and b are perpendicular,
then the length of c is just the product  ab.  As the vectors
become parallel the length of c reduces to zero.

Component Formula for the Cross
Product
Sometimes one needs the formula for the components
of c  =  a × b  expressed in terms of the components of
a and b.  The result is a mess, and is remembered only
by those who frequently use cross products.  The
answer is

cx  =  aybz - azby

cy  =  azbx - axbz

cz  =  axby - aybx (14)

These formulas are not so bad if you are doing a
computer calculation and you are letting the computer
evaluate the individual components.

Exercise 12
Assume that a points in the x direction and b is in the
xy plane as shown in Figure 41.  By the right hand rule,
c will point along the z axis as shown.  Use Equation
14 to calculate the magnitude of cz and compare your
result with Equation 13.

a

b

plane of vectors
perpendicular to
a and b

Figure 39

a

b
θ

c

Figure 40

a

b
θ

c

x

z

y y

Figure 41
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RIGHT HANDED COORDINATE
SYSTEM
Notice in Figure 41, we have drawn an (x, y, z)
coordinate system where z rises up from the xy plane.
We could have drawn z down and still have three
perpendicular directions.  Why did we select the up-
ward direction for z?

The answer is that the coordinate system shown in
Figure 41 is a right hand coordinate system, defined
as follows.  Point the fingers of your right hand in the
direction of the first coordinate axis (x).  Then curl your
fingers toward the second coordinate axis (y).  If you
have oriented your right hand so that you can curl your
fingers this way, then your thumb points in the direction
of the third coordinate axis (z).

The importance of using a right handed coordinate
system is that Equation 14 for the cross product ex-
pressed as components works only for a right handed
coordinate system.  If by accident you used a left
handed coordinate system, the signs in the equation
would be reversed.

Exercise 13
Decide which of the (x, y, z) coordinate systems are right
handed and which are left handed.

Figure 42

y

z

x

z

y

x

y

z

x

x

z

y

x

y

z

(a) (b) (c)

(d) (e)
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c

a
b

Figure 15
Vectors for Exercise 1, page 7. Find

(a)  a + b + c     (in black);

(b)  b + c + a     (in red);

(c)  c + a + b     (in blue).
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Figure 16
Vectors for Exercise 2, page 7. Find

Tear out page

c

a

b

(a)  a + b               (in black);

(b)  (a + b) + c     (in red);

(c)  (b + c)            (in black);

(d)  a + (b + c)     (in blue).
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Figure 17
Vectors for Exercise 3, page 7. Find

Tear out page

ca

b

 (a)  a + b

 (b)  a - b

 (c)  b - a

 (d)  (a - b) + (b - a)

 (e)  b + c - a
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Figure 18
Vectors for Exercise 4, page 7.

Tear out page

pi

p
f1

Figure 19
Vectors for Exercise 5, page 8.

pf

f1

direction
     of  p

Pi = Pf

Suppose that Pf is the sum of two vectors; that is,

Pf = Pf1+ Pf2

 Given the two vectors Pi and Pf1 (Figure 18), find Pf2.

Pf = Pf1+ Pf2

In addition, the magnitudes of the vectors are related by

 Pf
2
 =  Pf1

2
+ Pf2

2

If you are given Pf and only the direction  of Pf1 , find Pf1
and Pf2 graphically.
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Figure 27
Vectors for Exercise 6, page 10.

(a) Find a + b + c  by direct addition of vectors.

(b) Choose x1 and y1 as your coordinate axes. Find (in
red) the x1 and y1 components of a, b, c. Then

(i) Find ax1 + bx1 + cx1

(ii) Find ay1 + by1 + cy1

(iii) Find (ax1 + bx1 + cx1) + (ay1 + by1 + cy1).

    How does this compare with (a + b + c)?

(c) Repeat part B for the coordinate axis (x2, y2). (you
can use the back side of this page.)

a

b
c

y

y

1

1

2

2x

x

Tear out page
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Figure 27
Vectors for Exercise 6, page 10, repeated.

(a) Find a + b + c  by direct addition of vectors.

(b) Choose x1 and y1 as your coordinate axes. Find (in
red) the x1 and y1 components of a, b, c. Then

(i) Find ax1 + bx1 + cx1

(ii) Find ay1 + by1 + cy1

(iii) Find (ax1 + bx1 + cx1) + (ay1 + by1 + cy1).

    How does this compare with (a + b + c)?

(c) Repeat part B for the coordinate axis (x2, y2).

a

b
c

y

y

1

1

2

2x

x

Tear out page



Figure 1
Marcel Duchamp, Nude Decending a Staircase
Philadelphia Museum of Art: Louise and Walter
Arensberg Collection



CHAPTER 3 DESCRIPTION OF MOTION

In the next few chapters, a similar technique will be
used to describe motion. We now have devices
available, such as the stroboscope (called the strobe),
that produce short bursts of light at regular inter-
vals; with the strobe, we can photograph the succes-
sive positions of an object, such as a ball moving on
the end of a string (see Figure 2). Although we do not
have the artist’s freedom of expression to convey the
concept of motion by using a strobe photograph, we
do obtain a more accurate measure of the motion.

On the facing page is a reproduction (Figure 1) of
Marcel Duchamp’s painting, Nude Descending a
Staircase, which was first displayed in New York at
The International Exhibition of Modern Art, gener-
ally known as the Armory Show, in 1913. The objec-
tive of the painting, to convey a sense of motion, is
achieved by repeating the stylized human form five
times as it descends the steps. At the risk of obscur-
ing the artistic qualities of the painting, we may
imagine this work as a series of five flash photo-
graphs taken in sequence as the model walked
downstairs.

Chapter 3
Description of Motion

Figure 2
Strobe photograph showing the motion of a ball on the end of a string.
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The photograph in Figure (2) was taken with the
strobe flashing five times per second while the ball
was moving slowly. As a result, we see a smooth
curve and have a fairly complete idea of the ball’s
entire motion. When we run the strobe at a rate of
five flashes per second but move the ball more
rapidly in a complicated pattern, the result is as
shown in Figure (3). From this picture it is difficult
to guess the ball’s path; thus Figure (3) provides us
with a poor representation of the motion of the ball.
But if we turn the strobe up from 5 to 15 flashes per
second (as in Figure 4), the rapid and complicated
motion of the ball is easily understood.

The motion of any object can be described by locat-
ing its position at successive intervals of time. A
strobe photograph is particularly useful because it
shows the position at equal time intervals through-

out the picture; that is, in Figure (2) at intervals of
1/5 sec and in Figure (4) at intervals of 1/15 sec. For
this text, we will use a special symbol, ∆t, to repre-
sent the time interval between flashes of the strobe.
The t stands for time, while the ∆ (Greek letter delta)
indicates that these are short time intervals between
flashes. Thus, ∆t = 1/5 sec in Figures (2) and (3), and
∆t = 1/15 sec in Figure (4).

For objects that are moving slowly along fairly
smooth paths, we can use fairly long time intervals
∆t between strobe flashes and their motion will be
adequately described. As the motion becomes faster
and more complicated, we turn the strobe up to a
higher flashing rate to follow the object, as in Figure
(4). To study complicated motion in more detail, we
locate the position of the object after shorter and
shorter time intervals ∆t.

Figure 3
Strobe photograph of a moving object.  In this photograph, the time
between flashes is so long that the motion is difficult to understand.
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s4

s5

s6
s7

s8

Figure 5
Displacement vectors.  The displacement between
flash number 1 and flash number 2 is represented
by the displacement vector s1 and so on.  The
entire path taken by the ball is represented by the
series of eight displacement vectors.

Figure 4
Strobe photograph of a similar motion.  In this
photograph, the time between flashes was reduced
and the motion is more easily understood.

DISPLACEMENT VECTORS
When we represent the motion of an object by
a strobe photograph, we are in fact representing
this motion by a series of displacements, the
successive displacements of the object in equal
intervals of time. Mathematically, we can de-
scribe these displacements by a series of dis-
placement vectors, as shown in Figure (5). This
illustration is a reproduction of Figure (2) with
the successive displacement vectors drawn from
the center of the images.
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Figure 6

Representation of the path of a ball for various ∆t.  As the shorter and shorter ∆t is
used, the path of the ball is more accurately represented, as in figures (b) through (d).

(a) (b)

(c) (d)

(e) (f)

s1 s1

s1

s1

s1

s2
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In a sense we are approximating the path of the ball
by a series of straight lines along the path. This is
reasonably accurate provided that ∆t is short enough,
as shown in Figure (6).

In Figure (6), (a) is the strobe photograph shown in
Figure (4), taken at a strobe interval of ∆t = 1/15 sec;
(b) shows how this photograph would have looked if
we had set the strobe for ∆t = 10/15 sec, or 2/3 sec.
Only one out of ten exposures would have been
produced. If we had represented the path of the ball
by the vector s1 it would have been a gross misrep-
resentation.  In (c), which would be the strobe
picture at ∆t = 6/15 sec, we see that the ball is no
longer moving in a straight line, but still s1 and s2
provide a poor representation of the true motion.
Cutting ∆t  in half to get (d), ∆t = 3/15  sec, we would
discover that there is a kink in the path of the ball.
While taking the picture, we would have had to be
careful in noticing the sequence of positions in order
to draw the correct displacement vectors.

Reducing ∆t to 2/15 sec (e), would give us a more
detailed picture of the kink. This is not too different
from (d); moreover, we begin to suspect that the

Figure 8
Strobe photograph of a steel ball projectile.
The strobe flashes were 1/10 second apart.

Figure 7
Experimental setup for taking strobe photographs. A
Polaroid camera is used record the motion of a ball
moving in front of a grid.  The grid, made of stretched
fish line, is mounted in front of a black painted wall.

seven displacement vectors in (e) represent the path
fairly accurately. When we reduce ∆t to 1/15 sec (f),
we get more pictures of the same kink and the curve
becomes smoother. It now appears that in most
places the 14 displacement vectors form a fairly
accurate picture of the true path. We notice, how-
ever, that  the very bottom of the kink is cut off
abruptly; here, shorter time intervals are needed to
get an accurate picture of the motion.

A Coordinate System
In the strobe photographs discussed so far, we have
a precise idea of the time scale, 1/5 second between
flashes in Figure (2), 1/15 second in Figure (4), but
no idea about the distance scale.  As a result we know
the direction of the succeeding displacement vec-
tors, but do not know their magnitude.

One way to introduce a distance scale is to photo-
graph the motion in front of a grid as shown in Figure
(7).  With this setup we obtain  photographs like that
shown in Figure (8), where we see the strobe motion
of a steel ball projectile superimposed on the grid.
The grid is illuminated by room lights which are
dimmed to balance the exposure of the grid and the
strobe flashes.
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Using techniques like that illustrated in Figure (9) to
locate the centers of the images, we can transfer the
information from the strobe photograph to graph
paper and obtain the results shown in Figure (10).
Figure (10) is the end result of a fair amount of
tedious lab work, and the starting point for our
analysis.  For those who do not have strobe facilities,
or the time to extract the information from a strobe
photograph, we will include in the text a number of
examples already transferred to graph paper in the
form of  Figure (10).

Using a television camera attached to an Apple II
computer, we can, in under 2 minutes,  obtain results
that look like Figure (10).  We will include a few of
these computer strobe photographs in our examples
of motion.  However the computer strobe is not yet
commercially available because we plan to use a
computer with more modern graphics capabilities. It
is likely that within a few years, one will be able to
easily and quickly obtain results like those in Figure

(10).  The grid, which has now become the graph
paper in Figure (10), serves as our coordinate system
for locating the images.

0 1

2            

s0
s1

s2   

0 10 20

Figure 11
Measuring the length of the vector   S1 .

Figure 9
Using a pin and cylinder to locate the center of the
ball.  Move the cylinder until it just covers the image of
the ball and then gently press down on the pin.  The
pin prick will give an accurate location for the center.

Manipulation of Vectors
Figure (10) represents the kind of experimental data
upon which we will base our description of motion.
We have, up to now, described the motion of the
projectile in terms of a series of displacement vec-
tors labeled s-1, s0, s3 as shown.  To go further, to
introduce concepts like velocity and acceleration,
we need to perform certain routine operations on
these displacement vectors, like adding and sub-
tracting them.  A number of vector operations were
discussed in Chapter 2, let us briefly review here
those that we need for the analysis of strobe photo-
graphs.  We will also introduce the concept of a
coordinate vector which will be useful in much of
our work.
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Measuring the Length of a Vector
One of the first pieces of information we need from
a strobe photograph is the magnitude or length of the
displacement vectors we have drawn.  Figure (11)
illustrates the practical way to obtain the lengths of

the individual vectors from a graph like Figure (10).
Take a piece of scrap paper and mark off the length
of the vector as shown in the upper part of the figure.
Then rotate the paper until it is parallel to the grid
lines, and note the distance between the marks.
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s3         

 Ball coordinates
-1)  ( 8.4, 79.3)
 0)  (25.9, 89.9)
 1)  (43.2, 90.2)
 2)  (60.8, 80.5)
 3)  (78.2, 60.2)
 4)  (95.9, 30.2)

Figure 10
Strobe photograph transferred to graph paper.  Using the pin and cylinder of Figure (9), we located the
coordinates of the center of each image in Figure (8), and then reconstructed the strobe photograph as
shown.  We can now perform our analysis on the large graph paper rather than the small photograph.
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In Figure (11), we see that the marks are 20 small
grid spacings apart.  In Figure (10), we see that each
grid spacing represents a distance of 1 centimeter.
Thus in Figure (11), the vector s1 has a magnitude of
20 centimeters.  We can write this formally as

s1   =  20 cm

This technique may seem rather simple, but it works
well and you will use it often.

Graphical Addition and Subtraction
Since we are working with experimental data in
graphical form, we need to use graphical techniques
to add and subtract vectors.  These techniques,
originally introduced in Chapter 2, are reviewed
here in Figures (12) and (13).  Figure (12a) and (12b)
show the addition of two vectors by placing them
head to tail.  Think of the vectors A and B as separate
trips; the sum A + B  is our net displacement as we
take the trips A and B in succession.  To subtract B
from A, we simply add  (–B)  to A as shown in Figure
(12c).

To perform vector addition and subtraction, we need
to move the vectors from one place to another.  This
is easily done with a triangle and a straight edge as
indicated in Figure (13).  The triangle and straight
edge allows you to draw a parallel line; then mark a
piece of paper as in Figure (11), to make the new
vector have the same length as the old one.

For those who are mathematically inclined, this
simple graphical work with vectors may seem el-
ementary, especially compared to the exercises en-
countered in an introductory calculus course.  But,
as we shall see, this graphical work emphasizes the
basic concepts.  We will have many opportunities
later to extract sophisticated formulas from these
basic graphical operations.

For these exercises, you may use the practice
graph on page 3-28, and the tear out sheet on page
3-29.

Exercise 1

Find the magnitudes of the vectors  s0, s1, s2,  and  s3

in Figure (10).

Exercise 2
Explain why the vector s0 4, given by

s0 4  =  s0 + s1 + s2 + s3

has a magnitude of 91.3 cm which is quite a bit less
than the sum of the lengths s0  + s1  + s2  + s3 .

Exercise 3

Use graphical methods to find the vector s3 - s2 .
(The result should point vertically downward and
have a length of about 10 cm.)

A

B

–B

(A – B)

A

B

Figure 12
Addition and subtraction of vectors.

Figure 13
Moving vectors around. (This
was discussed in Figure 2-12.)

BA + 

B
A

(b)

(a) (c)
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Coordinate System
and Coordinate Vectors
A coordinate system allows us to convert graphical
work into a numerical calculation that can, for ex-
ample, be carried out on a computer.  Figure (14)
illustrates two convenient ways of describing the
location of a point.  One is to give the x and y
coordinates of the point (x,y), and the other is to use
a coordinate vector  R  which we define as a vector
that is drawn from the origin of the coordinate
system to the point of interest.

Figure (15) illustrates the way an arbitrary vector S  can
be expressed in terms of coordinate vectors.  From the
diagram we see that R2 is the vector sum of  R1 + S, thus
we can solve for the vector S  to get the result

S  =  R2 – R1.

R
R ≡ (X,Y)

(X,Y)

Y

X

R

Y

X

1

R2R1

R2

+

S = –

S = 
SR1

R2

Figure 14
The coordinate vector R , which starts
at the origin, locates the point (x,y).

Figure 15
Expressing the vector S  in terms of coordinate vectors.

ANALYSIS OF
STROBE PHOTOGRAPHS
In our analysis of the strobe photograph of projectile
motion, Figure (10), we are representing the path of
the ball by a series of displacement vectors S0 ... S3  
(We will think of the photograph as starting at point
(0).  The point labeled (-1) will be used later in our
calculation of the instantaneous velocity at point (0).
In a sense, we “know” that the ball actually went
along a smooth continuous curve, and we could have
represented the curve more accurately by reducing
∆ t as we did in Figure (6).  But with many images to
mark the trajectory, each displacement vector Si
becomes too short for accurate graphical work.  In
taking a strobe photograph, one must reach a com-
promise where the displacement vectors Si are long
enough to work with, but short enough to give a
reasonable picture of the motion.

Velocity
The series of displacement vectors in Figure (10)
show not only the trajectory of the projectile, but
because the images are located at equal time inter-
vals, we also have an idea of the speed of the
projectile along its path.  A long displacement vector
indicates a higher speed than a short one.  For each
of the displacement vectors we can calculate what
one would call the average speed of the projectile
during that interval.

The idea of an average speed for a trip should be
fairly familiar.  If, for example, you went on a trip for
a total distance of 90 miles, and you took 2 hours,
you divide 90 miles by 2 hours to get an average
speed of 45 miles per hour.  For more detailed
information about your speed, you break the trip up
into small segments.  For example, if you wanted to
know how fast you were moving down the interstate
highway, you measure how long it takes to pass two
consecutive mile markers.  If it took one minute,
then your average speed during this short time
interval is one mile divided by 1/60 hour which is 60
miles per hour.  If you broke the whole trip down into
1 minute intervals, measured how far you went
during each interval, and calculated your average
speed for each interval, you would have a fairly
complete record of your speed during your trip.  It is
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this kind of record that we get from a strobe photo-
graph of the motion of an object.

In physics, we use a concept that contains more
information than simply the speed of the object.  We
want to know not only how many miles per hour or
centimeters per second an object is moving, but also
what direction the object is moving.  This informa-
tion is all contained in the concept of a velocity
vector.

To construct a velocity vector for the projectile
shown in Figure (10), when, for example, the ball is
at position 1, we take the displacement vector S1,
divide it by the strobe time interval ∆ t, to get what
we will call the velocity vector v1:

v1  ≡  S1
∆ t

(1)

In Equation (1), what we have done is multiply the
vector S1 by the number (1/∆ t) to get v1.  From our
earlier discussion of vectors we know that multiply-
ing a vector by a number gives us a vector that points
in the same direction, but has a new length.  Thus v1
is a vector that points in the same direction as S1, but
it now has a length given by

v1   =  
S1

∆ t
  =  20 cm

.1 sec
  =  200 cm

sec

where we used S1   =  20 cm from Figure (11) and
we knew that ∆t = .1 sec for this strobe photograph.

Not only have we changed the length of  S1 by
multiplying by (1/∆t), we have also changed the
dimensions from that of a distance (cm) to that of a
speed (cm/sec).  Thus the velocity vector v1 contains
two important pieces of information.  It points in the
direction of the motion of the ball, and has a length
or magnitude equal to the speed of the ball.

(Physics texts get rather picky over the use of the
words speed and velocity.  The word speed is re-
served for the magnitude of the velocity, like 200
cm/sec.  The word velocity is reserved for the veloc-
ity vector as defined above; the velocity vector

describes both the direction of motion and the speed.
We will also use this convention throughout the
text.)

In our discussion of strobe photographs, we noted
that if we used too long a time interval ∆t, we got a
poor description of the motion as in Figures (6b) and
(6c).  As we used shorter time intervals as in Figures
(6d, e, and f), we got a better and better picture of the
path.

We have the same problem in dealing with the
velocity of an object.  If we use a very long ∆ t, we
get a crude, average, description of the object’s
velocity.  As we use a shorter and shorter ∆ t, our
description of the velocity, Equation (1), becomes
more and more precise.

Since, in this chapter, we will be working with
experimental data obtained from strobe photographs,
there is a practical limit on how short a time interval
∆ t we can use and have vectors big enough to work
with.  We will see that, for the kinds of motion that
we encounter in the introductory physics lab, a
reasonably short ∆ t like .1 sec gives reasonably
accurate results.

If you make more precise measurements of the
position of an object you generally find that as you
use shorter and shorter ∆ t to measure velocity, you
reach a point where the velocity vector no longer
changes.  What happens is that you reach a point
where, if you cut ∆ t in half, the particle goes in the
same direction but only half as far.  Thus both the
displacement S1 and the time interval ∆ t are both cut
in half, and the ratio    v1 = S1 /∆t   is unchanged.  This
limiting process, where we see that the velocity
vector changes less and less as ∆ t is reduced, is
demonstrated graphically in  our discussion of in-
stantaneous velocity at the end of the chapter.

Exercise (4)

What is the magnitude of the velocity vector  v3 , for the
ball in Figure (10).  Give your answer in cm/sec.



3-13

Acceleration
In Chapter 1 on Einstein’s special theory of relativ-
ity, we limited our discussion to uniform motion,
motion in a straight line at constant speed.  If we took
a strobe photograph of an object undergoing uni-
form motion, we would get a result like that shown
in Figure (17).  All the velocity vectors would point
in the same direction and have the same length.  We
will, from now on, call this motion with constant
velocity , meaning that the velocity vector is con-
stant, unchanging.

From the principle of relativity we learned that there
is something very special about motion with con-
stant velocity—we cannot feel it.  Recall that one
statement of the principle of relativity was that there
is no experiment that you can perform to detect your
own uniform motion relative to empty space.  You
cannot tell, for example, whether the room you are
sitting in is at rest or hurdling through space at a
speed of 100,000 miles per hour.

Although we cannot feel or detect our own uniform
motion, we can easily detect non uniform motion.
We know what happens if we slam on the brakes and
come to a sudden stop—everything in the car falls
forward.  A strobe photograph of a car using the
brakes might look like that shown in Figure (18a).
Each successive velocity vector gets shorter and
shorter until the car comes to rest.

Equation (1) is well suited for graphical work but for
numerical calculations it is convenient to express Si in
terms of the coordinate vectors Ri.  This is done in
Figure (16), where we see that the vector sum

 Ri + Si = Ri+1  thus  Si = Ri+1 – Ri  and Equation (1)
becomes

vi  =  
Ri+1 – Ri

∆ t
(2)

If we call  Ri+1 – Ri  the “change in the position R

during the time ∆t ”, and denote this change by ∆R,
Equation (2)  becomes

vi  =  
Ri+1 – Ri

∆ t
  =  ∆R

∆ t
(2a)

which is perhaps a more familiar notation for those
who have already studied calculus.  In a calculus
course, one would define the velocity vi by taking
the limit as ∆ t → 0 (i.e., by turning the strobe
flashing rate “all the way up”).  In our experimental
work with strobe photographs, we reduce  ∆ t  only
to the point where we have a reasonable representa-
tion of the path; using too short a time interval makes
the experimental analysis impossible.

i

= R
i + 1

–  R iSi

R i

i + 1R

Vi = Si
t

= i + 1(R R– i )
t

Figure 16
Expressing the velocity vector  vi  , in terms
of the coordinate vectors   Ri  and   Ri+1.

V1 V2 V3 V4 V5 V6 V7

Figure 17
Motion with constant velocity.

V5V4V3V2V1

Figure 18a
Put on the brakes, and your velocity changes.
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Another way the velocity of a car can change is by
going around a corner as illustrated in Figure (18b).
In that figure the speed does not change, each veloc-
ity vector has the same length, but the directions are
changing.  It is also easy to detect this kind of change
in velocity—all the packages in the back seat of your
car slide to one side of the seat.

The point we want to get at is, what do we feel when our
velocity changes?  Consider two examples.  In the first,
we are moving at constant velocity, due east at 60 miles
per hour.  A strobe photograph showing our initial and
final velocity vectors vi and vf would look like that in
Figure (19a).  If we define the change in velocity ∆v by
the equation

∆v  ≡  vf - vi

then from Figure (19b) we see that ∆v  =  0 for
uniform motion.

For the second example, suppose we are traveling
due south at 60 miles per hour, and a while later are

moving due east at 60 miles per hour, as indicated in
Figure (20a).  Now we have a non zero change in
velocity ∆v as indicated in Figure (20b).

In our two examples, we find that if we have uniform
motion which we cannot feel, the change in velocity
∆v is zero.  If we have non uniform motion, ∆v is not
zero and we can feel that.  Is it ∆v, the change in
velocity, that we feel?

Almost, but not quite.  Let us look at our second
example, Figure (20), more carefully.  There are two
distinct ways that our velocity can change from
pointing south to pointing east.  In one case there
could have been a gradual curve in the road.  It may
have taken several minutes to go around the curve
and we would be hardly aware of the turn.

In the other extreme, we may have been driving
south, bounced off a stalled truck, and within a
fraction of a second finding ourselves traveling due
east.  In both cases our change in velocity ∆v = vf – vi
is the same, as shown in Figure (20b).  But the effect
on us is  terribly different.  The difference in the two
cases is that the change in velocity ∆v occurred
much more rapidly when we struck the truck than
when we went around the curve.  What we feel is not
∆v alone, but how fast ∆v happens.

If we take the change in velocity ∆v and divide it by
the time ∆t over which the change takes place, then
the smaller ∆t, the more rapidly the change takes
place, the bigger the result.  This ratio ∆v/∆t which
more closely represents what we feel than ∆v alone,
is given the special name acceleration.

V4

V3

V2

V1

Figure 18b
When you drive around a corner, your speed may not
change, but your velocity vector changes in direction.

Vf

Vi

(a)

Figure 20
∆v ≠ 0 when we change our direction of motion.

Vf

V  =  0i

Vf
–

Vi–

Vi

VfV  ≡∆

(a)

(b)

Figure 19
We see that    ∆∆v = 0  for motion with constant velocity.

V i

Vf

–
V f

V =
∆

(b) Vi–
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The Acceleration Vector
The quantity ∆v/∆t, which we call acceleration, is
usually denoted by the vector a

a  =  ∆v
∆ t

(3)

where ∆v is the change in the velocity vector during
the time ∆t.  To see how to apply Equation (3) to a
strobe photograph, suppose that Figure (21) repre-
sents a photograph of a particle moving with some
kind of non uniform velocity.  Labeling the image
positions 1, 2, 3, etc. and the corresponding velocity
vectors v1, v2, v3 , let us consider what the
particle’s acceleration was during the time it went
from position 2 to position 3.  At position 2 the
particle’s velocity was v2.  When it got to position 3
its velocity was v3.  The time it took for the velocity
to change from v2 to v3, a change ∆v = v3 - v2, was
the strobe time ∆t.  Thus according to Equation (3),
the particle’s acceleration during the interval 2 to 3,
which we will call a3, is given by

a3  ≡  ∆v23
∆ t

  =  
v3 – v2

∆ t
(4a)

(One could object to using the label a3 for the
acceleration during the interval 2 to 3.  But a closer
inspection shows that a3 is an accurate name.  Actu-
ally the velocity v3 is the average velocity in the
interval 3 to 4, and v2 is the average velocity in the
interval 2 to 3.  Thus ∆v = v3 - v2 is a change in
velocity centered on position 3.  As a result Equation
(4a) gives surprisingly accurate results when work-
ing with experimental strobe photographs.  In any
case such errors become vanishingly small when we
use sufficiently short ∆t 's.)

The physicists’ use of the word acceleration for the
quantity ∆v/∆t presents a problem for students.  The
difficulty is that we have grown up using the word
acceleration, and already have some intuitive feel-
ing for what that word means.  Unfortunately this
intuition usually does not match what physicists
mean by acceleration.  Perhaps physicists should
have used a different name for ∆v/∆t, but this did not
happen.  The problem for the student is therefore not
only to develop a new intuition for the quantity
∆v/∆t, but also to discard previous intuitive ideas of
what acceleration might be.  This can be uncomfort-
able.

The purpose of the remainder of this chapter is to
develop a new intuition for the physics definition of
acceleration.  To do this we will consider three
examples of motion; projectile motion, uniform
circular motion, and projectile motion with air resis-
tance.   In each of these cases, which can be carefully
studied in the introductory lab or simulated, we will
use strobe photographs to determine how the accel-
eration vector ∆v/∆t behaves.  In each case we will
see that there is a simple relationship between the
behavior of the acceleration vector and the forces
pulling or pushing on the object.  This relationship
between force and acceleration, which is the corner-
stone of mechanics, will be discussed in a later
chapter.  Here our goal is to develop a clear picture
of acceleration itself.

Determining Acceleration
from a Strobe Photograph
We will use strobe photographs to provide an ex-
plicit experimental definition of acceleration.  In the
next chapter we will see how the strobe definitions
go over to the calculus definition that you may have
already studied.  We prefer to start with the strobe
definition, not only because it provides a more
intuitive approach to the concept, but also because of
its experimental origin.  With an experimental defi-
nition we avoid some conceptual problems inherent
in calculus.  It turns out, surprisingly, that some of
the concepts involved in the calculus definition of
acceleration are inconsistent with physics.  We can
more clearly understand these inconsistencies when
we use an experimental definition of acceleration as
the foundation for our discussion.

Figure 21
Determining a for non uniform motion.

1

2

3
4

V1

V2

V3 V4
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If we have a strobe photograph with many images,
then by extending Equation (4a), the acceleration at
position i is

   
ai ≡

∆vi
∆t

=
vi – vi – 1

∆t
strobe definition
of acceleration (4)

We will call Equation (4) our strobe definition of
acceleration.  Implicit in this definition is that we
use a short enough ∆t so that all the kinks in the
motion are visible, but a long enough ∆t so that we
have vectors long enough to work with.

PROJECTILE MOTION
As our first example in the use of our strobe defini-
tion of acceleration, let us calculate the acceleration
of the ball at position 2 in our strobe photograph,
Figure (10), of projectile motion.

The first problem we face is that Equation (4)
expresses the acceleration vector a2 in terms of the
velocity vectors v1 and v2, while the strobe photo-
graph shows only the displacement vectors S1 and
S2, as seen in Figure (10a), a segment of Figure (10)
reproduced here.

The easiest way to handle this problem is to use the
formulas

v1  =  S1
∆t

 ;          v2  =  S2
∆t

in Equation (4a) to express a2 directly in terms of the
known vectors S1 and S2.  The result is

a2  =  
v2 – v1

∆t
  =  

S1/∆ t  – S2/∆ t
∆t

    
a2 =

S2 – S1

∆t2

experimental
measurment
of acceleration

(5)

Equation (5) tells us that we can calculate the accelera-
tion vector a2 by first constructing the vector  S2 – S1,
and then dividing by   ∆t2 .  That means that a2 points in
the direction of the vector   S2 – S1 , and has a length
equal to the length    S2 – S1  (in cm) divided by    ∆∆t 2.
As a result the magnitude of the acceleration vector has
the dimensions of  cm/sec2.

Let us apply Equation (5) to our projectile motion
photograph, Figure (10), to see how all this works.
The first step is to use vector subtraction to construct
the vector S2 – S1.  This is done in Figure (22).  First
we draw the vectors S1 and S2, and then construct
the vector –S1 as shown.  (The vector –S1 is the
same as S1 except that it points in the opposite
direction.)  Then we add the vectors S2 and –S1 to
get the vector S2 – S1 by the usual technique of
vector addition as shown

S2 – S1  =  S2 + –S1 (6)

2

1

3

s

–

1

s1

s2         
s1–s2         

Figure 22
The vector   S2 – S1 points straight down
and has a length of about 10 cm.

1

3

2
s1

s2         

Figure 10a
A section of the projectile motion photograph, Figure
(10), showing the displacement vectors  S1 and  S2 .
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Note that even if  S2 and  S1 had the same length, the
difference S2 – S1 would not necessarily be zero be-
cause this is vector subtraction, NOT NUMERICAL
SUBTRACTION.

Once we have constructed the vector   S2 – S1, we know
the direction of the acceleration vector a2 because it
points in the same direction  as   S2 – S1.  In Figure (22),
we see that   S2 – S1  points straight down, thus a2 points
straight down also.

Now that we have the direction of a2, all that is left
is to calculate its  magnitude or length.  This magni-
tude is given by the formula

a2   =  
S2 – S1

∆ t2
  =  

length of vector S2 – S1

∆ t2
(7)

To get the length of the   S2 – S1, we can use the
technique shown in Figure (11).  Mark off the length
of the vector   S2 – S1 on a piece of scrap paper, and
then use the grid to see how many centimeters apart
the marks are.  In this case, where   S2 – S1 points
straight down, we immediately see that   S2 – S1 is
about 10 cm long.  Thus the magnitude of a2 is given
by

a2   =  
S2 – S1

∆ t2
  =  10 cm

.1 sec 2
  =  1000 cm

sec2
(8)

where we knew ∆ t = .1 sec for the strobe photograph
in Figure (10).

Our conclusion is that, at position 2 in the projectile
motion photograph, the ball had an acceleration a2
that pointed straight down, and had a magnitude of
about 1000 cm/sec2.

For this exercise, you may use the  tear out sheet
on page 3-30.

Exercise  5

(Do this now before reading on.)  Find the
acceleration vectors a0,a1, and a3 for the projectile
motion in Figure (10).  From your results, what can you
say about the acceleration of a projectile?

UNIFORM CIRCULAR MOTION
To give the reader some time to think about the
above exercise on projectile motion, we will change
the topic for a while and analyze what is called
uniform circular motion.  In uniform circular mo-
tion, the particle travels like a speck of dust sitting on
a revolving turntable.

The explicit example we would like to consider is a
golf ball with a string attached, being swung in a
circle over the instructor’s head, as indicated in
Figure (23a).  We could photograph this motion, but
it is very easy to simulate a strobe photograph of
uniform circular motion by drawing a circle with a
compass, and marking off equal intervals as shown
in Figure (23b).  In that figure we have also sketched
in the displacement vectors as we did in our analysis
of the projectile motion photograph.

S1

S2

S3
S4

r
Strin

g
V

Golf ball

Figure 23a
Swinging a golf ball around at constant speed in a
circle.

Figure 23b
Simulating a strobe photograph of a golf
ball swinging at constant speed in a circle.
We marked off equal distances using a
compass.
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Figure (23b) shows the kind of errors we have to deal
with in using a strobe to study motion.  Clearly the
golf ball travels along the smooth circular path
rather than the straight line segments marked by the
vectors .  As we use shorter and shorter ∆ t our
approximation of the path gets better and better, but
soon the vectors get too short for accurate graphical
work.  Choosing images spaced as in Figure (23b)
gives vectors a reasonable length, and a reasonable
approximation of the circular path.

(It will turn out that when we use our strobe defini-
tion of acceleration, most errors caused by using a
finite ∆ t cancel, and we get a very accurate answer.
Thus we do not have to worry much about how far
apart we draw the images.)

Now that we have the displacement vectors we can
construct the acceleration vectors a1,a2, using
Equation (5).  The construction for a2 is shown in
Figure (24).  To the vector S2 we add the vector  –S1
to get the vector S2 – S1 as shown.

The first thing we note is that the vector   S2 – S1
points toward the center of the circle!  Thus the
acceleration vector a2 given by

a2  =  
S2 – S1

∆t2
(9)

also points toward the center of the circle.

Exercise (6)

(Do this now.)  Find the direction of at least 4 more
acceleration vectors  around the circle.  In each case
show that ai points toward the center of the circle.

We said earlier that the physicists’ definition of
acceleration,  which becomes ai = Si – Si–1 /∆ t2,
does not necessarily agree with your own intuitive
idea of acceleration.  We have just discovered that,
using the physicists’ definition, a particle moving at
constant speed along a circular path accelerates
toward the center of the circle.  Unless you had a
previous physics course, you would be unlikely to
guess this result.  It may seem counter intuitive.  But,
as we said, we are using these examples to develop
an intuition for the physics definition of accelera-
tion.  Whether you like it or not, according to the
physics definition, a particle moving at constant
speed around a circle, is accelerating toward the
center.  In a little while, the reason for this will
become clear.

Magnitude of the Acceleration
for Circular Motion
Although perhaps not intuitive, we have gotten a
fairly simple result for the direction of the accelera-
tion vector for uniform circular motion.  The center
is the only unique point for a circle, and that is where
the acceleration vector points.  The next thing we
need to know is how long the acceleration vectors
are; what is the magnitude of this center pointing
acceleration.  From the strobe definition, the magni-
tude a2  is  a2 = S2 – S1 /∆ t2, a rather awkward
result that appears to depend upon the size of ∆ t that
we choose.  However with a bit of geometrical
construction we can re-express this result in terms of
the particle’s speed v and the circle’s radius r.  The
derivation is messy, but the result is simple.  This is
one case, where, when we finish the derivation, we
recommend that the student memorize the answer
rather than try to remember the derivation.  Uniform
circular motion appears in a number of important
physics problems, thus the formula for the magni-
tude of the acceleration is important to know.

Figure 24
We find that the vector   S2 – S1  , and therefore the
acceleration, points toward the center of the circle.

S1

S2

S3

S4

S1–

S1–S2( )
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In Figure (25a) we have constructed two triangles,
which are shown separately in Figures (25b) and
(25c).  As seen in Figure (25b), the big triangle
which goes from the center of the circle to positions
(1) and (2) has two equal sides of length r, the radius
of the circle, and one side whose length is equal to
the particle’s speed v times the strobe time ∆t.

The second triangle, shown in Figure (25c), has
sides of length  S2  and  –S1 , but both of these are
of length v∆t as shown.  The third side is of length

 S2 – S1 , the length we need for our calculation of
the magnitude of the acceleration vector.

The trick of this calculation is to note that the angles
labeled θ in Figures (29b, c) are the same angle, so
that these two triangles are similar isosceles tri-
angles.  The proof that these angles are equal is given
in Figure (26) and its caption.

With similar triangles we can use the fact that the
ratios of corresponding sides are equal.  Equating the
ratio of the short side to the long side of the triangle
of Figure (25b), to the ratio of the short side to the
long side of the triangle in Figure (25c), we get

  
v∆t

r =
S2 – S1

v∆t
(10)

Multiplying Equation (10) through by v and divid-
ing both sides by ∆ t gives

  v2

r =
S2 – S1

∆t2 = a1 (11)

we got     S2 – S1 ∆t2S2 – S1 ∆t2 on the right side, but this is just
the magnitude of the acceleration vector a1.  Since
the same derivation applies to any position around
the circle, we get the simple and general result that,
for a particle moving with uniform circular motion,
the particle’s acceleration a points toward the center
of the circle, and has a magnitude

  
a = v2

r
accelerationof a particle
in uniform circular motion (12)

where v is the speed of the particle and r  is the radius
of the circle.  As we said, this simple result should be
memorized.

Figure 25
Derivation of the formula for the magnitude of the
acceleration of a particle with uniform circular motion.
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Figure 26
That the two angles labeled θθ  in Figure (25) are the
same, may be seen in the following geometrical
construction.  Since the sum of the angles in any
triangle is 180°, we get   αα + ϕϕ + 90°° = 180°° (from
triangle BCD).  Because BAC is an isosceles triangle,

  90°° – θθ + αα = ϕϕ.   Eliminating  ϕϕ  we get   2αα = θθ , which
is the result we expected.
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AN INTUITIVE DISCUSSION
OF ACCELERATION
We have now studied two examples of non uniform
motion, the projectile motion seen in the strobe
photograph of Figure (10), and the circular motion
of a golf ball on the end of a string, a motion we
illustrated in Figure (23).  In each case we calculated
the acceleration vector of the particle at different
points along the trajectory.  Let us now review our
results to see if we can gain some understanding of
why the acceleration vector behaves the way it does.

If you worked Exercise (5) correctly, you discov-
ered that all the acceleration vectors  are the same, at
least to within experimental accuracy.  As shown in
Figure (27), as the steel ball moves along its trajec-
tory, its acceleration vector points downward to-
ward the earth, and has a constant magnitude of
about 1000 cm/sec2.

As shown in Figure (28), the golf ball being swung
at constant speed around in a circle on the end of a
string, accelerates toward the center of the circle, in
the direction of the string pulling on the ball.  The
magnitude of the acceleration has the constant value.

We said that the string was pulling on the ball.  To see
that this is true, try swinging a ball on the end of a
string (or a shoe on the end of a shoelace) in a circle.
To keep the ball (or shoe) moving in a circle, you
have to pull in on the string.  In turn, the string pulls
in on the ball (or shoe).  If you no longer pull in on
the string, i.e., let go, the ball or shoe flies away and
no longer undergoes circular motion.  The string
pulling on the ball is necessary in order to have
circular motion.

What is the common feature of projectile and circu-
lar motion?  In both cases the object accelerates in
the direction of the force acting on the object.  When
you throw a steel ball in the air, the ball does not
escape earth’s gravity.  As the ball moves through
the air, gravity is constantly pulling down on the
ball.  The result of this gravitational pull or force is
to accelerate the ball in the direction of the gravita-
tional force.  That is why the projectile motion
acceleration vectors point down toward the earth.

 When we throw a ball a few feet up in the air, it does
not get very far away from the surface of the earth.
In other words we expect the gravitational pull to be
equally strong throughout the trajectory.  If the ball’s
acceleration is related to the gravitational pull, then
we expect the acceleration to also be constant through-
out the trajectory.  Thus it is not surprising that all the
vectors have the same length in Figure (27).

a
0

0 1

2

3

a1

a2

a3

Figure 27
All the acceleration vectors for
projectile motion point down toward
the earth.

r
strin

g

a

golf ball

Figure 28
The golf ball accelerates in the
direction of the string that is pulling
on it.
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In the case of circular motion, the string has to pull
in on the golf ball to keep the ball moving in a circle.
As a result of this pull of the string toward the center
of the circle, the ball accelerates toward the center of
the circle.  Again the acceleration is in the direction
of the force on the object.

This relationship between force and acceleration,
which we are just beginning to see in these two
examples, forms the cornerstone of what is called
classical or Newtonian mechanics.  We have more
details to work out, but we have just glimpsed the
basic idea of much of the first half of this course.  To
give historical credit for these ideas, it was Galileo
who first saw the importance of the concept of
acceleration that we have been discussing, and Isaac
Newton who pinned down the relationship between
force and acceleration.

Acceleration Due to Gravity
Two more topics, both related to projectile motion,
will finish our discussion in this section.  The first is
the fact that, if we can neglect air resistance, all
projectiles near the surface of the earth have the
same downward acceleration a.   If a steel ball and a
feather are dropped in a vacuum, they fall together
with the same acceleration.  This acceleration, which
is caused by gravity, is called the acceleration due
to gravity and is denoted by the symbol g.  The vector
g points down toward the earth, and, at the surface of
the earth, has a magnitude.

g   ≡  g = 980 cm/sec2 (13)

This is quite consistent with our experimental result
of about 1000 cm/sec2 that we got from the analysis
of the strobe photograph in Figure (10).

If we go up away from the earth, the acceleration due
to gravity decreases.  At an altitude of 1,600 miles,
the acceleration is down to half its value, about
500 cm/sec2.  On other planets g has different val-
ues.  For example, on the moon, g is only about 1/6
as strong as it is here on the surface of the earth, i.e.

gmoon   =  167 cm/sec2 (14)

From the relationship we have seen between force
and acceleration we can understand why a projectile
that goes only a few feet above the surface of the
earth should have a constant acceleration.  The
gravitational force does not change much in those
few feet, and therefore we would not expect the
acceleration caused by gravity to change much ei-
ther.

On the other hand there is no obvious reason, at this
point, why in the absence of air, a steel ball and a
feather should have the same acceleration.  Galileo
believed that all projectiles, in the absence of air
resistance, have the same acceleration. But it was
not until Newton discovered both the laws of me-
chanics (the relationship between acceleration and
force) and the law of gravity, that it became a
physical prediction that all projectiles have the same
gravitational acceleration.

In the early part of the 20th century, Einstein went a
step farther than Newton, and used the fact that all
objects have the same gravitational acceleration to
develop a geometrical interpretation of the theory of
gravity.  The gravitational force was reinterpreted as
a curvature of space, with the natural consequence
that a curvature of space affects all objects in the
same way.  This theory of gravity, known as
Einstein’s general theory of relativity, was a result
of Einstein’s effort to make the theory of gravity
consistent with the principle of relativity.

It is interesting how the simplest ideas, the principle
of relativity, and the observation that the gravita-
tional acceleration is the same for all objects, are the
cornerstones of one of the most sophisticated theo-
ries in physics, in this case Einstein’s general theory
of relativity.  Even today, over three quarters of a
century since Einstein developed the theory, we still
do not understand what many of the predictions or
consequences of Einstein’s theory will be.  It is
exciting, for these predictions may help us under-
stand the behavior of the universe from its very
beginning.

acceleration due to
gravity at the sur-
face of the earth
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Exercise (7)
The first earth satellite, Sputnik 1, traveled in a low,
nearly perfect, circular orbit around the earth as
illustrated in Figure (29).

(a) What was the direction of Sputnik 1’s acceleration
vector as it went around the earth?

(b) What was the direction of the force of gravity on
Sputnik 1 as the satellite went around the earth?

(c) How is this problem related to the problem of the
motion of the golf ball on the end of a string?  Give an
answer that your roommate, who has not had a
physics course, would understand.

Projectile Motion
with Air Resistance
Back to a more mundane subject, we wish to end this
discussion of acceleration with the example of pro-
jectile motion with air resistance.  Most introductory
physics texts avoid this topic because they cannot
deal with it effectively.  Using calculus, one can
handle only the simplest, most idealized examples,
and even then the analysis is beyond the scope of
most texts.  But using strobe photographs it is easy
to analyze projectile motion with air resistance, and
we learn quite a bit from the results.

What turned out to be difficult, was to find an
example where air resistance affected the motion of
a projectile enough to produce a noticeable effect.
We found that a golf ball and a ping pong ball have
almost the same acceleration when thrown in the air,
despite the considerable difference in weight or
mass.  Only when we used the rough surfaced
Styrofoam balls used for Christmas tree ornaments
did we finally get enough air resistance to give a
significant effect.

Sputnik 1 orbit

EARTH

Figure 29
Sputnik 1's circular orbit.

Figure 30a
Motion of a Styrofoam ball. This is the lightest ball we
could find.
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A strobe photograph of the projectile motion of the
Styrofoam ball is seen in Figure (30a), and an
analysis showing the resulting acceleration vectors
in Figure (30b).  In Figure (30b) we have also drawn
the acceleration vectors g that the ball would have
had if there had not been any air resistance.  We see
that the effect of air resistance is to bend back and
shorten the acceleration vectors.

Figure (31) is a detailed analysis of the Styrofoam’s
acceleration at point (3).  (We used an enlargement
of the strobe photograph to improve the accuracy of
our work, such detailed analysis is difficult using
small Polaroid photographs.)  In Figure (31) v3  is the
velocity of the ball, g is the acceleration due to
gravity, and a3 the ball’s actual acceleration.  The
vector aair, which represents the change in a caused
by air resistance is given by the vector equation

a3  =  g + aair (15)

The important feature of Figure (31) is that aair is
oppositely directed to the ball’s velocity v3.  To
understand why, imagine that you are the stick

figure riding on the ball in Figure (31).  You will feel
a wind in your face, a wind directed oppositely to v3.
This wind will push on the ball in the direction
opposite to v3, i.e., in the direction of aair.  Thus we
conclude that the acceleration aair is created by the
force of the wind on the ball.

What we learn from this example is that  if we have
two forces simultaneously acting on an object,
each force independently produces an accelera-
tion, and the net acceleration is the vector sum of
the independent accelerations.  In this case the
independent accelerations are  caused by gravity and
the wind.  The net acceleration a3 of the ball is given
by the vector Equation (15), a3  =  g + aair.  As we
will see in later chapters, this vector addition of
accelerations plays a fundamental role in mechan-
ics.

-1)  ( 5.2,   94.9)

 0)  (24.0, 101.4)
 1)  (40.8,   97.8)

 2)  (56.5,   85.3)

 3)  (70.8,   64.7)
 4)  (83.4,   37.1)

 5)  (95.2,     3.9)

Figure 30b
Acceleration of the Styrofoam ball.
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Figure 31
When we do a detailed comparison of  a  and
g at point 3, we see that the air resistance
produces an acceleration aair that points in the
direction of the wind felt by the ball.
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INSTANTANEOUS VELOCITY
In calculus, instantaneous velocity is defined by
starting with the equation vi  =  Ri+1 - Ri /∆ t and
then taking the limiting value of vi as we use shorter
and shorter time steps ∆ t.  This corresponds in a
strobe photograph to using a higher and higher
flashing rate which would give increasingly short
displacement vectors Si.  In the end result one
pictures the instantaneous velocity being defined at
each point along the continuous trajectory of the
object.

The effect of using shorter and shorter ∆ t  is illus-
trated in Figure (32).  In each of these sketches the
dotted line represents the smooth continuous trajec-

tory of the ball.  In Figure (32a) where ∆ t = 0.4 sec
and there are only two images the only possible
definition of v0 is the displacement between these
images, divided by ∆ t as shown.  Clearly ∆ t is too
large here for an accurate representation of the ball’s
motion.

A better description of motion is obtained in Figure
(32b) where∆ t = 0.1 sec as in the original photo-
graph.  We used this value of  in our analysis of the
projectile motion, Figure (10).  Reducing ∆ t by
another factor 1/4 gives the results shown in Figure
(32c).  At this point the images provide a detailed
picture of the path and v0  = S0/∆ t is now tangent to
the path at (0).  A further decrease in ∆ t would
produce a negligible change in v0.

1

=

∆t = 0.4 Sec

∆t

0

v0

v0
S 0

S 0

10

=

∆t = 0.1  Sec

∆t

v0
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S 0

S 0
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=
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∆t

v0

v0
S 0

S 0

~

~ =

∆t     0 Sec

instantaneous
velocity

∆t
vi

vi

S i

Figure 32
We approach the instantaneous velocity
as we make  ∆∆t  smaller and smaller.

a)

b)

c)

d)
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The instantaneous velocity at point (0) is the final
value of  v0, the value illustrated in Figure (32d)
which no longer changes as  ∆ t is reduced.  This is
an abstract concept in that we are assuming such a
final value exists.  We are assuming that we always
reach a point where using a stroboscope with a still
higher flashing rate produces no observable change
in the value of v0.  This assumption, which has
worked quite well in the analysis of large objects
such as ping pong balls and planets, has proven to be
false when investigated on an atomic scale.  Accord-
ing to the quantum theory which replaces classical
mechanics on an atomic scale when one uses a
sufficiently short ∆ t in an attempt to measure veloc-
ity, the measurement destroys the experiment rather
than giving a better value of v0.
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Instantaneous Velocity
from a Strobe Photograph
In the case of projectile motion (i.e., motion with
constant acceleration) there is a simple yet precise
method for determining an object’s instantaneous
velocity vi from a strobe photograph.  (Vectors
representing instantaneous velocity will be under-
lined in order to distinguish them from the vectors
representing the strobe definition of velocity.)  This
method, which also gives quite good approximate
values for other kinds of motion, will be used in our
computer calculations for determining the initial
velocity of the object.

To see what the method is, consider Figure (33)
where we have drawn the vector  obtained from
Figure (32d).  We have also drawn a line from the
center of image (–1) to the center of image (+1) and
notice that vi  ∆t is parallel to and precisely half as
long as this line.  Thus we can construct vi  ∆t by
connecting the preceding and following images and
taking half of that line.

The vector constructed by the above rule is actually
the average of the preceding velocity vector  v–1 and
the following vector v0.

 vi
 

=
v–1 + v0

2
(16)

as illustrated in Figure (33).  (Note that the vector
sum   v–1 + v0 ∆t  is the same as  the line  2v i  ∆t
which connects the preceding and following image.)
This is a reasonable estimate of the ball’s instanta-
neous velocity because  v–1 is the average velocity
during the time ∆ t before the ball got to (0), and v0
the average velocity during the interval after leaving
(0).  The ball’s velocity at (0) should have a value
intermediate between  v–1 and v0, which is what
Equation (16) says.

The constant acceleration formula

 S = vit + 1
2 at2 (17)

which may be familiar from a high school physics
course, provides a direct application of the concept
of instantaneous velocity. (Remember that this is not
a general formula; it applies only to motion with
constant acceleration where the vector a changes
neither in magnitude or direction.)  As illustrated in
Figure (34) the total displacement  of the projectile

Figure 33
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Illustration of the constant acceleration
formula as a vector equation.
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during a time t (here t = 3∆t) is the vector sum of vi t
and 1/2at2.  To draw this figure, we used

 vi   t = vi 3∆t = 3 vi∆t

and obtained  v i  ∆t from our method of determining
instantaneous velocity.  We also used

  1
2 a t2 = 1

2 a 3∆t
2

= 9
2 a∆t2

where we obtained a ∆t2 from the relation

  
a =

S2 - S1

∆t2

  a∆t2 = S2 - S1

as illustrated in Figure (35).

For these exercises, use the tear out sheet on
pages 3-31,32.

Exercise 8
Use Equation 17 to predict the displacements  of the
ball

(a) Starting at position (0) for a total time   t = 4∆t.

(b) Starting at position (1) for a total time   t = 3∆t.

Do the work graphically as we did in Figures 33-35.

Exercise 9
The other constant acceleration formula is

v f  = v i +at

where v i is the initial velocity, and v f the object’s
velocity a time t later.  Apply this equation to Figure 10
to predict the ball’s instantaneous velocity v f at point
(3) for a ball starting at point (0).  Check your predic-
tion by graphically determining the instantaneous
velocity at point (3).

Show your results on graph paper.

Exercise 10

Show that the constant acceleration formulas would
correctly predict projectile motion even if time ran
backward. (For example, assume that the ball went
backward as shown in Figure (36), and repeat Exer-
cise 8b, going from position 3 to position 0.)

Vi~
t = 

Vi~
∆t

Vi~
(3 ∆t)

2 a t 2 a(3∆t) 2a ∆t= 4.5=

2a ∆t4.5

2a∆t

1
2
_ 1

2
_

S2
S1–

Figure 35
How to construct the vectors vit and

 1 21 2 at2 from a strobe photograph.

appearence of ball 
moving backward 
in time

0

3

Figure 36
Run the motion of the ball backward in time, and
it looks like it was launched from the lower right.
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Spare graph paper
Use this graph paper if you
want  practice  with vectors.
This is not a tear out page.
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Instantaneous Velocity

Figure 1
Transition to instantaneous velocity.

  ∆t = 0.025 sec

  ∆t = 0.4 sec   ∆t = 0.1 sec
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Chapter 4
Calculus in Physics

In the previous chapter we used strobe photographs to
define velocity and acceleration vectors.  The basic
approach was to turn up the strobe flashing rate as we
did in going from Figure (3-3) to (3-4) until all the kinks
are clearly visible and the successive displacement
vectors give a reasonable description of the motion.
We did not turn the flashing rate too high, for the
practical reason that the displacement vectors became
too short for accurate work. Calculus corresponds to
conceptually turning the strobe all the way up.

CHAPTER 4 CALCULUS IN PHYS-
ICS

This chapter, which discusses the use of calculus in physics, is for those who have had a calculus
course which they remember fairly well. For those whose calculus is weak or poorly remembered,
or for those who have not studied calculus, you should replace this chapter with Chapter 1 of
Calculus 2000.

LIMITING PROCESS
In our discussion of instantaneous velocity we concep-
tually turned the strobe all the way up as illustrated in
Figures (2-32a) through (2-32d), redrawn here in Fig-
ure (1).  In these figures, we initially see a fairly large
change in v0 as the strobe rate is increased and  ∆t
reduced.  But the change becomes smaller and it looks
as if we are approaching some final value of v0 that does
not depend on the size of   ∆t,  provided  ∆t  is small
enough.  It looks as if we have come close to the final
value in Figure (1c).

The progression seen in Figure (1) is called a limiting
process.  The idea is that there really is some true value
of v0 which we have called the instantaneous velocity,
and that we approach this true value for sufficiently
small values of   ∆t .  This is a calculus concept, and in
the language of calculus, we are taking the limit as    ∆∆ t
goes to zero.

The Uncertainty Principle
For over 200 years, from the invention of calculus by
Newton and Leibnitz until 1924, the limiting process
and the resulting concept of instantaneous velocity was
one of the cornerstones of physics.  Then in 1924
Werner Heisenberg discovered what he called the
uncertainty principle which places a limit on the
accuracy of experimental measurements.
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motion, we would expect get results like those shown
in Figure (2).  This figure represents projectile motion
with an acceleration g = 980 cm/sec2 and    ∆t = .01sec,
as the reader can easily check.

When we study the uncertainty principle in Chapter 30,
we will see that a measurement that is accurate enough
to show that Position (2) is below Position (1), could
disturb the electron enough to reverse its direction of
motion.  The next position measurement could find the
electron over where we drew Position (3), or back
where we drew Position (0), or anywhere in the region
in between.  As a result we could not even determine
what direction the electron is moving.  This uncertainty
would not be the result of a sloppy experiment, it is the
best we can do with the most accurate and delicate
measurements possible.

The uncertainty principle has had a significant impact
on the way physicists think about motion.  Because we
now know that the measuring process affects the results
of the measurement, we see that it is essential to provide
experimental definitions to any physical quantity we
wish to study.  A conceptual definition, like turning the
strobe all the way up to define instantaneous velocity,
can lead to fundamental inconsistencies.

Even an experimental definition like our strobe defini-
tion of velocity can lead to inconsistent results when
applied to something like the electron in Figure (2).  But
these inconsistencies are real.  Their existence is telling
us that the very concept of velocity is beginning to lose
meaning for these small objects.

On the other hand the idea of the limiting process and
instantaneous velocity is very convenient when ap-
plied to larger objects where the effects of the uncer-
tainty principle are not detectable.  In this case we can
apply all the mathematical tools of calculus developed
over the past 250 years.  The status of instantaneous
velocity has changed from a basic concept to a useful
mathematical tool.  Those problems for which this
mathematical tool works are called problems in classi-
cal physics; and those problems for which the uncer-
tainty principle is important, are in the realm of what we
call quantum physics.

Heisenberg discovered something very new and unex-
pected.  He found that the act of making an experimen-
tal measurement unavoidably affects the results of an
experiment.  This had not been known previously
because the effect on large objects like golf balls is
undetectable.  But on an atomic scale where we study
small systems like electrons moving inside an atom, the
effect is not only observable, it can dominate our study
of the system.

One particular consequence of the uncertainly prin-
ciple is that the more accurately we measure the
position of an object, the more we disturb the motion of
the object.  This has an immediate impact on the
concept of instantaneous velocity.  If we turn the strobe
all the way up, reduce   ∆t  to zero, we are in effect trying
to measure the position of the object with infinite
precision.  The consequence would be an infinitely big
disturbance of the motion of the object we are studying.
If we actually could turn the strobe all the way up, we
would destroy the object we were trying to study.

It turns out that the uncertainty principle can have a
significant impact on a larger scale of distance than the
atomic scale.  Suppose, for example, that we con-
structed a chamber 1 cm on a side, and wished to study
the projectile motion of an electron inside.  Using
Galileo’s idea that objects of different mass fall at the
same rate, we would expect that the motion of the
electron projectile should be the same as more massive
objects.  If we took a strobe photograph of the electron’s

Figure 2
Hypothetical electron projectile motion experiment.
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CALCULUS DEFINITION
OF VELOCITY
With the above perspective on the physical limita-
tions on the limiting process, we can now return to
the main topic of this chapter—the use of calculus in
defining and working with velocity and accelera-
tion.

In discussing the limiting process in calculus, one
traditionally uses a special set of symbols which we can
understand if we adopt the notation shown in Figure
(3).  In that figure we have drawn the coordinate vectors

 Ri  and  Ri+1  for the i th and (i + 1) th positions of the
object.  We are now using the symbol   ∆Ri to represent
the displacement of the ball during the i to i+1 interval.
The vector equation for   ∆Ri  is

  ∆Ri = Ri+1 – Ri (1)

In words, Equation (1) tells us that   ∆Ri  is the change,
during the time ∆t, of the position vector  R  describing
the location of the ball.

The velocity vector vi is now given by

  
vi =

∆Ri
∆t (2)

This is just our old strobe definition vi  =  Si /∆ t, but
using a notation which emphasizes that the displace-
ment Si = ∆Ri is the change in position that occurs
during the time ∆t.  The Greek letter ∆ (delta) is used
both to represent the idea that the quantity   ∆Ri   or   ∆t
is small, and to emphasize that both of these quantities
change as we change the strobe rate.

The limiting process in Figure (1) can be written in the
form

vi
  

≡ Limit
∆t →0

∆Ri
∆t (3)

where the word “Limit” with ∆ t→0 underneath, is to
be read as “limit as ∆t goes to zero”.  For example we
would read Equation (3) as “the instantaneous veloc-
ity  vi  at position i is the limit, as  ∆t  goes to zero, of
the ratio   ∆Ri /∆t .

 
”

For two reasons, Equation (3) is not quite yet in
standard calculus notation.  One is that in calculus, only
the limiting value, in this case, the instantaneous veloc-
ity, is considered to be important.  Our strobe definition

  vi = ∆Ri /∆t  is only a step in the limiting process.
Therefore when we see the vector  vi , we should
assume that it is the limiting value, and no special
symbol like the underline is used.  For this reason we
will drop the underline and write

  
vi = Limit

∆t →0
∆Ri
∆t (3a)

Figure 3
Definitions of    ∆∆ Ri  and Vi .

i

i  1
∆Ri

Ri  1

Ri

+

+

∆R   i Ri= –Ri  1+

V i = ∆R   i /∆t
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The second change deals with the fact that when ∆t
goes to zero we need an infinite number to time steps
to get through our strobe photograph, and thus it is not
possible to locate a position by counting time steps.
Instead we measure the time t that has elapsed since the
beginning of the photograph, and use that time to tell us
where we are, as illustrated in Figure (4).  Thus instead
of using vi to represent the velocity at position i, we
write v t  to represent the velocity at time t.  Equation
(3) now becomes

  
v(t) = Limit

∆t →0
∆R(t)

∆t (3b)

where we also replaced   ∆Ri  by its value ∆R(t) at
time t.

Although Equation (3b) is in more or less standard
calculus notation, the notation is clumsy.  It is a pain to
keep writing the word Limit with a ∆ t→0 underneath.
To streamline the notation, we replace the Greek letter
∆ with the English letter d as follows

  
Limit
∆t →0

∆R(t)
∆t

≡ dR(t)
dt (4)

(The symbol ≡  means defined equal to.) To a math-
ematician, the symbol  dR t /dt  is just shorthand
notation for the limiting process we have been describ-

ing.  But to a physicist, there is a different, more
practical meaning.  Think of dt as a short ∆t, short
enough so that the limiting process has essentially
occurred, but not too short to see what is going on.  In
Figure (1), a value of dt less than .025 seconds is
probably good enough.

If dt is small but finite, then we know exactly what
the dR t  is.  It is the small but finite displacement
vector at the time  t.  It is our old strobe definition of
velocity, with the added condition that dt is such a
short time interval that the limiting process has
occurred.  From this point of view, which we will use
throughout this text, dt is a real time interval, and
dR t

 
a real vector which we can work with in a

normal way.  The only thing special about these
quantities is that when we see the letter d instead of
∆, we must remember that a limiting process is
involved.  In this notation, the calculus definition of
velocity is

 v t   =  
dR t

dt
 (5)

where R t  and v t  are the particle’s coordinate vector
and velocity vector respectively as shown in Figure (5).
Remember that this is just fancy shorthand notation for
the limiting process we have been describing.

t = .3sec

t = .2sect = .1sec

t = 0sec

t = .4sec

t = .5sec

R(t)
at t = .3 sec

Figure 4
Rather than counting individual images, we can
locate a position by measuring the elapsed time t.
In this figure, we have drawn the displacement
vector   R(t) at time t = .3 sec.

Figure 5
Instantaneous position and velocity at time t.

R(t)

V(t)
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ACCELERATION
In the analysis of strobe photographs, we defined both
a velocity vector v and an acceleration vector a.  The
definition of a, shown in Figure (2-12) reproduced here
in Figure (6) was

  
ai ≡

vi+1 – vi
∆t

(6)

In our graphical work we replaced vi by   Si/∆t  so that
we could work directly with the displacement vectors

 Si  and experimentally determine the behavior of the
acceleration vector for several kinds of motion.

Let us now change this graphical definition of accelera-
tion over to a calculus definition, using the ideas just
applied to the velocity vector.  First, assume that the ball
reached position  i  at time  t  as shown in Figure (6).
Then we can write

vi  =  v(t)

vi+1  =  v(t+∆t)

to change the time dependence from a count of strobe
flashes to the continuous variable t.  Next, define the
vector ∆v(t) by

  ∆v(t) ≡ v(t+∆t) – v(t) = vi+1– vi (7)

We see that   ∆v(t) is the change in the velocity vector as
the time advances from t to   t+∆t .

The strobe definition of  ai can now be written

   
a(t)

strobe
definition

=
v(t + ∆t) – v(t)

∆t
≡ ∆v(t)

∆t (8)

Now go through the limiting process, turning the
strobe up, reducing ∆t until the value of a t  settles
down to its limiting value.  We have

   
a(t)

calculus
definition

= Limit
∆t→0

v t + ∆t – v t
∆t

= Limit
∆t→0

∆v(t)
∆t

(9)

Finally use  the shorthand notation d/dt for the limiting
process:

 

a(t) =
dv t

dt
(10)

Equation (10) does not make sense unless you remem-
ber that it is notation for all the ideas expressed above.
Again, physicists think of dt as a short but finite time
interval, and dv t  as the small but finite change in the
velocity vector during the time interval dt.  It’s our
strobe definition of acceleration with the added re-
quirement that ∆t is short enough that the limiting
process has already occurred.

Vi

Vi  1+

–Vi
a i –V )iVi  1+(

∆t
=

–ViVi  1+( )

position at 
time t position at 

time t + ∆t

Figure 6
Experimental definition of the acceleration vector.
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Components
Even if you have studied calculus, you may not recall
encountering formulas for the derivatives of vectors,
like dR(t)/dt and dv(t)/dt which appear in Equations
(5) and (10).  To bring these equations into a more
familiar form where you can apply standard calculus
formulas, we will break the vector Equations (5) and
(10) down into component equations.

In the chapter on vectors, we saw that any vector
equation like

 A = B + C (11)

is equivalent to the three component equations

Ax  =  Bx + Cx
Ay  =  By + Cy

Az  =  Bz + Cz (12)

The advantage of the component equations was that
they are simply numerical equations and no graphical
work or trigonometry is required.

The limiting process in calculus does not affect the
decomposition of a vector into components, thus Equa-

tion (5) for  v(t)  and Equation (10) for  a(t)
 
become

  v(t) = dR(t)/dt (5)

vx(t)  =  dRx(t)/dt (5a)

vy(t)  =  dRy(t)/dt (5b)

vz(t)  =  dRz(t)/dt (5c)
and

 a(t) = dv(t)/dt (10)

ax(t)  =  dvx(t)/dt (10a)

ay(t)  =  dvy(t)/dt (10b)

az(t)  =  dvz(t)/dt (10c)

Often we use the letter x for the x coordinate of the
vector R and we use y for Ry and z for Rz.  With this
notation, Equation (5) assumes the shorter and perhaps
more familiar form

vx(t)  =  dx(t)/dt (5a’)

vy(t)  =  dy(t)/dt (5b’)

vz(t)  =  dz(t)/dt (5c’)

At this point the notation has become deceptively short.
You now have to remember that x(t) stands for the x
coordinate of the particle at a time t.

We have finally boiled the notation down to the point
where it would be familiar from any calculus course.  If
we restrict our attention to one dimensional motion
along the x axis.  Then all we have to concern ourselves
with are the x component equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt

(10a)

R

y

x
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Distance, Velocity and
Acceleration versus Time Graphs
One of the ways to build an intuition for Equations (5a)
and (10a) is through the use of graphs of position,
velocity and acceleration versus time.  Suppose, for
example, we had a particle moving at constant speed in
the x direction, the uniform motion that the principle of
relativity tells us that we cannot detect.  Graphs of
distance x(t), velocity v(t) and acceleration a(t) for this
motion are shown in Figure (7).

If the particle is moving at constant speed

vx(t)  =  v0 (11)
then the graph of velocity versus time is a straight
horizontal line of height v0 as shown in Figure (7b).

If you travel away from home at constant speed, then
your distance from home is proportional to the time you
have traveled.  If you start at t = 0, then at time t your
distance from home is

x t   =  v0 t (12)
This is graphed as the straight line as shown in Figure
(7a).  The slope of this line, the tangent of the angle θ
is x/t, which from Equation (12) is v0.

When a particle moves at constant velocity, there is no
change in the succeeding velocity vectors, thus the
acceleration a(t) is zero for all time

a(t)  =  0 (13)
as shown in Figure (7c).

In summary, we have seen that for this example of
uniform motion in the x direction

x(t)  =  v0 t (12)
v(t)  =  v0 (11)
a(t)  =  0 (13)

Now let us see if these results agree with our calculus
definitions (5a) and (10a).  From Equation (5a) we get

v(t)  =  
dx(t)

dt
  =  d

dt
v0t (14)

The v0 being constant comes outside and we have

v(t)  =  v0
dt
dt

  =  v0 (15)

where we used dt/dt = 1.  Our calculus result agrees with
Equation (12).

From Equation (10), we get

a(t)  =  
dv(t)

dt
  =  d

dt
 v0   =  0 (16)

because the derivative of a constant is zero.
Figure 7
Motion with constant velocity.
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What we should begin to see from this example, is that
if we have the formula for x(t) then it is easy to use
calculus to figure out the particle’s velocity and accel-
eration.  Let us consider one more example.  Suppose
x(t) is given by the formula

x(t)  =  at + bt2 (17)

where a and b are constants.  Then the calculus formu-
las (5a) and (10a) give

v(t)  =  
dx(t)

dt
  =  a + b d

dt
 t2

        =  a + 2bt (18)

where we used d t2 /dt  =  2t.  Equation (10a) gives

a(t)  =  
dv(t)

dt
  =  2b (19)

The results in Equations (17),  (18) and (19) are graphed
in Figures (8a, b and c)  The position vs time a straight
line with a slope 2b, and the acceleration is a constant
2b.  Figure (8) therefore represents an example of
motion with constant acceleration.

Figure 8
Motion with constant acceleration.
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THE CONSTANT ACCELERATION
FORMULAS
Unfortunately life is not as simple as one might think
from the preceding example.  If you have the formula
for x(t), then you can calculate v(t) and a(t) very easily
by differentiation.  But usually you have to go the other
way.  From the physics you figure out what the accel-
eration is, then you have to work back to get v(t) and
finally x(t).  At best, this reverse process involves
integration which is typically quite a bit harder than
differentiation.

Let us work out an example where we know the
acceleration and have to integrate to get the velocity
and position.  We will take the easiest non trivial case
where the acceleration is constant.  The result will be
the constant acceleration formulas.

If we know a(t), the first step is to solve equation (10a)
by turning it into an integral equation as follows

a(t)  =  
dv(t)

dt
(10a)

First multiply both sides by dt.  (Remember that
physicists keep dt very small but finite, so that we can
move it around.)  We get

 dv(t) = a(t)dt (20)

Now integrate both sides of Equation (20) from time
t = 0 up to time t = T.  (This is called a definite integral.)
We get

 
dv(t)

0

T
= a(t)dt

0

T
(21)

The integral on the left is simply v(t) evaluated between
0 and T.

 
dv(t)

0

T
= v(t)

0

T
= v(t) – v(0) (22)

On the right side of Equation (21), we set  a(t) = a0  (for
constant acceleration) to get

 
a(t)dt

0

T
= a0 dt

0

T
= a0 dt

0

T

  
= a0 t

0

T
= a0T – a0×0 = a0T (23)

Using Equations (22) and (23) in (21) we get

v(T) - v(0)  =  a0T (24)

The next step is to recognize that Equation (24) applies
to any time T, so that we can replace T by t to get

v(t)  =  v(0) + a0t (25)

To emphasize that v(0), the particle’s speed at time t =
0, is not a variable, we will use the notation v 0   ≡  v0
and Equation (25) becomes

 v(t) = v0 + a0t
(26)

(If the steps we have used to derive Equation (26) were
familiar and comfortable, then your calculus back-
ground is in good shape and you should not have much
of a problem with calculus in reading this text.  If, on the
other hand what we did was strange, if the notation was
unfamiliar and the steps unpredictable, a review of
calculus is indicated.  What we have done in the
derivation of Equation (26) is use the concept of a
definite integral.  We will use definite integrals through-
out the course and now is the time to learn how to use
them.  You should also be sure that you can do simple
differentiations like d/dt at2   =  2at.)
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To get the other constant acceleration formula, start
with Equation (5a)

v(t)  =  
dx(t)

dt
(5a)

and multiply through by dt to get

dx(t)  =  v(t)dt (27)

Again integrate both sides from t = 0 to t = T to get

 
dx(t)

0

T
= v(t)dt

0

T
(28)

We can immediately do the integral on the left hand
side

 
dx(t)

0

T
= x(t)

0

T
= x(T) – x(0) (29)

At this point we cannot do the integral on the right side
of Equation (28) until we know explicitly how v(t)
depends on the variable t.  If, however, the acceleration
is constant, we can use Equation (26) for v(t) to get

 
v(t)dt

0

T
= (v0 + a0t)dt

0

T

= v0dt
0

T
+ a0tdt

0

T

= v0 dt
0

T
+ a0 tdt

0

T

(30)

Knowing that

 
t dt

0

T
= t2

2 (31)

we get

 
v(t)dt

0

T
= v0t

0

T
+ a0

t2

2 0

T

= v0T + a0
T2

2

(32)

Using Equations (29) and (32) in (28) gives

x T  - x0  =  v0T + 1
2

a0T2 (33)

Since Equation (33) applies for any arbitrary time T, we
can replace T by t to get

 x(t)  =  x0 + v0t + 1
2

a0t2 (34)

where we have written x0 for x(0), the position of the
particle at time t = 0.
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Three Dimensions
Equations (26) and (34) are the constant acceleration
formulas for motion in one dimension, along the x axis.
(We can, of course, choose the x axis to point any way
we want.)

If we want to describe motion in three dimensions with
constant acceleration, we repeat the steps leading to
Equations (26) and (34), but starting with (5b) and
(10b) for motion along the  y axis, and (5c) and (10c)
for motion along the z axis.  The steps are essentially
identical, and we end up with the six equations

 
x(t) = x0 + vx(0)t +

1
2

axt
2 (35a)

 
y(t) = y0 + vy(0)t +

1
2

ayt
2 (35b)

 
z(t) = z0 + vz(0)t +

1
2

azt
2 (35c)

 vx(t) = vx(0) t + axt (36a)

 vy(t) = vy(0) t + ayt (36b)

 vz(t) = vz(0) t + azt (36c)

where we have temporarily gone back to the notation
x(0) for x0, vx (0) for vx0, etc., and ax, ay, and az are the
x, y, z components of the assumed constant accelera-
tion.

In Chapter 3 we introduced a notation that allowed us
to conveniently express a vector S in terms of its
components Sx, Sy and Sz, by writing the components,
separated by commas, inside a parenthesis as follows

S  ≡  Sx,Sy,Sz (37)

Using this notation, we define the following vectors by
their components

R t   ≡  (x(t),y(t),z(t))  coordinate
vector

(38)

v t   ≡  (vx(t),vy (t),vz(t))  velocity
vector

(39)

a  ≡  ax,ay,az
 constant

acceleration
(40)

With this vector notation, the six constant acceleration
formulas (35a, b, c) and (36 a, b, c) reduce to the two
vector equations

x(t)  =  x(0) + v(0) t + 1
2

at2 (35)

v(t)  =  v0 (0) + at (36)

or using the notation R0 = R(0), v0 = v(0), we have

 R(t)  =  R0 + v0 t + 1
2

at2 (35’)

 v(t)  =  v0 + at (36’)

These are the set of vector equations that we tested in
our studies in Chapter 3 of instantaneous velocity with
constant acceleration.

We have gone through all the details of the derivation
of Equations (35) and (36), because they represent one
of the major successes of the use of calculus in the
prediction of motion.  Whenever a particle’s accelera-
tion a is constant, and we know a, R0, and v0, we can use
these equations to predict the particle’s position R(t)
and velocity v(t) at any time t in the future.



4-12  Calculus in Physics

PROJECTILE MOTION
WITH AIR RESISTANCE
In our experimental study of projectile motion, we saw
that when we used a styrofoam projectile, air resistance
affected the acceleration of the projectile.  From the
point of view that we are riding on the ball, we would
feel a wind in our face, blowing in a direction -v,
opposite to the velocity v of the projectile.  The effect
of this wind was to blow the acceleration vector back
as shown in Figure (3-28), reproduced here as Figure
(9).

We saw that the experimental vector  a3 was the accel-
eration g we would have in the absence of air resistance,

plus a correction  aair  which pointed in the direction of
the wind, in the -v direction as shown.

The magnitude aair  cannot accurately be determined
from the strobe photograph.  About all we can tell is that
aair  is zero if the ball is at rest, and increases as the
speed v   of the ball increases.  The simplest guess is that
aair  is proportional to  v  and we have the formula

  
aair = –Kv

simple
guess

(41)

Our strobe photograph does not eliminate the possibil-
ity that aair  is more complicated, something like

aair   = K2 v 2 (42)

or perhaps some combination like

aair   =  K1 v + K2 v 2 (43)

It turns out that the motion of a sphere through a liquid
(in our case a Styrofoam ball through air) has been
studied extensively by both physicists and engineers.
For slow speeds the motion is like Equation (41) but as
the speed increases it looks more like Equation (43) and
soon becomes even more complicated.  The only
simple fact is that aair  always points in the direction -v,
in the direction of the wind in our face (until vortex
shedding occurs).

As an exercise to test the ability of calculus to predict
motion, let us assume that our simple guess  aair  =  -Kv
is good enough.  We would then like to solve the
calculus Equations (5) and (10) for the case where the
acceleration is not constant, but is given by the formula

a  =  g - Kv (44)

where g is the constant acceleration due to gravity, v is
the instantaneous velocity of the particle, and K is what
we will call the air resistance constant.  Equation (44)
is pictured in Figure (9).

Figure 9
The acceleration produced by air resistance.
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Our first step is to introduce a coordinate system as
shown in Figure (10), and break the motion up into x
and y components.  Since the acceleration g due to
gravity points down, we have gx  =  0 and the vector
Equation (44) can be written as the two component
equations

ax  =  -Kvx              (gx = 0) (44a)

ay  =  g - Kvy (g = -980 cm/sec2) (44b)

The calculus Equations (10a, b) that we have to solve
become

ax  =  dvx 
dt

  =  - Kvx (45)

ay  =  
dvy 

dt
  =  g - Kvy (46)

Let us focus on the simpler of the two equations,
Equation (45) for the horizontal velocity of the projec-
tile.  We want to solve the equation

 
dvx(t)

dt
+ Kvx(t) = 0 (45’)

Suppose we try to solve Equation (45) using the same
steps we used to predict vx for constant acceleration
(Equations 20 through 26).  Multiplying through by dt
gives

dvx(t)  =  -Kvx(t)dt (47)

Integrating from t = 0 to t = T gives

dvx (t)
0

T

  =  - Kvx (t)dt
0

T

(48)

We can do the integral on the left, and remove the K
from the integral on the right giving

vx(t)|0

T
  =  vx(T) - vx(0)  =  -K vx(t)dt

0

T

(49)

Now we are in trouble, because we have to integrate
vx t  in order to find vx t .  We can’t do the integral until
we know the answer, and we have to do the integral to
get the answer.  It boils down to the fact that the
techniques we used to solve the calculus equations for
constant acceleration do not work now.  As soon as the
acceleration is not constant, we have a much more
difficult problem.
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DIFFERENTIAL EQUATIONS
Equation (45) is an example of what is called a differ-
ential equation.  (An equation with derivatives in it.)
Only in very special cases, as in our example of
constant acceleration, can these equations be solved in
a straightforward manner by integration.  In slightly
more complicated cases, these equations can be solved
by certain standard tricks that one learns in an advanced
calculus course on differential equations.  We will use
one of these tricks to solve Equation (45).

In general, however, differential equations cannot be
solved without numerical methods that are now handled
by digital computers.  If, for example we assumed that
the air resistance was proportional to v2 as in Equation
(42), then Equation (45) for the x component of veloc-
ity would be replaced by

dvx(t) 
dt

 + K2vx(t)2  =  0 (45a)

Equation (45a) is what is called a non linear  differen-
tial equation, the word non linear coming from the
appearance of the square of the unknown variable vx(t).

At the current time, there is no general way to solve non
linear differential equations except by computer.  Non
linear differential equations have marvelously compli-
cated features like chaotic behavior that have been
discussed extensively in the popular press in the last
few years.  It is currently a hot research topic.

The point of this discussion is that when we use
calculus to predict motion, a very slight increase in the
complexity of the problem can lead to enormous
increases in the difficulty in solving the problem.
When the projectile’s acceleration was constant, we
could easily solve the calculus equations to get the
constant acceleration formulas.  If the air resistance has
the simple form aair  =  -Kv, then we have to solve a
differential equation, but we can still get an answer, a
formula that predicts the motion of the particle.  If we
go up one step in complexity, if aair  is proportional to
the square of the speed, then we have a non linear
differential equation that we cannot solve without
numerical or approximation techniques.

Calculus gives marvelous results when we can solve
the problem.  We get formulas describing the motion at
all future times.  But we are extremely limited in the

kind of problems that can be solved.  Simple physical
modifications of a problem can turn an easy problem
into an unsolvable one.

Before inventing calculus, Isaac Newton invented a
simple step-by-step method that we will discuss in the
next chapter.  Newton’s step-by-step method has the
great advantage that slight complications in the physi-
cal setup lead to only slightly more work in obtaining
a solution.  We will see that it is almost no harder to
predict projectile motion with air resistance, even with
v2 terms, than it is to predict projectile motion without
air resistance.  The step-by-step method will allow us
to handle problems in this course, realistic problems,
that do not have a calculus solution.

There are two disadvantages to the step-by-step method,
however.  One, is that you get a numerical answer, like
an explicit orbit, rather than a general result.  In
contrast, the constant acceleration formulas describe
all possible trajectories for motion with constant accel-
eration.

The second problem is that in the step-by-step method,
a simple calculation is repeated many times, perhaps
thousands or millions of times to obtain an accurate
answer.  Before digital computers, lifetimes were spent
doing this kind of calculation by hand to predict the
motion of the moon.  But modern digital computers
have changed all that.  In minutes, the digital computer
running your word processor can do what used to be
months of work.

Solving the Differential Equation
We have essentially finished what we wanted to say
about applying calculus to the problem of projectile
motion with air resistance.  The gist is that adding air
resistance turns a simple problem into a hard one.  Even
for the simplest form of air resistance, aair  =  -Kv, we
end up with the differential equation

dvx (t) 
dt

 + Kvx(t)  =  0 (45)

which cannot be solved directly with integration.

Later in the course we will encounter several other
differential equations, one having the same form as
Equation (45).  When we meet these equations, we will
show you how to solve them.
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At this time, we do not really need the solution to
Equation (45).  This equation does not represent a basic
physics problem because our formula for air resistance
is an approximation of limited validity.  We include a
solution for those who are interested, who want to see
the problem completed now.  Those for whom calculus
is new or rusty may wish to skip to the next chapter.

The reason that differential equations are hard to solve
is that the solutions are curves or functions rather than
numbers.  For example, the solution to the ordinary
Equation x2 = 4 is the pair of numbers x = + 2 and x =
- 2.  But Equation (45) has the decaying exponential
curve shown in Figure (11) for a solution.  What this
curve tells us is that the vx or the horizontal motion, dies
out in time and the projectile will eventually have only
y motion.  After enough time the ball will be falling
straight down.

One of the standard techniques for solving differential
equations is to guess the answer and then plug your
guess into the equation to see if you are right.  When you
take a course in solving differential equations, you
learn how to make educated guesses.  If you had been
through such a course, you would guess that Equation
(45) should have an exponentially decaying solution,
and try a solution of the form

vx (t)  =  vx0 e-α t          (guess) (50)

where α and vx0 are constants whose values we wish
to find.

Differentiating Equation (50) gives
dvx (t) 

dt
  =  -vx0 αe-α t (51)

where we used the fact that

de-α t

dt
  =  - αe-α t (52)

Substituting Equations (50) and (51) into Equation (45)
gives

=  0 (53)

First note that the exponential function e-α t cancelled
out.  This indicates that we have guessed the correct
function.

Next note that vx0 cancels.  This means that any value
of vx0 in Equation (50) is a possible solution.  The
particular value we want will be determined by the
experimental situation.

What we have left is

α  =  K (54)
Thus the differential Equation (45) has the exponen-
tially decaying solution

vx (t)  =  vx0 e-Kt (55)

where the decay rate is the air resistance constant K .

For those of you who have actually had a course in
solving differential equations, see if you can solve for
the vertical motion of the projectile.  The differential
equation you have to solve is

dvy (t)
dt

  =  g - Kvy (t) (46)

The answer for long times turns out to be simple – the
projectile ends up coasting at a constant terminal
velocity.  See if you can get that result.

The answer is  vy  =  g/K 1 - e-Kt    if  vy = 0 at
t = 0.

t

vx

Figure 11
Air resistance causes the horizontal component
of the velocity to decay exponentially.
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Appendix A
SOLVING PROJECTILE MOTION
PROBLEMS
In high school physics texts and most college level
introductory physics texts, there is considerable em-
phasis on solving projectile motion problems.  A good
reason for this is that these problems provide practice
in problem solving techniques such as drawing clear
sketches, developing an orderly approach, and check-
ing units.  Not such a good reason is that, in texts that
rely solely on algebra and calculus, the only thing they
can solve in the early stages are projectile motion or
circular motion problems.

The disadvantage of over emphasizing projectile mo-
tion problems is that students begin to use the projectile
motion formulas as a general way of predicting motion,
using the formulas in circumstances where they do not
apply.  The important point to remember is that the
formulas  v = vi + at  and x  =  vit + 1/2at2 are very
limited in scope.  They apply only when the accelera-
tion a  is constant, a not very likely circumstance in the
real world.  The acceleration a  is not constant for
circular motion, projectile motion with air resistance,
satellite motion, the motion of electrons in a magnetic
field, and most interesting physics problems.

From the point of view that solving projectile motion
problems is basically for practice in problem solving
techniques, we will show you an orderly way of
handling these problems.  The approach which we will
illustrate using several examples should allow you with
practice to handle any constant acceleration problems
test makers throw at you.  In these examples, we are
demonstrating not only how the problem is solved but
also how you should go about doing it.

(Note -- in this appendix, all velocity vectors are
instantaneous velocities, thus we will not bother under-
lining them.)

Example A1
A boy throws a ball straight up into the air and catches
it (at the same height from which he threw it) 2 sec later.
How high did the ball go?

Solution:  To solve all projectile problems, we use the
equations

 
S = vit +

1
2

at2

 vf = vi + at

However these are vector equations. Using a coordi-
nate system in which the y axis is in the vertical
direction and the x axis is in the horizontal direction, we
get the following equations.

Vertical motion:

 
Sy = viy t +

1
2

ayt2

 vfy = viy + ayt

Horizontal motion:

 
Sx = vix t +

1
2

axt2

 vfx = vix + axt

Now projectiles near the surface of the earth accelerate
downward at a rate of nearly 980 cm/sec2.  This value
varies slightly at different points on the surface of the
earth, but is always quite close to 980 cm/sec2.  This
acceleration due to gravity is usually designated g;
since it is directed downward in the minus y  direction,
we have

 ay = –g = –980 cm/sec2 ( –32 ft/sec2)

ax  =  0

As a result, we get the equations
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Vertical motion:

(a) 
 

Sy = viy t –
1
2

gt2 (A1a)

(b)  vfy = viy – gt (A1b)

Horizontal motion:

(c)  Sx = vixt (A1c)

(d)  vfx = vix (A1d)

Horizontal motion and vertical motion are entirely
independent of each other.  We see, for example, from
Equation (A1d), that the horizontal speed of a projectile
does not change; but this has already been obvious
from the strobe photographs.

Now let us apply Equation (A1) to the situation where
the boy throws the ball straight up and catches it 2 sec
later.  Since there is no horizontal motion, we only need
equations (A1a, b).

One good technique for solving projectile problems is
to work up to and back from the top of the trajectory.
The reason is that at the top of the trajectory, Equations
(A1a, b) are very easily applied.

In our  problem, the ball spent half its time going up and
half its time falling; thus, the fall took 1 sec.  The
distance that it fell is

 
Sy = viy t –

1
2

gt2

where t is 1 sec, and  since we are starting at the top of
the trajectory.  We get

  
Sy = –

1
2

gt2 = –
1
2 × 32 ft/sec2 × 1 sec2

 Sy = –16 ft

The minus sign indicated the ball fell 16 ft below the
top of the trajectory.

Example A2

A ball is thrown directly upward at a speed of 48 ft/sec.
How high does it go?

Solution: First, find the time it takes to reach to top of
its trajectory.  We have

 viy = 48 ft/sec

  vfy = 0 at the top of the trajectory

From Equation (4-A1b) we have

 vfy = viy – gt

or

 
t =

viy

g
=

48 ft/sec

32 ft/sec2
= 1.5 sec

Now we can use Equation A1a  to calculate how high
the ball goes.

 
Sy = viyt –

1
2

gt2

We have   viy  =  48 ft/sec,  t = 1.5 sec to reach the top;
thus Sy, the distance to the top, is

  
Sy = 48

ft
sec ×1.5 sec –

1
2 × 32

ft

sec2 × (1.5 sec)2

 Sy = 72 ft – 36 ft = 36 ft
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Vertical motion.  A ball is thrown straight up at a speed
 viy = 48 ft/sec ;  how long a time t does it take to come

back to the ground?

Horizontal motion.  A ball travels horizontally at a
speed  vix = 83 ft/sec .  If it travels for a time t (result of
vertical motion problem) how far does it travel?

We see that the vertical motion problem is exactly the
one we solved in Example A-2,   viy = 48 ft/sec   in both
cases.  Thus, using the same solution, we find that the
ball takes 1.5 sec to go up and another 1.5 sec to come
down, for a total time of

t = 3 sec

Now solve the horizontal motion from

 Sx = vixt

We get

  Sx = 83 ft/sec × 3 sec = 249 ft

which is the answer.

Example A3

An outfielder throws a ball at a speed of 96 ft/sec at an
angle of 30° above the horizontal.  How far away from
the outfielder does the ball strike the ground?

Solution: When solving problems, the first step is to
draw a neat diagram of the situation, as in Figure (A1).
The first calculation is to find the x and y components
of   vi .  From our diagram we see that

  vix = vicos θ

= 96 ft/sec × 0.864

= 83 ft/sec

  viy = vi sin θ

= 96 ft/sec × 0.50

= 48 ft/sec

where cos 30° = 0.864 and sin 30° = 0.50.

Now we are in a position to separate the problem into
two parts – vertical motion and horizontal motion.
These may be treated as two independent problems.

Figure A1
Sketch of the problem. On the sketch, label the
symbols used, show what is given, and state what you
are to find. It is generally better to work the problem
in terms of letters, substituting numbers only at the
end, or at convenient breaks in the problem.
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Checking Units
It is easy to make a mistake when working a problem.
One of the best ways to avoid mistakes is to write out
the dimensions of each number used in the calculation;
if the answer has the wrong dimension, you will know
there is a mistake somewhere.  For example, in the
preliminary edition of this text the following formula
accidentally appeared.

 
S = vi +

1
2

at2

Putting in the dimensions, we find

  
S ft = vi

ft
sec

+
1
2

a
ft

sec2 × t sec
2

or

 
S ft = vi

ft
sec

+
1
2

at2 ft

Clearly the  (vi) ft /sec  has the wrong dimensions,
since we cannot add ft/sec to ft.  Thus, through a check
of the dimensions we would immediately spot an error
in this formula, even if we had no idea what the formula
is about.  To correct this formula, the  vi  must be
multiplied by t sec so that the result is    (vi)ft/sec× t sec
equals  (vi t) ft .

As another instance, in the solution of Example (A3)
we had

 t =
viy

g

At this point you might begin to worry that you have
made a mistake; your doubts will be dispelled, how-
ever, once dimensions are inserted

 
t sec =

viy ft/sec

g ft/sec2
=

viy

g
sec

Exercise A1
A 22-caliber rifle with a muzzle velocity of 600 ft/sec is
fired straight up.  How high does the bullet go?  How long
before it hits the ground?

Exercise A2
(The rifle of Exercise A1 is fired at an angle of 45°.  How
far does the bullet travel?  (Give answer in ft and in mi.)

Exercise A3
A right fielder is 200 ft from home plate.  Just at the time
he throws the ball into home plate, a runner leaves third
base and takes 3.5 sec to reach home plate.  If the
maximum height reached by the ball is 64 ft, did the
runner make it to home plate in time?  (Problem from J.
Orear, Fundamental Physics, Wiley, New York, 1961.)

Exercise A4
A steel ball is bouncing up and down on a steel plate
with a period of oscillation of 1 sec.  How high does it
bounce?  (Problem from J. Orear, Fundamental Phys-
ics, Wiley, New York, 1961.)

Exercise A5
A small rocket motor is capable of providing an accel-
eration of 0.01 g to a space capsule.  If the capsule starts
from a far-out space station and the rocket motor runs
continuously, how far away is the capsule at the end of
1 year?  What is the capsule’s speed relative to the
space station at the end of the year?

Exercise A6

A car traveling at 60 mi/hr strikes a tree.  Inside the car
the driver travels 1 ft from the time the car struck the tree
until he is at rest.  What is the deceleration of the driver
if his deceleration is constant?  Give the answer in ft/sec2

and in g’s.
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Exercise A7
During volcanic eruptions, chunks of solid rock can be
blasted out of the volcano.  These projectiles are called
volcanic blocks.  Figure (2) shows a cross-section of Mt.
Fuji, in Japan.

At what initial speed  v0 would a block have to be
ejected, at 45°, in order to fall at the foot of the volcano
as shown.

What is the time of flight?

(Problem from Halliday and Resnick.)

Hint Use the vector equation

 S = vit + 1
2 at2

which is illustrated in Figure 3-34 reproduced to the
right. In this problem S is the total displacement of the
rock, from the time it left the volcano until it hit the
ground. Separate the vector equation into x and y
components.

V

33km
Mt Fuji

9.4km

45º

0

Figure A2
The farthest out blocks are the ones ejected at the greatest speed  v0 at an
angle of 45°. By noting that the most distant blocks are 9.4 km away, you
can thus determine the maximum speed at which the blocks were ejected. 

iV~
t

S 

212/ at

Figure 3-34 (reproduced)



CHAPTER 5 COMPUTER
PREDICTION OF MOTION

Chapter 5
Computer
Prediction
of Motion

STEP-BY-STEP CALCULATIONS
In the last chapter we saw that for the special case of
constant acceleration, calculus allowed us to obtain a
rather remarkable set of formulas that predicted the
object’s motion for all future times (as long as the
acceleration remained constant).  We ran into trouble,
however, when the situation got a bit more compli-
cated.  Add a little air resistance and the analysis using
calculus became considerably more difficult.  Only for
the very simplest form of air resistance are we able to
use calculus at all.

On the other hand, adding a little air resistance had
only a little effect on the actual projectile motion.
Without air resistance the projectile’s acceleration
vectors pointed straight down and were all the same
length, as seen in Figure (3-27).  Include some air
resistance using the Styrofoam projectile, and the
acceleration vectors tilted slightly as if blown back by
the wind one would feel riding along with the ball, as
seen in Figure (3-31).  Since projectile motion with air
resistance is almost the same as that without, one
would like a method of predicting motion that is almost
the same for the two cases, a method that becomes only
a little harder if the physical problem becomes only a
little more complex.

The clue for developing such a method is to note that
in our analysis of strobe photographs, we have been
breaking the motion into short time intervals of
length ∆t.  During each of these time intervals, not
much happens.  In particular, the Styrofoam
projectile’s acceleration vector did not change much.
Only over the span of several intervals was there a
significant change in the acceleration vector.  This
suggests that we could predict the motion by assum-
ing that the Styrofoam ball’s acceleration vector
was essentially constant during each time interval,
and at the end of each time step correct the accelera-
tion vector in order to predict the motion for the next
time step.  In this way, by a series of short calcula-
tions, we can predict the motion over a long time
period.  This is a rough outline of the step-by-step
method of predicting motion that was originally
developed by Isaac Newton and that we will discuss
in this chapter.

The problem with the step-by-step prediction of motion
is that it quickly gets boring.  You are continually
repeating the same calculation with only a small
change in the acceleration vector.  Worse yet, to get
very accurate results you should take very many, very
small, time steps.  Each calculation is almost identical
to the previous one, and the process becomes tedious.
If these calculations are done by hand, one needs an
enormous incentive in order to obtain meaningful
results.
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COMPUTER CALCULATIONS
Because of the tedium involved, step-by-step calcula-
tions were used only in desperate circumstances until
the invention of the digital computer in the middle of
the twentieth century.  The digital computer is most
effective and easiest to use when we have a repetitive
calculation involving many, very similar steps.  It is the
ideal device for handling the step-by-step calculations
described above.  With a digital computer we can use
very small time steps to get very accurate results, doing
thousands or millions of steps to predict far into the
future.  We can cover the same range of prediction as
the calculus-derived formulas, but not encounter sig-
nificant difficulties when there is a slight change in the
problem, such as the addition of air resistance.

To illustrate how to use the computer to handle a
repetitive problem, we will begin with the calculation
and plotting of the points on a circle.  We will then go
back to our graphical analysis of strobe photographs
and see how that analysis can be turned into a series of
steps for a computer prediction of motion.

Calculating and Plotting a Circle
Figure (1) shows 100 points on the circumference of
a circle of radius r.  To make this example somewhat
similar to the analysis of strobe photographs, we will
choose a circle of radius r = 35 cm, centered at
x = 50, y = 50, so that the entire circle will fit in the
region x = 0 to 100, y = 0 to 100, as shown.  The i th
point around the circle has x and y coordinates given
by

  xi = r cos θi

  yi = r sinθi (1)

where  θi  
, the angle to the i th point, is given by

  
θi =

360
100 * i degrees =

2π
100 * i radians

(We know that it is easier to draw a circle using a
compass than it is to calculate and plot all these
individual points.  But if we want something more
complicated than a circle, like an ellipse or Lissajous
figure, we cannot use a compass.  Then we have to
calculate and plot individual points as we are doing.)

If we wrote out the individual steps required to
calculate and plot these 100 points, the result might
look like the following:

i = 0

θ0  =  (2π/100)*0  =  0 radians

x0  =  50 + r cos(θ0)  =  50 + 35 cos(0)

      =  50 + 35*1  =  85

y0  =  50 + r sin(θ0)  =  50 + 35 sin(0)

      =  50 + 35*0  =  50

Plot a point at (x = 85,  y = 50)

r cos(  )θ

r 
si

n(
  ) θ

y

x

50

50

i

i = 99

θ

r
i

i

x

y

i = 0

Figure 1
Points on a circle.
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i = 1

θ1  =  (2π/100)*1 =  .0628 radians

x1  =  50 + r cos(θ1)  =  50 + 35 cos(.0628)

      =  50 + 35*.9980  =  84.93

y1  =  50 + r sin(θ1)  =  50 + 35 sin(.0628)

      =  50 + 35*.0628  =  52.20

Plot a point at (x = 84.93,  y = 52.20)

...

i = 50

θ50 = (2π/100)*50  =  π radians

x50  =  50 + r cos(θ50)  =  50 + 35 cos(π)

      =  50 + 35*(–1)  =  15

y50  =  50 + r sin(θ50)  =  50 + 35 sin(π)

      =  50 + 35*0  =  50

Plot a point at (x = 15, y = 50)

...

In the above, not only will it be tedious doing the
calculations, it is even tedious writing down the steps.
That is why we only showed three of the required 100
steps.

The first improvement is to find a more efficient way
of writing down the steps for calculating and plotting
these points.  Instead of spelling out all of the details of
each step, we would like to write out a short set of
instructions, which, if followed carefully, will give us
all the steps indicated above.  Such instructions might
look as follows:

1)  Let r = 35
2)  Start with i = 0

3)  Let   θθi = (2ππ /100) * i

4)  Let   xi = 50 + r cos θθ i

5)  Let   yi = 50 + r sin θθ i

6)  Plot a point at  xi,yi

7)  Increase i by 1
8)  If i is less than 100, then go back to step 3

and continue in sequence

9)  If you got here, i = 100 and you are done

Figure 2
A program for calculating the points around a circle.

Exercise 1

Follow through the instructions in Figure (2) and see that
you are actually creating the individual steps shown
earlier.
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PROGRAM FOR CALCULATION
The set of instructions shown in Figure (2) could be
called a plan or program for doing the calculation.  A
similar set of instructions typed into a computer is
called a computer program.  Our instructions in Figure
(2) would not be of much use to a person who spoke
only German.  But if we translated the instructions into
German, then the German speaking person could fol-
low them.  Similarly, this particular set of instructions
is not of much use to a computer, but if we translate
them into a language the computer “understands”, the
computer can follow the instructions.

The computer language we will use in this course is
called BASIC, a language developed at Dartmouth
College for use in instruction.  The philosophy in the
design of BASIC is that it be as much as possible like
an ordinary spoken language so that students can
concentrate on their calculations rather than worry
about details of operating the computer.  Like human
languages, the computer language has evolved over
time, becoming easier to use and clearer in meaning.
The version of BASIC we will use is called True
BASIC, a modern version of BASIC written by the
original developers of the language.

The way we will begin teaching you the language
BASIC is to translate the set of instructions in Figure
(2) into BASIC.  We will do this in several steps,
introducing a few new ideas at a time, just as you learn
a few rules of grammar at a time when you are learning
a foreign language.  We will know that we have arrived
at the actual language BASIC when the computer can
successfully run the program.  It is not unlike testing
your knowledge of a foreign language by going out in
the street and seeing if the people in that country
understand you.

The DO LOOP
In a sense, the set of instruction in Figure (2) is already
in the form of sloppy BASIC, or you might say pidgin
BASIC.  We only have to clean up a few grammatical
rules and it will work well.  The first problem we will
address is the statement in instruction #8.

8)  If i is less than 100, then go back to step 3
and continue in sequence

There are two problems with this instruction.  One is
that it is long and wordy.  Computer languages are
usually designed with shorter, crisper instructions.  The
second problem is that the instruction relies on number-
ing instructions, as when we say “go back to step 3”.
There is no problem with numbering instructions in
very short programs, but clarity suffers in long pro-
grams.  The name “step 3” is not a particularly descrip-
tive name; it does not tell us why we should go back
there and not somewhere else.  It is much better to state
that we have a cyclic calculation, and that we should go
back to the beginning of this particular cycle.

The grammatical construction we will use, one of the
variations of the so-called “DO LOOP”, has the follow-
ing structure.  We mark the beginning of the cyclic
process with the word “DO”, and end it with the
command “LOOP UNTIL...”.  Applied to our instruc-
tions in Figure (2), the DO LOOP would look as
follows:

LET r = 35

LET i = 0

DO

     LET   θi = (2π /100) * i

     LET   xi = 50 + r cos θ i

     LET   yi = 50 + r sinθ i

     Plot a point at  xi,yi

     Increase i by 1

LOOP UNTIL i = 100
All done

Figure 3
Introducing the DO LOOP.
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In the instructions in Figure (3), we begin by establish-
ing that r = 35 and that i will start with the value 0.  Then
we mark the beginning of the cyclic calculation with
the command DO, and end it with the command
“LOOP UNTIL i = 100”.  The idea is that we keep
repeating all the stuff between the “DO” line and the
“LOOP...” line until our value of i has been incrimi-
nated up to the value i = 100.  When i reaches 100, then
the loop command is ignored and we have finished both
the loop and the calculation.

The LET Statement
Another major grammatical rule is needed before
Figure (3) becomes a BASIC program that can be read
by the computer.  That involves a deeper understanding
of the LET statement that appears in many of the
instructions.

One example of a LET statement is the following

LET i = i + 1 (2)

At first sight, statement (2) looks a bit peculiar.  If we
think of it as an equation, then we would cancel the i’s
and be left with

LET  =  1

which is clearly nonsense.  Thus the LET statement is
not really an equation, and we have to find out what it
is.

The LET statement combines the computer’s ability to
do calculations and to store numbers in memory.  To
understand the memory, think of the mail boxes at the
post office.  Above each box there is a name like
“Jones”, and Jones’ mail goes inside the box.  In the
computer, each memory cell has a name like “i”, and a
number goes inside the cell.  Unlike a mail box,  which
can hold several letters, a computer memory cell can
store only one number at a time.

The rule for carrying out a LET statement like

LET i = i + 1

is to first evaluate the right hand side and store the
results in the memory cell mentioned on the left side.  In
this example the computer evaluates i + 1 by first
looking in cell “i” to see what number is stored there.
It then adds 1 to that stored value to get the value (i + 1).
To finish the command, it looks for a cell labeled “i”,
removes the number stored there and replaces it with
the value just calculated.  The net result of all this is that
the numerical value stored in cell i is increased by 1.

There is a good mnemonic that helps you remember
how a LET statement works.  In the command LET
i = i + 1, the computer takes the old value of i, adds
one to get the new value, and stores that in cell i.  If
we write the LET statement as

LET   inew = iold + 1

then it is clear what the computer is doing, and we are
not tempted to cancel the i’s.  In this text we will often
use the subscripts “old” and “new” to remind us what
the computer is to do.  When we actually type in the
commands, we will omit the subscripts “old” and
“new”, because the computer does that automatically
when performing a LET command.

With this understanding of the LET statement, our
program for calculating the points on a circle becomes

LET r = 35

LET i = 0

DO

     LET   θi = (2π /100) * i

     LET   xi = 50 + r cos θ i

     LET   yi = 50 + r sinθ i

     Plot a point at  xi,yi

     LET   inew = iold + 1

LOOP UNTIL i = 100

All done

Figure 4
Handeling the LET statement.
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In Figure (4), we begin our repetitive DO LOOP by
calculating a new value of the angle θ.  This new
value is stored in the memory cell labeled θ, and
later used to calculate new values of x = r cosθ and
y = r sin θ.  Since we are using the updated values of

θ, we can drop the subscripts i on the variables  θ i,

 xi, yi
 .  After we plot the point at the new coordinate

(x, y), we calculate the next value of i with the
command LET i = i + 1, and then go back for the next
calculation.

To get a working BASIC program, there are a few other
small changes that are easily seen if we compare our
program in Figure (4) with the working BASIC pro-
gram in Figure (5).  Let us look at each of the changes.

Variable Names
Our command

LET θ = (2*π/100)*i

has been rewritten in the form

LET Theta = (2*Pi/100)*i

Unfortunately, only a few special symbols are avail-
able in the font  chosen by True BASIC.  When we want
a symbol like θ and it is not available, we can spell it out
as we have done.

We have spelled out the name “Pi” for π, because
BASIC understands that the letters “Pi” stand for the
numerical value of π.  (“Pi” is what is called a reserved
word in True BASIC.)

Multiplication
We are used to writing an expression like

r cos(θ)

and assuming that the variable r multiplies the function

cos(q).  In BASIC you must always use an “*” for

multiplication, thus the correct way to write r cos(θ) is

r*cos(θ)

Similarly we had to write 2*Pi  rather than 2Pi in the line
defining Theta.

Plotting a Point
Our command

Plot a point at (x, y)

becomes in BASIC

PLOT x,y

It is not as descriptive as our command, but it works the
same way.

Figure 5 
Listing of the BASIC program.
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Comment Lines
In a number of places in the BASIC program we have
added lines that begin with an exclamation point "!".
These are called “comment lines” and are included to
make the program more readable.  A comment line has
no effect on the operation of the program.  The com-
puter ignores anything on a line following an exclama-
tion point.  Thus the two lines

LET i = i + 1

LET i = i + 1           ! Increment i

are completely equivalent.  (If you write a command
that does something peculiar, you can explain it by
adding a comment as we did above.)

Plotting Window
The only really new thing in the BASIC program of
Figure (5) is the SET WINDOW command.  We are
going to plot a number of points whose x and y values
all fall within the range between 0 and 100.  We have
to tell the computer what kind of scale to use when
plotting these points.

In the command

SET WINDOW -40, 140, -10, 110

the computer adjusts the plotting scales so that the
computer screen starts at -40 and goes to +140 along the
horizontal axis, and ranges from -10 to + 110 along the
vertical axis, as shown in Figure (6).

This setting gives us plenty of room to plot anything in
the range 0 to 100 as shown by the dotted square in
Figure (6).

When we are plotting a circle, we would like to have it
look like a circle and not get stretched out into an
ellipse.  In other words we would like a horizontal line
10 units long to have the same length as a vertical line
10 units long.  True BASIC for the Macintosh com-
puter could have easily have done this because Macin-
tosh pixels are square, so that equal horizontal and
vertical distances should simply contain equal num-
bers of pixels.  (A pixel is the smallest dot that can be
drawn on the screen.  A standard Macintosh pixel is 1/
72 of an inch on a side, a dimension consistent with
typography standards.)

However True BASIC also works with IBM comput-
ers where there is no standard pixel size or shape.  To
handle this lack of standardization, True BASIC left it
up to the user to guess what choice in the SET WIN-
DOW command will give equal x and y dimensions.
This is an unfortunate compromise.

If you are using a Macintosh MacPlus, Classic or SE,
one of the computers with the 9" screens, set the
horizontal dimension 1.5 times bigger than the vertical
one, use the full screen as an output window, and the
dimensions will match (circles will be circular and
squares square.) If you have any other screen or com-
puter, you will have to keep adjusting the SET WIN-
DOW command until you get the desired results.
(Leave the y axis range from –10 to  +110, and adjust
the x axis range. For the 15" screen of the iMac, we got
a round circle plot for x values from –33 to  +133.)110

–10

–40 140

0

100

100

Figure 6
Using the SET WINDOW command.



5-8  Computer Prediction of Motion

Practice
The best way to learn how to handle BASIC programs
is to start with a working program like the one in Figure
(5), and make small modifications and see what hap-
pens.  Below are a series of exercises designed to give
you this practice, while at the same time introducing
some techniques that will be useful in the analysis of
strobe photographs.  When you finish these exercises,
you will be ready to use BASIC as a tool for predicting
the motion of projectiles, both without and with air
resistance, which is the subject of the remainder of the
chapter.

Exercise 2   A Running Program
Get a copy of True BASIC (preferably version 2.0 or
later), launch it, and type in the program shown in Figure
(5).  Type it in just as we have printed it, with the same
indentations at the beginning of the lines, and the same
comments.  Then run the program.  You should get an
output window that has the circle of dots shown in Figure
(7).

If something has gone wrong, and you do not get this
output, first check that you have typed exactly what we
printed in Figure 5.  If that doesn’t work, get help from a
friend, advisor, computer center, whatever.  Sometimes
the hardest part of programming is turning on the
equipment and getting things started properly.

Once you get your circle of dots, save a copy of the
program.

Exercise 3  Plotting a Circular Line
It’s pretty hard to see the dots in Figure (7).  The output
can be made more visible if lines are drawn connecting
the dots to give us a circular line.  In BASIC it is very easy
to connect the dots you are plotting.  You simply add a
semicolon after the PLOT command.  I.e., change the
command

PLOT x, y      ! Plots dots

to the command

PLOT x, y;     ! Plots lines

The result is shown in Figure (8).

Modify your program by changing the PLOT command
as shown, and see that your output looks like Figure (8).

(Optional—There is a short gap in the circle on the right
hand side.  Can you modify your program to eliminate
this gap?)

Figure 8
The circle of lines plotted by adding a
semicolon to the end of the PLOT command.

Figure 7
The circle of dots plotted by the
program shown in Figure (5).
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Exercise 4   Labels and Axes
Although we have succeeded in drawing a circle, the
output is fairly bare.  It is impossible to tell, for example,
that we have a circle of radius 35, centered at x = y = 50.
We can get this information into the output by drawing
axis and labeling them.  This can be done by adding the
following lines near the beginning of the program, just
after the SET WINDOW command

The results of adding these lines are shown in Figure (9).
The BOX LINES command drew a box around the
region of interest, and the three PLOT TEXT lines gave
us the labels seen in the output.

Add the 5 lines shown above to your program and see
that you get the results shown in Figure (9).  Save a copy
of that version of the program using a new name.  Then
find out how the BOX LINES and PLOT TEXT com-
mands work by making some changes and seeing what
happens.

Exercise 5a   Numerical Output
Sometimes it is more useful to see the numerical results
of a calculation than a plot.  This can easily be done by
replacing the PLOT command by a PRINT command.

To do this, go back to your original circle plotting
program (the one shown in Figure (5) which we asked
you to save), and change the line

PLOT x, y

to the two lines

PRINT "x = "; x,    "y = ";y

!PLOT x, y

What we have done is added the PRINT line, and then
put an exclamation point at the beginning of the PLOT
line so that the computer would ignore the PLOT com-
mand.  (We left the PLOT line in so that we could use it
later.)  If we ran the program we get a whole bunch of
printing, part of which is shown in Figure (10). Do this
and see that you get the same results.

Figure 10
If we print the coordinates of every
point, we get too much output.

Figure 9
A box, drawn by the BOX LINES command
makes a good set of axes.  You can then plot
text where you want it.
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Selected Printing (MOD Command)
The problem with the output in Figure (10) is that we
print out the coordinates of every point, and we may
not want that much information.  It may be more
convenient, for example, if we print the coordinates
for every tenth point. To do this, we use the following
trick.  We replace the PRINT command

PRINT "x  =  ";x,    "y  =  ";y

by the command

IF  MOD(i,10)  THEN  PRINT "x  =  ";x,    "y  =  ";y

To understand what we did, remember that each time
we go around the loop, the variable i is incriminated by
1.  The first time i = 0, then it equals 1, then 2, etc.

The function MOD( ), stands for the mathematical
term “modulus”.  If we count modulus 3, for ex-
ample, we count: 0, 1, 2, and then go back to zero
when we hit 3.  Comparing regular counting with
counting MOD 3, we get:

regular counting: 0 1 2 3 4 5 6 7 8 9

counting MOD 3: 0 1 2 0 1 2 0 1 2 0

Counting MOD 10, we go:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, ... etc.  Every time
we get up to a power of ten, we go back to zero.

The command MOD(i, 10) means evaluate the number
i counting modulus 10.  Thus when i gets to 10, MOD(i,
10) goes back to zero.  When i gets to 20, MOD(i, 10)
goes back to zero again.  Thus as i increases, MOD(i,
10) goes back to zero every time i hits a power of 10.

In the command

IF  MOD(i,10)  THEN  PRINT "x  =  ";x,    "y  =  ";y

no printing occurs until i increases to a power of ten.
Then we do get a print.  The result is that with this
command the coordinates of every tenth point are
printed, and there is no printing for the other points, as
we see in Figure (11).

Exercise 5b

Take your program from Exercise (5a), modify the
print command with the MOD statement, and see that
you get the results shown in Figure (11).  Then figure
out how to print every 5th point or every 20th point.
See if it works.

Figure 11
The coordinates of every tenth point is
printed when we use the MOD command.
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Next add in the subroutine lines as shown in Figure (13)
(your program should look just like Figure 13) and see
if you get the results shown in Figure (12).  When you
have a running program, figure out how to make the
crosses bigger or smaller.  How can you plot twice as
many crosses?

Exercise 6   Plotting Crosses
Our last exercise will be to have the computer plot both
a circle, and a set of crosses located at every tenth point
along the circle as shown in Figure (12).  This is about
as fancy a plot as we will need in the course, so that you
are almost through practicing the needed fundamen-
tals.

To plot the crosses seen in Figure (12) we added what
is called a “subroutine” shown at the bottom of Figure
(13).

To get the program shown in Figure (13), go back to the
program of Exercise (3) (we asked you to save it), and
add the command

IF MOD(i, 10) = 0 THEN CALL CROSS

where “CROSS” is the name of the subroutine at the
bottom of Figure (13).  You can see that the
IF MOD(i,10) = 0   part of the command has the
subroutine called at every tenth point.

Figure 12
Here we use the MOD command and a
subroutine to plot a cross at every tenth dot.

Figure 13
The complete BASIC program for drawing
the picture shown in Figure (12).
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PREDICTION OF MOTION
Now that we have the techniques to handle a repetitive
calculation we can return to the problem of using the
step-by-step method to predict the motion of a projec-
tile.  The idea is that we will convert our graphical
analysis of strobe photographs, discussed in Chapter 3,
into a pair of equations that predict the motion of the
projectile one step at a time.  We will then see how these
equations can be applied repeatedly to predict motion
over a long period of time.

Figure (14a) is essentially our old Figure (3-16)
where we used a strobe photograph to define the
velocity of  the projectile in terms of the projectile’s
coordinate vectors  R i and  R i+1.  The result was

  
vi =

Si
∆t

=
R i+1 – R i

∆t (4)

If we multiply Equation (4) through by ∆t and
rearrange terms, we get

  R i+1 = R i + vi∆t (5)

which is the vector equation pictured in Figure (14a).

Equation (5) can be interpreted as an equation that
predicts the projectile’s new position  R i+1  in terms
of the old position  R i, the old velocity vector vi, and
the time step ∆t.  To emphasize this predictive nature
of Equation (5), let us rename  R i+1 the new vector

 R new, and the old vectors  R i and vi, as  R old and  vold.
With this renaming, the equation becomes

  R new = R old + vold*∆t (6)

which is illustrated in Figure (14b).

Equation (6) predicts the new position of the ball
using the old position and velocity vectors.  To use
Equation (6) over again to predict the next new
position of the ball, we need updated values for R
and v.  We already have Ri + 1 

or Rnew  for the updated
coordinate vector; what we still need is an updated
velocity vector vi+1 or vnew.

Ri+1

Ri

S  = i V ∆t i

R    =i+1 R   +i Si

R   +i V ∆t iR    =i+1

Rnew

Rold

V    ∆t old

R      =new R     old V    ∆t old+

Figure 14b
So that we do not have to number every point
in our calculation, we label the current
position "old", and the next position "new".

Figure 14a
To predict the next position   R i + 1 of the ball, we add the
ball's displacement    Si = vi ∆∆t  to the present position   R i .
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To obtain the updated velocity, we use Figure
(3-17), drawn again as Figure (15a), where the
acceleration vector ai was defined by the equation

ai  =  
vi + 1 – vi

∆ t
(7)

Multiplying through by ∆t and rearranging terms,
Equation (7) becomes

vi + 1  =  vi + ai∆ t (8)
which expresses the new velocity vector 

 
in terms of

the old velocity vi 
and the old acceleration ai, as

illustrated in Figure (15a).  Changing the subscripts
from i + 1 and i to “new” and “old” as before, we get

vnew  =  vold + aold* ∆ t (9)
as our basic equation for the projectile’s new velocity.

We have now completed one step in our prediction of
the motion of the projectile.  We start with the old
position and velocity vectors  R old and vold, and used
Equations (6) and (9) to get the new vectors Rnew 

and
vnew.  To predict the next step in the motion, we change
the names of Rnew, vnew to  R old and vold and repeat
Equations (6) and (9).  As long as we know the
acceleration vector ai  at each step, we can predict the
motion as far into the future as we want.

V     new

V     old

V     old

A ∆t

V     new V     old= + A*∆t

There are two important criteria for using this step-
by-step method of predicting motion described above.
One is that we must have an efficient method to
handle the repetitive calculations involved.  That is
where the computer comes in.  The other is that we
must know the acceleration at each step.  In the case
of projectile motion, where a is constant, there is no
problem.  We can also handle projectile motion with
air resistance if we can use formulas like

aair  =  – Kv

a  =  g + aair

shown in Figure (3-31).  To handle more general
problems, we need a new method for determining the
acceleration vector.  That new method was devised by
Isaac Newton and will be discussed in the chapter on
Newtonian Mechanics.  In this chapter we will focus on
projectile motion with or without air resistance so that
we know the acceleration vectors throughout the mo-
tion.

Rnew

Rold

V     new

A
V     new V old–

V     old

( )
= ∆t

Figure 15b
Yhe value of  vnew is obtained from the
definition of acceleration     A = ( vnew – vold) /∆∆t .

Figure 15a
Once we get to the "new" position, we will
need the new velocity vector  vnew  in order
to predict the next new position.
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TIME STEP AND
INITIAL CONDITIONS
Equation (6) and (9) are the basic components of our
step-by-step process, but there are several details to be
worked out before we have a practical program for
predicting motion.  Two of the important ones are the
choice of a time step ∆t, and the initial conditions that
get the calculations started.

In our strobe photographs we generally used a time step
∆t = .1 second so that we could do effective graphical
work.  If we turn the strobe up and use a shorter time
step, then the images are so close together, the arrows
representing individual displacement vectors are so
short, that we cannot accurately add or subtract them.
Yet if we turn the strobe down and use a longer ∆t, our
analysis becomes too coarse to be accurate.  The choice
∆t = .1 sec is a good compromise.

When we are doing numerical calculations, however,
we are not limited by graphical techniques and can get
more accurate results by using shorter time steps.  We
will see that for the analysis of our strobe photographs,
time steps in the range of .01 second to .001 second
work well.  Much shorter time steps, like a millionth of
a second, greatly increase the computing time required
while not giving more accurate results.  If we use
ridiculously short time steps like a nanosecond, the
computer must do so many calculations that the round-
off error in the computer calculations begins to accu-
mulate and the answers get worse, not better.  Just as
with graphical work there is an optimal time step.
(Later we will have some exercises where you try
various time steps to see which give the best results.)

Figure 17
The displacement v0  ∆∆t  is just half the displacement

  (R1 – R–1) .  This is an exact result for projectile
motion, and quite accurate for most strobe
photographs.

R0

V0–

V 0

0

R–1
R1

V0

– R–1
R1(

 )

–  

– R–1R1(  )V 0 =
(2  ∆t)∗

–1

0 1

–

∆t

Figure 16
By using a very short time Step dt in our computer
calculation, we will closely follow the continuous
path shown by the dotted lines.  Thus we should use
the instantaneous velocity vector v0 , rather than the
strobe velocity v0  as our initial velocity.
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When we use a short time step of .01 seconds or less for
analyzing our projectile motion photographs, we are
close to what we have called the instantaneous velocity
illustrated in Figure (3-32).  But, as shown in Figure
(16), the instantaneous velocity v0 and the strobe
velocity v0 are quite different if the strobe velocity was
obtained from a strobe photograph using ∆t = .1
second.  To use the computer to predict the motion we
see in our strobe photographs, we need the initial
position R0 and the initial velocity v0 as the start for our
step-by-step calculation.  If we are going to use a very
short time step in our computer calculation, then our
first velocity vector should be the instantaneous veloc-
ity v0, not the strobe velocity .

This does not present a serious problem, because
back in Chapter 3, Figure (3-33) reproduced here as
Figure (17), we showed a simple method for obtain-
ing the ball’s instantaneous velocity from a strobe
photograph.  We saw that the instantaneous velocity
v0 was the average of the previous and following
strobe velocities  v–1 and v1:

v0
 

=
v–1 + v1

2
(10)

where   v–1 = S–1 /∆t   and   v0 = S0 /∆t.

However, the sum of the two displacement vectors
 (S–1 + S0) is just the difference between the coor-

dinate vectors  R1 and  R–1 as shown in Figure (17).
Thus the instantaneous velocity of the ball at Posi-
tion (0) in Figure (17) is given by the equation

  
v0 =

R1 – R–1
∆t (11)

If we use Equation (11) as the formula for the initial
velocity in our step-by-step calculation, we are starting
with the instantaneous velocity at Position (0) and can
use very short time intervals in the following steps.

To avoid confusing the longer strobe time step and the
shorter computer time step that we will be using in the
same calculation, we will give them two different
names as follows.  We will use ∆t for the longer strobe
time step, which is needed for calculating the initial
instantaneous velocity, and the name dt for the short
computer time step.

∆t = time between strobe flashes

dt = computer time step (12)

This choice of names is more or less consistent with
calculus, where ∆t is a small but finite time interval and
dt is infinitesimal.
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AN ENGLISH PROGRAM
FOR PROJECTILE MOTION
We are now ready to write out a program for predicting
the motion of a projectile.  The first version will be what
we call an “English” program -- one that we can easily
read and understand.  Once we have checked that the
program does what we want it to do, we will see what
modifications are necessary to translate the program
into BASIC.

The first version of the English projectile motion
program is shown in Figure (18).  This program is
designed to predict the motion of the steel ball projec-
tile shown in Figure (3-8) and used for the drawings
seen in Figures (15) and (16).

In the program we begin with a statement of the initial
conditions – the starting point for the analysis of the
motion.  In this photograph, the strobe time step is ∆t =
.1 seconds, and we are beginning the calculations at the
position labeled R0 in Figure (16).  The instantaneous
velocity at that point is given by the formula
v0 = (R1 – R-1)/2∆t as shown in Figure (17).  These
results appear in the program in the lines

LET  ∆t = .1

LET  Rold = R0

  LET Vold = (R1 – R–1) (2*∆t )(R1 – R–1) (2*∆t )

Our new thing we are going to do in this program is
keep track of the time by including the variable T in
our calculations.  We begin by setting T = 0 in the
initial conditions, and then increment the clock by a
computer time step dt every time we go around the
calculation loop.  This way T will keep track of the
elapsed time throughout the calculations.  The clock
is initialized by the command

 LET Told = 0

The computer time step dt plays a significant role in the
program because we will want to adjust dt so that each
calculational step is short enough to give accurate
results, but not so short to waste large amounts of
computer time.  We will start with the value dt = .01
seconds, as shown by the command

LET dt = .01

Later we will try different time steps to see if the results
change or are stable.

              English Program

! --------- Initial conditions
LET  ∆t = .1

LET  Rold = R0

  LET Vold = (R1 – R-1) 2*∆t(R1 – R-1) 2*∆t

 LET Told = 0

! --------- Computer Time Step
LET dt = .01

! --------- Calculational loop
DO

LET  Rnew = Rold + Vold*dt

LET  A = g

LET  Vnew = Vold + A*dt

LET  Tnew = Told + dt

PLOT R

LOOP UNTIL T > 1

Figure 18
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The calculational loop itself is bounded by the DO and
LOOP UNTIL commands:

DO

...

...

...
             LET Tnew = Told + dt

...

LOOP UNTIL T > 1

Remember that with a DO – UNTIL loop there is a
test to see if the condition, here T > 1, is met.  If T has
not reached 1, we go back to the beginning of the
loop and repeat the calculations.  Because of the
command  LET Tnew = Told + dt , T increments by dt
each time around.  At some point T will get up to one,
the condition will be met, and we leave the loop.  At
that point the program is finished.  (We chose the
condition T > 1 to stop the calculation because the
projectile spends less than one second in the strobe
photograph.  Later we may use some other criterion
to stop the calculation.)

The important part of the program is the calculational
loop which is repeated again and again to give us the
step-by-step calculations.  The calculations begin with
the command

LET  Rnew = Rold + Vold*dt

which is the calculation pictured in Figure (14b).  Here
we are using the short computer time step dt so that
Rnew will be the position of the ball dt seconds after it
was at Rold.

The next line

LET  A = g

simply tells us that for this projectile motion the ball’s
acceleration has the constant value g.  (Later, when we
predict projectile motion with air resistance, we change
this line to include the acceleration produced by the air
resistance.)

To calculate the new velocity vector, we use the
command

LET  Vnew = Vold + A*dt

which is pictured in Figure (15b).  Again we are using
the short computer time step dt rather than the longer
strobe rate ∆t.

The last two lines inside the calculational loop are

LET  Tnew = Told + dt

PLOT R

The first of these increments the clock so that T will
keep track of the elapsed time.  Then we plot a point at
the position R so that we can get a graph of the motion
of the ball.
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A BASIC PROGRAM FOR
PROJECTILE MOTION
The program in Figure (18) is quite close to a BASIC
program.  We have the LET statements and the
Do – LOOP commands that appeared in our working
BASIC program back in Figure (5).  The only problem
is that BASIC unfortunately does not understand vec-
tor equations.  In order to translate Figure (18) into a
workable BASIC program, we have to convert all the
vector equations into numerical equations.

To do this conversion, we write the vector equation out
as three component equations as shown below.

A = B + C (13)

becomes

Ax = Bx + Cx (14a)

Ay = By + Cy (14b)

Az = Bz + Cz (14c)

We saw this decomposition of a vector equation into
numerical or scalar equations in Chapter 2 on vectors
and Chapter 4 on calculus.  (It should have been in
Chapter 2 but was accidently left out.  It will be put in.)
If the motion is in two dimensions, say in the x–y plane,
then we only need the x and y component Equations
(14a) and (14b).

Let us apply this rule to translate the vector LET
statement

LET  Rnew = Rold + Vold*dt (15)

into two numerical LET statements.  If we use the
notation

R = (Rx, Ry)    ;    V = (Vx, Vy)

we get, dropping the subscripts “new” and “old”,

Rx = Rx + Vx*dt (16a)

Ry = Ry + Vy*dt (16b)

We can drop the subscripts “new” and “old” because in
carrying out the LET statement the computer must use
the old values of Rx and Vx to evaluate the sum
Rx + Vx*dt, and this result which is the new value of
Rx is stored in the memory cell labeled “Rx”.

 Ball coordinates
-1)  ( 8.3, 79.3)
 0)  (25.9, 89.9)
 1)  (43.2, 90.2)
 2)  (60.8, 80.5)
 3)  (78.2, 60.2)
 4)  (95.9, 30.2)

To translate the initial conditions, we used the
experimental values of the ball's coordinates given in
Figure (3-10), the steel ball projectile motion strobe
photograph we have been using for all of our drawings.
These coordinates are reproduced below in Figure
(19).

Using the fact that R0 = (25.9, 89.9), we can write the
equation

LET  Rold = R0

as the two equations

LET Rx  =  25.9

LET Ry  =  89.9

In a similar way we use the experimental values for
R1 and  R–1 to evaluate the initial value of Vold.

In Figure (20) we have converted the vector LET
statements into scalar ones to obtain a workable
BASIC program.  We have also included the vector
statements to the right so that you can see that the
English and BASIC programs are essentially the
same.  We also added the SET WINDOW command
so that the output could be plotted.

In Figure (21), we show the output from the Basic
program of Figure (20).  It looks about as bad as
Figure (7), the output from our first circle plotting
program.  In the following exercises we will add
axes, plot points closer together, and plot crosses
every tenth of a second.  In addition, we will get
numerical output that can be compared directly with
the experimental values shown in Figure( 19).

Figure 19
Experimental coordinates of the steel
ball projectile, from Figure (3-10).
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              English Program

! --------- Initial conditions
LET  ∆t = .1

LET  Rold = R0

  LET Vold = (R1 – R-1) 2*∆t(R1 – R-1) 2*∆t

LET  Told = 0

! --------- Computer Time Step
LET  dt = .01

! --------- Calculational loop
DO

LET  Rnew = Rold + Vold*dt

LET  A = g

LET  Vnew = Vold + A*dt

LET  Tnew = Told + dt

PLOT R

LOOP UNTIL T > 1

END

BASIC Program

Figure 21
Output from the BASIC
program in Figure (20).
(Look closely for the dots.)

Figure 20
Projectile Motion program in both BASIC and English.
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Exercise 7
Start BASIC, type the BASIC projectile motion program
shown in Figure 20, and run it. Keep fixing it up until it
gives output that looks like that shown in Figure 21.

Exercise 8   Changing the Time Step
Reduce the time step to dt = .001 seconds.  The plot
should become essentially a continuous line.

Exercise 9   Numerical Output
Change the plot command to a print statement to see
numerical output.  You can do this by turning the PLOT
command into a comment, and adding a PRINT com-
mand as shown below.

!PLOT Rx,Ry

PRINT "Rx = ";Rx,  "Ry = ";Ry

Just as in Exercise 5, you will get too much output when
you run the program.  If you have done Exercise 8, the
coordinates of the ball will be printed every thousandth
of a second.  Yet from the strobe photograph, you have
data for tenth second intervals.  The next two exercises
are designed to reduce the output.

Exercise 10   Attempt to reduce output
Replace the PRINT command of exercise 9 by the
command

IF MOD(T,.1) = 0 THEN PRINT "Rx = ";Rx,  "Ry = ";Ry

The idea is to pull the same trick we used in reducing the
output in Exercise 5, going from Figure 10 to Figure 11.
In The above MOD statement, we would hope that we
would get output every time T gets up to a multiple of 0.1.

Try the modification of the PRINT command using
MOD(T,.1) as shown above.  When you do you will not
get any output.  The MOD(T,.1) command does not
work, because the MOD function generally works only
with integers.  We will fix the problem in the next
exercise.

 ! --------- Computer Time Step and Counter
LET dt = .01

LET i = 0

Then we will increment i by 1 each time we go around
the calculational loop, using the now familiar command
LET i = i+1.  If we are using a time step dt = .001 then
we have to go around the calculational loop 100 times
to reach a time interval of .1 seconds.  To do this, our
print command should start with IF MOD(i,100) = 0...
Thus, inside the calculational loop, the Print command
of Exercise 9 should be replaced by

LET i = i+1
IF MOD(i,100) = 0 THEN PRINT "RX = ";RX,  "RY = ";RY

Make the changes shown above, run your program,
and see that you get the output shown below in Figure
22.  Compare these results with the experimental values
shown in Figure 19.

Exercise 11   Reducing Numerical Output
Because the MOD function works reliably only with
integers, we will introduce a counter variable i like we
had in our circle plotting program.

First we must initialize i .  We can do that at the same time
we initialize dt as shown.

Figure 22
Numerical output from the projectile motion
program, printed at time intervals of .1 seconds.
These predicted results should be compared with
the experimental results seen in Figure 3-10.
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Exercise 12   Plotting Crosses
Now we have the MOD statement to reduce the printing
output, we can use the same trick to plot crosses in the
output at .1 second intervals.  All we have to do is restore
the PLOT command, change the MOD statement to

IF MOD(i,100) = 0 THEN CALL CROSS

and add a cross plotting subroutine which should now
look like

! --------- Subroutine "CROSS" draws a cross at Rx,Ry.

   SUB CROSS

       PLOT LINES: Rx-2,Ry;  Rx+2,Ry

       PLOT LINES: Rx,Ry-2;  Rx,Ry+2

   END SUB

The only change from the CROSS subroutine in the
circle plotting program is that the cross is now centered
at coordinates (Rx,Ry) rather than (x,y) as before.

The complete cross plotting is shown in Figure (23), and
the results are plotted in Figure (24).  Modify your
projectile motion program to match Figure  (23), and
see that you get the same results.  (How did we stop the
plotting outside the square box?)

Projectile Motion Program

Figure 23
Projectile motion program that plots
crosses every tenth of a second.

Figure 24
Output from our BASIC projectile
motion program of Figure 23.
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PROJECTILE MOTION
WITH AIR RESISTANCE
Projectile motion is an example of a very special kind
of motion where the acceleration vector is constant –
does not change in either magnitude or direction.  In this
special case we can easily use calculus to predict
motion far into the future.

But let the acceleration vector change even by a small
amount, as in the case of projectile motion with air
resistance, and a calculus solution becomes difficult or
impossible to obtain.  This illustrates the important role
the acceleration vector plays in the prediction of mo-
tion, but overemphasizes the importance of motion
with constant acceleration.

With a computer solution, very little additional effort is
required to include the effects of air resistance.  We will
be able to adjust the acceleration for different amounts
or kinds of air resistance.  The point is to develop an

intuition for the role played by the acceleration vector.
We will see that if we know a particle’s acceleration,
have a formula for it, and know how the particle started
moving, we can predict where the particle will be at any
time in the future.

Once we have gained experience with this kind of
prediction, we can then focus our attention on the core
problem in mechanics, namely finding a general method
for determining the acceleration vector.  As we men-
tioned, the general method was discovered by Newton
and will be discussed shortly in the chapter on Newto-
nian Mechanics.

In our study of the effects of air resistance, we will use
as our main example the styrofoam ball projectile
shown in Figures (3-30a, b) and reproduced here as
Figures (25a, b).  To obtain the coordinates listed in
Figure (25b), each image was enlarged and studied
separately.  As a result, these  coordinates should be
accurate to within half a millimeter (except for possible
errors due to parallax in taking the photograph).

Figure 25a
The styrofoam projectile of Figure (3-30a).
We have printed a negative of the photograph
to show the grid lines more distinctly.

Figure 25b
To obtain as accurate a value as we could
for each ball coordinate, each image was
enlarged and studied separately.
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-1) (  5.35,  94.84)
 0) (24.03,101.29)
 1) (40.90,  97.68)
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 0)  (24.0, 101.4)
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 2)  (56.5,   85.3)
 3)  (70.8,   64.7)

 4)  (83.4,   37.1)

 5)  (95.2,     3.9)



5-23

Figure (26), a reproduction of Figure (3-31), is a
detailed analysis of the ball’s acceleration at Position
(3). As shown in Figure (26) we can write the formula
for the ball’s acceleration vector A in the form

A = g + Aair (17)

where one possible formula for  Aair is

Aair = –KV (18)

V being the instantaneous velocity of the ball.

In Equation (17),  Aair  is defined as the change from the
normal acceleration g the projectile would have with-
out air resistance.  As we see,  Aair  points opposite to
V, which is the direction of the wind we would feel if
we were riding on the ball.  Figure (26) suggests the
physical interpretation that this wind is in effect blow-
ing the acceleration vector back.  It suggests that
acceleration vectors can be pushed or pulled around,
which is the underlying idea of Newtonian mechanics.
In Figure (26) the earth is pulling down on the ball
which gives rise to the component g of the ball’s
acceleration, and the wind is pushing back to give rise
to the component  Aair.

The simplest formula we can write which has  Aair
pointing in the –V direction is Equation (18),
Aair = –KV, where K is a constant that we have to find
from the experiment.  If some choice of the constant K
allows us to accurately predict all the experimental
points in Figure (25), then we will have verified that
Equation (18) is a reasonably accurate description of
the effects of air resistance.

It may happen, however, that one choice of K will lead
to an accurate prediction of one position of the ball,
while another choice leads to an accurate prediction of
another point, but no value of K gives an accurate
prediction of all the points.  If this happens, equation
(18) may be inadequate, and we may need a more
complex formula.

The next level of complexity is that K itself depends on
the speed of the ball.  Then  Aair would have a
magnitude related to V2,  V3, or something worse.  In
this case the air resistance is “nonlinear” and exact
calculus solutions are not possible.  But, as we see in
Exercise 15, we can still try out different computer
solutions.

In reality, when a sphere moves through a fluid like air
or water, the resistance of the fluid can become very
complex.  At high enough speeds, the sphere can start
shedding vortices, the fluid can become turbulent, and
the acceleration produced by the fluid may no longer be
directed opposite to the instantaneous velocity of the
sphere.  In Exercise 13 we take a close look at  Aair  for
all interior positions for the projectile motion shown in
Figure (25).  We find that to within experimental
accuracy,  for our styrofoam projectile  Aair  does point
in the –V direction.  Thus a formula like Equation (18)
is a good starting point.  We can also tell from the
experimental data whether K is constant and what a
good average value for K should be.

Figure 26
The air resistance is caused by
the wind you would feel if you
were riding on the ball.
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Air Resistance Program
Figure (20) was our BASIC program for projectile
motion.  We would now like to modify that program so
that we can predict the motion of the Styrofoam ball
shown in Figure (25).  To do this, we must change the
command

LET  A = g

to the new command

LET  A = g – KV (19)

and try different values for K until we get the best
agreement between prediction and experiment.

A complete program with this modification is shown in
Figure (27).  In this program we see that Equation (19)
has been translated into the two component equations

LET Ax =   0     – K*Vx

LET Ay = –980 – K*Vy

In addition, we are printing numerical output at .1 sec
intervals so that we can accurately compare the pre-
dicted results with the experimental ones.  In the line

LET K = ...

which appears in the Initial Conditions, we are to plug
in various values of K until we get the best agreement
that we can between theory and experiment.

Finding K does not have to be complete guesswork.  In
Exercise 13 we ask you to do a graphical analysis of the
Styrofoam ball’s acceleration at several positions us-
ing the enlargements provided.  From these results you
should choose some best average value for K and use
that as your initial guess for K in your computer
program.  Then fine tune K until you get the best
agreement you can.  We ask you to do this in Exercise
14.

Once you have a working program that predicts the
motion of the Styrofoam ball in Figure (25), you can
easily do simulations of different strengths of air resis-
tance.  What if you had a steel ball being projected
through a viscous liquid like honey?  The viscous liquid
might have the same effect as air, except that the

resistance constant K should be much larger.  With the
computer, you can simply use larger and larger values
of K to see the effects of increasing the air or fluid
viscosity.  We ask you to do this in Exercise 15.  This
is a very worthwhile exercise, for as the fluid viscosity
increases, as you increase K, you get an entirely new
kind of motion.  There is a change in the qualitative
character of the motion which you can observe by
rerunning the program with different values of K.

Try different
values of K

New formula for A

Use initial values
from Figure (25).

Figure 27
BASIC program for projectile motion with air
resistance.  It is left to the reader to insert
appropriate initial conditions, and choose
values of the air resistance constant K.
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In Exercise 16, we show you one way to modify the air
resistance formulas to include nonlinear effects, i.e., to
allow  Aair  to depend on V2 as well as V.  What we do
is first use the Pythagorean theorem to calculate the
magnitude V of the ball’s speed and then use that in a
more general formula for Aair.  The English lines for
this are

LET  V = Vx
2 + Vy

2

LET  A = g – K(1 + K2*V)V (20)

where we now try to find values of K and K2 that
improve the agreement between prediction and experi-
ment.  The translation of these lines into BASIC is
shown in Exercise 16.

Exercise 13   Graphical Analysis
Figures (28 a,b,c,d,e) are accurate enlargements of
sections of Figure (25b).  In each case we show three
positions of the Styrofoam projectile so that you can
determine the ball's instantaneous velocity V at the
center position.  Using the section of grid you can
determine the magnitude of both V  ∆t  and   Aair ∆t2 .
From that, and the fact that  ∆t  = .1 sec, you can then
determine the size of the air resistance constant K using
the equation  Aair = – KV.

Do this for each of the diagrams, positions 0 through 4
and then find a reasonable average value of K.  How
constant is K?  Do you have any explanation for changes
in K?

Figure 28b
Blowup of position 1 in Figure 25b.

Figure 28c
Blowup of position 2 in Figure 25b.

Figure 28a
Blowup of position 0 in Figure 25b.
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Exercise 14   Computer Prediction
Starting with the Basic program shown in Figure (27)
use the experimental values shown in Figure (25b),
reproduced below, to determine the initial conditions for
the motion of the ball.  Then use your best value of K from
Exercise 13 as your initial value of K in the program.  By
trial and error, find what you consider the best value of
K to bring the predicted coordinates into reasonable
agreement with experiment.

Exercise 15   Viscous Fluid
After you get your program of Exercise 14 working,
allow the program to print out numerical values for up to
T = 15 seconds.  After about 10 seconds, the nature of
the motion is very different than it was at the beginning.
Explain the difference.  (You may be able to see the
difference better by printing Vx and Vy rather than Rx
and Ry.)

You will see the same phenomenon much faster if you
greatly increase the air resistance constant K.  Redo
your program to plot the output, drawing crosses every
.1 seconds.  Then rerun the program for ever increasing
values of K.  Explain what you see.

-1) (  5.35,  94.84)
 0) (24.03,101.29)
 1) (40.90,  97.68)
 2) (56.52,  85.15)
 3) (70.77,  64.56)
 4) (83.48,  36.98)
 5) (95.18,    3.86) 3
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Figure 28e
Blowup of position 4 in Figure 25b.
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Blowup of position 3 in Figure 25b.
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Exercise 16   Nonlinear Air Resistance (optional)
In Exercise 14, you probably found that you were not
able to precisely predict all the ball positions using one
value of K.  In this exercise, you allow K to depend on the
ball's speed v in order to try to get a more accurate
prediction.  One possibility is to use the following
formulas for Aair, which we mentioned earlier:

LET  V = Vx
2 + Vy

2

 LET A = g – K (1 + K2*V)V (20)

With Equations (20), you can now adjust both K and K2
to get a better prediction.  These equations are trans-
lated into BASIC as follows.

LET V   =   SQR(Vx*Vx + Vy*Vy)

LET Ax =   0     – K*(1 + K2*V)*Vx

LET Ay = –980 – K*(1 + K2*V)*Vy

Make these modifications in the program of Exercise 14,
and see if you can detect evidence for some V2

dependence in the air resistance.

Exercise 17   Fan Added
In Figure (30), on the next page, we show the results of
placing a rack of small fans to the right of the styrofoam
ball's trajectory in order to increase the effect of air
resistance.  Now, someone riding with the ball should
feel not only the wind due to the motion of the ball, but
also the wind of the fans, as shown in Figure (29).

Our old air resistance formula

LET  A = g + K(–Vball)

should probably be replaced by a command like

LET  A = g + K(–Vball + Vfan)
Translated into BASIC, this would become

LET Ax =   0     + K*(–Vx  –Vfan)

LET Ay = –980 + K*(–Vy + 0      ) (21)

where Vball = (Vx,Vy) is the current velocity of the ball,
and Vfan = (–Vfan,0) is the wind caused by the fan. We
assume that this wind is aimed in the –x direction and
has a magnitude Vfan.  We now have two unknown
parameters K and Vfan which we can adjust to match
the experimental results shown in Figure (30).

Do this, starting with the value of K that you got from
the analysis of the styrofoam projectile in Figure 25b
(Exercise 13 or 14).  Does your resulting value for Vfan
seem reasonable?  Can you detect any systematic
error in your analysis?  For example, should Vfan be
stronger near the fans, and get weaker as you move
left?
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Figure 29
Additional wind created by fan.
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Figure 32
The Apple II also prints out the Coordinates of each image.  The time ∆t between crosses
is 1/10 sec.  Between the dots there is a 1/30 sec time interval.  The coordinates of the
initial 7 dots are printed to help determine the initial instantaneous velocity of the ball.

Figure 30
Styrofoam projectile with a bank of fans.  In order
to get more air resistance, we added a bank of
small fans as shown.  This Strobe "photograph"
was taken with the Apple II Strobe system.

Figure 31
In this diagram, the Apple II computer has calculated
and plotted the centers of each of the images seen in
the composite strobe photograph on the left.
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Chapter 6
Mass

Chapter 6
Mass

By now we have learned how to use either calculus or
the computer to predict the motion of an object whose
acceleration is known.  But in most problems we do not
know the acceleration, at least initially.  Instead we
may know the forces acting on the object, or something
about the object’s energy, and use this information to
predict  motion.  This approach, which is the heart of
the subject of mechanics, involves mass, a concept
which we introduce in this chapter.

In the metric system, mass is measured in grams or
kilograms, quantities that should be quite familiar to
the reader.  It may be surprising that we devote an
entire chapter to something that is measured daily by
grocery store clerks in every country in the world.  But
the concept of mass plays a key role in the subject of
mechanics.  Here we focus on developing an experi-
mental definition of mass, a definition that we can use
without modification throughout our discussion of
physics.

After introducing the experimental definition, we will
go through several experiments to determine how
mass, as we defined it, behaves.  In low speed experi-
ments, the kind we can do using air tracks in demon-

stration lectures, the results are straightforward and
are what one expects.  But when we consider what
would happen if similar experiments were carried out
with one of the objects moving at speeds near the speed
of light, we predict a very different behavior for mass.
This new behavior is summarized by the Einstein mass
formula, a strikingly simple result that one might guess,
but which we cannot quite derive from the definition of
mass, and the principle of relativity alone.  What is
needed in addition is the law of conservation of linear
momentum which we will discuss in the next chapter.

One of the striking features of Einstein’s special theory
of relativity is the fact that nothing, not even informa-
tion, can travel faster than the speed of light.  We can
think of nature as having a speed limit c.  In our world,
speed limits are hard to enforce.  We will see that the
Einstein mass formula provides nature with an auto-
matic way of enforcing its speed limit.

Einstein’s mass formula appears to predict that no
particle can quite reach the speed of light.  We end the
chapter with a discussion of how to handle particles,
like photons and possibly neutrinos, that do travel at
precisely the speed of light.
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DEFINITION OF MASS
In everyday conversation the words mass and weight
are used interchangeably.  Physicists use the words
mass and weight for two different concepts.  Briefly,
we can say that the weight of an object is the force that
the object exerts against the ground, and we can mea-
sure weight with a device such as a bathroom scale.  The
weight of an object can change in different circum-
stances.  For example, an astronaut who weighs 180
pounds while standing on the ground, floats freely in an
orbiting space capsule.  If he stood on a bathroom scale
in an orbiting space craft, the reading would be zero,
and we would say he is weightless.  On the other hand
the mass of the astronaut is the same whether he is in
orbit or standing on the ground.  An astronaut in orbit
does not become massless.  Mass is not what you
measure when you stand on the bathroom scales.

What then is mass? One definition, found in the dictio-
nary, describes mass as the property of a body that is a
measure of the amount of material it contains.  Another
definition, which is closer to the one we will use, says
that the more massive an object, the harder it is to
budge.

Both of these definitions are too vague to tell us how to
actually measure mass.  In this section we will describe
an experimental definition of mass, one that provides

an explicit prescription for measuring mass.  Then,
using this prescription, we will perform several experi-
ments to see how mass behaves.

Recoil Experiments
As a crude experiment suppose that the two skaters
shown in Figure (6-1), a father and a child, stand in front
of each other at rest and then push each other apart.  The
father hardly moves, while the child goes flying off.
The father is more massive, harder to budge.  No matter
how hard or gently the skaters push apart, the big one
always recoils more slowly than the smaller one.  We
will use this observation to define mass.

In a similar but more controlled experiment, we replace
the skaters by two carts on what is called an air track.
An air track consists of a long square metal tube with
a series of small holes drilled on two sides as shown in
Figure (6-2).  A vacuum  cleaner run backwards blows
air into the tube, and the air escapes out through the
small holes.  The air carts have V-shaped bottoms
which ride on a thin film of air, allowing the carts to
move almost without friction along the track.

To represent the two skaters pushing apart on nearly
frictionless ice, we set up two carts with a spring
between them as shown in Figure (6-3a).  A thread is
tied between the carts to keep the spring compressed.
When we burn the thread, the carts fly apart as shown

end view

film of air

cart

pressurized
air

small
holes

Figure 1
Two skaters, a father and a son, standing at rest
on frictionless ice, push away from each other.
The smaller, less massive child recoils faster
than the more massive father.

Figure 2
End view of an air track.  Pressurized air from the
back side of a vacuum cleaner is fed into a square
hollow metal tube, and flows out through a series
of small holes.  A cart, riding on a film of air, can
move essentially without friction along the track.
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in Figure (6-3b).  If the two carts are made of similar
material, but one is bigger than the other, the big one
will recoil at lesser speed than the small one.  We say
that the big cart, the one that comes out more slowly,
has more mass than the small one.

Because we can precisely measure the speeds vA and vB
of the recoiling air carts, we can use the experiment
pictured in Figures (6-3a,b) to define the mass of the
carts.  Let us call  mA and  mB the masses of carts A and
B respectively.  The simplest formula relating the
masses of the carts to the recoil speeds, a formula that
has the more massive cart recoiling at less speed is

 mA

mB
=

vB

vA
    recoil definition of mass (1)

In words, Equation 1 says that the ratio of the masses is
inversely proportional to the recoil speeds.  I.e., if  mA
is the small mass, the vB is the small speed.

Properties of Mass
Since we now have an explicit prescription for measur-
ing mass, we should carry out some experiments to see
if this definition makes sense.  Our first test is to see if
the mass ratio  mA / mB changes if we use different
strength springs in the recoil experiment.  If the ratio of
recoil speeds  vB / vA, and therefore the mass ratio,
depends upon what kind of spring we use, then our
definition of mass may not be particularly useful.

In the appendix to this chapter, we describe apparatus
that allows us to measure the recoil speeds of the carts
with fair precision.  To within an experimental accu-
racy of 5% to 10% we find that the ratio  vB / vA of the
recoil speeds does not depend upon how hard the spring
pushes the carts apart.  When we use a stronger spring,
both carts come out faster, in such a way that the speed
ratio is unchanged.  Thus to the accuracy of this
experiment we conclude that the mass ratio does not
depend upon the strength of the spring used.

Standard Mass
So far we have talked about the ratio of the masses of
the two carts.  What can we say about the individual
masses  mA or  mB alone?  There is a simple way to
discuss the masses individually.  What we do is select
one of the masses, for instance  mB, as the standard
mass, and measure all other masses in terms of  mB.  To
express  mA in terms of the standard mass  mB, we
multiply both sides of Equation (1) through by  mB to
get

  
mA = mB

vB

vA

formula for mA

in termsof the
standard mass mB

(2)

For a standard mass, the world accepts that the plati-
num cylinder kept by the International Bureau of
Weights and Measures near Paris, France, is precisely
one kilogram.    If we reshaped this cylinder into an air
cart and used it for our standard mass, then we wouldFigure 3

Recoil experiment.  To simulate the two skaters
pushing apart, we place two carts on an air track
with a compressed spring between them.  The
carts are held together by a string.  When the
string is burned, the carts fly apart
as did the skaters.  The more massive cart recoils
at a smaller speed    vB < vA .

A

(a)

A B

thread spring

frictionless Air Track
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carts related to the individual masses  mC and  mD?  If we
perform the experiment shown in Figure (6-4), we find
that

 mC + D = mC + mD    mass adds (4)

The experimental result, shown in Equation (4), is that
mass adds.  The mass of the two carts recoiled together
is the sum of the masses of the individual carts.  This
is the reason we can associate the concept of mass
with the quantity of matter.  If, for example, we have
two identical carts, then together the two carts have
twice as much matter and twice as much mass.

Exercise 1

In physics labs, one often finds a set of brass cylinders
of various sizes, each cylinder with a number stamped
on it, representing its mass in grams.  The set usually
includes a 50-gm, 100-gm, 200-gm, 500-gm, and
1000-gm cylinder.  Suppose that you were given a rod
of brass and a hacksaw; describe in detail how you
would construct a set of these standard masses.  At your
disposal you have a frictionless air track, two carts of
unknown mass that ride on the track, the standard
1000-gm mass from France (which can be placed on
one of the carts), and various things like springs, thread,
and matches.

A Simpler Way to Measure Mass
The preceding problem illustrates two things.  One is
that with an air track, carts, and a standard mass, we can
use our recoil definition to measure the mass of an
object.  The second is that the procedure is clumsy and
rather involved.  What we need is a simpler way to
measure mass.

The simpler way involves the use of a balance, which
is a device with a rod on a pivot and two pans suspended
from the rod, as shown in Figure (6-5).  If the balance
is properly adjusted, we find from experiment that if
equal masses are placed in each pan, the rod remains
balanced and level.  This means that if we place an
unknown mass in one pan, and add brass cylinders of
known mass to the other pan until the rod becomes
balanced, the object and the group of cylinders have the
same mass.  To determine the mass of the object, all we
have to do is add up the masses of the individual
cylinders.

Figure 4
Addition of mass.  If we tie two carts C and D together
and recoil the pair from our standard mass  mA , and
use the formula

  mC + D = mB
vB

vC + D

for the combined mass   mC + D , we find from
experiment that   mC + D = mC + mD .  In other words the
mass of the pair of carts is the sum of the masses of the
individual carts, or we can say that mass adds.

vC + D vB
m

C m
D

m
B

have the following explicit formula for the mass of cart
A recoiled from the standard mass.

   
mA = 1 kilogram × vstd

vA

using the
one kilogram
cylinder for our
standard mass

(3)

where  vstd is the recoil speed of the standard mass.
Once we have determined the mass of one of our own
carts, using the standard mass and Equation (3), we can
then use that cart as our standard and return the plati-
num cylinder to the French.

Of course the French will not let just anybody use their
standard kilogram mass.  What they did was to make
accurate copies of the standard mass, and these copies
are kept in individual countries, one of them by the
National Institute of Standards and Technology in
Washington, DC which then makes copies for others in
the United States to use.

Addition of Mass
Consider another experiment that can be performed
using air carts.  Suppose we have our standard cart of
mass mB, and two other carts which we will call C and
D.  Let us first recoil carts C and D from our standard
mass mB, and determine that C and D have masses mC
and mD given by

 mC = mB
vB
vC

; mD = mB
vB
vD

Now what happens if, as shown in Figure (6-4), we tie
carts C and D together and recoil them from cart B.
How is the mass  mC + D of the combination of the two
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Inertial and Gravitational Mass
The pan balance of Figure (6-5) is actually compar-
ing the downward gravitational force on the con-
tents of the two pans.  If the gravitational forces are
equal, then the rod remains balanced.  What we are
noting is that there are equal gravitational forces on
equal masses.  This is an experimental result, not an
obvious conclusion.  For example, we could con-
struct two air carts, one from wood and one from
platinum.  Keep adjusting the size of the carts until
their recoil speeds are equal, i.e., until they have
equal recoil masses.  Then put these carts on the pan
balance of Figure (6-5).  Although the wood cart has
a much bigger volume than the platinum one, we
will find that the two carts still balance.  The gravi-
tational force on the two carts will be the same
despite their large difference in size.

In 1922, the Swedish physicist Etvös did some very
careful experiments, checking whether two objects,
which had the same mass from a recoil type of
experiment would experience the same gravitational
force as measured by a pan balance type of experi-
ment.  He demonstrated that we would get the same
result to one part in a billion.  In  1960, R. H. Dicke
improved Etvös’ experiments to an accuracy of 1
part in  1011.

It is common terminology to call what we measure
in a recoil experiment the inertial mass of the object,
and what we measure using a pan balance the gravi-
tational mass.  The experiments of Etvös and Dicke
demonstrate that inertial mass and gravitational mass
are equivalent to each other to one part in  1011.  Is
this a coincidence, or is there some fundamental
reason why these two definitions of mass turn out to
be equivalent?  Einstein addressed this question in
his formulation of a relativistic theory of gravity
known as Einstein’s General Theory of Relativity.
We will have more to say about that  later.

Mass of a Moving Object
One reason we chose the recoil experiment of Figure
(3) as our experimental definition of mass is that it
allows us to study the mass of moving objects,
something that is not possible with a pan balance.

From the air track experiments we have discussed so
far, we have found two results.  One is that the ratio
of the recoil speeds, and therefore the ratio of the
masses of the two objects, does not depend upon the
strength of the spring or the individual speeds vA and

 vB.  If we use a stronger spring so that  mA emerges
twice as fast,  mB also emerges twice as fast so that
the ratio  mA/mB is unchanged.

In addition, we found that mass adds.  If carts C and
D have masses  mC and  mD when recoiled individu-
ally from cart B, then they have a combined mass

 mC,D = mC + mD  when they are tied together and
both recoiled from cart B.standard

masses
object

pivot

rod

Figure 5
Schematic drawing of a pan balance.  If the balance
is correctly adjusted and if equal masses are placed
in the pans, the rod will remain level.  This allows us
to determine an unknown mass simply by comparing
it to a known one.
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RELATIVISTIC MASS
In our air track experiments, we found that the ratio of
the recoil speeds did not depend upon the strength of the
spring we used.  However, when the recoil speeds
approach the speed of light, this simple result can no
longer apply.  Because of nature’s speed limit c, the
ratio of the recoil speeds must in general change with
speed.

To see why the recoil speed ratio must change, imagine
an experiment involving the recoil of two objects of
very different size, for example a bullet being fired
from a gun as shown in Figure (6).  Suppose, in an initial
experiment not much gunpowder is used and the bullet
comes out at a speed of 100 meters per second and the
gun recoils at a speed of 10 cm/sec  = .1 m/sec.  For this
case the speed ratio is 1000 to 1 and we say that the gun
is 1000 times as massive as the bullet.

In a second experiment we use more gun powder and
the bullet emerges 10 times faster, at a speed of 1000
meters per second.  If the ratio of 1000 to 1 is main-
tained, then we predict that the gun should recoil at a
speed of 1 meter per second.  If we did the experiment,
the prediction would be true.

But, as a thought experiment, imagine we used such
powerful gun powder that the gun recoiled at 1% the
speed of light.  If the speed ratio remained at 1000 to 1,
we would predict that the bullet would emerge at a
speed 10 times the speed of light, an impossible result.
The bullet cannot travel faster than the speed of light,
the speed ratio cannot be greater than 100 to 1, and thus
the ratio of the masses of the two objects must have
changed.

In the next section we will discuss experiments in
which, instead of a bullet being fired by a gun, an
electron is ejected by an atomic nucleus.  The electron
is such a small particle that it is often ejected at speeds
approaching the speed of light.  The nuclei we will
consider are so much more massive that they recoil at
low speeds familiar to us, speeds like that of a jet plane
or earth satellite.  At these low speeds the mass of an
object does not change noticeably with speed.  Thus in
these electron recoil experiments, the mass of the
nuclei is not changing due to its motion.  Any change
in the ratio of recoil speeds is due to a change in the mass
of the electron as the speed of the electron approaches
the speed of light.

We will see that as we push harder and harder on the
electron, trying to make it go faster than the speed of
light, the mass of the electron increases instead.  It is
precisely this increase in mass that prevents the elec-
tron emerging at a speed greater than the speed of light
and this is how nature enforces the speed limit c.

Beta (ββ) Decay
The electron recoils we just mentioned occur in a
process called β (beta) decay.  In a β decay, a radioac-
tive or unstable nucleus transforms into the nucleus of
another element by ejecting an electron at high speeds
as illustrated in Figure (7).  In the process the nucleus
itself recoils as shown.

Figure 7
Radioactive decay of a nucleus by ββ  decay.  In
this process the unstable nucleus ejects an electron,
 often at speeds ve near the speed of light.

vnve
nucleus

mn

electron

me

Figure 6
To discuss higher speed recoils, consider a bullet
being fired from a gun.  We  are all aware that the
bullet emerges at a high speed, but the gun itself  also
recoils.  (The recoil of the gun becomes obvious the
first time you fire a shotgun.)  In this setup, the
gunpowder is analogous to the spring, and the gun
and bullet are analogous to the two carts.

vb

bullet

mg

gun

vg
mb
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The name  β  decay is historical in origin.  When Ernest
Rutherford (who later discovered the atomic nucleus)
was studying radioactivity in the late 1890s, he noticed
that radioactive materials emitted three different kinds
of radiation or rays, which he arbitrarily called
α (alpha) rays, β (beta) rays and γ  (gamma) rays, after
the first three letters of the Greek alphabet.  Further
investigation over the years revealed that α rays were
beams of helium nuclei, which are also known as
α particles.  The β rays turned out to be beams of
electrons, and for this reason a nuclear decay in which
an electron is emitted is known as a ββ  decay.  The γ  rays
turned out to be particles of light which we now call
photons.  (The particle nature of light will be discussed
in a later section of this chapter.)

In the 1920s, studies of the β decay process raised
serious questions about some fundamental laws of
physics.  It appeared that in the β decay, energy was
sometimes lost.  (We will discuss energy and the basic
law of conservation of energy in Chapter 9.)  In the
early 1930s, Wolfgang Pauli proposed that in β decay,
two particles were emitted—an electron and an unde-
tectable one which later became known as the neutrino.
(We will discuss neutrinos at the end of this chapter.)
Pauli’s hypothesis was that the missing energy was
carried out by the unobservable neutrino.  Thirty years
later the neutrino was finally detected and Pauli’s
hypothesis verified.

Some of the time the neutrino created in a β decay
carries essentially no energy and has no effect on the
behavior of the electron and the nucleus.  When this is
the case, we have the genuine 2-particle recoil experi-
ment illustrated in Figure (7).  This is a recoil experi-
ment in which one of the particles emerges at speeds
near the speed of light.

Electron Mass in ββ Decay
Applying our definition of mass to the β decay process
of Figure (7) we have

 me
mn

=
vn
ve

         vn
ve

mnme
(5)

where  me and ve are the mass and recoil speed of the
electron and  mn  and vn of the nucleus.  We are assuming
that the nucleus was originally at rest before the
β decay.

To develop a feeling for the speeds and masses in-
volved in the β decay process, we will analyze two
examples of the β decay of a radioactive nucleus.  In the
first example, which we introduce as an exercise to give
you some practice calculating with Equation (5), we
can assume that the electron’s mass is unchanged and
still predict a reasonable speed for the ejected electron.
In the second example, the assumption that the electron’s
mass is unchanged leads to nonsense.



6-8  Mass

Plutonium 246
We will begin with the decay of a radioactive nucleus
called Plutonium 246.  This is not a very important
nucleus.  We have selected it because of the way in
which it β decays.

The number 246 appearing in the name tells us the
number of protons and neutrons in the nucleus.  Protons
and neutrons have approximately the same mass  mp
which has the value

   mp = 1.67 × 10–27 kg mass of proton (6)

The Plutonium 246 nucleus has a mass 246 times as
great, thus

  mPlutonium246 = 246 × mp

= 4.10 × 10–25 kg
(7)

An electron at rest or moving at slow speeds has a mass
 me 0  given by

  me 0
= 9.11 × 10–31 kg (8)

This is called the rest mass of an electron.  We have
added the subscript zero to remind us that this is the
mass of a slowly moving electron, one traveling at
speeds much less than the speed of light.

Exercise 2    ββ Decay of Plutonium 246

A Plutonium 246 nucleus has an average lifetime of just
over 11 days, upon which it decays by emitting an
electron.  If the nucleus is initially at rest, and the decay
is one in which the neutrino plays no role, then the
nucleus will recoil at the speed

    
vn = 572 meters

second

recoil speed of
Plutonium246
in a β decay

(9)

This recoil speed is not observed directly, but enough
is known about the Plutonium 246 β decay that this
number can be accurately calculated.  Note that a
speed of 572 meters/second is a bit over 1000 miles per
hour, the speed of a supersonic jet.

Your exercise is to predict the recoil speed ve of the
electron assuming that the mass of the electron  me is
the same as the mass  (me)0 of an electron at rest.

Your answer should be

 ve = .86 c (10)

where

   c = 3 × 108 meters
sec ond (11)

is the speed of light.

The above exercise, which you should have done by
now, shows that we do not get into serious trouble if we
assume that the mass of the electron did not change due
to the electron’s motion.  The predicted recoil speed

 ve = .86c is a bit too close to the speed of light for
comfort, but the calculation does not exhibit any obvi-
ous problems.  This is not true for the following
example.
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Protactinium 236
An even more obscure nucleus is Protactinium 236
which has a lifetime of about 12 minutes before it β
decays.  The Protactinium β decay is, however, much
more violent than the Plutonium 246 decay we just
discussed.  If the Protactinium 236 nucleus is initially
at rest, and the neutrino plays no significant role in the
decay, then the recoil velocity of the nucleus is

  
vn = 5170 meters

second

recoil speed of
Protactinium236
nucleus

(12)

This is nine times faster than the recoil speed of the
Plutonium 246 nucleus.

Exercise 3  Protactinium 236 ββ decay.

Calculate the recoil speed of the electron assuming that
the mass of the recoiling electron is the same as the
mass of an electron at rest.  What is wrong with the
answer?

You do not have to work Exercise 3 in detail to see that
we get a into trouble if we assume that the mass of the
recoiling electron is the same as the mass of an electron
at rest.  We made this assumption in Exercise 2, and
predicted that the electron in the Plutonium 246 β
decay emerged at a speed of .86 c.  Now a nucleus of
about the same mass recoils 9 times faster.  If the
electron mass is unchanged, it must also recoil 9 times
faster, or over seven times the speed of light.  This
simply does not happen.

Exercise 4  Increase in Electron Mass.
Reconsider the Protactinium 236 decay, but this time
assume that the electron emerges at essentially the
speed of light (  ve = c).  (This is not a bad approximation,
it actually emerges at a speed v = .99 c).  Use the
definition of mass, Equation 5, to calculate the mass of
the recoiling electron.  Your answer should be

   me = 6.8 × 10– 30kg = 7.47× (me)0 (13)

In Exercise 4, you found that by assuming the electron
could not travel faster than the speed of light, the
electron mass had increased by  a factor of 7.47.  The
emerging electron is over 7 times as massive as an
electron at rest!  Instead of emerging at 7 times the
speed of light, the electron comes out with 7 times as
much mass.

Exercise 5   A Thought Experiment.

To illustrate that there is almost no limit to how much the
mass of an object can increase, imagine that we per-
form an experiment where the earth ejects an electron
and the earth recoils at a speed of 10 cm/sec.  (A β
decay of the earth.)  Calculate the mass of the emitted
electron.  By what factor has the electron’s mass in-
creased?
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THE EINSTEIN MASS FORMULA
A combination of the recoil definition of mass with the
observation that nothing can travel faster than the speed
of light, leads to the conclusion that the mass of an
object must increase as the speed of the object ap-
proaches the speed of light.  Determining the formula
for how mass increases is a more difficult job.  It turns
out that we do not have enough information at this point
in our discussion to derive the mass formula.  What we
have to add is a new basic law of physics called the law
of conservation of linear momentum.

We will discuss the conservation of linear momentum
in the next chapter, and in the appendix to that chapter,
derive the formula for the increase in mass with veloc-
ity.  We put the derivation in an appendix because it is
somewhat involved.  But the answer is very simple,
almost what you might guess.

In our discussion of moving clocks in Chapter 1, we
saw that the length  T′ of the astronaut’s second in-
creased according to the formula

  T′ = T
1–v2/c2 (1-11)

where T was the length of one of our seconds.  For
slowly moving astronauts where v << c, we have

  T′ ≈ T and the length of the astronaut’s seconds is
nearly the same as ours.  But as the astronaut ap-
proaches the speed of light, the number  1–v2/c2

becomes smaller and smaller, and the astronaut’s sec-
onds become longer and longer.  If the astronaut goes
at the speed of light,  1/ 1–v2/c2 becomes infinitely
large, the astronaut’s seconds become infinitely long,
and time stops for the astronaut.

Essentially the same formula applies to the mass of a
moving object.  If an object has a mass  mo when at rest
or moving slowly as in air cart experiments (we call  mo
the rest mass of the object), then when the object is
moving at a speed v, its mass m is given by the formula

  
m =

mo

1–v2/c2

Einstein
mass
formula

(14)

a result first deduced by Einstein.

Equation (14) has just the properties we want.  When
the particle is moving slowly as in our air cart recoil
experiments, v << c,     1–v2/c2 ≈ 1   and the mass of
the object does not change with speed.  But as the speed
of the object approaches the speed of light, the  1–v2/c2

approaches zero, and  m = mo/ 1–v2/c2  increases
without bounds.  If we could accelerate an object up to
the speed of light, it would acquire an infinite mass.

Exercise 6
At what speed does the mass of an object double (i.e.,
at what speed does  m = 2 m0?)  (Answer:  v = .866 c.)

Exercise 7
Electrons emerging from the Stanford Linear Accelera-
tor have a mass 200,000 times greater than their rest
mass.  What is the speed of these electrons?  (The
answer is v = .9999999999875 c.  Use the approxima-
tion formulas discussed in Chapter 1 to work this
problem.)

Exercise 8

A car is traveling at a speed of v = 68 miles per hour.  (68
miles/hr = 100 ft/second =  10–7  ft/nanosecond =  10–7

c.)  By what factor has its mass increased due to its
motion.  (Answer:  m/mo = 1.000000000000005.)
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Nature’s Speed Limit
When the police try to enforce a 65 mile/hr speed limit,
they have a hard job.  They have to send out patrol cars
to observe the traffic, and chase after speeders.  Even
with the most careful surveillance, many drivers get
away with speeding.

Nature is more clever in enforcing its speed limit c.  By
having the mass of an object increase as the speed of the
object approaches c, it becomes harder and harder to
change the speed of the object.  If you accelerated an
object up to the speed of light, its mass would become
infinite, and it would be impossible to increase the
particle’s speed.

Historically it was noted that massive objects were hard
to get moving, but when you got them moving, they
were hard to stop.  This tendency of a massive object to
keep moving at constant velocity was given the name
inertia.   That is why our recoil definition of mass,
which directly measures how hard it is to get an object
moving, measures what is called inertial mass.  Nature
enforces its speed limit c by increasing a particle’s
inertia to infinity at c, making it impossible to acceler-
ate the particle to higher speeds.  Because of this
scheme, no one speeds and no police are necessary.

ZERO REST MASS PARTICLES
If you think about it for a while, you may worry that
nature’s enforcement of its speed limit c is too effec-
tive.  With the formula  m = mo/ 1–v2/c2 , we ex-
pect that nothing can reach the speed of light, because
it would have an infinite mass, which is impossible.

What is light?  It travels at the speed of light.  If light
consists of a beam of particles, and these particles travel
at the speed c, then the formula  m = mo/ 1–v2/c2

suggests that these particles have an infinite mass,
which is impossible.

Then perhaps light does not consist of particles, and is
therefore exempt from Einstein’s formula.  Back in
Newton’s time there was considerable debate over the
nature of light.  Isaac Newton supported the idea that
light consisted of beams of particles.  Red light was
made up of red particles, green light of green particles,
blue light of blue particles, etc.  Christian Huygens, a
well known Dutch physicist of the time, proposed that
light was made up of waves, and that the different
colors of light were simply waves with different wave-
lengths.  Huygens developed the theory of wave mo-
tion in order to support his point of view.  We will
discuss Huygen’s theory later in the text.

In 1801, about 100 years after the time of Newton and
Huygens, Thomas Young performed an experiment
that settled the debate they started.  With his so called
two slit experiment Young conclusively demonstrated
that light was a wave phenomena.
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Another century later in 1905, the same year that he
published the special theory of relativity, Einstein also
published a paper that conclusively demonstrated that
light consisted of beams of particles, particles that we
now call photons.    (Einstein received the Nobel Prize
in 1921 for his paper on the nature of light.  At that time
his special theory of relativity was still too controver-
sial to be awarded the prize.)

Thus by 1905 it was known that light was both a particle
and a wave.  How this could happen, how to picture
something as both a particle and a wave was not
understood until the development of quantum mechan-
ics in the period 1923 through 1925.

Despite the fact that light has a wave nature, it is still
made up of beams of particles called photons, and these
particles travel at precisely the speed c.  If we apply
Einstein’s mass formula to photons, we get for the
photon mass  mphoton

 
mphoton =

m0

1–v2/c2 v = c
=

m0

1–1
=

m0
0
(15)

where  m0 is the rest mass of the photon.

At first sight it looks like we are in deep trouble with
Equation (15).  Division by zero usually leads to a
disaster called infinity.  There is one exception to this
disaster.  If the rest mass  m0 of the photon is zero, then
we get

 
mphoton =

m0
0 = 0

0 (16)

The number 0/0 is not a disaster, it is simply undefined.
It can be 1 or 2.7, or   6 × 10– 23 .  It can be any number
you want.  (How many nothings fit into nothing?  As
many as you want.)  In other words, if the rest mass  m0
of a photon is zero, the Einstein mass formula says
nothing about the photon’s mass  mphoton.  Photons do
have mass, but the Einstein mass formula does not tell
us what it is.  (Einstein presented a new formula for the
photon’s mass in his 1905 paper.  He found that the
photon’s mass was proportional to the frequency of the
light wave.)

We will study Einstein’s theory of photons in detail
later in the text.  All we need to know now is that light
consists of particles called photons, these particles
travel at the speed of light, and these particles have no
rest mass.  If you stop photons, which you do all the time
when light strikes your skin, no particles are left.  There
is no residue of stopped photons on your skin.  All that
is left is the heat energy brought in by the light.

A photon is an amazing particle in that it exists only
when moving at the speed of light.  There is no lapse of
time for photons; they cannot become old.  (They
cannot spontaneously decay like muons, because their
half life would be infinite.)  There are two different
worlds for particles.  Particles with rest mass cannot get
up to the speed of light, while particles without rest
mass travel only at the speed of light.
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NEUTRINOS
Another particle that may have no rest mass is the
neutrino.  According to current theory there should be
three different kinds of neutrinos, but for now we will
not distinguish among them.

In our discussion of the β decay process, we mentioned
that when a radioactive nucleus decays by emitting an
electron, a neutrino is also emitted.  Most of the time the
energy given up by the nucleus is shared between the
electron and the neutrino, thus the electrons carried out
only part of the energy.  The very existence of the
neutrino was predicted from the fact that some energy
appeared to be missing in β decay reactions and it was
Pauli who suggested that this energy was carried out by
an undetected particle.

Neutrinos are difficult to detect.  They can pass through
immense amounts of matter without being stopped or
deflected.  In comparison photons are readily absorbed
by matter.  As any scuba diver knows, even in the
clearest ocean, a good fraction of the sunlight is ab-
sorbed by the time you get down to a depth of 50 or
more feet.  At that depth most of the red light has been
absorbed and objects have a grayish blue cast.  In
muddy water photons are absorbed much more rapidly,
and opaque objects like your skin stop photons in the
distance of a few atomic diameters.

On the other hand, neutrinos can pass through the earth
with almost no chance of being stopped.  As a writer
discussing the 1987 supernova explosion phrased it,
the neutrinos from the supernova explosion swept
through the earth, the earth being far more transparent
to the neutrinos than a thin sheet of the clearest glass to
light.

Neutrinos are now detected by what one might call a
brute force technique.  Aim enough neutrinos at a big
enough detector and a few will be stopped and ob-
served.  The first time neutrinos were detected was in
an experiment by Clyde Cowan and Fred Reines,
performed in 1956, almost 30 years after Pauli had
proposed the existence of the particle.  Noting that
nuclear reactors are a prodigious source of neutrinos,
Cowan and Reines succeeded in detecting neutrinos by
building a detector the size of a railroad tank car and
placing it next to the reactor at Savannah River,
Georgia.

The largest neutrino detectors now in use were origi-
nally built to detect the spontaneous decay of the proton
(a process that has not yet been observed).  They consist
of a swimming pool sized tank of water surrounded by
arrays of photocells, all located in deep mines to shield
them from cosmic rays.  If a proton decays, either
spontaneously or because it was struck by a neutrino,
a tiny flash of light is emitted in the subsequent particle
reaction.  The flash of light is then detected by one of
the photocells.

Solar Neutrinos
Aside from nuclear reactors, another powerful source
of neutrinos is the sun.  Beta decay processes and
neutrino emission are intimately associated with the
nuclear reactions that power the sun.  As a result
neutrinos emerge from the small hot core at the center
of the sun where the nuclear reactions are taking place.
The sun produces so many neutrinos that we can detect
them here on earth.
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There is a good reason to look for these solar neutrinos.
The neutrinos created in the core of the sun pass directly
through the outer layers of the sun and reach us eight
minutes after they were created in a nuclear reaction.  In
contrast, light from the hot bright core of the sun takes
the order of 14,000 years to diffuse its way out to the
surface of the sun.  If for some reason the nuclear
reactions in the sun slowed down and the core cooled,
it would be about 14,000 years before the surface of the
sun cooled.  But the decrease in neutrinos could be
detected here on earth within 8 minutes.  Looking at the
solar neutrinos provides a way of looking at the future
of the sun 14,000 years from now.

Solar neutrinos have been studied and counted since
the 1960s.  Computer models of the nuclear reactions
taking place in the sun make explicit predictions about
how many neutrinos should be emitted.  The neutrino
detectors observe only about 1/3 to 1/2 that number.
There have been a number of experiments using vari-
ous kinds of detectors, and all the experiments show
this deficiency.

If the deficiency is really an indication that the nuclear
reactions in the sun’s core have slowed, then we can
expect a cooling of the sun within 14,000 years, a
cooling that might have a significant impact on the
earth’s climate.  On the other hand there may be some
part of the nuclear reactions in the sun that we do not
fully understand, with the result that the computer
predictions are in error.  We are not sure yet which is
correct; the solar neutrino deficiency is one of the
current areas of active research.

Neutrino Astronomy
An event on the night of February 23, 1987 changed the
role of neutrinos in modern science.  On that night
neutrinos were detected from the supernova explosion
in the Magellanic cloud, a small neighboring galaxy.
This was the first time neutrinos were detected from an
astronomical source other than our sun.  The informa-
tion we obtained from this observation represented
what one could call the birth of neutrino astronomy.

A supernova is an exploding star, an event so powerful
that, for a short period of time of about 10 seconds, the
star radiates more power than all the rest of the visible
universe.  And this energy is radiated in the form of
neutrinos.

The supernova explosion occurs when the core of a
large star runs out of nuclear fuel and collapses.  (This
only happens to stars several times larger than our sun.)
The gravitational energy released in the collapse is
what provides the energy for the explosion.  We know
that sometimes a neutron star is formed at the center of
the collapsed core, and computer simulations predict

Figure 8
1987 Supernova at age  3 1 21 2  years, photographed
by the Hubble telescope. The ring is gas blown
off by the explosion.
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that much of the energy released in the collapse is
carried out in a burst of neutrinos.  The core material is
so dense that even the neutrinos have some difficulty
getting out.  They take about 10 seconds to diffuse out
of the core, and as a result the neutrino pulse is about 10
seconds long.

The collapsing core also creates a shock wave that
spreads out through the outer layers of the star, reaching
the surface in about three hours.  When the shock wave
reaches the surface, the star suddenly brightens and we
can see from the light that the star has exploded.

The details about the core collapse, the neutrino burst
and the shock wave are all from computer models of
supernova explosions, models developed over the past
25 years.  Whenever you model a physical process, you
like to test your model with the real process.  Computer
models of supernova explosions are difficult to test
because there are so few supernova explosions.  The
last explosion in our galaxy, close enough to study in
detail, occurred in 1604, shortly before the invention of
the telescope.

The supernova explosion on February 23, 1987 was not
only close enough to be studied, several fortunate
coincidences provided much detailed information.  The
first coincidence was the fact that theoretical physicists
had predicted in the 1960s that the proton might
spontaneously decay (with a half life of about  1032

years.)  To detect this weak spontaneous decay, several
large detectors were constructed.  As we mentioned,
these large detectors were also capable of detecting
neutrinos.  On February 23, at 7:36 AM universal time,
the detectors in the Kamokande lead mine in Japan, the
Morton Thekol salt mine near Cleveland, Ohio and at
Baksam in the Soviet Union all detected a 10 second
wide pulse of neutrinos.  Since the Magellanic cloud
and the supernova are visible only from the southern
hemisphere and all the neutrino detectors are in the
northern hemisphere, all the detected neutrinos had to
pass through the earth.  The 10 second width of the
pulse verified earlier computer models about the diffu-
sion of neutrinos out of the collapsing core.

The exact time of the arrival of the light from the
supernova explosion is harder to pin down, but some
fortunate coincidences occurred there too.  The super-
nova was first observed by a graduate student Ian
Sheldon working at the Las Campanas Observatory in
Chile.  Ian was photographing the large Magellanic
cloud on the night of February 23, 1987, and noted that
a plate that he had exposed that night had a bright stellar
object that was not on the plate exposed the night
before.  The object was so bright it should be visible to
the naked eye.  Ian went outside, looked up, and there
it was.

Once the supernova had been spotted, there was an
immediate search for more precise evidence of when
the explosion had occurred.  A study of the records of
the neutrino detectors turned up the ten second neutrino
pulse at 7:36 AM on February 23.  Three hours after that
Robert McNaught, an observer in Siding Spring, Aus-
tralia, had exposed two plates of the large Magellanic
clouds.  When the plates were developed later, the
supernova was visible.  One hour before McNaught
exposed his plates, Albert Jones, an amateur astrono-
mer in New Zealand happened to be observing at the
precise spot where the supernova occurred and saw
nothing unusual.  Thus the light from the supernova
explosion arrived at some time between two and three
hours after the neutrino pulse.

The fact that the photons from the supernova explosion
arrived two to three hours later than the neutrinos, is not
only a good test of the computer models of the super-
nova explosion, it also provides an excellent check on
the rest mass of the neutrino.  The 1987 supernova
occurred 160,000 light years away from the earth.
After the explosion, neutrinos and photons raced to-
ward the earth.  The neutrinos had a 3 hour head start,
and after traveling for 160,000 years, the neutrinos
were still 2 hours, and perhaps 3 hours ahead.  That is
as close a race as you can expect to find.  From this we
can conclude that neutrinos travel at, or very, very close
to the speed of light.  And therefore their mass must be
precisely zero, or very close to it.
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Chapter 7
Conservation of
Linear and Angular
Momentum

The truly basic laws of physics, like the principle of
relativity, not only have broad applications, but are
often easy to describe.  The principle of relativity
says that there is a quantity, namely your own
uniform motion, that you cannot detect.  The hard
part is working out the implications of the simple
idea.

In this chapter we discuss two more basic laws of
physics, laws that apply with no known exceptions to
objects as large as galaxies and as small as sub-
atomic particles.  These are the laws of the conser-
vation of linear momentum and the law of the
conservation of angular momentum.  These are the
first of several so-called conservation laws that we
will encounter in our study of physics.  A conserva-
tion law states that there is some quantity which does
not change in a given set of experiments.

We will introduce our first example of a conserva-
tion law by going back to the results of the aircart
recoil experiments that we used in the last chapter to
define mass.  In analyzing these results, we will see
that there is a quantity, which we will call linear

momentum, which does not change when the spring
is released and the carts recoil.  We will then look at
a wider class of experiments, in which objects not
only recoil, but collide at different angles.  Again we
will see that linear momentum does not change.

We will also see that linear momentum is conserved
not just for familiar objects like billiard balls, but
also for objects as small as protons colliding in a
hydrogen bubble chamber.

In the appendix to this chapter we will show how the
recoil definition of mass, when combined with the
law of conservation of linear momentum and the
principle of relativity, leads to Einstein's relativistic
mass formula   m = m0 / 1 – v2/c2  .

The second conservation law deals with angular
momentum.  The concept of angular momentum is a
bit more subtle than that of linear momentum.  As a
result, in this chapter we will focus on developing an
intuitive feeling for the concept.  A more formal
mathematical treatment will be put off until a later
chapter where the formalism is needed.
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The law of conservation of angular momentum has
many applications that range from the astronomical
scale to the subatomic scale of distance. The very
existence of planets in the solar system is a conse-
quence of the conservation of angular momentum.
The law also allows us to understand the behavior of
atomic nuclei in a magnetic field, a behavior that is
involved in the creation of the marvelous images
seen in magnetic resonance imaging apparatus.  On
the very smallest scale of distance, angular momen-
tum turns out to be one of the basic intrinsic proper-
ties of all elementary particles.

CONSERVATION OF
LINEAR MOMENTUM
In our discussion of the recoil definition of mass in
the last chapter, we looked at a number of experi-
ments that were performed to determine how mass
behaves.  One of the crucial observations was that,
at least with carts on an air track, the ratio of the
recoil speeds did not change as we changed the
strength of the spring pushing the carts apart.  If the
big cart came out moving half as fast as the small one
when we used a weak spring, then it still came out
half as fast when we used a strong spring.  With the
strong spring both speeds were greater, but the ratio
was still the same.

We used this unchanging ratio in our definition of
mass.  If, as  shown in Figure (6-3) reproduced here,
cart A recoils at a speed  vA and cart B at a speed  vB,
then the mass ratio  mA/mBwas defined by Equation
(6-1) as

 mA
mB

=
vB
vA

(6-1)

What we will do now is manipulate Equation (6-1)
until we end up with a quantity that does not change
when the spring is released.

Figure 6-3
In Chapter 6 we defined the ratio of the mass of the
carts   mA/mB to be equal to the inverse ratio of the recoil
speeds    vB/vA .

A

(a)

A B

thread spring

frictionless Air Track

VB

(b)

VA
B
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Multiplying Equation (6-1) through by mB and vA
gives

 mAvA = mBvB (1)

Next, note that vA and vB are the magnitudes of the
recoil velocity vectors  vA and  vB.  Since  vA and  vB
point in opposite directions, we can write Equation
(1) as a vector equation in the form

 mAvA = –mBvB (2)
where the minus sign handles the fact that   vA and vB
are oppositely directed.

Now move the   –mBvB   to the left hand side to give
the result

  
mAvA + mBvB = 0 after recoil (3)

where  vA  and vB  are the cart's velocity vectors after
the recoil.

We will now introduce a new interpretation.  Let us
define the linear momentum of a particle as the
product of the particle's mass times its velocity.
Using the letter p to denote linear momentum, we
have

   
p ≡ mv definitionof

linearmomentum (4)

Note that linear momentum p is a vector because it
is the product of a number, the mass m, times a
vector, the velocity v.

Looking back at Equation (3), we see that  mAvA   is
the linear momentum of cart A after the recoil, and

 mBvB  is the linear momentum of cart B after the
recoil.  Equation (3) tells us that the sum of these two
linear momenta is zero.

Before the string was cut and the carts released, both
carts were sitting at rest.  Before the release, we have

  vA = 0 , vB = 0 before release (5)

Thus the sum of the linear momenta before the
release was

  
mAvA + mBvB = 0 before recoil (6)

Comparing Equations (3) and (6) we see that the sum
of the linear momenta of the two carts was not
changed by the recoil.  This sum was zero before the
carts were released, and it is zero afterward.

We will call the sum of the linear momentum of the
two carts the total linear momentum  ptot of the
system of two carts.

   ptot ≡ pA + pB = mAvA + mBvB

definition of total linear momentum
(7)

Then we can restate our observation that Equation
(3) and (6) look the same by saying that the total
linear momentum  ptot of the system was unchanged
by the recoil.  Another way of phrasing it is to say
that in the recoil experiment, the total linear momen-
tum of the carts is conserved.

At this point, we do not have a new law of physics,
instead, we have merely reformulated our definition
of mass.  But the result turns out to be far more
general than we have seen so far.  The general law
may be stated as follows.  If we have a system of
particles, and there is no net external force acting
on them, then the total linear momentum of the
system of particles is conserved.

So far, we have not said much about forces and how
to recognize them.  Thus we will, for now, limit our
discussion of the conservation of linear momentum
to examples where it is fairly clear that there is no net
external force or influence.  In our recoil experi-
ment, gravity is pulling down on the carts, the air is
pushing up, and the two effects cancel.  The air track
was explicitly designed so that there would be no net
force on the cart.

In our recoil experiment, our system consists of the
two carts and the spring.  When the thread is burned,
the spring exerts a force on both carts, but the spring
is part of the system.  The spring forces are internal,
not external forces, and therefore cannot change the
linear momentum of the system.  If the linear mo-
mentum was zero before the thread was burned, it
must still be zero afterward.
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COLLISION EXPERIMENTS
A more common example of where external forces
can be ignored and linear momentum is conserved is
during the collision of two objects like billiard balls.
While two objects are colliding, the forces between
the objects, the internal forces, are usually much
greater than any outside external forces.  As a result,
just before, during, and just after the collision, exter-
nal forces can be neglected and linear momentum is
conserved.

In an experiment, that is easily carried out in the
introductory physics lab, two steel balls are sus-
pended by strings from the ceiling as shown in
Figure (1).  One of the two balls is pulled back and
released.  It strikes the ball at rest and the two balls
bounce off as seen in the strobe photograph of the
motion, Figure (2).  The strobe photograph is ana-
lyzed in Figure (3) and the resulting momentum
vectors are plotted in Figure (4).

What we see in the strobe photograph is ball 2  at rest
and ball 1 coming in, attaining a velocity  v1i  just
before the collision.  After the collision, balls 1 and
2 bounce off in different directions, with velocity
vectors  v1f  and  v2f  respectively.

strobe

grid

m
irror

ceiling

string

2

1

floor

camera

P11

Figure 1
Experimental setup to study the conservation of
linear momentum during the collision of two balls.

Figure 2
Strobe photograph taken using the setup of Figure (1).  The data for the experiment are

  m1 = 70.3 gm (the ball initially released),   m2 = 240 gm (ball initially at rest),    ∆∆t = 1/10 sec  (period
between flashes).  Spacing between grid lines = 1 cm.  (Photograph from a student lab notebook.)
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pf ≡ p1f + p2f =

momentum being
carried out of
the collision

(9)

From Figure (4) we see that  pf  is equal to  p1i  the
momentum brought into the collision by ball 1.
Since the same amount of momentum came out of
the collision as was carried in, the total linear mo-
mentum did not change.  The total linear momentum
of the system of the two balls was conserved during
the collision.

P1i

P2f  

P1f

0 2 x103 4 x103 6 x103

momentum scale gm cm/sec
Figure 4
Here we see that the momentum   p1 i  brought in by Ball 1 is
equal to the momentum   p1 f + p2 f  carried out after the collision.

P1i

P1f

P2f                        

Figure 3
Analysis of Figure (2).  Ball 1 enters with a momentum   p1 i  and collides with Ball 2 which
is initially at rest.  After the collision, Balls 1 and 2 emerge with momenta   p1 f  and   p2 f
respectively.  (Each large square on this graph paper represents a distance of 10 cm.)

1i
p     = 6.43 x 10  3

1f
p     = 6.05 x 10  3

2f
p     = 0.89 x 10  3

gm cm
sec

gm cm
sec

gm cm
sec

m   =  70.3 gm
m   =  24.0 gm
v    =  91.5 cm/sec
v    =  86 cm/sec
v    =  37 cm/sec

1i

1f

2f

2

1 

In Figure (4) we have plotted the momentum   p1i  of
ball 1 just before the collision

  
p1i = mv1i =

momentumof
ball 1 before
the collision

(8)

and also plotted the momenta  p1f   and   p2f   of balls
1 and 2 after the collision.  The vector sum of these
two momenta is the total momentum  pf  being
carried out by the two balls
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Exercise 1

Figures (5 a and b) show the collision between two balls of equal mass  m1 = m2 = 73 grams .  Again
  ∆t = 1/10 sec .  Using one of these figures, construct a graph similar to Figure (4), and compare the momentum

brought in by Ball 1 with the momentum carried out by the two balls after the collision.

Figures 5 a, b
Strobe photographs of the collision of two equal mass balls.
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Subatomic Collisions
In the study of subatomic particles, you cannot
photograph or image the particles themselves, the
best you can do is study the tracks left behind in a
particle detector.  A common particle detector, de-
veloped by Don Glaser in the early 1950s, is the
bubble chamber.  We will discuss the bubble cham-
ber in more detail in later chapters.  However  the
basic idea is that the bubble chamber is filled with
liquid hydrogen, and that a charged particle moving
through the liquid hydrogen leaves a track that can
be made visible as a string of bubbles.

Bubble chambers are used primarily to study the
collisions between subatomic particles.  In Figure
(6) we have a bubble chamber photograph in which
an incoming proton from a particle accelerator moves
through the liquid hydrogen until it strikes a hydro-
gen nucleus, namely another proton.  The two pro-
tons emerge from the collision, coming out at right
angles as shown.

After we discuss the law of conservation of energy,
we will show that if two identical particles collide,
one of them being initially at rest, then if both energy
and linear momentum are conserved during the
collision the particles must emerge at right angles.
Thus we can use the right angle between the emerg-
ing proton tracks in Figure (6) as experimental
evidence that linear momentum is conserved even
among the interactions of subatomic particles.

The following examples and exercises are chosen to
show some of the more practical applications of the
conservation of linear momentum.

Example 1 Rifle and Bullet
A 2-kilogram rifle fires a 10-gram bullet at a speed
of 400 meter/sec.  What is the recoil velocity of the
gun?    In this case, the rifle and bullet are initially at
rest and have zero total linear momentum.  Just after
the bullet leaves the gun, before any external forces
have had time to act on the system, the total momen-
tum of the system (gun plus bullet) is still zero.  We
get

 pgun + pbullet = 0

 mgvg = – mbvb

where the minus sign indicates that   vg  is in the
opposite direction to the motion of the bullet.  Solv-
ing for the magnitude  vg of the recoil velocity, we get

  vg =
mb
mg

vb =
10 gm

2000 gm
× 400 meters

sec

 vg = 2 meters
sec

Thus, we see that the initial recoil velocity of the gun
is 2 meters/sec.

proton or hydrogen nucleus
initially at rest

P

P

P

Figure 6
Collision between two protons.  When a charged elementary particle passes through the liquid
hydrogen in a bubble chamber, it leaves a trail of bubbles that can be photographed. Here we see a
proton coming into the picture from the upper left, and striking the nucleus of one of the hydrogen
atoms in the liquid hydrogen.  The hydrogen nucleus is itself a proton, and after the collision the
two protons emerge as shown in the sketch.
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In this example we applied the law of conservation
of linear momentum over such a short time that
outside forces did not have time to act on the system.
The conservation of linear momentum applies over
longer times, but we must enlarge our concept of the
system, as seen in Example (2),

Example  2
A 78 kilogram hunter standing on nearly frictionless
ice fires the gun of the preceding example.  What is
the recoil velocity of the hunter?

Our system now consists of the bullet, gun and
hunter.  Initially the total linear momentum of the
system is zero.  After the bullet is fired, and after the
gun is firmly lodged against the shoulder of the
hunter, the gun and hunter together recoil at a veloc-
ity vh .  Applying the law of conservation of linear
momentum, we have (remembering that vg now
equals vh )

 phunter + pgun + pbullet = 0

 mhvh + mgvh = – mbvb

  vh =
mb

mh + mg
vb =

10 gm

78 + 2 kg
× 400 meters

sec

  vh =
10 gm

80,000 gm
× 400 meters

sec = 1
20

meter
sec

 vh = 5cm
sec

Exercise 2
a) Starting from the preceding two examples, further
enlarge the system.  Assume that the hunter is stand-
ing firmly on the earth when the gun is fired.  Taking
the point of view that the earth is initially at rest,
calculate the recoil velocity of the gun, hunter, and
earth.   (mearth = 6 × 1027 gm)

b) After the bullet strikes the ground, what is the
velocity of the earth, assuming it was at rest before
the gun was fired?

Exercise 3   Frictionless Ice
Suppose you are sitting in the middle of a completely
frictionless surface, such as an idealized pond of ice.
Propose a method of getting out of such a predica-
ment.  (Problem from J. Orear, Fundamental Physics,
Wiley, New York, 1961.)

Exercise 4   Bullet and Block
A 10-gram bullet traveling 300 meters/sec strikes and
lodges in a 3-kilogram block of wood initially at rest on
a pond of ice.  What is the final velocity of the block
and bullet after the collision?

Exercise 5   Two Skaters Throwing Ball
Two skaters, each of mass 60 kilogram, are standing
a slight distance apart on nearly frictionless ice.
Initially at rest, they throw a 1-kilogram ball back and
forth between them; each time the ball travels at a
speed of 10 meters/sec over the ice.

(a) What is the recoil velocity of the first skater
immediately after he throws the ball for the
first time?

(b) After the second skater catches the ball
for the first time, what is his recoil velocity?

(c) After the second skater has thrown the ball
back for the first time, what is his recoil
velocity?

(d) After the ball has made 10 complete round
trips and the first skater is holding the ball,
what is the velocity of each skater?  What
is the total momentum of the system of the
two skaters and the ball?

Exercise 6   Rocket

 An 11-ton rocket consists of 10 tons of fuel.  If the fuel
is discharged as exhaust gasses that travel at an
average speed of 1 mile/sec (relative to the earth),
how fast will the rocket be traveling when the fuel is
used up?  Neglect gravity and air resistance.  (Hint:
Consider the total momentum of all the exhaust gas.)
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CONSERVATION OF
ANGULAR MOMENTUM
Anyone who has watched figure skating in the
winter Olympics has seen an example of the conser-
vation of angular momentum.  When a figure skater
like the one shown in Figure (7) starts her spin, her
arms are outstretched and she is turning slowly.  As
she brings her arms in, she turns faster and faster
until the maneuver is completed.  She starts the spin
with a certain amount of angular momentum, and
that amount does not change, is conserved, through-
out the spin.  To understand the concept of angular
momentum, we have to see why the skater had the
same angular momentum when rotating slowly with
her arms outstretched and rotating rapidly with her
arms pulled close to her body.

Even those of us who are not skilled figure skaters
can repeat the skaters experience of a spin using a
rotating platform and two iron dumbbells.  When
done as a classroom demonstration, this is some-
times known as the “three dumbbell experiment”.
The instructor stands on the rotating platform and
holds the dumbbells out as shown in Figure (8a).  A
student helps in the demonstration by starting the
instructor rotating slowly.  The instructor then pulls
in his arms and rotates even faster than a figure
skater because of the mass in the dumbbells (Figure
8b).  However unless the instructor is skilled at this
demonstration, he is likely to make a far less grace-
ful exit from the spin than do the Olympic figure
skaters .

Figure 7
Figure skater doing a spin.  As the skater
pulls her arms in, she turns faster and
faster.  This is an example of the
conservation of angular momentum.

Figure 8
The "three dumbbell" experiment.  The instructor,
standing on a platform that is free to rotate, holds two
dumbbells out at arm length as shown in (a).  With a
slight push from a student, the instructor starts to
rotate slowly.  The instructor then pulls his arms in,
and the rotation increases significantly (b).

R1
R2

(a) (b)
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In a more controlled and idealized experiment, we
can set a ball swinging in a circle at the end of a string
as shown in Figure (9).  Let the other end of the string
pass down through the small end of a plastic funnel
mounted on a board as shown in Figure (9a).  If we
pull down on the string to reduce the radius r of the
circle around which the ball is traveling, the speed v
of  the ball increases.  An analysis of this motion
shows a simple result—the product of the radius of
the circle times the speed of the ball remains con-
stant.  If the ball is initially moving in a circle of
radius r1 and a speed v1 as shown in Figure (9b), and
we reduce the radius to a length r2  as shown in Figure
(9c), the new speed v2  is given by the equation

 v1r1 = v2 r2 (10)

Since r2 is smaller than r1, v2  must be bigger than v1
to keep the product constant.

The angular momentum of a ball of mass m traveling
at a speed v in a circle of radius r is defined to be the
product mvr.  Using the letter to represent angular
momentum, we have

   
≡ mvr

angular momentumof a
mass m travelingat a speed
v in a circle of radius r

(11)

In Figure (9a), the ball has an angular momentum

 1 = mv1r1 (12)

after the string is shortened, the angular momentum

2 is

 2 = mv2r2 (13)

Since the mass m of the ball did not change, and
because  v1r1 = v2 r2, we see that

 1 = 2 (14)

and in this example angular momentum did not
change.  The ball's angular momentum was con-
served while we pulled on the string and the ball sped
up.  It was also conserved when the figure skater
pulled in her arms during the spin, and the instructor
pulled in on the dumbbells.  The only difference in
the three examples is that we have a more complex
formula for angular momentum for the figure skater
and instructor.

Exercise 7
What are the dimensions of angular momentum when
mass is measured in grams, length in centimeters,
and time in seconds?

Exercise 8
Figure (9d) is a strobe photograph from a student lab
notebook. The string was suddenly pulled down,
shortening the radius of the ball's circular orbit.  Using
this photograph, show that the angular momentum of
the ball did not change.

Exercise 9

Neglecting the mass of the spokes, what is the
angular momentum of a bicycle wheel of mass m and
radius r, spinning with a period T?  (T is the length of
time the wheel takes to go around once.)
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Figure 9
A more controlled demonstration of the conservation of angular momentum.  One end of a string
is tied to a ball of mass m, and the other is fed down through a plastic funnel mounted on the end
of a board shown in (a).  The ball is then swung in a circle of radius r1 , and speed v1 as shown in
(b).  Then pull down on the free end of the string, to reduce the radius of the circle to r2.  It takes a
fairly strong tug, but the speed of the ball increases to v2 as shown in (c).  From the experimental
results shown in (d), you can check that  r1v1 = r2v2 . Since the angular momentum of the ball is
proportional to rv, angular momentum was conserved in this experiment. (Photo from lab of
G. Sheldon.)

a) Side view b) Top view c) String pulled in

d)
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A MORE GENERAL DEFINITION
OF ANGULAR MOMENTUM
The concept of angular momentum applies to more
general situations than mass traveling in a circle.
For a more general definition of angular momentum,
consider the situation shown in Figure (10).  In
Figure (10a) a ball with linear momentum  p = mv  is
traveling along a path that will take it a distance r⊥
from some point labeled O.  To make the situation
more realistic, imagine that there is a light rod
pivoted at point O with a hook at the other end.  The
length of the rod is r⊥ , so that the hook will just catch
the ball as the ball passes by (Figure 10b).

Once the ball has been hooked, it will travel in a
circle as shown in Figure (10c).  If the rod is
perpendicular to the path of the ball when the ball is
hooked (as shown in Figure 10a) then there will be
no disruption in the speed of the ball and the ball will
move around the circle at the same speed v.

Once the ball is traveling in a circle we know that its
angular momentum about the pivot O is given by
Equation (11) as    = mvr⊥.  In our generalization of
the definition of angular momentum, the ball has this
same amount of angular momentum before it was
hooked as it did after.

The more general definition is as follows.  Consider
the path of the ball shown in Figure (10a) and let us
use the name lever arm for the distance of closest
approach from the path to the axis at point O.  This
lever arm is the perpendicular distance to the path,
the distance we have labeled r⊥.  Then as our new
definition of angular momentum, we say that the
magnitude  of the ball's angular momentum is
equal to the product of the magnitude of the linear
momentum p = mv times the length of the lever arm
r⊥

  
= pr⊥ (15)

Applying Equation (15) to the situation shown in
Figure (10a), before the ball is hooked, we see that
as the ball heads toward the hook, its initial angular
momentum  i   is

  i = pir⊥ = mv r⊥ (16)

Since this is the same as the angular momentum after
the ball is hooked and traveling in a circle, the
angular momentum is unchanged, is conserved,
during the process of being captured by the hook.

p = mv

path of ball

r  perpendicular distance from path of ball to point O

=

O

b)      

a)

p = mv

O

r

c)

p 
= 

m
v

O

r

ball catches 
on hook

ball heading
for hook

ball swinging in circle, 
with angular momentum
  = mvr 

Figure 10
We say that the ball initially has an angular
momentum    mvr⊥⊥ , in (a), that remains unchanged
when the ball is caught by the hook and travels in
c circle, in (c).
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When you have a conserved quantity like angular
momentum, it takes on a reality that goes beyond the
formulas that define it.  With our generalized defini-
tion of angular momentum, we find that angular
momentum can be passed from one object to an-
other.  For example suppose a student is standing
motionless on the rotating platform as in Figure
(11a), and the instructor tosses a softball off to the
side of the student as shown.  The softball has a lever
arm   r⊥  and therefore an angular momentum   mv r⊥
about the axis of the rotating platform.  If the student
reaches out and grabs the ball, she acquires the
angular momentum of the ball and starts rotating as
shown in Figure (11b).  If she brings the ball closer
in toward her body, she will rotate faster because the
ball has a shorter lever arm.

Exercise 10

If you are standing directly over the axis of the
platform and a ball is thrown directly toward you, as
shown in Figure (12), do you start to rotate after
catching the ball?  Try the experiment yourself and
see if the prediction is correct.

student

rotating platform

p

mass

(a)  Ball thrown to student

student

rotating platform

r

p

(b)  Student, gaining angular momentum
      |p|r  = mvr   from ball, starts to rotate

Figure 11
Student catching angular momentum
from a ball thrown off to the side.

Figure 12
How much angular momentum
does the student catch in this case?
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ANGULAR MOMENTUM
AS A VECTOR
Our definition of angular momentum is clearly not
yet complete.  Even when we are standing on a
rotating platform so that we can freely rotate only
about the axis of the platform, there are still two
different directions we can rotate—clockwise and
counter clockwise.  The definition of angular mo-
mentum must somehow account for these two direc-
tions of rotation.

The study of rotations can be complex,  particularly
if you allow rotations in three dimensions, about any
of the three coordinate axes x, y or z.  The rotating
platform used in Figure (8) and (11) greatly simpli-
fies the situation by restricting our motion to rotation
about one axis, the axis of the platform which is
conventionally called the z axis as shown in Figure
(13).

One way to distinguish positive and negative rota-
tion is by using a right-hand rule.  The rule is to point
the thumb of your right hand along the positive z
axis, and then say that the direction of positive
rotation is the direction that the fingers of your right
hand curl, as seen in Figure (13).  Looking down
(with the z axis pointing up toward us), we find that
positive rotation is counter clockwise and negative
rotation is clockwise.

Exercise 11

What would be the direction of positive rotation if we
used a left hand convention.  Draw a sketch and
explain.

The next generalization of our definition of angular
momentum is best illustrated by the use of the
rotating bicycle wheel mounted on a handle as
shown in Figure (14).  To make an effective demon-
stration, the tire of the bicycle wheel has been
replaced by wire wrapped along the rim of the wheel
to give the wheel added mass.  If we spin the wheel
all the mass m on the rim is moving at the same speed
v and has the same lever arm r about the axis of the
wheel.  Thus the angular momentum of the rotating
wheel is  = mv r .

The next step will at first seem arbitrary, and perhaps
downright silly.  What we are going to do now is to
define the angular momentum of the wheel as a
vector, of length  = mv r  , pointing along the axis
of the wheel.  Which way it points is defined by a
right-hand rule.  As shown in Figure (14), curl the
fingers of your right hand in the direction that the
wheel is rotating and the angular momentum vector

  points along the axis in the direction of your
thumb.

This method of turning angular momentum into a
vector seems doubly arbitrary.  First of all, the
angular momentum vector   points perpendicular

Figure 13
Definitions of the z axis and of positive and negative
rotation.  For convenience we will call the axis about
which our platform rotates the "z axis".  To distinguish
the two kinds of rotation, we will use the right hand
rule.  Curl the finger of your right hand in the direction
the platform is rotating.  If your thumb points up, we
say the rotation is positive.  If your thumb points down,
the rotation is negative.

y

x

z

ax
is

of
ro

ta
tio

n

rotating
platform

positive
rotation = mvr 

Figure 14
A further generalization of the concept of angular
momentum is to say that it is a vector .  The magnitude

  is just our old definition    mvr⊥.  We now say that the
angular momentum vector  points in the direction of the
axis of rotation, in the direction given by the right hand
rule.  (Curl the fingers of your right hand in the direction
the wheel is rotating, and your thumb points in the
direction of .)
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to the plane in which the motion of the wheel is
occurring, and then one arbitrarily selects a right-
handed instead of a left-hand convention to decide
which way along the axis the vector   should point.
It is hard to believe that such arbitrary choices could
have any relationship to physical reality.

But it works, as we can easily demonstrate using the
bicycle wheel and the rotating platform.  In the first
demonstration, have a student stand at rest on the
rotating platform and let the instructor spin the
bicycle wheel and orient it so that the bicycle wheel's
angular momentum vector   is pointing up as
shown in Figure (15a).  The instructor then hands the
bicycle wheel, and its angular momentum, to the
student as shown.

On the rotating platform motion is restricted to
rotation about the z axis (axis of the platform), thus
the only component of angular momentum that is of
interest is the z component.  In Figure (15a) the
bicycle has a positive z component of angular mo-
mentum  z = mvr , and the student has none.  Thus
the total angular momentum of the wheel and stu-
dent is

 z total = z bicyclewheel + z student

= +mvr + 0
= +mvr

(15)

The special thing that happens when you stand on a
freely rotating platform is that you cannot change
your own z component of angular momentum.  If no
one off the platform passes or tosses in some angular
momentum, your z component of angular momen-
tum is conserved and there is no way you can change
it.

Have the student turn the bicycle wheel upside down
as shown in Figure (15b).  Now   of the bicycle
wheel is pointing down so that the bicycle wheel
now has a negative z component of angular momen-
tum

 z bicyclewheel = – mvr (16)

Since the total z  of the student and bicycle wheel
must be conserved, the student must gain a positive
z component of angular momentum

 z student = + 2mvr (17)

so that the sum remains + mvr.

What happens when the student turns the bicycle
wheel over is that she starts rotating counter clock-
wise; she gains a positive z component of angular
momentum.  If at any time she turns the wheel back
up, she will stop rotating.

Figure 15b
The student turns the bicycle wheel over.
If angular momentum is conserved, the
student must gain an angular
momentum 2  directed up as shown.

Figure 15a
A student, at rest on the rotatable
platform, is handed a rotating bicycle
wheel whose angular momentum
vector  is up as shown.

2

Figure 15 Movie
The student turns the
bicycle wheel over.
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If the instructor hands the student the rotating wheel
oriented horizontally as shown in Figure (16a), and
the student is initially at rest, then neither the student
or the bicycle wheel have a z component of angular
momentum.  The total z component is zero and must
remain that way no matter what the student does.  In
the following exercise, you are to predict what will
happen if she turns the wheel up or turns it down.

Exercise 12
Explain what will happen if the student orients the
bicycle wheel up as shown in Figure (16b).  What
happens when she turns it down as shown in Figure
(16c).

Exercise 13

The student at rest on the rotating platform is handed
a bicycle wheel at rest.  She spins the bicycle wheel
and orients it so that the bicycle wheel's angular
momentum vector points up.  Explain carefully what
happens to the student.

If you watch, or better yet try these angular momen-
tum demonstrations yourself, you begin to believe
that there is really a quantity called angular momen-
tum that you can pass around and manipulate.  Now
our emphasis is on gaining an intuitive feeling for
the concept, later we will come back to the topic
with more mathematical machinery.  But it is impor-
tant to already have an intuitive grasp of the concept
or the mathematical machinery will not make sense.

z

Figure 16a
The student at rest is handed a bicycle wheel pointed
sideways.  In this orientation the wheel has no z
component of angular momentum.  Once the student
has the wheel, the z component of the angular
momentum of the plus wheel is conserved.

Figure 16b
What happens to the student
if she turns the wheel up?

Figure 16c
What happens to the student
if she turns the wheel down?

Figure 17
Detail of Hubble photograph of the Eagle
nebula. Each nub is a star surrounded by
its own gas cloud. (See page 18 for a more
complete photograph of the nebula.)
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and the hotter the resulting ball.  If the ball is of the
order of one tenth the mass of the sun or larger, the
ball will be hot enough to ignite nuclear reactions
and a star is born.

The lumpiness in the gas clouds is probably related
to a large scale turbulence in the flow of the gas in the
cloud.  Such lumpines is usually associated with
rotational motion (vorticies), thus as a lump of gas
breaks away from the rest of the cloud, it is likely to
have some rotation. While the rotational velocity
may be small for a two light year diameter lump, as
the lump contracts, the speed increasas due to the
conservation of angular momentum. If there is enough
angular momentum in the gas cloud, a point is
reached where the rotation inhibits further collapse
of the cloud.

The only way the cloud can continue to collapse is to
leave some mass and most of the angular momentum
outside.  Computer models indicate that a rotating
disk of gas forms outside the newly born star, a disk
that contains most of the original angular momen-
tum.  After a while the gas in the disk condenses into
planets that orbit the star.  As a result of being formed
from a rotating disk of gas, we expect most planets
to lie in a plane, and go around the star in the same
direction, which the sun and planets do.  If the
collapsing gas had no angular momentum, the disk
would not form and there would be no planets.

Figure 18
The nebula in the constellation of Orion.  This is a
particularly active area for the formation of new stars.

Formation of Planets
Applications of the law of conservation of angular
momentum are not confined to classroom demon-
strations.  We will end this chapter with a discussion
of two astronomical applications.  One deals with
the formation of planets, and the other their motion
about the sun.

Stars are formed in the large clouds of gas that
stretch throughout the galaxy.  An example of such
a gas cloud is the Eagle Nebula shown in Figure (17).
A particularly active area of star formation is in the
nebula in the constellation of Orion shown in Figure
(18).  The Orion constellation rises after sunset in
early winter, and the nebula is located in the middle
of the sword dangling from the three bright stars of
Orion's belt.  Using binoculars, one can see the
nebula as a bright patch of gas.  The gas is illumi-
nated by the newly formed stars inside.

A star forms when a lump of gas in the cloud begins
to collapse due to the gravitational attraction be-
tween the gas particles.  Judging from the spacing
between stars in the neighborhood of the sun, the sun
was formed from the collapse of a region of gas
about two light years in radius.  As the cloud col-
lapses the gravitational attraction between the par-
ticles becomes stronger and stronger.  The particles
rush toward each other at a faster and faster rate, and
finally collapse into a hot ball.  The more mass in the
collapse, the more gravitational energy released,

Figure 18a
Hubble photograph of forming stars in the Orion
nebula. They are still surrounded by clouds of gas.
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Exercise 14

Most of the angular momentum of the solar system is
taken up by the distant massive planets Jupiter,
Saturn  and Uranus.  If Jupiter were originally formed

from a ring of dust 2 light-years in radius, what must
have been the initial rotational speed of these par-
ticles?  (The distance from the sun to Jupiter is 43
light-minutes or   2.6 × 103  light-seconds.  Jupiter
travels at an orbital speed of   1.3 × 106 cm/ sec  for
a period of nearly 12 years.    1 year ≈ π × 107 sec )

Figure 17b
Hubble photograph of the Eagle nebula. The nubs at the top of the tallest column are
young stars with their own gas clouds. Extremely bright light from a star in the
background is pushing away all gas that is not gravitationally attached to a star.



CHAPTER  8 NEWTONIAN MECHANICS

In Chapters 4 and 5 we saw how to use calculus and the
computer in order to predict the motion of a projectile.
We saw that if we knew the initial position and velocity
of an object, and had a formula for its acceleration
vector, then we could predict its position far into the
future.

To go beyond a discussion of projectile motion, to
develop a general scheme for predicting motion, two
new concepts are needed.  One is mass, discussed in
chapter 6, and the other is force, to be introduced now.
We will see that  once we know the forces acting on an
object, we can obtain a formula for the object’s accel-
eration and then use the techniques of Chapters 4 and
5 to predict motion.  This scheme was developed in the
late 1600s by Isaac Newton and is known as Newtonian
Mechanics.

Chapter 8
Newtonian Mechanics
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FORCE
The concept of a force—a push or a pull—is not as
strange or unfamiliar as the acceleration vector we have
been discussing.  When you push on an object you are
exerting a force on that object.  The harder you push, the
stronger the force.  And the direction you push is the
direction of the force.  From this we see that force is a
quantity that has a magnitude and a direction.  As a
result, it is reasonable to assume that a force is de-
scribed mathematically by a vector, which we will
usually designate by the letter F.

It is often easy to see when forces are acting on an
object.  What is more subtle is the relationship between
force and the resulting acceleration it produces.  If I
push on a big tree, nothing happens.  I can push as hard
as I want and the tree does not move.  (No bulldozers
allowed.)  But if I push on a chair, the chair may move.
The chair moves if I push sideways but not if I push
straight down.

The ancient Greeks, in particular, Aristotle, thought
that there was a direct relationship between force and
velocity.  He thought that the harder you pushed on an
object, the faster it went.  There is some truth in this if
you are talking about pushing a stone along the ground
or pulling a boat through water.  But these examples,
which were familiar problems in ancient time, turn out
to be complex situations, involving friction and viscous
forces.

Only when Galileo focused on a problem without
much friction – projectile motion – did the important
role of the acceleration vector become apparent.  Later,
Newton compared the motion of a projectile (the apple
that supposedly fell on his head) with the motion of the
planets and the moon, giving him more examples of
motion without friction.  These examples led Newton
to the discovery that force is directly related to accelera-
tion, not velocity.

In our discussion of projectile motion, and projectile
motion with air resistance, we have begun to see the
relation between force and acceleration.  While a
projectile is in flight, and we can neglect air resistance,
the projectile’s acceleration is straight down, in the
direction of the earth as shown in Figure (1).  As we
stand on the earth, we are being pulled down by gravity.
While the projectile is in flight, it is also being pulled
down by gravity.  It is a reasonable guess that the
projectile’s downward acceleration vector g is caused
by the gravitational force of the earth.

When we considered the motion of a particle at con-
stant speed in a circle as shown in Figure (2), we saw
that the particle’s acceleration vector pointed toward
the center of the circle.  A simple physical example of
this circular motion was demonstrated when we tied a
golf ball to a string and swing it over our head.

a
0

0 1

2

3

a1

a2

a3

r
strin

g

a

golf ball

Figure 2
The acceleration of the ball is in the same direction as
the force exerted by the string. (Figure 3-28)

Figure 1
The earth's gravitational force produces a uniform
downward gravitational acceleration. (Figure 3-27)
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While swinging the golf ball, it was the string pulling
on the ball that kept the ball moving in a circle.  (Let go
of the string and the ball goes flying off.)  The string is
capable of pulling only along the length of the string,
which in this case is toward the center of the circle.
Thus the force exerted by the string is in the direction
of the golf ball’s acceleration vector.  This makes our
second example in which the particle’s acceleration
vector points in the same direction as the force exerted
on it.

The example of projectile motion with air resistance,
shown in Figure (3), presented a more complex situa-
tion.  In our study of the motion of a Styrofoam
projectile, we had two forces acting on the ball.  There
was the downward force of gravity, and also the force
exerted by the wind we would feel if we were riding
along with the ball.  We saw that gravity and the wind
each produced an acceleration vector, and that the
ball’s actual acceleration was the vector sum of the two
individual accelerations.  This is an important clue as to
how we should handle situations where more than one
force is acting on an object.

THE ROLE OF MASS
Our three examples, projectile motion, motion in a
circle, and projectile motion with air resistance, all
demonstrate that a force produces an acceleration in the
direction of the force.  The next question is – how much
acceleration?  Clearly not all forces have the same
effect.  If I shove a child’s toy wagon, the wagon might
accelerate rapidly and go flying off.  The same shove
applied to a Buick automobile will not do very much.

There is clearly a difference between a toy wagon and
a Buick.  The Buick has much more mass than the
wagon, and is much less responsive to my shove.

In our recoil definition of mass discussed in Chapter 6
and illustrated in Figure (4), we defined the ratio of two
masses as the inverse ratio of their recoil speeds

m1
m2

  =  v2
v1

The intuitive idea is that the more massive the object,
the slower it recoils.  The more mass, the less respon-
sive it is to the shove that pushed the carts apart.

Think about the spring that pushes the cart apart in our
recoil experiment.  Once we burn the thread holding the
carts together, the spring pushes out on both carts,
causing them to accelerate outward.  If the spring is
pushing equally hard on both carts (later we will see
that it must), then we see that the resulting acceleration
and final velocities are inversely proportional to the
mass of the cart.  If m1 is twice as massive as m2, it gets
only half as much acceleration from the same spring
force.  Our recoil definition and experiments on mass
suggests that the effectiveness of a force in producing
an acceleration is inversely proportional to the object’s
mass.  For a given force, if you double the mass, you get
only half the acceleration.  That is the simplest relation-
ship between force and mass that is consistent with our
general experience, and it turns out to be the correct
one.

3

"wind"

v
3

a
g

air

a3

a air3 = g + a

A
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B

Figure 4
Definition of mass.  When two carts recoil from
rest, the more massive cart recoils more slowly.

Figure 3
Gravity and the wind each produce an
acceleration, g and  aair respectively.
The net acceleration of the ball is the
vector sum of the two accelerations.
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NEWTON’S SECOND LAW
We have seen that a force F  acting on a mass m,
produces an acceleration a that  1) is in the direction
of F , and  2) has a magnitude inversely proportional
to m.  The simplest equation consistent with these
observations is

 
a = F

m (1)

Equation (1) turns out to be the correct relationship, and
is known as Newton’s Second Law of Mechanics.
(The First Law is a statement of the special case that,
if there are no forces, there is no acceleration.  That was
not obvious in the late 1600s, and was therefore stated
as a separate law.)  A more familiar form of Newton’s
second law, seen in all introductory physics texts is

F  = ma (1a)

If there is any equation that is essentially an icon for the
introductory physics course, Equation (1a) is it.

At this point Equation (1) or (1a) serves more as a
definition of force than a basic scientific result.  We can,
for example, see from Equation (1a) that force has the
dimensions of mass times acceleration.  In the MKS
system of units this turns out to be kg(m/sec2), a
collection of units called the newton.  Thus we can say
that we push on an object with a force of so many
newtons.  In the CGS system, the dimensions of force
are gm(cm/sec2), a set of units called a dyne.  A dyne
turns out to be a very small unit of force, of the order of
the force exerted by a fly doing push-ups.  The newton
is a much more convenient unit.  The real confusion is
in the English system of units where force is measured
in pounds, and the unit of mass is a slug.  We will
carefully avoid doing Newton’s law calculations in
English units so that the student does not have to worry
about pounds and slugs.

At a more fundamental level, we can use Equation (1)
to detect the existence of a force by the acceleration it
produces.  In projectile motion, how do we know that
there is a gravitational force Fg acting on the projectile?
Because of the gravitational acceleration.  The accel-
eration a due to gravity is equal to g (9.8 m/  sec2

directed downward), thus we can say that the gravita-
tional force Fg that produces this acceleration is

Fg  =  mg           gravitational force
on a mass m

(2)

where m is the mass of the projectile.

m2
Fgm1

Fg

r

Figure 5
The gravitational force between small masses
is proportional to the product of the masses,
and inversely proportional to the square of the
separation between them.
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NEWTON’S LAW OF GRAVITY
Newton went beyond using the second law to define
force; he also discovered a basic law for the gravita-
tional force between objects.  With Newton’s law of
gravity combined with Newton’s second law, we can
make detailed predictions about how projectiles, satel-
lites, planets, and solar systems behave.  This combina-
tion, where one has an explicit formula for gravitational
forces, and the second law to predict what accelerations
these forces produce, was one of the most revolution-
ary scientific discoveries ever made.

Newton’s so-called universal law of gravitation can
most simply be stated as follows.  If we have two small
masses of mass m1 and m2, separated by a distance r as
shown in Figure (5), then the force between them is
proportional to the product m1m2 of their masses, and
inversely proportional to the square of the distance r
between them.  This can be written as an equation of the
form

 
Fg = G

m1m2

r2            Newton's law
of gravity

(3)

where the proportionality constant G is a number that
must be determined by experiment.

Equation (3) itself is not the whole story, we must make
several more points.  First, and very important, is the
fact that gravitational forces are always attractive; m1
is pulled directly toward m2, and m2 directly toward
m1.  Second, the strength of these forces are equal, even
if m2 is much bigger than m1, the force of m2 on m1 is
the same in strength as the force of  m1 on m2.  That is
why we used the same symbol Fg for the two attractive
forces in Figure (5).

Newton’s law of gravity is called the universal law of
gravitation because Equation (3) is supposed to apply
to all masses anywhere in the universe, with the same
numerical constant G everywhere.  G is called the
universal gravitational constant, and has the numeri-
cal value, in the MKS system of units

   
G = 6.67 × 10–11 m3

kg sec2

universal
gravitational
constant

(4)

We will discuss shortly how this number was first
measured.

Exercise 1

Combine Newton’s second law  F = ma with the law of
gravity  Fg = Gm1m2 r2Gm1m2 r2  and show that the dimen-
sions for G in Equation (4) are correct.

Big Objects
In our statement of Newton’s law of gravity, we were
careful to say that Equation (3) applied to two small
objects.  To be more explicit, we mean that the two
objects m1 and m2 should be small in dimensions
compared to the separation r between them.  We can
think of Equation (3) as applying to two point particles
or point masses.

What happens if one or both of the objects are large
compared to their separation?  Suppose, for example,
that you would like to calculate the gravitational force
between you and the earth as you stand on the surface
of the earth.  The correct way to do this is to realize that
you are attracted, gravitationally, to every rock, tree,
every single piece of matter in the entire earth as
indicated in Figure (6).   Each of these pieces of matter
is pulling on you, and together they produce a net
gravitational force Fg which is the force mg that we
saw in our discussion of projectile motion.

Figure 6
You are attracted to every piece of matter in the earth.
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It appears difficult to add up all the individual forces
exerted by every chunk of matter in the entire earth, to
get the net force Fg.  Newton also thought that this was
difficult, and according to some historical accounts,
invented calculus to solve the problem.  Even with
calculus, it is a fairly complicated problem to add up all
of these forces, but the result turns out to be very simple.
For any uniformly spherical object, you get the cor-
rect answer in Newton’s law of gravity if you think of
all the mass as being concentrated at a point at the
center of the sphere. (This result is an accidental
consequence of the fact that gravity is a 1/r2 force, i.e.,
that it is inversely proportional to the square of the
distance.  We will have much more to say about this
accident in later chapters.)

Since the earth is nearly a uniformly spherical object,
you can calculate the gravitational force between you
and the earth by treating the earth as a point mass
located at its center,  4000 miles below you, as indicated
in Figure (7).

Galileo’s Observation
As we mentioned earlier, Galileo observed that, in the
absence of air resistance, all projectiles should have the
same acceleration no matter what their mass.  This
leads to the striking result that, in a vacuum, a steel ball
and a feather fall at the same rate.  Now we can see that
this is a consequence of Newton’s second law com-
bined with Newton’s law of gravity.

Using the results of Figure (7), i.e., calculating Fg by
replacing the earth by a point mass me located a
distance re below us, we get

 
Fg =

Gmme

re
2

(5)

for the strength of the gravitational force on a particle
of mass m at the surface of the earth.  Combining this
with Newton’s second law

Fg  =  mg   or   Fg  =  mg (6)

we get

 mg =
Gmme

r2 (7)

The important result is that the particle’s mass m
cancels out of Equation (7), and we are left with the
formula

 

g =
Gme

re
2

(8)

for the acceleration due to gravity.  We note that g
depends on the earth mass  me , the earth radius re, and
the universal constant G, but not on the particle’s mass
m.  Thus objects of different mass should have the same
acceleration.

Fg Fg

em
=

r e
ar

th

earth

Figure 7
The gravitational force of the entire earth acting
on you is the same as the force of a point particle
with a mass equal to the earth mass, located at the
earth's center, one earth radius below you.
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THE CAVENDISH EXPERIMENT
A key feature of Newton’s law of gravitation is that all
objects attract each other via gravity.  Yet in practice,
the only gravitational force we ever notice is the force
of attraction to the earth.  What about the gravitational
force between two students sitting beside each other, or
between your two fists when you hold them close to
each other?  The reason that you do not notice these
forces is that the gravitational force is incredibly weak,
weak compared to other forces that hold you, trees, and
rocks together.  Gravity is so weak that you would
never notice it except for the fact that you are on top of
a huge hunk of matter called the earth.  The earth mass
is so great that, even with the weakness of gravity, the
resulting force between you and the earth is big enough
to hold you down to the surface.

The gravitational force between two reasonably sized
objects is not so small that it cannot be detected, it just
requires a very careful experiment that was first per-
formed by Henry Cavendish in 1798.  In the Cavendish
experiment, two small lead balls are mounted on the
end of a light rod.  This rod is then suspended on a fine
glass fiber as shown in Figure (8a).

As seen in the top view in Figure (8b), two large lead
balls are placed near the small ones in such a way that
the gravitational force between each pair of large and
small balls will cause the rod to rotate in one direction.
Once the rod has settled down, the large lead balls are
moved to the position shown in Figure (8c).  Now the
gravitational force causes the rod to rotate the other
way.  By measuring the angle that the rod rotates, and
by measuring what force is required to rotate the rod by
this angle, one can experimentally determine the strength
of the gravitational force Fg between the balls.  Then by
using Newton’s law of gravity

Fg  =  G m1m2

r2

applied to Figure (9), one can solve for G in terms of the
known quantities Fg, m1, m2 and r2.  This was the way
that Newton’s universal constant G, given in Equation
(4) was first measured.

glass fiber

small lead balls

a) Side view of the small balls.

Fg

Fg

b) Top view showing two large lead balls.

c) Top view with large balls rotated to 
     new position.

Fg

Fg

r

m1

m2

Figure 9

Figure 8
The Cavendish experiment. By moving the large lead
balls, the small lead balls are first pulled one way, then
the other. By measuring the angle the stick holding the
small balls is rotated, one can determine the
gravitational force Fg.
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SATELLITE MOTION
The key idea that led Newton to his universal law of
gravitation was that the moon, while traveling in its
orbit about the earth, was subject to the same kind of
force as an apple falling from a tree.  We have seen that
a projectile in flight, such as an apple, accelerates down
toward the center of the earth.  The moon, in its nearly
circular orbit around the earth, also accelerates toward
the center of the earth, as illustrated in Figure (10).
Newton proposed that the accelerations of the falling
apple and of the orbiting moon were both caused by the
gravitational pull of the earth.

"Weighing” the Earth
Once you know G, you can go back to the formula
(8) for the acceleration g due to gravity, and solve for
the earth mass me to get

  

me =
gre

2

G
=

9.8 m/sec2 × 6.37 × 106m
2

6.67 × 10–11m3/kg sec2

       =  6.0 x 1024kg (9)

As a result, Cavendish was able to use his value for G
to determine the mass of the earth.  This was the first
determination of the earth’s mass, and as a result the
Cavendish experiment became known as the experi-
ment that “weighed the earth”.

Exercise 2

The density of water is 1 gram/  cm3. The average density
of the earth’s outer crust is about 3 times as great.  Use
Cavendish’s result for the mass of the earth to decide if
the entire earth is like the crust.  (Hint —the volume of a
sphere of radius r is   4 34 3π r3).  Relate your result to what
you have read about the interior of the earth.

Inertial and Gravitational Mass
The fact that, in the absence of air resistance, all
projectiles have the same acceleration— the fact that
the m’s canceled in Equation (7), has a deeper conse-
quence than mere coincidence.  In Newton’s second
law, the m in the formula  F = ma  is the mass defined
by the recoil definition of mass discussed in Chapter 6.
Called inertial mass, it is the concept of mass that we
get from the law of conservation of linear momentum.

In Newton’s law of gravity, the projectile’s mass m in
the formula    Fg = Gmm e/re

2   is what we should call
the gravitational mass for it is defined by the gravita-
tional interaction.  It is the experimental observation
that the m’s cancel, the observation that all projectiles
have the same acceleration due to gravity, that tells us
that the inertial mass is the same as gravitational mass.
This equivalence of inertial and gravitational mass has
been tested with extreme precision to one part in a
billion by  Etvös in 1922 and to even greater accuracy
by R. H. Dicke in the 1960s.

Figure 10
When we swing a golf ball in a circle, the ball
accelerates toward the center of the circle, in the
direction it is pulled by the string.  Similarly, the
moon, in its circular orbit about the earth,
accelerates toward the center of the earth, in the
direction it is pulled by the earth's gravity.

Moon

F

V

Golf ball

F

V

String

Earth
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The moon, being farther away from the center of the
earth should be expected to feel a weaker gravitational
force and therefore have a weaker acceleration.  From
direct calculation Newton could determine how much
weaker the moon’s acceleration was, and thus deter-
mine how the gravitational acceleration and force
decreases with distance.

To repeat Newton’s calculation, we know that the
apple on the surface of the earth has an acceleration
gapple   =  9.8 m/sec2.  To determine the magnitude
of the moon’s orbital acceleration toward the earth,

 gmoon orbit , we can use the formula derived in Chap-
ter 3 for uniform circular motion, namely

  
a = gmoon orbit = v2

r
uniform
circular
motion

(3-12)

To calculate the speed v of the moon, we note that the
moon takes 27.32 days or 2.36 x 106 seconds for one
complete orbit.  The radius of the moon orbit is 3.82
x 108 meters, so that

  vmoon = orbital circumference
time for one orbit

= 2πr
torbit

=
2π × 3.82 × 108 meters

2.36 × 106 sec

= 1.02 × 103 m
sec (10)

or very close to 1 kilometer per second.  Substituting
this value of v into the formula v2/r, gives

  

gmoon orbit =
1.02 × 103 m/sec

2

3.82 × 108 m

= 2.70 × 10–3 m

sec2

(11)

The ratio of the moon’s orbital acceleration to the
apple’s acceleration

  gmoon orbit

gapple
=

2.70 × 10-3 m/sec2

9.8 m/sec2

= 2.71 × 10 - 4
(12)

I.e., the moon’s acceleration is 27 thousand times
weaker than the apple’s.

To understand the meaning of this result, let us look
at the square of the ratio of the distances from the
apple to the center of the earth, and the moon to the
center of the earth.  We have

  
rapple to center of earth

rmoon orbit

2

=
6.37 × 106 m

3.82 × 108 m

2

  = 2.78 × 10-4 (13)

which, to the accuracy of our work, is the same as the
ratio of accelerations.

Equating the results in Equations (12) and (13), we
get

 gmoon orbit

gapple
=

re
2

rmoon orbit
2

  
gmoon orbit =

gapple × re
2

rmoon orbit
2 ∝ 1

rmoon orbit
2 (14)

Where   gapple × re
2 can be thought of as a constant.

From such calculations Newton saw that the gravita-
tional acceleration of the moon, and thus the gravita-
tional force, decreased as the square of the distance
from the moon to the center of the earth.  This was how
Newton deduced that gravity was a 1/r2 force law.

Exercise 3

How far above the surface of the earth do you have to
be so that, in free fall, your acceleration is half that of
objects near the surface of the earth?
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Other Satellites
To explain to the world the similarity of projectile and
satellite motion, that both the apple and the moon were
simply falling toward the center of the earth, Newton
drew the sketch shown in Figure (11).  In the sketch,
Newton shows a projectile being fired horizontally
from the top of a mountain, and shows what would
happen if there were no air resistance.  If the horizontal
velocity were not too great, the projectile would go a
short distance along the typical parabolic path we have
studied in the strobe labs.  As the projectile is fired faster
it would travel farther before hitting the ground.  Fi-
nally we reach a point where the projectile keeps falling
toward the earth, but the earth keeps falling away and
the projectile goes all the way around the earth without
hitting it.

Another perspective of the same idea is illustrated in
Figures (12) and (13).  Figure (12) is a strobe photo-
graph showing two steel balls launched simultaneously,
one being dropped straight down and the other being
fired horizontally.  The photograph clearly demon-
strates that the downward motion of the two projectiles

is the same.  By using the constant acceleration formu-
las with g = 32 ft/sec2, we can easily calculate that at the
end of one second both projectiles will have fallen 16
ft, and at the end of two seconds a distance of 64 ft.

In Figure (13), we have sketched the curved surface of
the earth.  Due to this curvature, the surface of the earth
will be 16 ft below a horizontal line out at a distance of
4.9 miles, and 64 ft below at a distance of 9.8 miles.
This effect can be seen from a small boat as you leave
shore.  When you are 10 miles off shore, you cannot see
lighthouses under 64 ft tall, unless you climb your own
mast.  (For landlubbers sunning on the beach, sailboats
with 64 ft high masts disappear from sight at a distance
of 10 miles.)

Comparing Figures (12) and (13), we see that in the
absence of air resistance, if a projectile were fired
horizontally at a speed of 4.9 miles per second, during
the first second it would fall 16 ft, but the earth would
have also fallen 16 ft, and the projectile would be no
closer to the surface.  By the end of the 2nd second the
projectile would have fallen 64 ft, but still not have
come any closer to the surface of the earth.  Such a
projectile would keep traveling around the earth, never
hitting the surface.  It would fall all the way around,
becoming an earth satellite.

Figure 11
Newton's sketch showing that the difference
between  projectile and satellite motion is that
satellites travel farther.  Both are accelerating
toward the center of the earth.

Figure 12
Two projectiles, released simultaneously.  The
horizontal motion has no effect on the vertical
motion: they both fall at the same rate.
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Exercise 4

An earth satellite in a low orbit, for instance 100 miles up,
is so close to the surface of the earth (100 miles is so
small compared to the earth’s radius of 4000 miles) that
the satellite’s acceleration is essentially the same as the
acceleration of projectiles here on earth.  Use this result
to predict the period T of the satellite’s orbit.  (Hint – the
satellite travels one earth circumference   2 πre  in one
period T.  This allows you to calculate the satellite’s
speed v.  You then use the formula v2/r for the magnitude
of the satellite’s acceleration.)

Weight
The popular press often talks about the astronauts in
spacecraft orbiting the earth as being weightless.  This
is verified by watching them on television floating
around inside the space capsule.  You might jump to the
conclusion that because the astronauts are floating
around in the capsule, they do not feel the effects of
gravity.  This is true in the same sense that when you
jump off a high diving board, you do not feel the effects
of gravity—until you hit the water.  While you are
falling, you are weightless just like the astronauts.

The only significant difference between your fall from
the high diving board, and the astronaut’s weightless
experience in the space capsule, is that the astronaut’s
experience lasts longer.  As the space capsule orbits the
earth, the capsule and the astronauts inside are in
continuous free fall.  They have not escaped the earth’s
gravity, it is gravity that keeps them in orbit, accelerat-
ing toward the center of the earth.  But because they are
in free fall, they do not feel the acceleration, and are
considered to be weightless.

If the astronaut in an orbiting space capsule is weight-
less, but still subject to the gravitational force of the
earth, we cannot directly associate the word weight
with the effects of gravity.   In order to come up with a
definition of the word weight that has some scientific
value, and is reasonably consistent with the use of the
word in the popular press, we can define the weight of
an object as the magnitude of the force the object exerts
on the bathroom scales.  Here on earth, if you have an
object of mass m and you set it on the bathroom scales,
it will exert a downward gravitational force of magni-
tude

Fg  =  mg

Thus we say that the object has a weight W given by

W = mg (15)

For example, a 60 kg boy standing on the scales
exerts a gravitational force

  
W 60 kg boy = 60 kg × 9.8

m

sec2

= 588 newtons

We see that weight has the dimensions of a force, which
in the MKS system is newtons.  If the same boy stood
on the same scales in an orbiting spacecraft, both the
boy and the scales would be in free fall toward the
center of the earth, the boy would exert no force on the
scales, and he would therefore be weightless.

Figure 14
We will define the weight of an object as
the force it exerts on the bathroom scales.

m

mg

bathroom   scales

16 ft
64 ft

line of
sight

4.9 mi
9.8 mi

surface of the earth

Figure 13
The curvature of the earth causes the horizon
to fall away 64 feet at a distance of 9.8 miles.
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Although we try to make the definition of the word
weight consistent with the popular use of the word, we
do not actually succeed.  In almost any country except
the United States, when you buy a steak, the butcher
will weigh it in grams.  The grocer will tell you that a
banana weighs 200 grams.  You are not likely find a
grocer who tells you the weight of an object in newtons.
It is a universal convention to tell you the mass in grams
or kilograms, and say that that is the weight.  About the
only place will you will find the word weight to mean
a force, as measured in newtons, is in a physics course.

(In the English system of units, a pound is a force, so
that it is correct to say that our 60 kg mass boy weighs
132 lbs.  That, of course, leaves us with the question of
what mass is in the English units.  From the formula
F = mg, we see that m = F/g, or an object that weighs
32 lbs has a mass 32 lbs/32ft/sec2 = 1.  As we mentioned
earlier, this unit mass in the English units is called a
slug.  This is the last time we will mention slugs in this
text.)

Earth Tides
 An aspect of Newton’s law of gravity that we have not
said much about is the fact that gravity is a mutual
attraction.  As we mentioned, two objects of mass m1
and m2 separated by a distance r,  attract each other
with a gravitational force of magnitude
Fg   =  Gm1m2/r2.  The point we want to emphasize
now is that the force on each particle has the same
strength Fg.

Let us apply this idea to you, here on the surface of the
earth.  Explicitly, let us assume that you have just
jumped off a high diving board as illustrated in Figure
(15), and have not yet hit the water.  While you are
falling, the earth’s gravity exerts a downward force Fg
which produces your downward acceleration g.

According to Newton’s law of gravity, you are exerting
an equal and opposite gravitational force Fg on the
earth.  Why does nobody talk about this upward force
you are exerting on the earth?  The answer, shown in the
following exercise, is that even though you are pulling
up on the earth just as hard as the earth is pulling down
on you, the earth is so much more massive that your
pull has no detectable effect.

Exercise 5

Assume that the person in Figure (15) has a mass of 60
kilograms.  The gravitational force he exerts on the earth
causes an upward acceleration of the earth  aearth.
Show that  aearth = 10 — 22m/sec2.

Fg

Fg

diving board

water
Figure 15
As you fall toward the water, the earth is
pulling down on you, and you are pulling up on
the earth. The two forces are of equal strength.
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More significant than the force of the diver on the earth
is the force of the moon on the earth.  It is well known
that the ocean tides are caused by the moon’s gravity
acting on the earth.  On the night of a full moon, high
tide is around midnight when the moon is directly
overhead.  The time of high tide changes by about an
hour a day in order to stay under the moon.

The high tide under the moon is easily explained by the
idea that the moon’s gravity sucks the ocean water up
into a bulge under the moon.  As the earth rotates and
we pass under the bulge, we see a high tide.  This
explains the high tide at midnight on a full moon.

The problem is that there are 2 high tides a day about 12
hours apart.  The only way to understand two high tides
is to realize that there are two bulges of ocean water, one
under the moon and one on the opposite side of the
earth, as shown in Figure (16).  In one 24 hour period
we pass under both bulges.

Why is there a bulge on the backside?  Why isn’t the
water all sucked up into one big bulge underneath the
moon?

The answer is that the moon’s gravity not only pulls on
the earth’s water, but on the earth itself.  The force of
gravity that the moon exerts on the earth is just the same

strength as the force the earth exerts on the moon.  Since
the earth is more massive, the effect on the earth is not
as great, but it is noticeable.  The reason for the second
bulge of water on the far side of the earth is that the
center of the earth is closer to the moon than the water
on the back side, and therefore accelerates more rapidly
toward the moon than the water on the back side.  The
water on the back side gets left behind to form a bulge.

The result, the fact that there are two high tides a day,
the fact that there is a second bulge on the back side, is
direct experimental evidence that the earth is acceler-
ating toward the moon.  It is direct evidence that the
moon’s gravity is pulling on the earth,  just as the earth’s
gravity is pulling on the moon.

As a consequence of the earth’s acceleration, the moon
is not traveling in a circular orbit centered precisely on
the center of the earth.  Instead both the earth and the
moon are traveling in circles about an axis point located
on a line joining the earth’s and moon’s centers.  This
axis point is located much closer to the center of the
earth than that of the moon, in fact it is located inside the
earth about 3/4 of the way toward the earth’s surface as
shown in Figure (17).

Moon

Earth

axis
point

Figure 17
Both the earth and the moon travel in circular
orbits about an axis point located about 1/4 of
the way down below the earth's surface.

Moon

Earth

Earth rotating 
under the two 
bulges of water

Figure 16
The two ocean bulges cause two high tides per day.
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In our work with projectiles in the lab the CGS system
of units was excellent.  The projectiles typically went
distances from 10 to 100 cm, in times of the order of 1
second, and had masses of the order of 100 gm.  There
were no large exponents involved.

Now that we are studying the motion of earth satellites,
we are faced with large exponents in quantities like the
earth mass and the gravitational constant G which are

  5.98 × 1024kg  and   6.67 × 10–11m3/kg sec2 respec-
tively.  The calculations we have done so far using these
numbers have required a calculator, and we have had to
work hard to gain insight from the results.

Planetary Units
In introductory physics texts, it has become almost an
article of religion that all calculations shall be done
using MKS units.  This has some advantages – we do
not have to talk about pounds and slugs, but practicing
physicists seldom follow this rule.  Physicists studying
the behavior of elementary particles, for example,
routinely use a system of units that simplify their
calculations, units in which the speed of light and other
fundamental constants have the numerical value 1.
Using these special units they can quickly solve simple
problems and gain an intuitive feeling for which quan-
tities are important and which quantities are not.

Table 1  Planetary Units

Constant Symbol Planetary units MKS units

Gravitational Constant G 20 6.67 x 10-11 m3

kg sec2

Acceleration due
to gravityat the  
earth's surface   

ge 20 9.8 m/sec2

Earth mass me 1 5.98 x 1024 kg

Moon mass mmoon .0123 7.36 x 1022 kg

Sun mass msun 3.3 x 105  1.99 x 1030kg

Metric ton ton 1.67 x 10-22 1000 kg

Earth radius re 1 6.37 x 106 m

Moon radius rmoon .2725 1.74 x 106 m

Sun radius rsun 109 6.96 x 108 m

Earth orbit radius rearth orbit 23400 1.50 x 1011 m

Moon orbit radius rmoon orbit 60 3.82 x 108 m

Hour hr 1 hr 3600 sec

Moon period  lunar month
(siderial)

656 hrs 2.36 x 106 sec 
(= 27.32 days)

Year yr 8.78 x 103 hrs 3.16 x 107 sec
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We now wish to introduce a new set of units, which we
will call planetary units, that makes satellite calcula-
tions much simpler and more intuitive.  One way to
design a new set of units is to first decide what will be
our unit mass, our unit length, and our unit time, and
then work out all the conversion factors so that we can
convert a problem into our new units.  For working
earth satellite problems, we have found that it is conve-
nient to take the earth mass as the unit mass, the earth
radius as the unit length, and the hour as the unit time.

mearth  =  1     earth mass

Rearth  =  1     earth radius

hour    =  1

With these choices, speed,  for example,  is measured
in (earth radii)/ hr, etc.

This system of units has a number of advantages.  We
can set me and re equal to 1 in the gravitational force
formulas, greatly simplifying the results.  We know
immediately that a satellite has crashed if its orbital
radius becomes less than 1.  Typical satellite periods are
a few hours and typical satellite speeds are from 1 to 10
earth radii per hour.  What may be a bit surprising is that
both the acceleration due to gravity at the surface of the
earth, g, and Newton’s universal gravitational constant
G, have the same numerical value of 20.

Table 1 shows the conversion from MKS to planetary
units of common quantities encountered in the study of
satellites moving in the vicinity of the earth and the
moon.

Exercise 6
We will have you convert Newton’s universal gravita-
tional constant G into planetary units.  Start with

 
G = 6.67 x 10-11 meters3

kg sec2

Then multiply or divide by the conversion factors

 
3600

sec
hr

5.98 x 1024 kg
earth mass

6.37 x 106 meters
earth radii

until all the dimensions in the formula for G are con-
verted to planetary units.  (I.e.,  convert from seconds to
hours, kg to earth mass, and meters to earth radii.)  If you
do the conversion correctly, you should get the result

 
G = 20

earth radii 3

earth mass hr2

Exercise 7

Explain why g and G have the same numerical value in
planetary units.

As an advertisement for how easy it is to use planetary
units in satellite calculation, let us repeat Exercise (4)
using these units.  In that exercise we wished to
calculate the period of Sputnik 1, a satellite traveling in
a low earth orbit.  We were to assume that Sputnik’s
orbital radius was essentially the earth’s radius re as
shown in Figure (18), and that Sputnik’s acceleration
toward the center of the earth was essentially the same
as the projectiles we studies in the introductory lab, i.e.,
ge  =  9.8 m /sec2.

Sputnik 1

re

Earth

Figure 18
A satellite in a low earth orbit.
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Using the formula

a  =  v
2

r
we get

ge  =  
vSputnik

2

re
  =  

vSputnik
2

1
Therefore

vSputnik  =  ge  =  20 earth radii
hr

Now the satellite travels a total distance 2π re to go
one orbit, therefore the time it takes is

Sputnik period  =  2π re
vSputnik

  =  2π
20

  =  1.4 hrs

Compare the algebra that we just did with what you had
to go through to get an answer in Exercise (4).  (You
should have gotten the same answer, 1.4 hrs, or 84
minutes, or 5,040 seconds.  This is in good agreement
with the observed time for low orbit satellites.)  If you
have watched satellite launches on television, you may
recall waiting about an hour and a half before the
satellite returned.

Exercise 8
A satellite is placed in a circular orbit whose radius is

 2re  (it  is one earth radii above the surface of the earth.)

(a) What is the acceleration due to gravity at this
altitude?

(b) What is the period of this satellite’s orbit?

(c) What is the shortest possible period any earth
satellite can have?  Explain your answer.

Exercise 9

Communication satellites are usually placed in circular
orbits over the equator, at an altitude so that they take
precisely 24 hours to orbit the earth.  In this way they
hover over the same point on the earth and can be in
continuous communication with the same transmitters
and receivers.  This orbit is called the Clarke orbit,
named after the science fiction writer Arthur Clark who
first emphasized the importance of such an orbit.  Cal-
culate the radius of the Clark orbit.

COMPUTER PREDICTION
OF SATELLITE ORBITS
In this chapter we have discussed two special kinds of
motion that a projectile or satellite can have.  One is the
parabolic trajectory of a projectile thrown across the
room – motion that is easily described by calculus and
the constant acceleration formulas.  The other is the
orbital motion of the moon and man-made satellites
that are in circular orbits.  These orbits can be analyzed
using the fact that their acceleration is directed toward
the center of the circle and has a magnitude v2/r.

These two examples are deceptively simple.  Newton’s
diagram, Figure (11), shows that there is a continuous
range of orbital shapes starting from simple projectile
motion out to circular orbital motion and beyond.  For
all these orbital shapes, we know the projectile’s accel-
eration is the gravitational acceleration toward the
center of the earth.  But to go from a knowledge of the
acceleration to predicting the shape of the orbit is not
necessarily an easy task.

There are no simple formulas like the constant accel-
eration formulas that allow us to predict where the
satellite will be at any time in the future.  Using
advanced calculus techniques one can show that the
orbits should have the shape of conic sections, one
example being the elliptical orbits discovered by Kepler.
But if we go to more complicated problems like trying
to predict the motion of the Apollo 8 spacecraft from
the earth to the moon and back, then a calculus ap-
proach is completely inadequate.

On the other hand these problems are easily handled
using the step-by-step method of predicting motion,
the method, discussed in Chapter 5, that we implement
using the computer.  With a slight modification of our
old projectile motion program, we can predict what
will happen to an earth satellite no matter how it is
launched and what orbit it has.  Adding a few more lines
to the program allows us to send the satellite to the
moon and back.

Once we are familiar with a basic satellite motion
program, we can easily add new features.  We can, for
example, change the exponent in the gravitational
force law from 1/r2 to 1/r2.1 to see what happens if the
gravitational force law is modified.  Similar  modifica-
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tions were in fact predicted by Einstein’s general
theory of relativity, thus we will be able to observe the
kind of effects that were used to verify Einstein’s
theory.

New Calculational Loop
In Chapter 5, we set up the machinery to do computer
calculations.  This involved learning the LET state-
ment, constructing loops, plotting crosses, etc.  Al-
though this may have been a bit painful (but perhaps not
as painful as learning calculus), we do not have to do
much of that again.  We can use essentially the same
machinery to predict satellite orbits.  The only signifi-
cant change is in the calculational loop where we
predict the particle’s new position and velocity.

In the projectile motion program, the English version
of the calculational loop was, from Figure (5-18)

! ---------  Calculational Loop

DO

LET Rnew  =  Rold + Vold * dt

LET A  =  g

LET Vnew  =  Vold + A * dt

LET Tnew  =  Told + dt

PLOT R

LOOP UNTIL T > 1

Figure 19

This loop expresses the method of predicting motion
that we developed from the analysis of strobe pho-
tographs.  The idea behind the command

LET Rnew  =  Rold + Vold * dt

is illustrated in Figure (5-15a) reproduced here.  The
new position of the particle is obtained from the old
position by adding the vector  Vold * dt  to the old
coordinate vector  Rold.

Once we get to the new position of the particle, we
need the new velocity vector in order to calculate the
next new position.  The new velocity vector is
obtained from the command

LET Vnew  =  Vold + A * dt

as illustrated in Figure (5-15b).  The DO–LOOP part of
the program tells us to keep repeating this step-by-step
process until we get as much of the trajectory as we
want (in this case until one second has elapsed).

The calculational loop of Figure (19) works for
projectile motion because we always know the
projectile’s acceleration  A  which is given by the
line

 LET A  =  g       projectile motion (16)

This is the line that characterizes projectile motion, the
line that tells the computer that the projectile has a
constant acceleration g.

Figure  5-15a
Predicting the next new position.

Figure 5-15b
Predicting the next new velocity.

V     new

V     old

V     old

A ∆t

V     new V     old= + A*∆t

Rnew

Rold

V     new

A
V     new V old–

V     old

( )
= ∆t
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In our satellite motion problem, the gravitational
force Fg points toward the center of the earth.  Thus
to define the direction of Fg, we need a unit vector
that points toward the center of the earth.  In Figure
(20a) we show the coordinate vector R which de-
fines the position of the satellite in a coordinate
system whose origin is at the center of the earth.  In
Figure (20b) we see the vector  –R, which points
from the satellite to the center of the earth, the same
direction as the gravitational force.  Therefore we
would like to turn  –R into a unit vector, which we do
by dividing by the length of R, namely the distance
from the center of the earth to the satellite.

Since we will often use unit vectors in this text, we will
designate them by a special symbol.  Instead of an
arrow over the letter, we will use what is called a caret
by typographers, or more familiarly a hat by physicists.
Thus our unit vector in the  –R direction will be denoted
by  –R and is given by the formula

  
–R =

–R
R

unit vector in
the –R direction (16)

The only fundamental change we need to make in
going from projectile motion to satellite motion is to
change our command for the particle’s acceleration

 A .  Instead of assuming that the particle’s accelera-
tion is constant, we use Newton’s law of gravity

 Fg = Gm1m2/r2  to calculate the force acting on
the satellite, and then Newton’s second law   A = Fg/m
to obtain the resulting acceleration.

There are of course some other details.  We have to find
a way to express the vector nature of the gravitational
force – i.e., to tell the computer which way the gravita-
tional force is pointing, and we are going to change our
plotting scale since we are no longer working in front
of a 100 cm by 100 cm grid.  But essentially we are
replacing the command

 LET A  =  g 

by the new lines

  LET Fg = GMem/R2 with instructions
for a direction

LET A = Fg /m

and then using the same old program.

Unit Vectors
We have no problem describing the direction of the
gravitational force on the satellite—the force is di-
rected toward the center of the earth.  But how do we tell
the computer that?  What mathematical technique can
we use to express the direction of Fg?

The technique that we will use throughout the course is
the use of the unit vector.  A unit vector is a dimension-
less vector of length 1 that points in the direction of
interest.  If we want a vector of length 5 newtons that
points in the same direction, then we multiply our unit
vector by the number 5 newtons to get the desired
result.  (Recall that multiplying a vector by a number,
for example n, gives a vector n times as long, pointing
in the same direction.)

There is an easy way to construct unit vectors.  If we can
find some vector that points in the desired direction, we
divide that vector by its own length, and we end up with
a vector of length 1, the required unit vector.

R

Satellite

Earth

a)

b)

c)

R–

R–

Figure 20
The unit vector  –R
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In Equation (16), the length R is given by the
Pythagorean theorem

R  =  Rx
2 + Ry

2 (16a)

Rx and Ry being the x and y coordinates of the satellite.

With the unit vector  –R, we can now write an
explicit formula for the gravitational force vector

 Fg .  We multiply the unit vector  –R by the magni-
tude GMm/R2 of the gravitational force to get

 
Fg =

GMem

R2 –R (17)

Calculational Loop
for Satellite Motion
We are now ready to go in an orderly way from the
calculational loop for projectile motion to a calcula-
tional loop for satellite motion.  We can focus our
attention on the following three lines of the projec-
tile motion calculation loop (Figure 21) because the
other lines remain unchanged.

LET Rnew  =  Rold + Vold * dt
LET A  =  g

LET Vnew  =  Vold + A * dt

Figure 21

The first step is to replace  LET A  =  g  by Newton’s
law of gravity and Newton’s second law as shown in
Figure (22).

 LET Rnew = Rold + Vold * dt

LET Fg = –R GMem/R2

LET A = Fg/m

LET Vnew = Vold + A * dt

Figure 22

Because BASIC is limited to working with numerical
commands rather than vectors (an unfortunate limita-
tion), the next step is to make sure that we can translate
each of these vector commands into the separate x and
y components.  We will do this separately for each of
the 4 lines.

The command

LET Rnew  =  Rold + Vold * dt

for Rnew becomes

LET Rx  =  Rx + Vx * dt (18a)

LET Ry  =  Ry + Vy * dt (18b)

where we drop the subscripts “new” and “old” because
the computer automatically takes the old values on the
right side of the LET statement, calculates a new value,
and stores the new value in the memory cell named on
the left side of the LET statement.  (See our discussion
of the LET statement on page 5-5).

In Equations (18a) and (18b) we obtain numerical
values for the new coordinates Rx and Ry of the
satellite.  However, we will also need to know the
distance R from the satellite to the center of the earth (in
order to construct the unit vector  –R).  The value of R
is easily determined by adding the command

LET R  =  SQR (Rx*Rx + Ry*Ry) (18c)

where SQR is BASIC’s way of saying square root.

The translation of the command for Fg only requires
the translation of the unit vector R into x and y
coordinates.  Remembering that  R = R/R , we get

         Rx = Rx/R ; Ry = Ry/R   (19)

thus the translation of the LET statement for  Fg  can be
written as

LET Fg    =   G * Me * M / (R*R)

LET Fgx  =  (–Rx / R) * Fg

LET Fgy  =  (–Ry / R) * Fg

The computer can handle these lines because it already
knows the new values of Rx, Ry and R from Equations
(18a, b, and c).
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The translation of LET statements for A and Vnew are
straightforward.  We get

LET Ax   =  Fgx / M

LET Ay   =  Fgy / M

LET Vx   =  Vx + Ax * dt
LET Vy   =  Vy + Ay * dt
LET V     =  SQR(Vx*Vx + Vy*Vy)

We included a calculation of the magnitude V of the
satellite’s speed for future use.  We may, for example,
want to construct a unit vector in the -V direction to
represent the direction of air resistance on a reentering
satellite.  We have found it convenient to routinely
calculate the magnitude of any vector whose x and y
coordinates we have just calculated.

Summary
To summarize our translation, we started with the
vector commands

     

 LET Rnew = Rold + Vold * dt

LET Fg = –R GMem/R2

LET A = Fg/m

LET Vnew = Vold + A * dt

and ended up with the BASIC commands

LET Rx   =  Rx + Vx * dt
LET Ry   =  Ry + Vy * dt

LET R     =  SQR (Rx*Rx + Ry*Ry)

LET Fg    =   G * Me * M / (R*R)
LET Fgx  =  (–Rx / R) * Fg

LET Fgy  =  (–Ry / R) * Fg

LET Ax   =  Fgx / M

LET Ay   =  Fgy / M

LET Vx   =  Vx + Ax * dt
LET Vy   =  Vy + Ay * dt
LET V     =  SQR(Vx*Vx + Vy*Vy)

Working Orbit Program
We are now ready to convert a working projectile
motion program, Figure (5-23) reproduced here, into a
working orbital motion program.  In addition to con-
verting the calculational loop as we have just discussed,
we need to change some constants and plotting ranges,
but the general structure of the program will be un-
changed.

Plotting Window
We will initially consider satellite motion that stays
reasonably close to the earth, within several earth radii.
Using planetary units, and placing the earth at the
center of the plot, we can get a reasonable range of
orbits if we let Rx vary for example from - 9 to +9 earth
radii.  If we have a standard 9" Macintosh screen, the x
dimension should be 1.5 times the y dimension, thus Ry
should go only from -6 to +6.  The following command
sets up this plotting window

SET WINDOW     -9, 9, -6, 6
To show where the earth is located, we can use the
following lines to plot a cross at the center of the earth

LET Rx  =  0
LET Ry  =  0

CALL CROSS

Constants and Initial Conditions
In going from the projectile motion to the satellite
motion program, we have to change the constants and
initial conditions.  Using planetary units, our constants
G, Me, and m are

LET G    =  20
LET Me  =  1

LET m    =  .001

(Our choice of the satellite mass m does not matter
because it cancels out of the calculation.)

For initial conditions, we will start the satellite .1 earth
radii above the surface of the earth on the + x axis;

LET Rx  =  1.1
LET Ry  =  0
LET  R   =  SQR(Rx*Rx + Ry*Ry)

CALL CROSS
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Orbit-1  ProgramProjectile Motion Program

Figure 24
Our new orbital motion program.

Figure 23
Projectile motion program that plots
crosses every tenth of a second.
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We also calculated an initial value of R for use in the
gravitational force formula, and plotted a cross at this
initial point.

We are going to fire the satellite in the +y direction,
parallel to the surface of the earth.  Trial and error shows
us that a reasonable value for the speed of the satellite
is 5.5 earth radii per hour, thus we write for our initial
velocity commands

LET Vx  =  0

LET Vy  =  5.5

LET V  =  SQR(Vx*Vx + Vy*Vy)

In our projectile motion program of Figure (5-23) we
wanted a cross plotted every 100 time steps dt.  This
was done with the command

IF MOD(i,100)  =  0 THEN CALL CROSS

For our orbit program, trial and error shows that we get
a good looking plot if we draw a cross every 40 time
steps, each time step dt being .01 hours.  Thus our new
MOD line will be

IF MOD(i,40)  =  0 THEN CALL CROSS

and we will get a cross every .01 * 40 = .4 hours.

The final change is to stop plotting after one orbit.  From
running the program we find that one orbit takes about
9 hours, thus we can stop plotting just before one orbit
with the LOOP instruction

LOOP UNTIL T > 9

Putting all these steps together gives us the complete
BASIC program shown in Figure (24).

When we run the Orbit 1 program, we get the elliptical
orbit shown in Figure (25).

Exercise 10

Convert your projectile motion program to the Orbit 1
program.  Use the same initial conditions so that you get
the same orbit as that shown in Figure (25).  (It is
important to get your Orbit 1 program running correctly
now, for it will be used as the basis for studying several
phenomena during the rest of this chapter.  If you are
having problems, simply type the program in precisely
as shown in Figure (24).

Once your program is working, it is easy to make small
modifications to improve the results. To create Figure
(25a) we added the command

BOX CIRCLE  -1,1,-1,1

to draw a circle to represent the earth. We also changed
dt to .001 and changed the MOD command to
MOD(i,539)  to get an even number of crosses around
the orbit. We then plotted until T = 9 hours. (With dt ten
times smaller, our i counter has to be ten times bigger
to get the old crosses.)

Figure 25
Output of the Orbit 1 program.  The satellite is initially
out at a distance x = 1.1 earth radii, and is fired in the
+y direction at a speed of 5.5 earth radii per hour.

Figure 25a
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you can hear the statement "That's good there, Neil".  A
short while later you hear the clear echo "That's good
there, Neil".  The time delay from the original statement
and the echo is the time it takes a radio wave, traveling
at the speed of light, to go to the moon and back.  Using
an inexpensive stop watch, one can easily measure the
time delay as being about 2 2/5 seconds.  Thus the one-
way trip to the moon is 1 1/5 seconds.  Since light
travels 1 ft/nanosecond, or 1 billion feet per second,
from this one determines that the moon is about 1.2
billion feet away.  You can convert this distance to earth
radii to check the astronomer's value of 60 earth radii as
the average distance to the moon.)

Exercise 11
Adjust the initial conditions in your Orbit 1 program so
that the satellite is in a low earth orbit, and see what the
period of the orbit is.

(To adjust the initial conditions, start, for example, with
 Rx =1.01, Ry =0, vx =0  and adjust  vy  until you get a

circular orbit centered on the earth.  As a check that the
satellite did not go below the surface of the earth, you
could add the line

IF R < 1  THEN PRINT "CRASHED"

Adding this line just after you have calculated R in the
DO LOOP will immediately warn you if the satellite has
crashed.  You can then adjust the initial  vy  so that you
just avoid a crash.  Once you have a circular orbit, you
can adjust the time in the "LOOP UNTIL T > ..." com-
mand so that just one orbit is printed.  This tells you how
long the orbit took.  You can also see how long the orbit
took by adding the line in the DO LOOP

IF MOD(I, 40) = 0 THEN PRINT T, RX, RY

Looking at the values of  Rx  and  Ry  you can tell when
one orbit is completed, and the value of T tells you how
long it took.

Exercise 12

Put the satellite in a circular orbit whose radius is equal
to the radius of the moon's orbit.  (See Table 1, Planetary
Units, for the value of the moon orbit radius.)  See if you
predict that the moon will take about 4 weeks to go
around this orbit.)

Satellite Motion Laboratory
In our study of projectile motion, we could go to the
laboratory and take strobe photographs in order to see
how projectiles behaved.  Obtaining experimental data
for the study of satellite motion is somewhat more
difficult.  What we will do is to use the Orbit 1 program
or slight modification of it to stimulate satellite motion,
using it as our laboratory for the study of the behavior
of satellites.

But first we wish to check that the Orbit 1 program
makes predictions that are in agreement with experi-
ment.  The program is based on  Newton's laws of
gravity,  Fg = GMm/r2 , Newton's law of motion

 a = F/m, and the procedures we developed earlier
for predicting the motion of an object whose accel-
eration is known.  Thus a verification of the results
of the Orbit 1 program can be considered a verifica-
tion of these laws and procedures.

Some tests of the Orbit 1 program can be made using
the results of your own experience.  Anyone who has
listened to the launch of a low orbit satellite should be
aware that the satellite takes about 90 minutes to go
around the earth once.  The Orbit 1 program should give
the same result, which  you can check in Exercise 11.
Another obvious test is the prediction of the period of
the moon in its orbit around the earth.  It is about 4
weeks from full moon to full moon, thus the period
should be approximately 4 weeks or 28 days.  The fact
that the apparent diameter of the moon does not  change
much during this time indicates that the moon is
traveling in a nearly circular orbit about the earth.  If you
accept the astronomer's measurements that the moon
orbit radius is about 60 earth radii away, then you can
check the Orbit 1 program to see if it predicts a 4 week
period for an earth satellite in a circular orbit of that
radius (Exercise 12).

(An easy way to measure the distance to the moon was
provided by the first moon landing.  Because of a
problem with Neil Armstrong's helmet, radio signals
sent to Neil from Houston were retransmitted by Neil’s
microphone, giving an apparent echo.  The echo was
particularly noticeable while Neil was setting up a TV
camera.  On a tape of the mission supplied by NASA,
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KEPLER'S LAWS
A more detailed test of Newton's laws and the Orbit 1
program is provided by Kepler's laws of planetary
motion.

To get a feeling for the problems involved in studying
planetary motion, imagine that you were given the job
of going outside, looking at the sky, and figuring out
how celestial objects moved.  The easiest to start with
is the moon, which becomes full again every four
weeks.  On closer observation you would notice that the
moon moved past the background of the apparently
fixed stars, returning to its original position in the sky
every 27.3 days.  Since, as we mentioned, the diameter
of the moon does not change much, you might then
conclude that the moon is in a circular orbit about the
earth, with a period of 27.3 days.

The time it takes the moon to return to the same point
in the sky is not precisely equal to the time between full
moons.  A full moon occurs when the sun, earth, and
moon are in alignment.  If the sun itself appears to move
relative to the fixed stars, the  full moons will not occur
at precisely the same point, and the time between full
moons will not be exactly the time it takes the moon to
go around once.

To study the motion of the sun past the background of
the fixed stars is more difficult because the stars are not
visible when the sun is up.  One way to locate the
position of the sun is to observe what stars are overhead
at "true" midnight, half way between dusk and dawn.
The sun should then be located on the opposite side of
the sky.  (You also have to correct for the north/south
position of the sun.)  After a fair amount of observation
and calculations, you would find that the sun itself
moves past the background of the fixed stars, returning
to its starting point once a year.

From the fact that the sun takes one year to go around
the sky, and the fact that its apparent diameter remains
essentially constant, you might well conclude that the
sun, like the moon, is traveling in a circular orbit about
the earth.  This was the accepted conclusion by most
astronomers up to the time of Nicolaus Copernicus in
the early 1500s AD.

If you start looking at the motion of the planets like
Mercury, Venus, Mars, Jupiter, and Saturn, all easily

visible without a telescope, the situation is more com-
plicated.  Mars, for example, moves  in one direction
against the background of the fixed stars, then reverses
and goes backward for a while, then forward again as
shown in Figure (26).  None of the planets has the
simple uniform motion seen in the case of the moon and
the sun.

After  a lot of observation and the construction of many
plots, you might make a rather significant discovery.
You might find what the early Greek astronomers
learned, namely that if you assume that the planets
Mercury, Venus, Mars, Jupiter, and Saturn travel in
circular orbits about the sun, while the sun is traveling
in a circular orbit about the earth, then you can explain
all the peculiar motion of the planets.  This is a
remarkable simplification and compelling evidence
that there is a simple order underlying the motion of
celestial objects.

One of the features of astronomical observations is that
they become more accurate as time passes.  If you
observe the moon for 100 orbits, you can determine the
average period of the moon nearly 100 times more
accurately than from the observation of a single period.
You can also detect any gradual shift of the orbit 100
times more accurately.

Earth orbit

Mars orbit

Apparent retrograde orbit

Background stars

Figure 26
Retrograde motion of the planet Mars.
Modern view of why Mars appears to
reverse its direction of motion for a while.
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Even by the time of the famous Greek astronomer Ptolemy
in the second century AD, observations of the positions
of the planets had been made for a sufficiently long time
that it had become clear that the planets did not travel in
precisely circular orbits about the sun.  Some way was
needed to explain the non circularity of the orbits.

The simplicity of a circular orbit was such a compelling
idea that it was not abandoned.  Recall that the apparently
peculiar motion of Mars could be explained by assuming
that Mars traveled in a circular orbit about the sun which
in turn traveled in a circular orbit about the earth.  By
having circular orbits centered on points that are them-
selves in circular orbits, you can construct complex
orbits.  By choosing enough circles with the correct radii
and periods, you can construct any kind of orbit you wish.

Ptolemy explained the slight variations in the planetary
orbits by assuming that the planets traveled in circles
around points which traveled in circles about the sun,
which in turn traveled in a circle about the earth.  The extra
cycle in this scheme was called an epicycle.  With just a
few epicycles, Ptolemy was able to accurately explain all
observations of planetary motion made by the second
century AD.

With 1500 more years of planetary observations, Ptolemy's
scheme was no longer working well.  With far more
accurate observations over this long span of time, it was
necessary to introduce many more epicycles into Ptolemy's
scheme in order to explain the positions of the planets.

Even before problems with Ptolemy's scheme became
apparent, there were those who argued that the scheme
would be simpler if the sun were at the center of the solar
system and all the planets, including the earth, moved in
circles about the sun.  This view was not taken seriously
in ancient times, because such a scheme would predict
that the earth was moving at a tremendous speed, a
motion that surely would be felt.  (The principle of
relativity was not understood at that time.)

For similar reasons, one did not use the rotation of the
earth to explain the daily motion of sun, moon, and stars.
That would imply that the surface of the earth at the
equator would be moving at a speed of around a thousand
miles per hour, an unimaginable speed!

In 1543, Nicolaus Copernicus put forth a detailed plan for
the motion of the planets from the point of view that the
sun was the center of the solar system and that all the

planets moved in circular orbits about the sun.  Such a
theory not only conflicted with common sense about
feeling the motion of the earth, but also displaced the earth
and mankind from the center of the universe, two results
quite unacceptable to many scholars and theologians.

Copernicus' theory was not quite as simple as it first
sounds.  Because of the accuracy with which planetary
motion was know by 1543, it was necessary to include
epicycles in the planetary orbits in Copernicus' model.

Starting around 1576, the Dutch astronomer Tycho Brahe
made a series of observations of the planetary positions
that were a significant improvement over previous mea-
surements.  This work was done before the invention of
the telescope, using apparatus like that shown in Figure
(27).  Tycho Brahe did not happen to believe in the
Copernican sun-centered theory, but that had little

Figure 27
Tycho Brahe’s apparatus.
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Kepler's First Law
Kepler's first law states that the planets move in ellip-
tical orbits with the sun at one focus.  By analogy we
should find from our Orbit 1 program that earth satel-
lites move in elliptical orbits with the center of the earth
at one focus.  To check this prediction, we need to know
how to construct an ellipse and determine where the
focus is located.

The arch above the entrance to many of the old New
England horse sheds was a section of an ellipse.  The
carpenters drew the curve by placing two nails on a
wide board, attaching the ends of a string to each nail,
and moving a pencil around while keeping the string
taut as shown in Figure (28).  The result is half an ellipse
with a nail at each one of the focuses.  (If you are in the
Mormon Tabernacle’s elliptical auditorium and drop a
pin at one focus, the pin drop can be heard at the other
focus because the sound waves bouncing off the walls
all travel the same distance and add up constructively
at the second focus point.)

To see if the satellite orbit from the Orbit 1 program is
an ellipse, we first locate the second focus using the
output shown in Figure (25a) by locating the point
symmetrically across from the center of the earth as
shown in Figure (29).  Then at several points along the
orbit we draw lines from that point to each focus as
shown, and see if the total length of the lines (what
would be the length of the stretched string) remains
constant as we go around the orbit).

Figure 28
Ellipse constructed with two nails and a string.

effect on the reason for making the more accurate
observations.  Both the Ptolemaic and Copernican
systems relied on epicycles, and more accurate data
was needed to improve the predictive power of these
theories.

Johannes Kepler, a student of Tycho Brahe, started
from the simplicity inherent in the Copernican system,
but went one step farther than Copernicus.  Abandon-
ing the idea that planetary motion had to be described
in terms of circular orbits and epicycles, Kepler used
Tycho Brahe's accurate data to look for a better way to
describe the planet's motion.  Kepler found that the
planetary orbits were accurately and simply described
by ellipses, where the sun was at one of the focuses of
the ellipse.  (We will soon discuss the properties of
ellipses.)  Kepler also found a simple rule relating the
speed of the planet to the area swept out by a line drawn
from the planet to the sun.  And thirdly, he discovered
that the ratio of the cube of the orbital radius to the
square of the period was the same for all planets.  These
three results are known as Kepler's three laws of
planetary motion.

Kepler's three simple rules for planetary motion, which
we will discuss in more detail shortly, replaced and
improved upon the complex system of epicycles needed
by all previous theories.  After Kepler's discovery, it
was obvious that the sun-centered system and elliptical
orbits provided by far the simplest description of the
motion of the heavenly objects.  For Isaac Newton,  half
a century later, Kepler's laws served as a fundamental
test of his theories of motion and gravitation.  We will
now use Kepler's laws in a similar way, as a test of the
validity of the Orbit 1 program and our techniques for
predicting motion.

Figure 29
Checking that our satellite orbits are an ellipse.  We
construct a second focus, and then see if the sum of
the distances from each focus to a point on the
ellipse in the same for any point around the ellipse.
For this diagram, we should show that a+b = c+d.

focus

a

bc

d

focus

nail nail

string

board
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Exercise 13
Using the output from your Orbit 1 program, check that
the orbit is an ellipse.

Exercise 14

Slightly alter the initial conditions of your Orbit 1 program
to get a different shaped orbit.  (Preferably, make the
orbit more stretched out.)  Check that the resulting orbit
is still an ellipse.

Kepler's Second Law
Kepler's second law relates the speed of the planet to the
area swept out by a line connecting the sun to the planet.
If we think of the sun as being at the origin of the
coordinate system, then the line from the sun to the
planet is what we have been calling the coordinate
vector  R .  It is also called the radius vector R .  Kepler's
second law explicitly states that the radius vectorR
sweeps out equal areas in equal times.

To apply Kepler's second law to the output of our Orbit
1 program, we note that we had the computer plot a
cross at equal times along the orbit.  Thus the area swept
out by the radius vector should be the same as R moves
from one cross to the next.  To check this prediction, we

have in Figure (30) reproduced the output of Figure
(25a), shaded the areas swept out as R moves from
positions A to B, from C to D, and from E to F.  These
areas should look approximately equal; you will check
that they are in fact equal in Exercise 15.

The most significant consequence of Kepler's second
law is that in order to sweep out equal areas while the
radius vector is changing length, the planet or satellite
must move more rapidly when the radius vector is
short, and more slowly when the radius vector is long.
The planet moves more rapidly when in close to the
sun, and more slowly when far away.

An extreme example of elliptical satellite orbits are the
orbits of some of the comets that periodically visit the
sun.  Halley's comet, for example, visits the sun once
every 76 years.  The comet spends about 1 year in the
close vicinity of the sun, where it is visible from the
earth, and the other 75 years on the rest of its orbit which
goes out beyond the edge of the planetary system.  The
comet moves rapidly past the sun, and spends the
majority of the 76 year orbital period creeping around
the back side of its orbit where its radius vector is very
long.

R

A

B

C

D

E F

R

R

Figure 30

Kepler’s Second Law.  The radius vector R should sweep out equal areas in equal time.
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Exercise 15
For both of your plots from Exercises 13 and 14, check
that the satellite's radius vector sweeps out equal areas
in equal times.  Explicitly compare the area swept out
during a time interval where the satellite is in close to the
earth to an equal time interval where the satellite is far
from the earth.

This exercise requires that you measure the areas of
lopsided pie-shaped sections.  There are a number of
ways of doing this.  You can, for example, draw the
sections out on graph paper and count the squares, you
can break the areas up into triangles and calculate the
areas of the triangles, or you can cut the areas out of
cardboard and weigh them.

Kepler's Third Law
Kepler's third law states that the ratio of the cube of the
orbital radius R to the square of the period T is the same
ratio for all the planets.  We can easily use Newton's
laws of gravity and motion to check this result for the
case of circular orbits.  The result, which you are to
calculate in Exercise 16, is

  R3

T2
=

GMs

4π2
(20)

where  Ms  is the mass of the sun.  In this calculation, the
mass  mp  of the planet, the orbital radius R, the speed
v all cancelled, leaving only the sun mass  Ms  as a
variable.  Since all the planets orbit the same sun, this
ratio should be the same for all the planets.

When the planet is in an elliptical orbit, the length of the
radius vector R changes as the planet goes around the
sun.  What Kepler found was that the ratio  of    R3/T2

was constant if you used the "semi major axis" for R.
The semi major axis is the half the maximum diameter
of the ellipse, shown in Figure (31).  As an optional
Exercise (17), you can compare the ratio of   R3/T2 for
the two elliptical orbits of Exercises (13) and (14),
using the semi major axis for R.

Exercise 16
Consider the example of a planet of mass  mp  in a
circular orbit about the sun whose mass is  Ms .  Using
Newton's second law and Newton's law of gravity, and
the fact that for circular motion the magnitude of the
acceleration is  v2/ R , solve for the radius R of the orbit.
Then use the fact that the period T is the distance   2 πR
divided by the speed v, and construct the ratio   R3/T2  .
All the variables except  Ms  should cancel and you
should get the result shown in Equation 20.

Exercise 17 (optional)

A more general statement of Kepler's third law, that
applies to elliptical orbits, is that   R3/T2  is the same for
all the planets, where R is the semi major axis of the
ellipse (as shown in Figure (31)).  Check this prediction
for the two elliptical orbits used in Exercises (13) and
(14).  In both of those examples the satellite was orbiting
the same earth, thus the ratios should be the same.

Semi major axis

Figure 31
The semi major axis of an ellipse.
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MODIFIED GRAVITY
AND GENERAL RELATIVITY
After we have verified that the Orbit 1 program calcu-
lates orbits that are in agreement with Kepler’s laws of
motion, we should be reasonably confident that the
program is ready to serve as a laboratory for the study
of new phenomena we have not necessarily encoun-
tered before.  To illustrate what we can do, we will
begin with a question that cannot be answered in the
lab.  What would happen if we modified the law of
gravity?  What, for example, would happen if we
changed the universal constant G, or altered the expo-
nent on the r dependence of the force?  With the
computer program, these questions are easily answered.
We simply make the change and see what happens.

These changes should not be made completely without
thought.  I have seen a project where a student tried to
observe the effect of changing the mass of the satellite.
After many plots, he concluded that the effect was not
great.  That is not a surprising result considering the fact
that the mass  ms of the satellite cancels out when you
equate the gravitational force to  msa.

One can also see that, as far as its effect on a satellite’s
orbit, changing the universal constant G will have an
effect equivalent to changing the earth mass  Me .  Since
Kepler’s laws did not depend particularly on what mass
our sun had, one suspects that Kepler’s laws should
also hold when G or  Me  are modified.  This guess can
easily be checked using the Orbit 1 program.

Changing the r dependence of the gravitational force is
another matter.  After developing the special theory of
relativity, Einstein took a look at Newton’s theory of
gravity and saw that it was not consistent with the
principle of relativity.  For one thing, because the
Newtonian gravitational force is supposed to point to
the current instantaneous position of a mass, it should
be possible using Newtonian gravity to send signals
faster than the speed of light.  (Think about how you
might do that.)

From the period of time between 1905 and 1915
Einstein worked out a new theory of gravity that was
consistent with special relativity and, in the limit of
slowly moving, not too massive objects, gave the same
results as Newtonian gravity.  We will get to see how
this process works when, in the latter half of this text we

start with Coulomb’s electric force law, include the
effects of special relativity, and find that magnetism is
one of the essential consequences of this combination.

Einstein’s relativistic theory of gravity  is more com-
plex than the theory of electricity and magnetism, and
the new predictions of the theory are much harder to
test.  It turns out that Newtonian gravity accurately
describes almost all planetary motion we can observe
in our solar system.  Einstein calculated that his new
theory of gravity should predict new observable effects
only in the case of the orbit of Mercury and in the
deflection of starlight as it passed the rim of the sun.  In
1917 Sir Arthur Eddington led a famous eclipse expe-
dition in which the deflection of starlight past the rim
of the eclipsed sun could be observed.  The deflection
predicted by Einstein was observed, making this the
first clear correction to Newtonian gravity detected in
250 years. Einstein’s real fame began with the success
of the Eddington expedition.

While Einstein set out to construct a theory of gravity
consistent with special relativity, he was also im-
pressed by the connection between gravity and space.
Because all projectiles here on the surface of the earth
have the same downward acceleration, if you were in
a sealed room you could not be completely sure whether
your room was on the surface of the earth, and the
downward accelerations were caused by gravity, or
whether you were out in space, and your room was
accelerating upward with an acceleration g.  These
equivalent situations are shown in Figure (32).

g

stationary elevator

falling ball

g

accelerating elevator

floating ball

gravity no gravity

Figure 32
Equivalent situations.  Explain why you would
feel the same forces if you were sitting on the
floor of each of the two rooms.
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The equivalence between a gravitational force and an
acceleration turned out to be the cornerstone of
Einstein’s relativistic theory of gravity.  It turned out
that Einstein’s new theory of gravity could be inter-
preted as a theory of space and time, where mass
caused a curvature of space, and what we call gravita-
tional forces were a consequence of this curvature of
space.  This geometrical theory of gravity, Einstein’s
relativistic theory, is commonly called the General
Theory of Relativity.

As they often say in textbooks, a full discussion of
Einstein’s relativistic theory of gravity is “beyond the
scope of this text”.  However we can look at at least one
of the predictions.  As far as satellite orbit calculations
are concerned, we can think of Einstein’s theory as a
slight modification of the Newtonian theory.  We have
seen that any modification of the factors G,  ms or  me in
the Newtonian gravitational force law would not have
a detectable effect.  The only thing we could notice is
some change in the exponent of r.

With a few of quick runs of the Orbit 1 program, you
will discover that the satellite orbit is very sensitive to
the exponent of r.  In Figure (33) we have changed the
exponent from – 2 to – 1.9.  This simply requires
changing

  G*ms*me R∧2me R∧2

to

  G*ms*me R∧1.9me R∧1.9

in the formula for  Fg .  The result is a striking change
in the orbit.  When the exponent is – 2, the elliptical
orbit is rock steady.  When we change the exponent to
– 1.9, the ellipse starts rotating around the earth.  This
rotation of the ellipse is called the precession of the
perihelion, where the word “perihelion” describes the
line connecting the two focuses of the ellipse.

A  1/r2  force law is unique in that only for this
exponent, – 2, does the perihelion, the axis of the
elliptical orbit, remain steady.  For any other value of
the exponent, the perihelion  rotates or precesses  one
way or another.

It turns out that a number of effects can cause the
perihelion of a planet’s orbit to precess.  The biggest
effect we have not yet discussed is the fact that there are
a number of planets all orbiting the sun at the same time,
and these planets all exert slight forces on each other.
These slight forces cause slight perihelion precessions.

In the 250 years from the time of Newton’s discovery
of the law of gravity, to the early 1900s, astronomers
carefully worked out the predicted orbits of the planets,
including the effects of the forces between the planets
themselves.  This work, done before the development
of computers, was an extremely laborious task.  A good
fraction of one’s lifetime work could be spent on a
single calculation.

Figure 33
Planetary orbit when the gravitational
force is modified to a   1 / r1.9  force.
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The orbit of the planet Mercury provided a good test of
these calculations because its orbital ellipse is more
extended than that of the other close-in planets.  The
more extended an ellipse, the easier it is to observe a
precession.  (You cannot even detect a precession for
a circular orbit.)  Mercury’s orbit has a small but
observable precession.  Its orbit precesses by an angle
that is slightly less than .2 degrees every century.  This
is a very small precession which you could never detect
in one orbit.  But the orbit of Mercury has been
observed for about 3000 years, or 30 centuries.  That is
over a 5 degree precession which is easily detectable.

When measuring small angles, astronomers divide the
degree into 60 minutes of arc, and for even smaller
angles, divide the minute into 60 seconds of arc.  One
second of arc, 1/3600 of a degree, is a very small angle.
A basketball 30 miles distant subtends an angle of
about 1 second of arc.  In these units, Mercury’s orbit
precesses about 650 seconds of arc per century.

By 1900, astronomers doing Newtonian mechanics
calculations could account for all but 43 seconds of arc
per century precession of Mercury’s orbit as being
caused by the influence of neighboring planets.  The 43
seconds of arc discrepancy could not be explained.
One of the important predictions of Einstein’s relativ-
istic theory of gravity is that it predicts a 43 second of
arc per century precession of Mercury’s orbit, a preces-
sion caused by a change in the gravitational force law
and not due to neighboring planets.  Einstein used this
explanation of the 43 seconds of arc discrepancy as the
main experimental foundation for his relativistic theory
of gravity when he just presented it in 1915.  The
importance of the Eddington eclipse expedition in
1917 is that a completely new phenomena, predicted
by Einstein’s theory, was detected.

(The Eddington expedition verified more than just the
fact that light is deflected by the gravitational attraction
of a star.  You can easily construct a theory where the
energy in the light beam is related to mass via the
formula  E = mc 2 , and then use Newtonian gravity to
predict a deflection.  Einstein’s General Relativity
predicts a deflection twice as large as this modified
Newtonian approach.  The Eddington expedition ob-
served the larger prediction of General Relativity,
providing convincing evidence that General Relativity
rather than Newtonian gravity was the more correct
theory of gravity.)

Exercise 18

Start with your Orbit 1 program, modify the exponent in
the gravitational force law, and see what happens.
Begin with a small modification so that you can see how
to plot the results. (If you make a larger modification, you
will have to change the plotting window to get interest-
ing results.)

(To get the 43 seconds of arc per century precession of
Mercury’s orbit, using a modified gravitational force
law, the force should be proportional to  1/ r2.00000016

instead of  1/ r2.)
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CONSERVATION OF
ANGULAR MOMENTUM
With the ability to work with realistic satellite orbits
rather than just the circular orbits, we will be able to
make significant tests of the laws of conservation of
angular momentum and of energy, as applied to satel-
lite motion.  In this section, we will first see how
Kepler’s second law of planetary motion is a direct
consequence of the conservation of angular momen-
tum, and then do some calculations with the Orbit 1
program to see that a satellite’s angular momentum is
in fact conserved—does not change as the satellite goes
around the earth.  In the next section we will first take
a more general look at the idea of a conservation law,
and then apply this discussion to the conservation of
energy for satellite orbits.

Recall that Kepler’s second law of planetary motion
states that a line from the sun to the planet, the radius
vector, sweeps out equal areas in equal times.  For this
to be true when the planet is in an elliptical orbit, the
planet must move faster when in close to the sun and the
radius vector is short, and slower when far away and the
radius vector is long.

To intuitively see that this speeding up and slowing
down is a consequence of the conservation of angular
momentum, one can modify the three dumbbell experi-
ment we used to demonstrate the conservation of

angular momentum.  In this demonstration the instruc-
tor uses only one dumbbell.  After a student assists the
instructor in getting his rotation started, the instructor
extends the dumbbell out to full arm’s reach, for
instance,  when he is facing the class, and pulls his arm
in when he is facing away as shown in Figure (34).
Some practice is needed to maintain this pattern and not
lose one’s balance.

The rather expected result of this demonstration is that
the instructor rotates more slowly when his arm is far
out, and more rapidly when his arm is in close.  If we
associate the dumbbell with a satellite orbiting the
earth, we see the same speeding up as the lever arm
about the axis of rotation is reduced, and slowing down
as the lever arm is increased.

A fairly simple geometrical construction demonstrates
that the rule about the radius vector sweeping out equal
areas in equal times is precisely what is required for
conservation of angular momentum.  In Figure (35a)
we have plotted an elliptical satellite orbit showing the
position of the planet for two different equal time
intervals.  The time intervals  ∆t are short enough that
we can fairly accurately represent the displacement of
the satellite by short, straight lines of length   v1∆t in the
upper triangle and   v2∆t in the lower triangle.  With this
approximation we can represent the areas swept out by
the radius vector by triangles as shown by the shaded
areas in Figure (35a).

Figure 35
Calculating the area swept out by the
planet during a short time interval   ∆∆ t .

sun
equal areas

b = v∆t

h = r
(a)

(b)

r2

∆tv2

1

2

(a) (b)

Figure 34
One dumbbell experiment.
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Now the area of a triangle is one half the base times the
altitude.  If you look at the lower triangle in Figure
(35a), and take the side   v2∆t as the base, then the
distance labeled   r2⊥ is the altitude, as seen in the sketch
in Figure (34b).  Thus the area of the triangle at position
2 is

  area swept
out at position 2
in a time ∆t

= 1
2 (base) × (altitude)

= 1
2 (v2∆t) × r2⊥

(21)

When the satellite is at position 2 in Figure (35a),
moving at a velocity  v2, the distance of closest ap-
proach if it continued at the same velocity  v2 would be
the distance   r2⊥ .  Thus   r2⊥  is the “lever arm” for the
motion of the satellite at this point in the orbit.

We get a similar formula for the area of the triangle at
position 1.  Using Kepler’s second law which says that
these areas should be equal for equal times  ∆t, we get

  1
2

v1∆t r1⊥ =
1
2

v2∆t r2⊥ (22)

Dividing Equation 22 through by  ∆t and multiplying
both sides by 2m, where m is the mass of the satellite,
gives

  m1v1r1⊥ = m2v2r2⊥ (23)

Recall that the definition of a particle’s angular mo-
mentum about some axis is the linear momentum

 p = mv times the lever arm  r⊥  (see Equations 7–15,
16).  Thus the left side of Equation 23 is the satellite’s
angular momentum at position 1, the right side at
position 2.  The statement that the satellite sweeps out
equal areas in equal times is thus equivalent to the
statement that the satellite’s angular momentum   mvr⊥
has the same value all around the orbit. Like the
dumbbell in Figure (34), the satellite moves faster
when  r⊥  is small, and slower then  r⊥  is large, in order
to conserve angular momentum.

As a direct check of the conservation of angular mo-
mentum in the satellite orbit program, note that if a
particle is located a distance x from an axis of rotation
and is moving in the y direction with a velocity  vy as
shown in Figure (36a), the lever arm about the origin is
simply x, and the particle’s angular momentum about
the origin a  is

  
a = mxvy

particle's angular
momentumin Figure (36a) (24)

Using the right hand convention illustrated in Figure
(7-14), we see that this particle has angular momentum
directed up, out of the paper.  We will call this positive
angular momentum.  (You can think of m as a small
piece of the bicycle wheel shown in Figure 7-14.)

Now consider a particle of mass m located a distance y
from the origin traveling in the – x direction as shown
in Figure (36b).  By the right hand convention the
angular momentum is still positive (you could think of
this m as another part of the same bicycle wheel), but
the x velocity is now negative.  Thus the formula for this
particle’s angular momentum is

 b = – myvx (25)

We have to put in the minus (–) sign to counteract the
fact that  vx is negative but  b  is positive.

It turns out that if a particle is in the xy plane at some
arbitrary position  R = (x,y), and has some arbitrary
velocity  v = (vx,vy) in the xy plane, then the formula
for the angular momentum  0  of the particle about the
origin is

 o = m xvy – yvx (26)

y

m

vy

0 x
x

Figure 36b

Here   = myvx.

Figure 36a

Here   = mx vy .

y

m

vx

0
x

y
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You  can see that this general result is just a combina-
tion of the two special cases we considered in Figures
(36) and Equations 24 and 25.  (Equation 26 also comes
from the formula   = m r × v where   r × v is the vector
cross product of r and v.  We will discuss vector cross
products in detail later in Chapter 11.  For now Equa-
tion 26 is all we need.)

With Equation 26, we can easily test whether angular
momentum is in fact conserved in our satellite orbit
calculations.  By the end of the calculational loop, we
have already calculated new values of the satellite’s x
and y coordinates  Rx and  Ry , and x and y velocity
components  vx and  vy .  Thus to calculate the satellite’s
angular momentum, all we need is the line

 LET Lz = M * Rx*Vy – Ry*Vx (27)

where we are using the name  Lz  because we are
observing the z component of the satellite’s angular
momentum, as indicated in Figure (37).

To check that angular momentum is conserved, we
could add a print line at the end of the calculational loop
like

IF MOD (I, 40) = 0  THEN PRINT Rx, Ry, Lz
(28)

By printing the values of  Rx and  Ry as well as  Lz , we
can see where the satellite is in its orbit as well as the
value of the angular momentum at that point.

Exercise 19

Add lines (27) and (28) to your Orbit 1 program and
check that angular momentum is conserved.  Use
several different initial conditions so that you can check
conservation of angular momentum for different ellipti-
cal orbits.  (Make sure that  Lz is calculated within the
calculational loop so that the latest values of  Rx,  Ry, Vx
and Vy are used for each calculation.)  Also, if you set the
satellite mass m equal to 1, the values for  Lz will be
easier to interpret.  (The value of the constant m does not
matter since you are simply checking that  Lz  is constant
during the satellite’s orbital motion.)

Exercise 20

The fact that angular momentum is conserved in Exer-
cise 19 should not be too surprising because you have
already checked in earlier exercises that the elliptical
orbit obeys Kepler’s second law, and as we have just
seen, Kepler’s second law implies conservation of
angular momentum.  In this exercise, see if angular
momentum is also conserved if we modify the gravita-
tional force law as we did in Exercise 19.  Take your
program from Exercise 19, the one that prints out the
values of the angular momentum, change the exponent
of r in Newton’s law of gravity, and see if angular
momentum is conserved while the ellipse is precessing.

y

x

z

rotating
wheel

Figure 37
Angular momentum vector of a rotating wheel.



8-35

CONSERVATION OF ENERGY
In addition to angular momentum, there is another
quantity that is conserved during a satellite’s orbital
motion.  In Chapter 10, which is completely devoted to
the topic of energy, we will discuss techniques for
deriving formulas for various forms of energy.  But it
is not necessary to be able to derive energy formulas in
order to be able to appreciate and use the concept.

The fundamental idea behind the concept of energy is
that energy is a conserved quantity.  To study the
conservation of energy is often a more difficult job than
studying the conservation of linear or angular momen-
tum, because there are many forms that energy can
take, and not all the forms are easy to recognize.  But in
certain simple examples like the motion of an earth
satellite, there are only two forms of energy we have to
deal with, and the conservation of energy is easy to
observe.

Unlike linear and angular momentum, energy does not
point anywhere.  Energy is represented by a number,
not a vector.  You get a bill from your electric company
for the amount of electrical energy you used the previ-
ous month.  The electric company has a formula, based
on the reading of your electric meter, for the amount of
electrical energy you used.  Because energy is con-
served, the power company could not create the energy
they sold you out of nothing, they probably got the
energy either from a nuclear power plant or by burning
fossil fuels.  If they got the energy from fossil fuels, that
energy originally came from the sun, from the combin-
ing of hydrogen nuclei to form helium nuclei.  If the
electricity came from a nuclear power plant, the energy
came from the splitting of large uranium or plutonium
nuclei into smaller nuclei.  The uranium and plutonium
nuclei were formed by  getting their energy from a
supernova explosion that must have occurred over
five billion years ago.

In our discussion of energy in Chapter 10, we will see
that there is a close analogy between keeping track of
your checkbook balance in a bank and keeping a record
of the amount of energy a system has.  With a bank

balance, there is a convention that if your balance is
positive, the bank owes you money, and if the balance
is negative, you owe the bank money.  A zero balance
indicates that neither owes each other anything.  If the
bank is not worried about your credit, it does not make
much difference whether your balance is positive,
negative or zero, you can still write checks, make
deposits, and go about your normal business.

In the way we deal with energy, what we call the zero
of energy does not make much difference either.  We
can think of a power company borrowing energy from
a coal company just as it borrows money from a bank.
In this sense the power company can have a negative
energy balance just as it has a negative bank balance.
The fact that energy is conserved means that the power
company cannot create energy out of nothing to repay
the debt.  The difference between the power company
and physical systems like satellites in orbit is that we let
power companies pay their energy debt with cash, a
physical system can increase its energy balance only by
getting energy from somewhere else.

In our accounting scheme for energy, some terms are
positive and some are negative.  The term called kinetic
energy is always positive.  In most circumstances,
kinetic energy is given by the formula   1/2 mv2 where
m is the mass of the object and v the object’s speed.
Kinetic energy is positive because  neither  m or
1/2 m  v2 can become negative.

To observe conservation of energy for satellite motion,
it is necessary to account for two forms of energy.  One
is kinetic energy 1/2  v2, the other is what is called
gravitational potential energy.  Our formula for gravi-
tational potential energy will be  –Gmsme/r  where G
is the gravitational constant,  ms  and  me  the masses of
the satellite and earth respectively, and r the separation
between them.  This formula looks much like the
gravitational force formula, except that it is propor-
tional to 1/r rather than  1/r2 .
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What is often upsetting to students when they first
encounter the gravitational potential energy formula is
the minus sign.  How can energy be negative?  This is
essentially a result of our accounting procedure.  The
important feature of energy is that it is conserved.  If the
gravitational potential energy in some part of an orbit
becomes more negative, then the kinetic energy has to
become more positive so that the total is conserved, i.e.,
stays constant.  As far as energy conservation is con-
cerned, it does not make any difference what the total
energy is, as long as it is constant.

At this point we have made no effort to explain where
the formulas  1/2 mv2  for kinetic energy and

 –Gmsme/r for gravitational potential energy came
from.  That is a subject for Chapter 10.  What we are
concerned with now is to see if the Total Energy, the
sum of these two, is conserved as the satellite moves
around its orbit.

  total energy
of a satellite
in orbit

= kinetic
energy +

gravitational
potential
energy

Etot = 1
2 mv2 –

G msme
r

(29)

We will check for conservation of energy in much the
same way we checked for conservation of angular
momentum using our Orbit 1 program.   Near the end
of the calculational loop, after we have calculated the
latest values of the satellite position r and velocity v,
and have also calculated the corresponding magni-
tudes r and v, we can add the line

 LET Etot = Ms*V*V/2 – G*Ms*Me/R (30)

Then we can add a print line like

 IF MOD(I, 40) = 0 THEN PRINT Rx, Ry, Etot

By looking at the printed values of  Etot we can see
whether this formula for  Etot is conserved as the
satellite moves around.

Exercise 21
Using the steps described above, check that the
satellite’s total energy  Etot is conserved.  (You will notice
slight variations in the value of  Etot, the values are not as
steady as they were in the printout of angular momen-
tum.  Exercise 22 suggests a way of improving the
energy calculation and getting better results.)

As a variation, print out the values of the kinetic energy,
potential energy and  Etot.  You will see big changes in
the kinetic and potential energy, while the sum  Etot
remains nearly constant.  Start the satellite with different
initial conditions and check for energy conservation for
different elliptical orbits.

Exercise 22
We can obtain a more accurate calculation of the
satellite’s total energy by slightly modifying the value
of v used in the kinetic energy formula.  When we put
the calculation of  Etot at the end of the calculational
loop, we are using the value of v at the end of the time
step dt.  It turns out that we get a more accurate
energy calculation if we use a value of v that is the
average of the value we had when we entered the
calculational loop and the value a time dt later when
we left.  This averaging is easily accomplished using
the following commands inserted into your calcula-
tional loop.

  LET Vold = V new linesaving old value of v

LET Vx = . . .

LET Vy = . . . your old lines calculating
the next new value of v

LET V = SQR ( Vx * Vx + Vy * Vy)

LET Vnew = V saving the new value of V

LETV = ( Vold+ Vnew) /2 setting V to the averagevalue

LET Etot = ( Ms* V * V )/2 – G * Ms* Me/R

The steps above using the average of  Vnew and  Vold for
V in the calculation of the kinetic energy represents the
kind of specialized computer trick we have tried to avoid
in this text.  However, the trick works so well, the
improvement in the value of the total energy is so great
that it is worth the effort.  This is particularly true for
project work where a check for conservation of energy
is the main check of the validity of the calculation.  (You
can usually spot computer errors by printing out the total
energy, because computer errors almost never con-
serve energy.
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Exercise 23 (optional, more like a project)
It turns out that if we modify the formula for the
gravitational force, for example changing the expo-
nent of r from + 2 to – 1.9, we also have to modify the
formula for the gravitational potential energy in order
to observe energy conservation.  You will learn in
Chapter 10 that the formula for the gravitational
potential energy is the integral of the magnitude of the
force.  We can, for example, obtain our formula for
gravitational potential energy from the gravitational
force formula by the following integration

   Gmsme
r2 dr

∞

r

= –
Gmsme

r (31)

If you modify the gravitational force formula, you can do
the same kind of integration to get the corresponding
potential energy formula.  (In Chapter 10 we will have a
lot more to say about this integration.  For now you can
treat the integration as a convenient device for obtain-
ing the potential energy formula.  Since the important
feature of energy is that it is conserved, if you find from
running your Orbit 1 program that the total energy turns
out to be conserved, you know you have the correct
potential energy formula no matter how it was derived.)

For this exercise, start by modifying the gravitational
force law by changing the exponent of r from + 2 to – 1.9.
Then run your Orbit 1 program using the formula

 – Gmsme /r  for potential energy to see that this formula
does not work.  (Use the accurate version of the
program from Exercise 22 so that you can be more
confident of the results.)

Then integrate  Gmsme /r1.9 to find a new potential
energy formula.  See if energy is conserved with your
new formula.  Once this is successful, try some other
modification.



Chapter 9
Applications of
Newton’s Second
Law

In the last chapter our focus was on the motion of
planets and satellites, the study of which historically
lead to the discovery of Newton’s law of motion and
gravity.  In this chapter we will discuss various appli-
cations of Newton’s laws as applied to objects we
encounter here on earth in our daily lives.  This chapter
contains many of the examples and exercises that are
more traditionally associated with an introductory
physics course.

CHAPTER 9 APPLICATIONS OF
NEWTON’S SECOND LAW



9-2  Applications of Newton’s Second Law

ADDITION OF FORCES
The main new concepts discussed in this chapter are
how to deal with a situation in which several forces are
acting at the same time on an object.  We had a clue for
how to deal with this situation in our discussion of
projectile motion with air resistance, where in Figure
(1)  reproduced here, we saw that the acceleration a  of
the Styrofoam projectile was the vector sum of the
acceleration g  produced by gravity and the accelera-
tion  aair  produced by the air resistance

 a = g + aair (1)

If we multiply Equation 1 through by m, the mass of the
ball, we get

 ma = mg + maair (2)

We know that  mg  is the gravitational force acting on
the ball, and it seems fairly clear that we should identify

 maair  as the force  Fair  that the air is exerting on the ball.
Thus Equation 2 can be written

 ma = Fg + Fair

In other words the vector  ma , the ball’s mass times its
acceleration, is equal to the vector sum of the forces
acting upon it.  More formally we can write this
statement in the form

   
ma = FiΣ

i

=
the vector sum of
the forces acting
on the object

more general
form of Newton's
second law

(4)

Equation 4 forms the basis of this chapter.  The basic
rule is that, to predict the acceleration of an object, you
first identify all the forces acting on the object. You
then take the vector sum of these forces, and the result
is the object’s mass m times its acceleration a .

When we begin to apply Equation 4 in the laboratory,
we will be somewhat limited in the number of different
forces that we can identify.  In fact there is only one
force for which we have an explicit and accurate
formula, and that is the gravitational force  mg  that acts
on a mass m.  Our first step will be to identify other
forces such as the force exerted by a stretched spring,
so that we can study situations in which more than one
force is acting.

3

"wind"

v
3

a
g

air

a3

a air3 = g + a

Figure 1
Vector addition of accelerations.

sF

m

mg
Figure 2
Spring force balanced by the gravitational force.
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SPRING FORCES
The simplest way to study spring forces is to suspend
a spring from one end and hang a mass on the other as
shown in Figure (2).  If you wait until the mass m has
come to rest, the acceleration of the mass is zero and
you then know that the vector sum of the forces on m
is zero.  In this simple case the only forces acting on m
are the downward gravitational force  mg  and the
upward spring force  Fs .  We thus have by Newton’s
second law

  FiΣ
i

= Fs + mg = ma = 0 (5)

and we immediately get that the magnitude  Fs  of the
spring force is equal to the magnitude mg of the
gravitational force.

As we add more mass to the end of the spring, the spring
stretches.  The fact that the more we stretch the spring,
the more mass it supports, means that the more we
stretch the spring the harder it pulls back, the greater  Fs
becomes.

To measure the spring force, we started with a spring
suspended from a nail and hung 50 gm masses on the
end, as shown in Figure (3).  With  only one 50 gram
mass, the length S of the spring, from the nail  to the
hook on the mass, was 45.4 cm.  When we added

another 50 gm mass, the spring stretched to a length of
54.8 centimeters.  We added up to five 50 gram masses
and plotted the results shown in Figure (4).

Looking at the plot in Figure (4) we see that the points
lie along a straight line.  This means that the spring force
is linearly proportional to the distance the spring has
been stretched.

To find the formula for the spring force, we first draw
a line through the experimental points and note that the
line crosses the zero force axis at a length of 35.9 cm.
We will call this distance the unstretched length  So .

Thus the distance the spring has been stretched is
 S – So , and the spring force should be linearly pro-

portional to this distance.  Writing the spring force
formula in the form

 
Fs = k S – So

(6)

all we have left is determine the spring constant k.

300
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S

Figure 3
Calibrating the spring force.

Figure 4
Plot of the length of the spring as
a function of the force it exerts.
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The easy way to find the value of k is to solve Equation
6 for k and plug in a numerical value that lies on the
straight line we drew through the experimental points.
Using the value   Fs = 200 gm× 980 cm /sec

  = 19.6 × 104 dynes when the spring is stretched to a
distance S = 73.7 cm gives

  
k =

Fs

S – So

=
19.6 × 104 dynes

73.7 – 35.9 cm

= 5.18 × 103 dynes
cm

Equation 6, the statement that the force exerted by a
spring is linearly proportional to the distance the spring
is stretched, is known as Hooke’s law.  Hooke was a
contemporary of Isaac Newton, and was one of the first
to suspect that gravitational forces decreased as  1/r2.
There was a dispute between Hooke and Newton as to
who understood this relationship first.  It may be more
of a consolation award that the empirical spring force
“law” was named after Hooke, while Newton gets
credit for the basic gravitational force law.

Hooke’s law, by the way, only applies to springs if you
do not stretch them too far.  If you exceed the “elastic
limit”, i.e., stretch them so far that they do not return to
the original length, you have effectively changed the
spring constant k.

The Spring Pendulum
The spring pendulum experiment is one that nicely
demonstrates that an object’s acceleration is propor-
tional to the vector sum of the forces acting on it .  In this
experiment, shown in Figure (5), we attach one end of
a spring to a nail, hang a ball on the other end, pull the
ball back off to one side, and let go.  The ball loops
around as seen in the strobe photograph of Figure (6).
The orbit of the ball is improved, i.e., made more open
and easier to analyze, if we insert a short section of
string between the end of the spring and the nail, as
indicated in Figure (5).

This experiment does not appear in conventional text-
books because it cannot be analyzed using calculus—
there is no analytic solution for this motion.  But the
analysis is quite simple using graphical methods, and a
computer can easily predict this motion.  The graphical
analysis most clearly illustrates the point we want to
make with this experiment, namely that the ball’s
acceleration is proportional to the vector sum of the
forces acting on the ball.

In this experiment, there are two forces simultaneously
acting on the ball.  They are the downward force of
gravity  Fg = mg , and the spring force  Fs .  The spring
force  Fs always points back toward the nail from which
the spring is suspended, and the magnitude of the

Figure 5
Experimental setup.

Figure 6
Strobe photograph of a spring pendulum.

nail

string

spring

ball
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spring force is given  by Hooke’s law  Fs = k S – So .
Since we can  calibrate the spring before the experiment
to determine k and  So , and since we can measure the
distance S  from a strobe photograph of the motion, we
can determine the spring force at each position of the
ball in the photograph.

In Figure (7) we have transferred the information about
the positions of the ball from the strobe photograph to
graph paper and labeled the first 17 positions of the ball
from – 1 to 15.  Consider the forces acting on the ball
when it is located at the position labeled 0.  The spring
force  Fs  points from the ball up to the nail which in this
photograph is located at a coordinate (50, 130).  The
distance S from the hook on the ball to the nail, the
distance we have called the stretched length of the

spring, is 93.0 cm.  You can check this for yourself by
marking off the distance from the edge of the ball to the
nail on a piece of paper, and then measuring the
separation of the marks using the graph paper (as we
did back in Figure (1) of Chapter 3).  We measure to the
edge of the ball and not the center, because that is where
the spring ends, and in calibrating the spring we mea-
sured the distance S to the end of the spring.  (If we
measured to the center of the ball, that would introduce
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Figure 7
Spring pendulum
data transferred
to graph paper.
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an error of about 1.3 cm, which produces a noticeable
error in our results.)

It turns out that we used the same spring in our
discussion of Hooke’s law as we did for the strobe
photograph in Figure (6).  Thus the graph in Figure (4)
is our calibration curve for the spring.  (The length of
string added to the spring is included in the unstretched
length  So).  Using Equation 6 for the spring force, we
get

  Fs = k S – So

= 5.18 × 103dynes
cm × 93.0 – 35.9 cm

= 29.6 × 104dynes (8)

The direction of the spring force is from the ball to the
nail. Using a scale in which  104 dynes = 1 graph paper
square, we can draw an arrow on the graph paper to
represent this spring force.  This arrow, labeled  Fs ,
starts at the center of the ball at position 0, points toward
the nail, and has a length of 29.6 graph paper squares.

Throughout the motion, the ball is subject to a gravita-
tional force  Fg  which points straight down and has a
magnitude mg.  For the strobe photograph of Figure
(6), the mass of the ball was 245 grams, thus the
gravitational force has a magnitude

  Fg = mg = 245 gm × 980 cm
sec2

= 24.0 × 104 dynes (9)

This gravitational force can be represented by a vector
labeled  mg  that starts from the center of the ball at
position 0, and goes straight down for a distance of 24
graph paper squares (again using the scale 1 square =

 104 dynes.)

The total force  Ftotal  is the vector sum of the individual
forces  Fs and  Fg

 Ftotal = Fs + mg (10)

Figure 8a
Force vectors.
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The vector addition is done graphically in Figure (8a),
giving us the total force acting on the ball when the ball
is located at position 0.  On the same figure we have
repeated the steps discussed above to determine the
total force acting on the ball when the ball is up at
position 10.  Note that there is a significant shift in the
total force acting on the ball as it moves around its orbit.

According to Newton’s second law, it is this total force
 Ftotal  that produces the ball’s acceleration a.  Explicitly

the vector ma should be equal to  Ftotal .  To check
Newton’s second law, we can graphically find the
ball’s acceleration a a  at any position in the strobe
photograph, and multiply the mass m to get the vector
ma.

In Figure (8b) we have used the techniques discussed
in Chapter 3 to determine the ball’s acceleration vector

  a∆t2  at positions 0 and 10.  (Recall that for graphical
work from a strobe photograph, we had

  a = (s2 – s1)/∆t2  or    a∆t2 = (s2 – s1) , where  s1  is
the previous and  s2  the following displacement vec-
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as the direction of the vector    a ∆t2 at position 0 in
Figure (8b).  In a similar way we have constructed the
vector  ma  at position 10 .

As a comparison between theory and experiment, we
have drawn both the vectors  Ftotal and  ma at positions
0 and 10 in Figure (8c).  While the agreement is not
exact, it is the best we can expect, considering the
accuracy with which we can read the strobe photo-
graphs.  The important result is that the vectors  Ftotal
and  ma can be seen to closely follow each other as the
ball moves around the orbit.  (In Exercise 1 we ask you
to compare  Ftotal  and  ma at a couple of more positions
to see these vectors following each other.)  (I once
showed a figure similar to Figure (8c) to a mathemati-
cian, who observed the slight discrepancy between the
vectors  Ftotal  and  ma and said, “Gee, it’s too bad the
experiment didn’t work.”  He did not have much of a
feeling for experimental errors in real experiments.)

Exercise 1

Using the data for the strobe photograph of Figure (6),
as we have been doing above, compare the vectors

 Ftotal and  ma  at two more locations of the ball.

tors and  ∆t  the time between images.)  At position 0 the
vector   a ∆t2 has a length of 5.7 cm as measured directly
from the graph paper.  Since  ∆t = .1sec  for this strobe
photograph, we have, with   ∆t2 = .01,

  a∆t2 = a× .01 = 5.7 cm

a = 5.7 cm
.01 sec2 = 570 cm

sec2

Using the fact that the mass m of the ball is 245 gm, we
find that the length of the vector  ma at position 0 is

  
ma at position0 = 245 gm × 570

cm

sec2

= 14.0 × 104 gm cm

sec2

= 14.0 × 104 dynes

In Figure (8c) we have plotted the vector ma at position
0 using the same scale of one graph paper square
equals  104 dynes .  Since ma has a magnitude of

  14.0×104 dynes , we drew an arrow 14.0 squares
long.  The direction of the arrow is in the same direction
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Acceleration vectors.
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Figure 9
Vector diagram.  Z  is the coordinate
of the nail,  R  the coordinate of the
ball, and S  the displacement of the
ball from the nail.

Z

S

nail at (50,130)

R

R Z S= +

sF

mg

nail

Figure 10
Force diagram, showing the two
forces acting on the ball.

To apply this general structure to the spring pendulum
problem, we first have to be able to describe the
direction of the spring force  Fs .  This is done using the
vector diagram of Figure (9).  The vector Z  represents
the coordinate of the nail from which the spring is
suspended, S  the displacement from the nail to the ball,
and  R  the coordinate of the ball. From Figure (9) we
immediately get the vector equation

 Z + S = R (12)

which we can solve for the spring length S

 S = R – Z (13)

From Figure (7) we see that the nail is located at the
coordinate (50,130) thus

 Z = (50,130)

Throughout the motion of the ball, the spring force
points in the –S  direction as indicated in Figure (10),
thus the formula for the spring force can be written

 Fs = –S k S – So (14)

where  k S – So  is the magnitude of the spring force
determined in Figure (4).

Computer Analysis
of the Ball Spring Pendulum
It turns out that using the computer you can do quite a
good job of predicting the motion of the ball bouncing
on the end of the spring.  A program for predicting the
motion seen in Figure (7) is listed in the appendix of this
chapter.  Here all we will discuss are the essential
features that you will find in the calculational loop of
that program.

The main features of any program that predicts the
motion of an object are the following lines, written out
in English

  ! Calculational Loop

Let Rnew = Rold + Vold * dt

Let F1 = . . . find forces acting
on the object

Let F2 = . . .

Let Ftotal = F1 + F2 + . . . find the vector
sum of the forces

Let a = Ftotal/m
Newton's
second law

Let Vnew = Vold + a * dt

Loop Until . . . ! Repeat calculation (11)
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Using Equation 6 for the spring force, the English
calculational loop for the spring pendulum becomes

 ! Calculational loop for spring pendulum

Let Rnew = Rold + Vold * dt

Let S = R – Z

Let Fs = – S * k * S – So

Let Fg = mg

Let Ftotal = Fs + Fg

Let A = Ftotal /m

Loop Until . . . (15)

A translation into BASIC of the lines for calculating S
and  Fs  would be, for example,

LET Sx    =  Rx – Zx

LET Sy    =  Ry – Zy

LET S      =  SQR (Sx * Sx + Sy * Sy)

LET Fsx  =  (– Sx / S) *  k * (S – So)

LET Fsy  =  (– Sy / S) * k * (S – So) (16)

The rest of the program, discussed in the Appendix, is
much like our earlier projectile motion programs, with
a new calculational loop.  In Figure (11) we have
plotted the results of the spring pendulum program,
where the crosses represent the predicted positions of
the ball and the squares are the experimental positions.
If you slightly adjust the initial conditions for the
motion of the ball, you can make almost all the crosses
fall within the squares.  How much adjustment of the
initial conditions you have to do gives you an indication
of the size of the errors involved in determining the
positions of the ball from the strobe photograph.

Analytic Solution
If you pull the ball straight down and let go, the ball
bounces up and down in a periodic motion that can be
analyzed using calculus.  The resulting motion is called
a sinusoidal oscillation which we will discuss in
considerable detail in Chapter 14.  You will see that if
you can use calculus to obtain an analytic solution,
there are many ways to use the results.  The oscillatory
spring motion serves as a model for describing many
phenomena in physics.

Figure 11
Output from the ball spring
program. The crosses are the
points predicted by the computer
program, while the black squares
represent the experimental data
points. The program in the
Appendix illustrates how the data
points can be plotted on the same
diagram with your computer plot.
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THE INCLINED PLANE
Galileo discovered the formulas for projectile motion
by using an inclined plane to slow the motion down,
making it easier to measure positions and velocities. He
studied rolling balls, whereas we wish to study sliding
objects using a frictionless inclined plane.

The frictionless inclined plane was more or less a
figment of the imagination of the authors of introduc-
tory textbooks, at least until the development of the air
track.  And even with an air track some small effects of
friction can be observed.  We will discuss the inclined
plane here because it illustrates a useful technique for
analyzing the forces on an object, and because it leads
to some interesting laboratory experiments.

As a simple experiment,  place a book, a floppy disk, or
some small object under one end of an air track so that
the track is tilted at an angle θ as shown in Figure (12).
If you keep the angle θ small, you can let the air cart
bounce against the bumper at the end of the track
without damaging anything.

To analyze the motion of the air cart, it helps to
exaggerate the angle θ in our drawings of the forces
involved as we have done this in Figure (13). The first
step in handling any Newton’s law problem is to
identify all the forces involved.  In this case there are
two forces acting on the air cart; the downward force of
gravity  mg  and the force  Fp of the plane against the
cart.

The main feature of a frictionless surface is that it can
exert only normal forces, i.e., forces perpendicular to
the surface.  (Any sideways forces are the result of
“friction”.)  Thus  Fp  is perpendicular to the air track,
inclined at an angle θ  away from the vertical direction.

What makes the analysis of this problem different from
the motion of the spring pendulum discussed in the last
section is the fact that the cart is constrained to move
along the air track.  This tells us immediately that the
cart accelerates along the track, and has no acceleration
perpendicular  the track.  If there is no perpendicular
acceleration, there must be no net force perpendicular
to the track.  From this fact alone we can determine the
magnitude of the force  Fp  exerted by the track.

Before we do any calculations, let us set up the problem
in such a way that we can take advantage of our
knowledge that the cart moves only along the track.
Without thinking, we would likely take the x axis to be
in the horizontal direction and the y axis in the vertical
direction.  But with this choice the cart has a component
of velocity in both the x and y directions.

The analysis is greatly simplified if we choose one of
the coordinate axes to lie along the plane.  In Figure
(14), we have chosen the x axis to lie along the plane,
and decomposed the downward gravitational force
into an x component which has a magnitude   mgsinθ
and a – y component of magnitude   mgcosθ .

Now the analysis of the problem is easy.  Starting with
Newton’s law in vector form, we have

  ma = ΣFi = mg + Fp (17)

Separating Equation 17 into its x and y components, we
get

m

θ

air track

air cart

Figure 12
Tilted air cart.

Figure 13
Forces on the air cart.
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  max = mg x = mgsinθ (18a)

  may = 0

= Fp – mg y

= Fp – mgcosθ (18b)

where we set   ay = 0  because the cart moves only in the
x direction.

From Equation 18b we immediately get

  Fp = mgcosθ (19)

as the formula for the magnitude of the force the plane
exerts on the cart.

Of more interest is the formula for ax which we imme-
diately get from Equation 18a

  
ax = gsinθ (20)

We see that the cart has a constant acceleration down
the plane, an acceleration whose magnitude is equal to
the acceleration due to gravity, but reduced by a factor

  sinθ . It is this reduction that slows down the motion,
and allowed Galileo to study motion with constant
acceleration using the crude timing devices available to
him at that time.

Exercise 2
A one meter long air track is set at an angle of

   θ = .03 radians. (This was done by placing a 3 millimeter
thick floppy disk under one end of the track.

(a) From your knowledge of the definition of the radian,
explain why, to a high degree of accuracy, the   sin θ  and
θ are the same for these small angles.

(b) The cart is released from rest at one end of the track.
How long will it take to reach the other end.  (You can
consider this to be a review of the constant acceleration
formulas.)

y

x

mg cos θ

θ

mg sin θ

Fp

mg
θ

m

Figure 14
Choosing the x axis to lie along the plane.

Portrate of Galileo

Galileo’s Inclined plane

Above photos from the informative web page
http://galileo.imss.firenze.it/museo/b/egalilg.html
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FRICTION
If you do the experiment suggested in Exercise 2,
measuring the time it takes the cart to travel down the
track when the track is tilted by a very small angle, the
results are not likely to come out very close to the
prediction.  The reason is that for such small angles, the
effects of “friction” are noticeable even on an air track.

In introductory physics texts, the word “friction” is
used to cover a multitude of sins.  With the air track,
there is no physical contact between the cart and track.
But there are air currents that support the cart and come
out around the edge of the cart.  These air currents
usually slow the air cart down, giving rise to what we
might call friction effects.

In common experience, skaters have as nearly a fric-
tionless surface as we are likely to find.  The reason that
you experience little friction when skating is not be-
cause ice itself is that slippery, but because the ice melts
under the blade of the skate and the skater travels along
on a fine ribbon of water.  The ice melts due to the
pressure of the skate against the ice.  Ice is a peculiar
substance in that it expands when it freezes.  And
conversely, you can melt it by squeezing it.  If, how-
ever, the temperature is very low, the ice does not melt
at reasonable pressures and is therefore no longer
slippery.  At temperatures of   40° F below zero, roads
on ice in Alaska are as safe to drive on as paved roads.

When two solid surfaces touch, the friction between
them is caused by an interaction between the atoms in
the surfaces.  In general, this interaction is not under-
stood.  Only recently have computer models shed some
light on what happens when clean metal surfaces
interact.  Most surfaces are quite “dirty” at an atomic
scale, contaminated by oxides, grit and whatever.  It is
unlikely that one will develop a comprehensive theory
of friction for real surfaces.

Friction, however, plays too important a role in our
lives to be ignored.  Remember the first time you tried
to skate and did not have a  surface with enough friction
to support you.  To handle friction, a number of
empirical rules have been developed.  One of the more
useful rules is “if it squeaks, oil it”.  At a slightly higher
level, but not much, are the formulas for friction that
appear in introductory physics text books.  Our  lack of
respect for these formulas comes from the experience
of trying to verify them in the laboratory.  There is some
truth to them, but the more accurately one tries to verify
them, the worse the results become.  With this state-
ment in mind about the friction formulas, we will state
them, and provide one example.  Hundreds of ex-
amples of problems involving friction formulas can be
found in other introductory texts.

Inclined Plane with Friction
In our analysis of the air cart on the inclined track, we
mentioned that a frictionless surface exerts only a
normal force on an object.  If there is any sideways
force, that is supposed to be a friction force  Ff .  In
Figure (15) we show a cart on an inclined plane, with
a friction force  Ff  included.  The normal force  Fn  is
perpendicular to the plane, the friction force  Ff  is
parallel to the plane, and gravity still points down.

m

Fn

mg

θ

F f

Figure 15
Friction force acting on the cart.
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To analyze the motion of the cart when acted on by  a
friction force, we write Newton’s second law in the
usual form

  ma = ΣFi = mg + Fn + Ff (21)

The only change from Equation 13 is that we have
added in the new force  Ff .

Since the motion of the cart is still along the plane, it is
convenient to take the x axis along the plane as shown
in Figure (16).  Breaking Equation 21 up into x and y
components now gives

  max = ΣFx = mg sin θ – Ff (22a)

  may = ΣFy = –mg cos θ + Fn = 0 (22b)

From 22b we get,

  Fn = mg cos θ (23)

which is the same result as for the frictionless plane.

The new result comes when we look at motion down
the plane.  Solving 22a for ax gives

  ax = gsinθ – Ff /m (24)

Not surprisingly, the friction force reduces the accel-
eration down the plane.

Coefficient of Friction
To go any further than Equation 24, we need some
values for the magnitude of the friction force  Ff .  It is
traditional to assume that  Ff   is proportional to the force

 Fn  between the surfaces.  Such a proportionality can be
written in the form

  Ff = µFn (25)

where the proportionality constant µ is called the
coefficient of friction.

Equation 25 makes the explicit assumption that the
friction force does not depend on the speed at which the
object is moving down the plane.  But it is easy to show
that this is too simple a model.  It is harder to start an
object sliding than to keep it sliding.  This is why you
should not jam on the brakes when trying to stop a car
suddenly.  You should keep the tires rolling so that there
is no sliding between the surface of the tire and the
surface of the road.

The difference between non slip or static friction and
sliding friction is accounted for by saying that there are
two different coefficients of friction, the static coeffi-
cient   µs  which applies when the object is not moving,
and the kinetic coefficient   µk which applies when the
objects are sliding.  For common surfaces like a rubber
tire sliding on a cement road, the static coefficient   µs
is greater than the sliding or kinetic coefficient   µk .

Let us substitute Equation 25 into Equation 24 for the
motion of an object down an inclined plane, and then
see how the hypothesis that  Ff  is proportional to  Fn
can be tested in the lab.  Using Equation 25 and 24 gives

  ax = g sin θ – Ff/m

= g sin θ – µFn/m

Using   Fn = mg cos θ gives

  ax = g sin θ – µg cos θ

= g sin θ – µ cos θ (26)

x

y

m

Fn

Ff

mg cos θ

θ

mg sin θ

mg

Figure 16
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Equation 26 clearly applies only if   sin θ  is greater than
  µ cos θ  because friction cannot pull the object back up

the plane.

If we have a block on an inclined plane, and start with
the plane at a very small angle, so that   sin θ  is much
less than   µ cos θ , the block will sit there and not slide.
If you increase the angle until   sin θ = µ cos θ, with µ
the static coefficient of friction, the block should just
start to slide.  Thus   µs

 is determined by the condition

  sin θ = µs cos θ

or dividing through by   cos θ

  µs = tan θs (27)

where θs is the angle at which slipping starts.

After the block starts sliding, µ is supposed to revert to
the smaller coefficient   µk  and the acceleration down
the plane should be

  ax = g sin θ – µk g cos θ (26a)

Supposedly one can then determine the kinetic coeffi-
cient   µk  by measuring the acceleration ax and using
Equation 26a for   µk .

If you try this experiment in the lab, you may encounter
various difficulties.  If you try to slide a block down a
reasonably smooth board, you may get fairly consistent
results and obtain values for   µs  and   µk .  But if you try
to improve the experiment by cleaning and smoothing
the surfaces, the results may become inconsistent be-
cause clean surfaces have a tendency to stick rather
than slide.

The idea that friction forces can be described by two
coefficients   µs  and   µk  allows the authors of introduc-
tory physics texts to construct all kinds of homework
problems involving friction forces.  While these prob-
lems may be good mental exercises, comparable to
solving challenging crossword puzzles, they are not
particularly appropriate for an introductory physics
course.  The reason is that the formula   Ff = µFn  is an
over simplification of a complex phenomena.  A decent
treatment of friction effects belongs in a more ad-
vanced engineering oriented course where there is time
to study the limitations and applicability of such a rule.
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STRING FORCES
Another favorite device of the authors of introductory
texts is the massless string (or rope).  The idea that a
string has a small mass compared to the object to which
it is attached is usually a very good approximation.
And strings and ropes are convenient devices for
transferring a force from one object to another.

In addition, strings have the advantage that you can
immediately tell the direction of the force they trans-
mit.  The force has to be along the direction of the string
or rope, for a string cannot pull sideways.  We used this
idea when we discussed the motion of a golf ball
swinging in a circle on the end of a string.  The string
could only pull in along the direction of the string
toward the center of the circle.  From this we concluded
that the force acting on the ball was also toward the
center of the circle, in the direction the ball was
accelerating.

To see how to analyze the forces transmitted by strings
and ropes, consider the example of two children pulling
on a rope in a game of tug of war show in Figure (17).
Let the child labeled 1 be pulling on the rope with a
force  F1 and child labeled 2 pulling with a force  F2 .
Assuming that the rope is pulled straight between them,
the forces F1 and  F2  will be oppositely directed.

Applying Newton’s second law to the rope, and assum-
ing that the force of gravity on the rope is much smaller
than either F1 or  F2  and therefore can be neglected, we
have

 mrope a rope = F1 + F2

If we now assume that the rope is effectively massless,
we get

 F1 + F2 = 0 (28)

Thus  F1  and  F2  are equal in magnitude and  oppositely
directed.  (Note that if there were a net force on a
massless rope, the rope would have an infinite accel-
eration.)

A convenient way to analyze the effects of a taut rope
or string is to say that there is a tension T in the rope, and
that this tension transmits the force along the rope.  In
Figure (18) we have redrawn the tug of war and
included the tension T.  The point where child 1 is
holding the rope is subject to the left directed force F1
exerted by the child and the right directed force caused
by the tension T in the rope.  The total force on this point
of contact is  F1 + T1 .  Since the point of contact  is
massless, we must have  F1 + T1 = 0  and therefore the
tension T on the left side of the rope is equal to the
magnitude of  F1.  A similar argument shows that the
tension force  T2  exerted on the second child is equal to
the magnitude of  F2 .  And since the magnitude of F1
and  F2  are equal, the tension forces must also be equal.

Isaac Newton noted that when a force was transmitted
via a massless medium, like our massless rope, or the
force of gravity, the objects exerted equal and opposite
forces (here  T1 and  T2 ) on each other.  He called this the
Third Law of Motion.  We will have more to say about
Newton’s third law in our discussion of systems of
particles in Chapter 11.)

F1 F2

(1) (2)

F1 F2

(1) (2)

T1 T2

T1 T2= = T

Figure 17
Tug of war.

Figure 18
Tension T in the rope.
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THE ATWOOD’S MACHINE
As an example of using a string to transmit forces,
consider the device shown in Figure (19) which is
called an Atwood’s Machine.  It simply consists of two
masses at the ends of a string, where the string runs over
a pulley.  We will assume that the pulley is massless and
the bearings in the pulley frictionless so that the only
effect of the pulley is to change the direction of the
string.

To predict the motion of the objects in Figure (19) we
start by analyzing the forces on the two masses.  Both
masses are subject to the downward force of gravity,

 m1g  and  m2g  respectively.  Let the tension in the
string be T.  As a result of this tension, the string exerts
an upward force T on both blocks as shown.  (We saw
in the last section that this force T must be the same on
both masses.)

Applying Newton’s second law to each of the masses,
noting there is only motion in the y direction, we get

 m1a 1y = T – m1g

m2a 2y = T – m2g
(29)

In Equations 29, we note that there are three unknowns
T,  a1y  and  a2y , and only two equations.  Another
relationship is needed.  This other relationship is sup-
plied by the observation that the length  of the string,
given from Figure (19a) is

 = h1 + h2 (30)

does not change.  Differentiating Equation 30 with
respect to time and setting  d /dt = 0  gives

 
 

0 =
d
dt

=
dh1

dt
+

dh2

dt
= v1 + v2

where  v1 = dh1/dt is the velocity of mass 1, etc.
Differentiating again with respect to time gives

 
0 =

dv1

dt
+

dv2

dt
= a1 + a2 (31)

Thus the desired relationship is

 a1 = – a2 (32)

(You might say that it is obvious that  a1 = – a2 ,
otherwise the string would have to stretch.  But if you
are dealing with more complicated pulley problems, it
is particularly convenient to write down a formula for
the total length of the string, and differentiate to obtain
the needed extra relationship between the accelera-
tions.)

Using Equation 32 in 29 we get

 m1a 1y = T – m1g

–m2a 1y = T – m2g
(32b)

m1

m2

m1

m2
g

g

T
T

h1 h2

m1

m2

m1

m2
g

g

T
T

Figure 19a
An Atwood’s machine consists of two masses suspended
from a string looped over a pulley. The acceleration is
proportional to the difference in mass of the two objects.

Figure 19b
Forces involved.



9-17

Solving 32a for T to get  T = m1 a1y + g  and using this
in Equation 32b gives

 –m2a1y = m1a1y + m1g – m2g

or

 
a 1y = g

m 1 – m 2
m 1 + m 2

(33)

From Equation 33 we see that the acceleration of mass
 m1 is uniform, and equal to the acceleration due to

gravity, modified by the factor  m1 – m2 / m1 + m2 .

When you solve a new problem, see if you can check
it by seeing if the limiting cases make sense.  In
Equation 30, if we set  m2 = 0, then  a1 = g  and we have
a freely falling mass as expected.  If  m1 = m2 , then the
masses balance and  a1y = 0  as expected.  When a
formula checks out in its limiting cases, as this one did,
there is a good chance that the result is correct.

The advantage of an of the Atwood’s Machine is that
by choosing  m1 close to , but not equal to  m2 , you can
reduce the acceleration, making the motion easier to
observe, just as Galileo did by using inclined planes.  If
you reduce the acceleration too much by making  m1 too
nearly equal to  m2 , you run the risk that even small
friction in the bearings of the pulley will dominate the
results.

Exercise 3
In a slight complication of the Atwood’s Machine, we
use two pulleys instead of one as shown in Figure (20).
We can treat this problem very much like the preceding
example except that the length of the string is   h1 + 2h2

plus some constant length representing the part of the
string that goes over the pulleys and the part that goes
up to the ceiling.  Calculate the accelerations of masses

 m1 and  m2.  For what values of  m1 and  m2 is the system
balanced?

Exercise 4

If you want something a little more challenging than
Exercise 3, try analyzing the setup shown in Figure (21),
or construct your own setup. For Figure (21), it is enough
to set up the four equations with four unknowns.

m1

h1
h2

m2

Figure 20
Pulley arrangement for Exercise 3.

Figure 21
Pulley arrangement for Exercise 4

m3

m1

m2
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θ
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THE CONICAL PENDULUM
Our final example in this chapter is the conical pendu-
lum.  This is one of our favorite examples because it
involves a combination of Newton’s second law, circu-
lar motion, no noticeable friction, and the predictions
can be checked using an old boot, shoelace and wrist-
watch.

For a classroom demonstration of the conical pendu-
lum, we usually suspend a relatively heavy ball on a
thin rope, with the other end of the rope attached to the
ceiling as shown in Figure (22).  The ball is swung in
a circle so that the path of the rope forms the surface of
a cone as shown.  The aim is to predict the period of the
ball’s circular orbit.

The distances involved and the forces acting on the ball
are shown in Figure (23).  The ball is subject to only two
forces, the downward force of gravity  mg , and the
tension force T  of the string.  If the angle that the string
makes with the vertical is θ , then the force T has an
upward component   Ty = Tcosθ  and a component di-
rected radially inward of magnitude   Tx = Tsinθ .  (We
are analyzing the motion of the ball at the instant when
it is at the left side of its orbit, and choosing the x axis
to point in toward the center of the circle at this instant.)

Applying Newton’s second law to the motion of the
ball, noting that  ay = 0 since the ball is not moving up
and down, gives

 max = Tx

may = 0 = Ty – mg
(34)

The special feature of the conical pendulum is the
fact that, because the ball is travelling in a circle, we
know that it is accelerating toward the center of the
circle with an acceleration of magnitude  a = v2/r.  At
the instant shown in Figure (23), the x direction
points toward the center of the circle, thus  a = ax and
we have

 ax = v2/r (35)

The rest of the problem simply consists of solving
Equations 34 and 35 for the speed v of the ball and
using that to calculate the time the ball has to go
around.  The easy way to solve these equations is to
write them in the form

 
Tx = max =

mv2

r
(36a)

 Ty = mg (36b)

Dividing Equation 36a by 36b and using
  Tx TyTx Ty = Tsinθ TcosθTsinθ Tcosθ = tanθ , we get

  Tx

Ty
= tan θ =

mv2

mgr
=

v2

gr

Figure 22
The conical pendulum.

Figure 23
Forces acting on the ball.
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Next use the fact that    tanθ = r/h  to get

  
tan θ =

r
h

=
v2

gr

 
v = r

g
h

(37)

Finally we note that the period is the distance traveled
in one circuit,   2π r , divided by the speed v of the ball

  period
of orbit

=
2πr

v
=

2πr

r g/h

  
period = 2π h

g (38)

The prediction of Equation 38 is easily tested, for
example, by timing  10  rotations of the ball and
dividing the total time by 10.  Note that if the angle θ is
kept small, then the height h of the ball is essentially
equal to the length  of the rope, and we get the formula

  period ≈ 2π
g

(39)

Equation 39 is the famous formula for the period of
what is called the simple pendulum, where the ball
swings back and forth rather than in a circle.  Equation
39 applies to a simple pendulum only if the angle θ is
kept small.  For large angles, Equation 38 is exact for
a conical pendulum, but Equation 39 has to be replaced
by a much more complicated formula for the simple
pendulum.  (We will discuss the analysis of the simple
pendulum in Chapter 11 on rotations and oscillations.)

Note that the formula for the period of a simple
pendulum depends only on the strength g of gravity and
the length  of the pendulum, and not on the mass m or
the amplitude of the swing.  As a result you can
construct a clock using the pendulum as a timing
device, where the period depends only on how long you
make the pendulum.

Exercise 5  Conical Pendulum
Construct a pendulum by dangling a shoe or a boot
from a shoelace.

(a) Verify that for small angles θ, you get the same period
if you swing the shoe in a circle to form a conical
pendulum, or back and forth to form a simple pendulum.

(b) Time 10 swings of your shoe pendulum and verify
Equation 38 or 39.  (You can get more accurate results
using a smaller, more concentrated mass, so that you
can determine the distance  more accurately.)  Try
several values of the shoe string length  to check that
the period is actually proportional to  .

Exercise 6
This is what we like to call a clean desk problem.  Clear
off your desk, leaving only a pencil and a piece of paper.
Then starting from Newton’s second law, derive the
formula for the period of a conical pendulum.

What usually happens when you do such a clean desk
problem is that since you just read the material, you think
you can easily do the analysis without looking at the text.
But if you are human, something will go wrong, you get
stuck somewhere, and may become discouraged.  If
you get stuck, peek at the solution and finish the
problem.  Then a day or so later clean off your desk
again and try to work the problem.  Eventually you
should be able to work the problem without peeking at
the solution, and at that point you know the problem well
and remember it for a long time.

When you are learning a new subject like Newton’s
second law, it is helpful to be fully familiar with at least
one worked out example for each main topic.  In that
way when you encounter that topic again in your work,
in a lecture, or on an exam, you can draw on that
example to remember what the law is and how it is
applied.

At various points in this course, we will encounter
problems that serve as excellent examples of a topic in
the course.  The conical pendulum is a good example
because it combines Newton’s second law with the
formula for the acceleration of a particle moving in a
circle; the prediction can easily be tested by experi-
ment, and the result is the famous law for the period of
a pendulum.  When we encounter similarly useful ex-
amples during the course, they will also be presented
as clean desk problems.
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APPENDIX
THE BALL SPRING PROGRAM

! --------- Plotting window
!           (x axis = 1.5 times y axis)
   SET WINDOW -40,140,-10,110

! --------- Draw & label axes
   BOX LINES 0,100,0,100
   PLOT TEXT, AT -3,0 : "0"
   PLOT TEXT, AT -13,96: "y=100"
   PLOT TEXT, AT 101,0 : "x=100"

! ---------- Experimental constants
   LET m = 245
   LET g = 980
   LET K = 5130
   LET So = 35.9
   LET Zx = 50
   LET Zy = 130

! --------- Initial conditions
   LET Rx = 88.2
   LET Ry = 42.8
   LET Vx = (80.2 - 91.1)/(2*.1)
   LET Vy = (24.4 - 63.1)/(2*.1)
   LET T  = 0
   CALL CROSS

! --------- Computer Time Step
   LET dt = .001
   LET i = 0

! --------- Calculational loop
   DO
      LET Rx = Rx + Vx*dt
      LET Ry = Ry + Vy*dt

      LET Sx = Rx - Zx
      LET Sy = Ry - Zy
      LET S  = Sqr(Sx*Sx + Sy*Sy)

      Let Fs = K*(S - So)
      LET Fx = -Fs*Sx/S
      LET Fy = -Fs*Sy/S - m*g

      LET Ax = Fx/m
      LET Ay = Fy/m

      LET Vx = Vx + Ax*dt
      LET Vy = Vy + Ay*dt

      LET T = T + dt
      LET i = i+1

      IF MOD(i,100) = 0 THEN CALL CROSS
      PLOT Rx,Ry

   LOOP UNTIL T > 1.6

! --------- Plot data
   DO
      READ Rx,Ry
      CALL BOX
   LOOP UNTIL END DATA

   DATA 88.2, 42.8
   DATA 80.2, 24.4
   DATA 68.0, 12.0
   DATA 52.9,  8.6
   DATA 37.4, 14.7
   DATA 24.0, 28.8
   DATA 14.2, 47.5
   DATA  9.0, 67.0
   DATA  8.2, 83.9
   DATA 11.1, 95.0
   DATA 16.7, 98.8
   DATA 23.9, 94.1
   DATA 32.2, 81.5
   DATA 41.9, 62.1
   DATA 52.1, 39.9
   DATA 62.2, 19.4

! --------- Subroutine "CROSS" draws
          ! a cross at Rx,Ry.
   SUB CROSS
       PLOT LINES: Rx-2,Ry;  Rx+2,Ry
       PLOT LINES: Rx,Ry-2;  Rx,Ry+2
   END SUB

! --------- Subroutine "BOX" draws
          ! a cross at Rx,Ry.
   SUB BOX
       PLOT LINES: Rx-1,Ry+1;  Rx+1,Ry+1
       PLOT LINES: Rx-1,Ry-1;  Rx+1,Ry-1
       PLOT LINES: Rx-1,Ry+1;  Rx-1,Ry-1
       PLOT LINES: Rx+1,Ry+1;  Rx+1,Ry-1
   END SUB

   END

The new feature is the READ statement at the top of this
column.  Each READ statement reads in the next
values of Rx and Ry from the DATA lines below. We
then call BOX which plots a box centered at Rx,Ry.
The LOOP statement has this plotting continue until
we run out of data. (In Figure 11, we filled in the boxes
with a paint program to make them stand out.)
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Chapter 10
Energy

  – Gmme / r  the gravitational potential energy of the
satellite.  We saw that   Etotal  did not change its value
as the satellite went around its orbit.

It turns out that energy is a much more complex subject
than we might suspect from the discussion of satellite
motion.  There are many forms of energy, such as
electrical energy, heat energy, light energy, nuclear
energy and various forms of potential energy.  Some-
times there is a simple formula for a particular form of
energy, but sometime it may be hard even to figure out
where the energy has gone.  Despite the complexity,
one simple fact remains, if we look hard enough we find
that energy is conserved.

If, in fact, it were not for the conservation of energy, we
would not have invented the concept in the first place.
Energy is a useful concept only because it is conserved.

What we are going to do in this chapter is first take a
more general look at the idea of a conservation law,
and then see how we can use energy conservation to
develop formulas for the various forms of energy we
encounter.  We will see, for example, where the formula

  1 / 2 mv2  for kinetic energy comes from, and we will
show how the formula   – Gmme / r  for gravitational
potential energy reduces to a much simpler formula
when applied to objects falling near the surface of the
earth.

CHAPTER 10 ENERGY

In principle, Newton's laws relating force and accel-
eration can be used to solve any problem in mechanics
involving particles whose size ranges from that of
specks of dust to that of planets.  In practice, many
mechanics problems are too difficult to solve if we try
to follow all the details and analyze all the forces
involved.  For instance   f = ma presumably applies
to the motion of the objects involved in the collision of
two automobiles, but it would be an enormous task to
study the details of the collision by analyzing all the
forces involved.

In a complicated problem, we cannot follow the
motion of all the individual particles; instead we look
for general principles that follow from Newton's laws
and apply these principles to the system of particles as
a whole.  We have already discussed two such general
principles: the laws of conservation of linear and
angular momentum.  We have found that if two cars
traveling on frictionless ice collide and stick together,
we can use the law of conservation of linear momen-
tum to calculate their resulting motion.  We do not
have to know how they hit or any other details of the
collision.

In our discussion of satellite motion, we saw that there
was another quantity, which we called energy, that
was conserved.  Our formula for the total energy of the
satellite was   Etotal = 1 / 2 mv2 – Gmme / r  where

  1 / 2 mv2 was called the kinetic energy and

`
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CONSERVATION OF ENERGY
Because energy comes in different forms, it is more
difficult to state how to compute energy than how to
compute linear momentum.  But, as we shall see, it is
not necessary to state all the formulas for all the
different forms of energy.  If we know the formula for
some forms of energy, we can use the law of conserva-
tion of energy to deduce the other formulas as we need
them.  How a conservation law can be used in this way
is illustrated in the following story, told by Richard
Feynman in The Feynman Lectures on Physics (Vol. I,
Addison-Wesley, Reading, Mass., 1963).

"Imagine a child, perhaps 'Dennis the Menace,' who
has blocks that are absolutely indestructible, and can-
not be divided into pieces.  Each is the same as the
other.  Let us suppose that he has 28 blocks.   His mother
puts him with his 28 blocks into a room at the beginning
of the day.  At the end of the day, being curious, she
counts the blocks very carefully, and discovers a phe-
nomenal law—no matter what he does with the blocks,
there are always 28 remaining!  This continues for a
number of days, until one day there are only 27 blocks,
but a little investigating shows there is one under the
rug—she must look everywhere to be sure that the
number of blocks has not changed.

One day, however, the number appears to change—
there are only 26 blocks.  Careful investigation indi-
cates that the window was open, and upon looking
outside, the other two blocks are found.  Another day
careful count indicates that there are 30 blocks!  This
causes considerable consternation, until it is realized
that Bruce came to visit, bringing his blocks with him,
and he left a few at Dennis' house.  After she had
disposed of the extra blocks, she closes the window,
does not let Bruce in, and then everything is going
along all right, until one time she counts and finds only

25 blocks.  However, there is a box in the room, a toy
box, and the mother goes to open the toy box, but the
boy says, 'No, do not open my toy box,' and screams.
Mother is not allowed to open the toy box.  Being
extremely curious, and somewhat ingenious, she in-
vents a scheme!  She knows that a block weighs 3
ounces, so she weighs the box at a time when she sees
28 blocks, and it weighs 16 ounces.  The next time she
wishes to check, she weighs the box again, subtracts 16
ounces and divides by 3.  She discovers the following:

  number of
blocks seen

+
weight of box – 16 oz

3 oz

= constant

There then appear to be some gradual deviations, but
careful study indicates that the dirty water in the
bathtub is changing its level.  The child is throwing
blocks into the water, and she cannot see them because
it is so dirty, but she can find out how many blocks are
in the water by adding another term to her formula.
Since the original height of the water was 6 inches and
each block raises the water a quarter of an inch, this
new formula would be

  number of
blocks seen

+
weight of box – 16 oz

3 oz

+
height of water – 6 inches

1/4 inch

= constant

(1)

In the gradual increase in the complexity of her world,
she finds a whole series of terms representing ways of
calculating how many blocks are in places where she
is not allowed to look.  As a result of this, she finds a
complex formula, a quantity which has to be com-
puted, which always stays the same in her situation."
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Similarly, we will find a series of terms representing
ways of calculating various forms of energy.  Unlike
the story, where some blocks are actually seen, we
cannot see energy; all of the terms in our equation for
energy must be computed.  But if we have included
enough terms and have not neglected any forms of
energy, the numerical value of all the terms taken
together will not change; that is, we will find that
energy is conserved.

It is not necessary, however, to start with the complete
energy equation.  We will begin with one term.  Then,
as the complexity of our world increases, we will add
more terms to the equation so that energy remains
conserved.

MASS ENERGY
On earth, the greatest supply of useful energy ulti-
mately comes from the sun, mainly as sunlight, which
is a form of radiant energy.  The energy we obtain from
fossil fuel, such>é” coal and wood, and the energy we
get from hydroelectric dams came originally from the
sun.  On a clear day, the sun delivers as much energy to
half a square mile of tropical land as was released by the
first atomic bomb.  In about 1 millionth of a second, the
sun radiates out into space an amount of energy equal
to that used by all of mankind during an entire year.

The sun emits radiant energy at such an enormous
rate that if it burned like a huge lump of coal, it would
last about 5000 years before burning out.  Yet the sun
has been burning at nearly its present rate for over 5
billion years and should continue burning for an-
other 5 billion years.  How the sun could emit all of
this energy was explained in 1905 when Einstein
discovered that mass and energy are related through
the well-known equation

 
E = mc2

(2)

where E is energy, m mass, and c the speed of light.

The sun's source of energy is the tiny fraction of its mass
that is being converted continually to radiant energy
through nuclear reactions.  Similar processes occur
when the hydrogen bomb is exploded.  To indicate the
amount of energy that is in principle available as mass
energy, imagine that the mass of a 5–cent piece (5 gm)
could be converted entirely into electrical energy.  This
electrical energy would be worth several million dol-
lars.  The problem is that we do not have the means
available to convert mass completely into a useful form
of energy.  Even in the nuclear reactions in the sun or
in the atomic or hydrogen bombs, only a few tenths of
1% of the mass is converted to energy.

Since most of the energy in the universe is in the form
of mass energy, we shall begin to develop our equation
for energy with Einstein's formula  E = mc2.  As we
mentioned, we will add terms to this equation as we
discover formulas for other forms of energy.
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Ergs and Joules
Our first step will be to use the Einstein energy
formula to obtain the dimensions of energy.  In the
CGS system of units we have

  
E = m gm × c2 cm2

sec2 = mc2 gm cm2

sec2

The set of dimensions  gm cm2/sec2 is called an erg.

   
1

gm cm2

sec2
= 1 erg CGS units

In the MKS system of units, we have

  E = m kg × c2 m2

sec2 = mc2 kg m2

sec2

where the set of dimensions of  kg m2/sec2 is called
a joule.

  
1

kg m2

sec2
= 1 joule MKS units

It turns out that for many applications the MKS joule is
a far more convenient unit of energy than the CGS erg.
A 100-watt light bulb uses 100 joules of energy per
second, or 1 billion ergs of energy per second.  The erg
is too small a unit of energy for many applications, and
it is primarily for this reason that the MKS system of
units is more often used than the CGS system.  This is
particularly true when dealing with electrical phenom-
ena.

Exercise 1
(a) Use dimensions to determine how many ergs there
are in a joule.  (Check your answer against the statement
that a 100-watt bulb uses 100 joules or  109 ergs of
energy per second.)

(b) As you may have guessed, a 1 watt light bulb uses
1 joule of energy per second.  How many joules of
energy does a 1000 watt bulb or heater use in one hour.
(This amount of energy is called a kilowatt hour
(abbreviated kwh) and costs a home owner about 10
cents when supplied by the local power company.)

(c) If a 5-cent piece (which has a mass of 5 grams) could
be converted entirely to energy, how many kilowatt
hours of energy would it produce?  What would be the
value of this energy at a rate of 10¢ per kilowatt hour?
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KINETIC ENERGY
From the recoil definition of mass (Chapter 6), we
saw that the mass of an object increases with speed,
becoming very large when the speed of the object
approaches the speed of light.  The formula for the
increase in mass with speed was simply

 m =
m0

1 – v2/c2
(6-14)

where  m0 is the mass of the particle at rest (the rest
mass).  When we combine this formula with Einstein's
equation  E = mc2, we get as the equation for the
energy of a moving particle

 
E = mc2 =

m0c2

1 – v2/c2
(3)

According to Equation (3), when a particle is at rest
(v = 0), its energy is given by

  E0 = m0c2 rest energy (4)

This energy  m0c2 is called the rest energy of the
particle.  As a particle begins to move, its mass, and
therefore its energy, increases.  The extra energy
that a particle acquires as a result of its motion is
called kinetic energy.  If  mc2 is the total energy, then
the formula for the particle's kinetic energy is

 kinetic
energy = total

energy – rest
energy

KE = mc2 – m0c2 (5)

Example 1
The muons in the motion picture Time Dilation of the
µ–Meson (Muon) Lifetime moved at a speed of .995c.
By what factor did their mass increase and what is their
kinetic energy?

Solution:  The first step is to calculate  1 – v2/c2 for
the muons.  An easy way to do this is as follows:

 v = .995 c

v
c = .995 = 1 – .005

v2

c2 = 1 – .005 2

= 1 – 2 .005 + .005 2

= 1 – .01 + .000025

We have neglected .000025 compared to .01 be-
cause it is so much smaller.  We now have

  
1 – v2

c2
≈ 1 – 1 – .01 = .01

1 – v2

c2
≈ .01 = .1 = 1

10

(This procedure is discussed in more detail in the
section on approximation formulas in Chapter 1.)

Now that we have  1 – v2/c2 = 1/10  for these
muons, we can calculate their relativistic mass

 m =
m0

1 – v2/c2
=

m0
1/10

= 10m0

Thus the mass of the muons has increased by a factor
of 10.  The total energy of the muons is

 E = mc2 = 10m0 c2 = 10 m0c2

Hence, their total energy is also 10 times their rest
energy.  Their increase in energy, or their kinetic
energy, is

 KE = mc2 – m0 c2 = 10m0 c2 – m0c
2

KE = 9 m0c
2

This kinetic energy  9m0c
2 is the amount of additional

energy that is required to get muons moving at a speed
 v = 0.995c.
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Exercise 2
Assume that an electron is traveling at a speed
v = .99995c.

(a) What is  1 – v2/c2  for this electron?

(b) By what factor has its mass increased over its rest
mass?

(c) By what factor has its total energy increased over its
rest energy?

(d) The rest mass of an electron is
 m0 = 0.911 x 10– 27 gm .  What is its rest energy ( in

ergs)?

(e) What is the total energy (in ergs) of this electron?

(f) What is the kinetic energy of this electron in ergs?

Slowly Moving Particles
In Example 1, where the particle (muon) was mov-
ing at nearly the speed of light, we determined its
increase in mass and its kinetic energy by calculat-
ing  1 – v2/c2 .  However, when a particle is mov-

ing much slower than the speed of light, for instance,
1000 mi/sec or less, there is an easier way to calcu-
late the energy of the object than by evaluating

 1 – v2/c2 directly.
In the section on approximation formulas in Chapter
1, it was shown that when v/c is much less than 1,
then we can use the approximate formula

  1
1 – α

≈ 1 + α
2 (1-25)

to get

  1
1 – v2/c2

≈ 1 + v2

2c2 (6)

The approximate formula  1 + v2/2c2  is much easier
to use than  1/ 1 – v2/c2 .  Moreover, if v/c is a small
number, then the formula is quite accurate, as illus-
trated in Table 1.  It should be noted however that when
v becomes larger than about .1c, the approximation
becomes less accurate.  When we reach v = c, the exact
formula is   1/ 1 – v2/c2 = ∞  but the approximate
formula gives  1 + v2/2c2 = 1.5.  At this point the
approximate formula is no good at all!

v                          valueof exact formula

1
1 – v2/c2

  valueof approximate formula

1 + v2

2c2

.01c 1.000050003 1.000050000

.1c 1.005037 1.005000

.2c 1.0206 1.0200

.3c 1.048 1.045

.5c 1.148 1.125

.7c 1.41 1.25

.9c 2.30 1.40

.99c 7.1 1.49

c ∞ 1.5

Table 1   Numerical check  of the Approximation Formula   1
1 – v2/c2

≈ 1 + v2

2c2
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It is worth noting that, at one time, only the kinetic
energy term  1/2m0v2 in Equation 7 was recognized as
a form of energy.  Before 1905, it was not known that

 m0c2  should be included in the equation for conserva-
tion of energy, because no one had ever observed the
rest mass of an object to change.  The first evidence that
the rest energy had to be included came from the study
of nuclear reactions.  In these reactions enormous
amounts of energy were released, producing a detect-
able change in the nuclear rest masses.

So long as an object is moving at a speed of .1c or less,
the kinetic energy of that object will be far less than its
rest mass energy.  For example, let us compare the
kinetic energy to the rest mass energy of a 10–gm pistol
bullet that travels with a speed of about 300 m/sec.
Using MKS units, we find that the bullet's kinetic
energy (KE) is

  
KE =

1
2

m0v
2

=
1
2

× .01 kg × 300 m/sec
2

= 450 joules

This  is enough to allow a bullet to penetrate a plank.
The rest mass energy  E0 of the bullet is

  E0 = m0c2

= .01 kg 3 × 108 m/sec
2

= 9 × 1014 joules

This is the amount of energy released in a moderate-
sized atomic bomb.

If we use Equation (6), the total energy of a particle
becomes

   E = mc2

= m0c2 1

1 – v2/c2

exact
formula

≈ m0c
2 1 +

v2

2c2
approximate
formula

≈ m0c
2 + m0c

2 v2

2c2

The factor c2 cancels in the second term, and we are
left with the approximate formula

   

E ≈ m0c
2 +

1
2

m0v2

approximateformula
for particlesmoving
at speedsless than
about .1c

(7)

Since Equation (7) contains the approximation made in
Equation (6), it is not valid for particles traveling faster
than about one tenth of the speed of light.  For particles
traveling at nearly the speed of light, we must use

 E = m0c
2/ 1 – v2/c2 .  But for particles traveling as

slowly as a few thousand miles an hour or less, Equa-
tion (6) is so accurate that any error would be difficult
to detect.

For all but the last section of this chapter, we will
confine our discussion to the energy of objects travel-
ing at slow speeds, where Equation (7)  is not only
accurate, but is the simplest equation to use.  When we
look at this equation, we can see that the mass energy

 E = mc2 is now written in two distinct parts  m0c2,
which is the rest mass energy, and  1/2m0v2, which is
the energy of motion or kinetic energy

  
E = m0c2 rest

energy + 1
2 m0v2 kinetic

energy (7a)

Written in this way, our equation for total energy is
beginning to resemble Equation (1), which was used to
determine the number of blocks in Dennis' room.  We
now have two terms representing two different kinds of
energy.
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Exercise 3
For the preceding example of a 10 gram bullet:

a) at 10 cents per kilowatt hour, what is the value of the
bullet's kinetic energy?

b) what is the value of its rest energy?

c) how fast would the bullet be traveling if it had twice
as much kinetic energy?

GRAVITATIONAL
POTENTIAL ENERGY
Let us continue our search for terms to add to our
equation for energy.  Suppose that a ball of mass m is
dropped from a height h above the floor, as shown in
Figure (1).  Immediately before the ball hits the floor,
it has a rest energy  m0c2, and a kinetic energy  1 21 2m0v2.
Immediately before the ball was dropped, however, it
had the same rest energy  m0c2 but no kinetic energy.
Where did the kinetic energy that it possessed just
before it hit the floor come from?

If we were observant, we might have noted that some
effort was needed to lift the ball from the floor to a
height  h.  As the ball was lifted a new kind of energy
was being stored.  This new form of energy, which was
released when the ball was dropped, is called gravita-
tional potential energy.  When it is included, our
equation for energy becomes

 
Etotal = m0c2 + 1

2
m0v2 +

gravitational
potential
energy

(8)

To find the formula for the gravitational potential
energy, we will assume that energy is conserved and
that the total energy of the ball, immediately before it
is released, is equal to the total energy of the ball
immediately before it hits the ground.

When a ball is dropped from a height h, it accelerates
downward with a constant acceleration g until it hits the
floor.  Thus we can use the constant acceleration
formulas (see Appendix 1 in Chapter 4.)

 
s = vit +

1
2

at2

vf = vi + at

with  vi = 0, a = g, and s = h we get

  h = 1
2

gt2 (12)

 vf = gt (13)

h

at rest kinetic energy = 0

v

m

m kinetic energy  =       mv 1
2

2

Figure 1
Falling Weight.  When a weight is dropped
it gains kinetic energy.  This kinetic energy
comes from the energy we stored in the
object when we lifted it up to a height h.



10-9

Substituting  t = vf / g  from Equation 13 into Equa-
tion (12) gives

 
h = 1

2g
vf

2

g2 =
vf

2

2g

1
2 vf

2 = gh (14)

Multiplying Equation 14 through by  m0 gives

 1
2

m0vf
2 = m0gh (15)

Suppose that we use  m0gh as the formula for gravita-
tional potential energy.  (The greater h, the higher we
have lifted the ball, the more potential energy we have
stored in it.)

  

m0gh =
formula for
gravitational
potential energy

near the
surface of
the earth

(16)

Before the ball is released, its total energy is in the form
of rest energy and gravitational potential energy

  Etotal
before
release = m0c2 + m0gh (17)

Just before the ball hits the floor, where it has kinetic
energy but no potential energy (since h = 0), the total
energy is

  
Etotal

just before
hitting floor = m0c2 + 1

2m0vf
2 (18)

At first, Equations 17 and 18 for total energy look
different; but since  1/2m0vf

2 = m0gh (Equation 15),
they give the same numerical value for the ball's total
energy.  Thus, we conclude that we have chosen the
correct formula for calculating gravitational potential
energy.

Exercise 4
Call  v2  the speed of the ball when it has fallen halfway
to the floor.

(a) Explain why the ball's total energy, when it has fallen
halfway to the floor, is

  Etotal
halfway
down = m0c2 + 1

2
m0v2

2 + m0g
h
2

(b) Calculate  v2   (just as we calculated  vf ) and show
that the total energy of the ball when halfway down is the
same as when it was released, or just before it hit the
floor.

Exercise 5
Show that the formula for gravitational potential energy
has the dimensions of joules (in the MKS system) and
ergs (in the CGS system).

Exercise 6

What is the gravitational potential energy (in joules and
ergs) of a 100–gm ball at a height of 2 meters above the
floor?  (Measure h starting from the floor.)

What happens to the energy after the ball has hit the
floor and is lying at rest?  At this point, it no longer has
kinetic energy or gravitational potential energy.  Now
what should we add to our equation to maintain conser-
vation of energy?  In this case, we have to look "under
the rug," in the "dirty water," and "out the window" all
at once.  When the ball hit the floor, we heard a thump;
thus, some of the ball's energy has been dissipated as
sound energy.  We find that there is a dent in the floor;
hence we know that some of the energy has gone into
rearranging the molecules in that part of the floor.  Also,
because the bottom of the ball and the floor underneath
became slightly warmer after the ball hit the floor, we
conclude that some of the energy was converted into
heat energy.  (In some collisions, such as when a
mining pick strikes a stone, we see what looks like a
spark, which shows us that some of the kinetic energy
has been changed into radiant energy, or light.)
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Notation
Since our discussion for the remainder of this chapter
will deal with objects moving at speeds much less than
the speed of light, objects whose mass m is very nearly
equal to the rest mass  m0 , we will stop writing the
subscript 0 for the rest mass.  With this notation, our
formulas for kinetic energy and gravitational potential
energy are simply  1/2mv2 and mgh.  Only when we
discuss objects like atomic particles whose speeds can
become relativistic, will we be careful to distinguish
the rest mass  m0  from the total mass m.

Example 2
Consider a simple pendulum consisting of a ball swing-
ing on the end of a string, as shown in Figure (2).  When
the ball is released from a height h it has a potential
energy  m0gh.  As the ball swings down toward the
bottom, h decreases and the ball loses potential energy
but gains kinetic energy.  At the bottom the original
potential energy  mgh  has been entirely converted into
kinetic energy  1/2mv2.  Then the ball climbs again,
gaining potential energy but losing kinetic energy.

After the ball hits the floor, the formula for total energy
becomes as complicated as

 
Etotal = m0c2 +

1
2

m0v2 + m0gh

+ sound energy

+ energy to cause a dent

+ heat energy + light energy

(19)

Because energy can appear in so many forms that are
often difficult to detect, it was not until many years after
Newton  that conservation of energy was established as
a general law.  The law of conservation of energy is
used to solve only those problems where very little
energy "escapes" in a form that is difficult to detect.  In
a complicated collision problem we can calculate only
how much energy is "lost," that is, changed to other
forms of energy.

On an atomic scale, however, we do not have to think
of energy as being "lost" because the various forms of
energy are more easily detected.  For example, we will
see in Chapter 17  that the heat energy and sound energy
are primarily the kinetic energy of the atoms and
molecules; thus, these do not appear as separate forms
of energy.  It is on this small scale that the law of
conservation of energy may be most accurately veri-
fied.

On the other hand, if we can neglect the effects of
friction and air resistance, the law of conservation of
energy can be used to solve mechanics problems that
would otherwise be difficult to solve.  We will  illustrate
this with two examples in which gravitational potential
energy  m0gh is converted into kinetic energy  1/2m0v

2

and vice versa.

pivot

A (at rest)

B

h

C

Figure 2
Application of conservation of energy
to pendulum motion.  The speed at B
can be found by equating the kinetic
energy at B    1/2mv2  to the potential
energy lost in going from A to B (mgh).
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Finally, at position C, the ball has swung back up to a
height h and all the kinetic energy has been changed to
potential energy.  The ball stops momentarily at posi-
tion C, and the swing is reversed.  Eventually, however,
the pivot becomes warm and air currents are set up by
the swinging pendulum; thus, the pendulum itself
gradually loses energy and finally comes to rest.

As long as we can neglect air resistance and friction in
the pivot we can use the conservation of energy equa-
tion to calculate the speed of the ball at position B.
Before the ball is released

 Etotal A = m0c
2 + mgh

At position B, where h = 0

 Etotal B = m0c
2 + 1

2
mvB

2

If energy is conserved

 Etotal A = Etotal B

m0c2 + mgh = m0c2 + 1
2

mv2

Note that since  m0c
2  did not change, it does not enter

into this calculation.  Here we could apply the conser-
vation of energy equation without considering the rest
energy.  We now have

 mgh = 1
2mvB

2

vB
2 = 2gh

vB = 2gh

Example 3
It should be noted that we are able to calculate the
speed of the ball in the preceding example without an
analysis of the forces involved.  An even more
striking example of conservation of energy that would
be nearly impossible to analyze in terms of forces is
that of a skier traveling down a very icy hill.  If he is
not an experienced skier, he may not know how to
dissipate some of his kinetic energy as heat and sound
by scraping the edges of his skis against the ice.  If he
is not able to dissipate energy, then no matter how he
turns, no matter how twisted a path he takes, when he
reaches bottom, all his potential energy  m0gh will
have been converted to kinetic energy  1/2m0v2, in
which case his speed at the bottom of the hill will be

 2gh .  To see why an inexperienced skier should
not try icy hills, consider that if the hill has a 500–ft
rise, his speed at the bottom will be 179 ft/sec or 122
mi/hr.  This result is computed not from the details of
the skier's path, but from the knowledge that he was
not able to dissipate energy.  As we mentioned at the
beginning of the chapter, the conservation of energy
is one of the general principles of mechanics that can
be applied successfully without knowing all the de-
tails involved in the physical situation.

Exercise 7
A car coasts along a road that leads from the top of a
300–ft–high hill, down through a valley, and up over a
200 ft high hill.  Assume that the car does not dissipate
energy through friction and air resistance.

(a) If the car starts at rest from atop the higher hill, how
fast will it be traveling when it reaches the top of the
lower hill   (g = 32 ft/sec2) ?

(b) If the car is initially moving at 80 ft/sec (55 mi/hr)
when it starts coasting at the top of the higher hill, how
fast will the car be moving when it reaches the top of
the lower hill?
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WORK
Let us take another look at the example where we
dropped a ball of mass m from a height h above the floor
as shown in Figure (3).  At the height h, the ball had a
gravitational potential energy mgh.  Just before hitting
the floor, all this gravitational potential energy had
been converted to kinetic energy 1/2 mv2.  We know
that the ball speeded up, accelerated, because gravity
was exerting a downward force mg on the ball as it fell.

There appears to be a coincidence in this example.
Gravity pulls down on the ball with a force of magni-
tude mg, the ball falls a distance h, and the ball gains a
kinetic energy equal to   (mg)×h.  In this example the
energy that gravity supplies to the ball by pulling down
on it is equal to the gravitational force (mg) times the
distance h over which the force acted.  Is this a
coincidence, or does this example provide a clue as to
the way in which forces supply energy?

In this case, where we have a constant force mg, and the
ball moves in the direction of the force for a distance h,
the increase in energy is the force times the distance.

In more general examples, however, the situation can
be more complex.  If the object is not moving in the
direction of the force, then only the component of the
force in the direction of motion adds energy to the
object.  And if the force is not constant, we have to break
the problem into many small steps, and calculate the
energy gained in each step.  We shall see that calculus
provides powerful techniques to handle these situa-
tions.

We will begin the discussion with the introduction of a
new term which we will call work.  In some ways this
is an unfortunate choice of a word, for everyone has
their own idea of what “work” is, and it seldom
coincides with the physicist's definition.  In the physicist's
definition, a force does work on an object when it adds
energy to the object.  More explicitly, the work a force
does is equal to the energy that the force supplies.  In the
case of the falling ball the gravitational force supplied
an amount of energy mgh, therefore that is the work that
the gravitational force did as the ball fell.

 work done by the
force of gravity
as the ball fell

= mgh (20)

From Equation (20), we see that for the case where we
have a constant force, and the object moves in the
direction of the force, the work done is equal to the
magnitude of the force times the distance moved.

   

Work = Force × Distance

If the force is
constant and the
distance is in
the direction of
the force

(21)

Exercise 8

Show that force times distance has the same dimen-
sions as energy.  (Get the dimensions of energy from

 E =mc2 .)

As the first complication, or correction to our definition
of work, suppose that the force is not in the same
direction as the motion.  Suppose, for example, a
hockey puck slides for a distance S along frictionless
ice as shown in Figure (4).  During this motion a
gravitational force mg is acting and the puck moves a
distance S.  But the puck coasts along at constant speed;
it does not gain any energy at all.  In this case the
gravitational force does no work.

Figure 3
A ball, subject to a gravitational force mg,
falling a distance h, gains a kinetic energy mgh.

Figure 4
The force of gravity does no work
on the sliding hockey puck.

hmg

mg

v
S
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When we throw the ball up, the angle between the
downward force and upward motion is θ  = 180°,
cos θ = – 1, and we get

W  =  F ⋅ S  =  F S  cos θ
      = mgh(–1)  =  –mgh

We now predict that gravity is taking energy from the
ball, which is also correct.

Finally, in the case of a hockey puck, the angle θ
between the  – y directed force and the x directed
motion is 90°.  We have  cos θ  = 0, so that  F ⋅ S  =  0
and the gravitational force does no work.  Again the
formula W  =  F ⋅ S works.

Exercise 9
A frictionless plane is inclined at an angle θ  as shown
in Figure (5).  A hockey puck initially at a height h above
the ground, slides down the plane.  When the puck gets
to the bottom, it has moved a distance    S =h / cosθ  as
shown. (This comes from h = S cosθ )

a) Verify the formula S = h/cosθ   for the two cases θ = 0
and θ  = 90°.  I.e., what are the values for    h / cosθ  for
these two cases, and are the answers correct?

b) Show that the work   W = Fg ⋅S, done by the gravi-
tational force as the puck slides down the plane, is
mgh no matter what the angle θ  is.

c) Explain the result of part (b) from the point of view of
conservation of energy.

The problem with the hockey puck example is that the
gravitational force is down and the motion is sideways.
In this case the – y directed gravitational force has no
component along the x directed motion of the puck.  In
order for the puck to gain energy, it must accelerate in
the x direction, but there is no x component of force to
produce that acceleration.

Now let us consider an example where the force is
acting opposite to the direction of motion.  If we throw
a ball up in the air, the ball starts out with the kinetic
energy 1/2 mv0

2 that we gave it.  As the ball rises,
gravity acts against the motion of the ball and removes
kinetic energy.  When the ball has risen to a height h
given by mgh = 1/2 mv0

2, all the kinetic energy is gone
and the ball stops.  The ball has reached the top of the
trajectory.  This example tells us that when the force is
directed opposite to the direction of motion, the work
is negative—the force removes rather than adds en-
ergy.

The Dot Product
This is where our discussion has lead so far.  We have
a quantity called “work” which is a form of energy.  It
is the energy supplied by a force acting on a moving
object.  Now energy, given by formulas like E = mc2,
is a scalar quantity; it is a number that does not point
anywhere.  But our formula for work = force times
distance involves two vectors, the force F and the
distance S.  What mathematical way can we combine
the two vectors F and S to get a number for the work W?
One possibility, that we discussed back in the chapter
on vectors, is the scalar or dot product.

W  =  F ⋅ S   =  F  S  cos θ (22)

Mathematically the dot product turns the vectors F
and S  into a scalar number W.  Let us see if  W =   F⋅S
is the correct formula for work.  If F  and S  are in the
same direction,  θ  = 0°, cos θ  = 1, and we get

  W = F⋅S = F S cos θ = F S

Applied to the case of a falling ball,  F = mg ,   S = h
and we get W = mgh which is correct.

S

F
θ

θ S = h/cosθ

h

Figure 5
Diagram for Exercise 9.
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Let us consider another example where we store poten-
tial energy by doing work against a force.  Suppose I tie
one end of a spring to a post and pull on the other end
as shown in Figure (6).  As I stretch the spring, I am
exerting a force Fme and moving the end of the spring
in the same direction.  Therefore I am doing positive
work on the spring, and this energy is stored in what we
can call the “elastic potential energy” of the stretched
spring.  (We know that a stretched spring has some
form of potential energy, for a stretched spring can be
used to launch a ball up into the air.)

Non-Constant Forces
Our example above, of storing energy in a spring by
stretching it, introduces a new complication.  We
cannot calculate the work I do Wme  in stretching the
spring by writing Wme =  Fme ⋅ S .  The problem is that,
the farther I stretch the spring, the harder it pulls back
(Hooke’s law).  If I slowly pull the spring out, I have to
apply an increasingly stronger force.  If we try to use the
formula Wme =  Fme ⋅ S , the problem is what value of
Fme to use.  Do we use the weak Fme at the beginning
of the pull, the strong one at the end, or some average
value.

We could use an average value, but there is a more
general way to calculate the work I do.  Suppose I wish
to pull the spring from an initial position xi to a final
position xf.  Imagine that I break this span from xi to xf
into a bunch of small intervals of width   ∆x , ending at
points labeled x0, x1, ... xn as shown in Figure (7).
During each small interval the spring force does not
change by much, and I can stretch the spring through
that interval by exerting a force equal to the strength of

Work and Potential Energy
In the discussion of energy, physicists tend to use a lot
of words like work, potential energy, kinetic energy,
etc.  What we are doing is building a conceptual picture
to help us organize a number of physical phenomena
and related mathematical equations.  You will find that
when you see this picture, are familiar with the “jar-
gon”, these concepts become easy to use and powerful
in their applications.  Much of this chapter is to intro-
duce the jargon and develop the picture.

The ideas of work and potential energy are closely
related and play critical roles in the picture of energy.
Let us discuss some examples simply from the point of
view of getting used to the jargon.

Suppose I pick a ball of mass m off the floor and slowly
lift it up to a height h.  While lifting the ball, I have to
just barely overcome the downward gravitational force
mg.  Therefore I exert an upward directed force of
magnitude mg, and I do this for a distance h.  Since my
upward force and the upward displacement are in the
same direction, the work I do, call it  Wme, is my force
mg times the distance h, or  Wme  =  mgh.  Using the
ideas of potential energy discussed earlier, we can say
that all the energy Wme  =  mgh that I supplied lifting the
ball went into gravitational potential energy mgh.

While I was lifting the ball, gravity was pulling down.
The downward gravitational force and the upward
displacement were in opposite directions and therefore
the work done by the gravitational force was negative.
While we are storing gravitational potential energy,
gravity does negative work.  When we let go of the ball,
gravity releases potential energy by doing positive
work.

Fme

Figure 6
Doing work on a spring.
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the spring force at the end of the interval.  For example
in stretching the spring from position x0 to x1, I apply
a force of magnitude Fs(x1) for a distance   ∆x  and
therefore do an amount of work

(∆Wme)1  =  Fs(x1)∆x

To get out to position x2, I increase my force to Fs(x2)
and apply that force over another interval   ∆x  to do an
amount of work

(∆Wme)2  =  Fs(x2)∆x

If I keep repeating this process until I reach the final
position xf, the total amount of work I have done is

   (Wme)total = (∆Wme)1 + (∆Wme)2 + ...

+ (∆Wme)n

= Fs(x1)∆x + Fs(x2)∆x + ...

+ Fs(xn)∆x

= Fs(xi)∆x∑
i=1

n

(23)

In Equation 23, we still have an approximate calcula-
tion as long as the intervals   ∆x  are of finite size.  We
get an exact calculation of the work I do if we take the
limit as   ∆x  goes to zero, and the number of intervals
goes to infinity.  In that limit, the right side of Equation

23 becomes the definite integral of Fs(x) from the
initial position  x i  to the final position  x f  :

 

( Wme) total = – Fs(x)dx

x i

x f

(24)

The statement of the work we did, Equation 24, can be
written more formally by noting that the spring force
Fs(x) is actually a vector which points opposite to the
direction I pulled the spring.  In addition, we should
think of each   ∆x or dx as a small vector displacement

  ∆x or  dx in the direction I pulled.  Since my force was
directed opposite to Fs, the work I did during each
interval  dx  can be written as the dot product

  dWme = Fme⋅dx = – Fs⋅dx

and the formula for the total work I did becomes

  

( Wme) total = – Fs⋅dx

xi

xf

(25)

Equation 25 is more general but a bit clumsier to use
than 24.  To use Equation 25, we would first note that
I was pulling along the x axis, and thus  dx = dx .  Then
I would note that the spring force was opposite to the
direction I was pulling, so that    – Fs(x)⋅dx  =   +Fs(x)dx

x0 x1 x2 xn

xfxi

∆x2∆x1

Figure 7
I can stretch the spring through a series of
small intervals of length ∆x.  In each interval I
apply a constant force that is just strong enough
to get the spring to the end of the interval.
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where Fs(x) is the formula for the strength of the spring
force.  That gets me back to Equation (24) and the
problem of evaluating the definite integral.

Potential Energy Stored in a Spring
Springs are useful in physics demonstrations and prob-
lems because of the simple force law (Hooke’s law)
which is quite accurately obeyed by real springs.  In our
study of the motion of a ball on the end of a spring in
Chapter 9, we saw that the formula for the strength of
the spring force was

Fs  =  K(S – S0) (9–6)

where S is the length of the spring and S0 the unstretched
length (the length at which Fs goes to zero in
Figure 9–4).

We can simplify the spring force formula, get rid of the
S0, by considering a situation where an object is held in
an equilibrium position by spring forces.  Suppose for
example we have a cart on an air track with springs

connecting the cart to each end of the track as shown in
Figure (8).  Mark the center of the cart with an arrow,
and choose a coordinate system where x = 0 is at the
equilibrium position as shown in Figure (8a).

With this setup, the spring force is always a restoring
force that is pushing the cart back  to the equilibrium
position x = 0.  If we give the cart a positive displace-
ment as in Figure (8b), we get a left directed or negative
spring force.  A negative displacement shown in (8c)
produces a right directed or positive spring force.  And
to a high degree of accuracy, the strength of the spring
force is proportional to the magnitude of the displace-
ment from equilibrium.

All of these results can be described by the formula

 
Fs(x) = –Kx (26)

where the minus sign tells us that a positive displace-
ment x produces a negative directed force and vice
versa.  There is no S0 or  x0 in Equation 26 because we
chose x = 0 to be the equilibrium position where Fs = 0.
Equation 26 is what one usually finds as a statement of
Hooke’s law, and K is called the spring constant.

Equation 26 allows us to easily calculate the potential
energy stored in the springs.  If I start with the cart at rest
at the equilibrium position as shown in Figure (8a), and
pull the cart to the right a distance xf, the work I do is

 
Wme = Fme dx

x=0

x=xf

= (–Fs) dx
x=0

x=xf

= Kx dx
x=0

x=xf

(27)

where I have to exert a force  Fme = –Fs to stretch the
spring.

Fs

Fs

x = 0 equilibrium

x

x

(a)

(b)

(c)

Figure 8
The spring force  Fs is always opposite to the
displacement x.  If the spring is displaced
right,  Fs points left, and vice versa.
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 In Equation 27, the constant K can come outside the
integral, we are left with the integral of xdx which is
x2/2, and we get

 

Wme = K x dx
x= 0

x=xf

= K
x2

2
0

xf

= K
x f

2

2

Noting that all the work I do is stored as “elastic
potential energy of the spring”, we get the formula

 

Spring potential energy = K
x2

2
(28)

In Equation 28, we replaced xf by x since the formula
applies to any displacement xf I choose.

Exercise 10

If you pull the cart of Figure (8) back a distance xf from
the equilibrium position and let go, all the potential
energy you stored in the cart will be converted to kinetic
energy when the cart crosses the equilibrium position x
= 0.  Use this example of conservation of energy to
calculate the speed v of the cart when it crosses x = 0.
(Assume that you release the cart from rest.)

Exercise 10, which you should have done by now,
illustrates one of the main reasons for bothering to
calculate potential energy.  It is much easier to predict
the speed of the ball using energy conservation than it
is using Newton’s second law.  We can immediately
find the speed of the ball by equating the kinetic energy
at x = 0 to the potential energy at  x = xf  where we
released the cart.  To make the same prediction using
Newton’s second law, we would have to solve a
differential equation and do a lot more calculation.

Exercise 11

With a little bit of cleverness, we can use energy
conservation to predict the speed of the cart at any point
along the air track.  Suppose you release the cart from
rest at a distance xf , and want to know the cart’s speed
at, say,  xf/2.  First calculate how much potential energy
the cart loses in going from xf  to   xf/2, and then equate
that to the kinetic energy  1/2mv2  that the cart has
gained at  xf/2.
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WORK ENERGY THEOREM
The reason that it is easier to apply energy conserva-
tion than Newton’s second law is that when we have
a formula for potential energy, we have already done
much of the calculation.  We can illustrate this by
deriving what is called the “Work Energy Theorem”
where we use Newton’s second law to derive a
relation between work and kinetic energy.  We will
first derive the theorem for one dimensional motion,
and then see that it is easily extended to motion in
three dimensions.

Suppose a particle is moving along the x axis as shown
in Figure (9).  Let a force Fx(x) be acting on the particle.
Then by Newton’s second law

 
Fx(x) = max(x) = m

dvx(x)

dt
(29)

Multiplying by dx and integrating to calculate the work
done by the force Fx, we get

 

Fx(x)dx
i

f

= m
dvx(x)

dt
dx

i

f

(30)

In Equation (30), we are integrating from some initial
position  x i  where the object has a speed vxi , to a
position  x f  where the speed is vxf.

The next step is a standard calculus trick that you may
or may not remember.  We will first move things
around a bit in the integral on the right side of Equation
30:

 

m
dvx

dt
dx

i

f

= m dvx

i

f
dx
dt

(31)

Next note that  dx/dt  = vx,  the x component of the
velocity of the particle.  Thus the integral becomes

 

m dvx

i

f
dx
dt

= m vxdvx

vi

vf

(32)

After this transformation, we can do the integral be-
cause everything is now expressed in terms of the one
variable vx.  Using the fact that the integral of vxdvx is
vx2/2, we get

 

m vxdvx

vi

vf

= m
vx

2

2 vi

vf

=
1
2

mvfx
2 –

1
2

mvix
2

(33)

Using Equations (31) through (33) in Equation (30)
gives

 

Fx(x)dx

xi

xf

=
1
2

mvfx
2 –

1
2

mvix
2

(34)

The left side of Equation 34 is the work done by the
force Fx as the particle moves from position xi to
position xf.  The right side is the change in the kinetic
energy.  Equation 34 tells us that the work done by the
force Fx equals the change in the particle’s kinetic
energy.  This is the basic idea of the work energy
theorem.

F (x)x
v

x
Figure 9
An x directed force acting on a
particle moving in the x direction.
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To derive the three dimensional form of Equation 34,
start with Newton’s second law in vector form

F  =  ma (35)

Take the dot product of Equation 35 with dx and
integrate from i to f to get

  
F ⋅dx

i

f

= ma ⋅dx

i

f

(36)

Writing

  a ⋅dx = a xdx + a ydy + a zdz (37)

we get

  

F ⋅dx

i

f

= m
dvx

dt
dx +

dvy

dt
dy +

dvz

dt
dz

i

f

(38)

Following the same steps we used to get from Equation
31 to 33, we get

  
F ⋅dx

i

f

=
1
2

mvfx
2 –

1
2

mvix
2

                
+  1

2
mvfy

2  – 1
2

mviy
2

                +  1
2

mvfz
2  – 1

2
mviz

2 (39)

Finally noting that by the Pythagorean theorem

vi
2  =  vix

2  + viy
2  + viz

2  

vf
2  =  vfx

2  + vfy
2  + vfz

2 (40)

we get, using (40) in (39)

  

F ⋅dx

i

f

=
1
2

mvf
2 –

1
2

mvi
2

(41)

which is the three dimensional form of the work energy
theorem.

Several Forces
Suppose several forces F1, F2, ...  are acting on the
particle as the particle moves from position i to position
f.   Then the vector F in Equations 35 through 41 is the
total force Ftot which is the vector sum of the individual
forces:

F  =  Ftot  =  F1 + F2 + . . . (42)

Our formula for the work done by these forces becomes

  
F ⋅dx

i

f

= (F1 + F2 + ...) ⋅dx
i

f

                

  
= F1 ⋅dx

i

f

+ F2 ⋅dx

i

f

+ ... (43)

and we see that the work done by several forces is just
the numerical sum of the work done by each force
acting on the object.  Equation 41 now has the interpre-
tation that  the total work done by all the forces acting
on a particle is equal to the change in the kinetic
energy of the particle.
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Conservation of Energy
To see how the work energy theorem leads to the idea
of conservation of energy, suppose we have a particle
subject to one force, like the spring force Fs acting on
an air cart as shown in Figure (8).  If the cart moves from
position i to position f, then the work energy theorem,
Equation 41 gives

  
F ⋅dx

i

f

=
1
2

mvf
2 –

1
2

mvi
2 (44)

In our analysis of the spring potential energy, we saw
that if I slowly moved the cart from position i to position
f, I had to exert a force Fme that just overcame the spring
force Fs, i.e., Fme = –Fs.  When I moved the cart
slowly, the work I did went into changing the potential
energy of the cart.  Thus the formula for the change in
the cart’s potential energy is

  change in the
potential energy of
the cart when the
cart moves from
position i to position f

= F ⋅dx

i

f

= – Fs ⋅dx

i

f
(45)

Equation 45 is essentially equivalent to Equation 25
which we derived in our discussion of spring forces.

Spring forces have the property that the energy stored
in the spring depends only on the length of the spring,
and not on how the spring was stretched.  This means
that the change in the spring’s potential energy does not
depend upon whether I moved the cart, or I let go and
the spring moves the cart.  We should remove Fme from
Equation 45 and simply express the spring potential
energy in terms of the spring force

  
change in spring
potential energy

= – Fs ⋅dx

i

f

(46)

Equation 46 says that the change in potential energy is
minus the work done by the force on the object as the
object moves from i to f.  There is a minus sign because,
if the force does positive work, potential energy is
released or decreases.  We will see that Equation 46 is
a fairly general relationship between a force and it’s
associated potential energy.

We are now ready to convert the work energy theorem
into a statement of conservation of energy.  Rewrite
Equation 44 with the work term on the right hand side
and we get

  
0 = – Fs ⋅dx

i

f

+
1
2

mvf
2 –

1
2

mvi
2 (47)

The term in the first curly brackets is the change in the
particle’s potential energy, the second term is the
change in the particle’s kinetic energy.  Equation 47
says that the sum of these two changes is zero

0  =  change in
potential energy

 + change in
kinetic energy

(47a)

If we define the total energy of the particle as the sum
of the particle’s potential energy plus its kinetic energy,
then the change in the particle’s total energy in moving
from position i to position f is the sum of the two
changes on the right side of Equation 47a.  Equation
47a says that this total change is zero,  or that the total
energy is conserved.
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Conservative and
Non-Conservative Forces
We mentioned that the potential energy stored in a
spring depends only on the amount the spring is
stretched, and not on how it was stretched.  This means
that the change in potential energy depends only on the
initial and final lengths of the spring, and not on how we
stretched it.  This implies that the integral

  
– Fs ⋅dx

i

f

has a unique value that does not depend upon how the
particle was moved from  i to f.

Gravitational forces have a similar property.  If I lift an
object from the floor to a height h, the increase in
gravitational potential energy is mgh.  This is true
whether I lift the object straight up, or run around the
room five times while lifting it.  The formula for the
change in gravitational potential energy is

  change in
gravitational

potential energy
= – Fg ⋅dx

i

f

= – Fgydy
0

h

= – – mg dy
0

h

= mgh (48)

Again we have the change in potential energy equal to
minus the work done by the force.

Not all forces, however, work like spring and gravita-
tional forces.  Suppose I grab an eraser and push it
around on the table top for a while.  In this case I am
overcoming the friction force between the table and the
eraser, and we have  Fme = – Ffriction.  The total work
done by me as I move the eraser from an initial position
i to a final position f is

  work I do
while moving

the eraser
= – Fme ⋅dx

i

f

= – Ffriction⋅dx

i

f (49)

There are two problems with this example.  The
integrals in Equation 49 do depend on the path I take.
If I move the eraser around in circles I do a lot more
work than if I move it in a straight line between the two
points.  And when I get to position f, there is no stored
potential energy.  Instead all the energy that I supplied
overcoming friction has probably been dissipated in
the form of heat.

Physicists divide all forces in the world into two
categories.  Those forces like gravity and the spring
force, where the integral

  
F ⋅dx

i

f

depends only on the initial and final positions  i and f,
are called "conservative" forces.  For these forces there
is a potential energy, and the formula for the change in
potential energy is minus the work the force does when
the particle goes from i to f.

All the other forces, the ones for which the work
integral depends upon the path, are called non-conser-
vative forces.  We cannot use the concept of potential
energy for non-conservative forces because the for-
mula for potential energy would not have a unique or
meaningful value.  The non-conservative forces can do
work and change kinetic energy, but as we see in the
case of friction, the work ends up as something else like
heat rather than potential energy.

It is interesting that on an atomic scale, where energy
does not disappear in subtle ways like heat, we almost
always deal with conservative forces and can use the
concept of potential energy.
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GRAVITATIONAL POTENTIAL
ENERGY ON A LARGE SCALE
In our computer analysis of satellite motion, we saw
that the quantity  Etot, given by

 
Etot =

1
2

mv2 –
GMem

r
(50)

was unchanged as the satellite moved around the earth.
As shown in Figure (10), m is the mass of the satellite,
v  its velocity, R its distance from the center of the earth,
and  Me is the mass of the earth.  This was our first non
trivial example of conservation of energy, where
1/2 mv2  is the satellite’s kinetic energy, and –GMem/R
must be the formula for the satellites's gravitational
potential energy.  Our discussion of the last section
suggests that we should be able to obtain this formula
for gravitational potential energy by integrating the
gravitational force F g   =  GMem/r2 from some initial
to some final position.

Here on the surface of the earth, the formula for
gravitational potential energy is mgh.  This simple
result arises from the fact that when we lift an object
inside a room, the strength of the gravitational force mg
acting on it  is essentially constant.  Thus the work I do
lifting a ball a distance h is just the gravitational force
mg times the height h.  Since this work is stored as
potential energy, the formula for gravitational potential
energy is simply mgh.

In the case of satellite motion, however, the strength of
the gravitational force was not constant.  In our first
calculation of satellite motion in Chapter 8, the satellite
started 1.1 earth radii from the center of the earth and
went out as far as r = 5.6 earth radii.  Since the
gravitational force drops off as  1 r21 r2, the gravitational
force was more than 25 times weaker when the satellite
was far away, than when it was launched.

Zero of Potential Energy
Another difference is that the formula mgh for a ball in
the room measures changes in gravitational potential
energy starting from the floor where h = 0.  In a rather
arbitrary way,we have defined the gravitational poten-
tial energy to be zero at the floor.  This is a convenient
choice for people working in this room, but people
working upstairs or downstairs would naturally choose
their own floors rather than our floor as the zero of
gravitational potential energy for objects they were
studying.

Since conservation of energy deals only with changes
in energy, it does not make any difference where you
choose your zero of potential energy.  A different
choice simply adds a constant to the formula for total
energy, and an unchanging or constant amount of
energy cannot be detected.  The most famous example
of this was the fact that a particle’s rest energy m

0
c2 was

unknown until Einstein introduced the special theory
of relativity, and undetected until we saw changes in
rest energy caused by nuclear reactions.  In the case of
the gravitational potential energy of a ball, if we use the
floor downstairs as the zero of gravitational potential
energy, we add the constant term  (mg)hfloor to all our
formulas for  Etot 

(where h floor is the distance between
floors in this building).  This constant term has no
detectable effect.

In finding a formula for gravitational potential energy
of satellites, planets, stars, etc., we should select a
convenient floor or zero of potential energy.  For the
motion of a satellite around the earth, we could choose
gravitational potential energy to be zero at the earth’s
surface.  Then the satellite’s potential energy would be
positive when its distance r from the center of the earth
is greater than the earth radius re , and negative should
r become less than re .  Such a choice would be
reasonable if we were only going to study earth satel-
lites, but the motion of a satellite about the earth is very
closely related to the motion of the planets about the sun
and the motion of moons about other planets.  Choos-
ing r = re  as the distance at which gravitational poten-
tial energy is zero is neither a general or particularly
convenient choice.

Figure 10
Earth satellite.

v
m

r

Me
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In describing the interaction between particles, for
example an electron and a proton in a hydrogen atom,
the earth and a satellite, the sun and its planets, or the
stars in a galaxy, the convenient choice for the zero of
potential energy is where the particles are so far apart
that they do not interact.  If the earth and a rock are a
hundred light years apart, there is almost no gravita-
tional force between them, and it is reasonable that they
do not have any gravitational potential energy either.

Now suppose that the earth and the rock are the only
things in the universe.  Even at a hundred light years
there is still some gravitational attraction, so that the
rock will begin to fall toward the earth.  As the rock gets
closer to the earth it will pick up speed and thus gain
kinetic energy.  It was the gravitational force of attrac-
tion that caused this increase in speed, therefore there
must be a conversion of gravitational potential energy
into kinetic energy.

This gives rise to a problem.  The rock starts with zero
gravitational potential energy when it is very far away.
As the rock approaches the earth, gravitational poten-
tial energy is converted into kinetic energy.  How can
we convert gravitational potential energy into kinetic
energy if we started with zero potential energy?

Keeping track of energy is very much a bookkeeping
scheme, like keeping track of the balance in your bank
account.  Suppose you begin the month with a balance
of zero dollars, and start spending money by writing
checks.  If you have a trusting bank, this works because
your bank balance simply becomes negative.

In much the same way, the rock falling toward the earth
started with zero gravitational potential energy.  As the
rock picked up speed falling toward the earth, it gained
kinetic energy at the expense of potential energy.  Since
it started with zero potential energy, and spent some, it
must have a negative potential energy balance.  From
this we see that if we choose gravitational potential
energy between two objects to be zero when the objects
are very far apart, then the potential energy must be
negative when the objects are a smaller distance apart.
When we think of energy conservation as a bookkeep-
ing scheme, then the idea of negative potential energy
is no worse than the idea of a negative checking account
balance.

(In the analogy between potential energy and a check-
ing account, the discovery of rest energy  m0c2 would
be like discovering that you had inherited the bank.  The
checks still work the same way even though your total
assets are vastly different.)

Let us now return to Equation (50) and our formula for
gravitational potential energy of a satellite

 gravitational
potential energy

= –
GMem

r
(50a)

First we see that if the satellite is very far away, that as
r goes to infinity, the potential energy goes to zero.
Thus this formula does give zero potential energy when
the earth and the satellite are so far apart that they no
longer interact.  In addition, the potential energy is
negative, as it must be if the satellite falls in to a distance
r, converting potential energy into kinetic energy.

What we have to do is to show that Equation (50a) is in
fact the correct formula for gravitational potential
energy.  We can do that by calculating the work gravity
does on the satellite as it falls in from r = ∞ to r = r.  This
work, which would show up as the kinetic energy of a
falling satellite, must be the amount of potential energy
spent.  Thus the potential energy balance must be the
negative of this work.  Since the work is the integral of
the gravitational force times the distance, we have
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  gravitational
potential energy
at position R

= – Fg ⋅dr

∞

R

= –
GMm

r2
dr

∞

R

(51)

Equation 51 may look a bit peculiar in the way we have
handled the signs.  We have argued physically that the
gravitational potential energy must be negative, and
we know that it must be equal in magnitude to the
integral of the gravitational force from r = ∞ to r = R.
By noting ahead of time what the sign of the answer
must be, we can do the integral easily without keeping
track of the various minus signs that are involved.  (One
minus sign is in the formula for potential energy,
another is the dot product since Fg  points in and dr  out,
a third in the integral of r– 2, and more come in the
evaluation of the limits.  It is not worth the effort to get
all these signs right when you know from a simple
physical argument that the answer must be negative.)

Carrying out the integral in Equation 51 gives

  
GMem

r2
dr

∞

R

= GMem
dr

r2

∞

R

 
= –

GMem

r ∞

R

= GMem
1
∞ –

1
R

where we used the fact that the integral of   1 r21 r2 is  – 1 r1 r.
Thus we get

  
GMem

r2
dr

∞

R

=
GMem

R

As a result the gravitational potential energy of the
satellite a distance R from the center of the earth is
– GMem/R as given in Equation 50a.
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Gravitational Potential
Energy in a Room
Before we leave our discussion of gravitational poten-
tial energy, we should show that the formula – GMem/r
leads to the formula mgh for the potential energy of a
ball in a room.  To show this, let us use the formula
– GMem/r to calculate the increase in gravitational
potential energy when I lift a ball from the floor, a
distance Re from the center of the earth, up to a  height
h, a distance Re+ h from the center of the earth, as
shown in Figure (11).

We have

 
PEat height h = –

GMem

Re + h

PEat floor = –
GMem

Re

 Increase
in PE

= PEat h – PEat floor

= –
GMem
Re + h

– –
GMem

Re

= GMem
1

Re
– 1

Re + h
(52)

To evaluate the right side of Equation 52, we can write

 1
Re + h

= 1
Re

1
1 + h Re

h Re

h

ReRe +

Figure 11
A height h above the surface of the earth.

Since h/Re is a very small number compared to one, we
can use our small number approximation

  1
1+α

≈ 1 – α if α << 1

to write

  1
1 + h Re

h Re

≈ 1 – h
Re

so that

  1
Re + h

≈ 1
Re

1 – h
Re

= 1
Re

– h
Re

2 (53)

Using Equation 53 in (52) gives

 
Increase

in PE
= – GMem

1
Re

–
1

Re
–

h

Re
2

= GMem
h

Re
2

=
GMe

Re
2

mh

Finally noting that  GMe/ Re
2  =  g, the acceleration

due to gravity at the surface of the earth, we get

 
Increase

in PE
= mgh

which is the expected result.
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The gravitational potential energy of the satellite is
always negative.  Since the satellite is a distance r from
the center of the earth, its potential energy is

 potential
energy = – GMm

r

The total energy of the satellite is

 
Etotal = kinetic

energy +
potential
energy

= 1
2

GMm
r + – GMm

r

Etotal = – 1
2

GMm
r (54)

The total energy of a satellite in a circular orbit is
negative.

Now consider a satellite in an elliptical orbit. In particu-
lar, suppose that the orbit is an extended ellipse, as
shown in Figure (13).  At apogee, the farthest point
from the earth, the satellite is moving very slowly
(explain why by using Kepler's law of equal areas).  For
all practical purposes, the satellite drifts out, stops at
apogee, then falls back toward the earth.  At apogee, the
satellite has almost no kinetic energy; at this point its
total energy is nearly equal to its negative potential
energy

 Etotal = – GMm
rapogee

SATELLITE MOTION
AND TOTAL ENERGY
Consider a satellite moving in a circular orbit about the
earth, as shown in Figure (12).  We want to calculate the
kinetic energy, potential energy, and total energy (sum
of the kinetic and potential energy) for the satellite.  To
find the kinetic energy, we analyze its motion, using
Newton's laws.  The only force acting on the satellite is
the gravitational force  Fg given by

  
Fg = GMm

r2
Fg directed
toward the earth

where we now let M = mass of the earth and m = mass
of the satellite.  Since the satellite is moving at constant
speed v in a circle of radius r, its acceleration is  v2/r
toward the center of the circle

  a = v2

r
a directed
toward the earth

Since a and  Fg are in the same direction, by Newton's
second law

 Fg = m a

GMm
r2 = mv2

r

From this last equation we find that the kinetic energy
 1 21 2mv2 of the satellite is

  1
2

mv2 = 1
2

GMm
r

kinetic
energy

The kinetic energy, as always, is positive.

Figure 12
Satellite in a circular orbit.

M

v

m
Fg

r Figure 13
Satellite in a very eccentric orbit.  By Kepler's
law of equal areas, a satellite with the above
orbit would almost be at rest at apogee.

earthapogee

r  apogee
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Since the total energy is conserved,  Etotal remains
negative throughout the orbit.  If similar satellites are
placed in different orbits, the one that goes out the
farthest (has the greatest  rapogee) is the one with the least
negative total energy, but all the satellites in elliptical
orbits will have a negative total energy.

Suppose an extra powerful rocket is used and a satellite
is launched with a positive total energy.  In such a case,
the positive kinetic energy must always exceed the
negative potential energy. No matter how far out the
satellite goes, headed for apogee, it will always have
some positive kinetic energy to carry it out farther.

Even at enormous distances, where the negative poten-
tial energy  – GMm/r is about zero, some kinetic
energy would still remain, and the satellite would
escape from the earth!

By choosing potential energy to be zero when the
satellite is very far out, the total energy becomes a
meaningful number in itself.  If the total energy is
negative, the satellite will remain bound to the earth; it
does not have sufficient energy to escape. If a satellite
launched with positive total energy, it must escape
since the negative gravitational potential energy is not
sufficiently great to bind the satellite to the earth.  If the
satellite's total energy is zero, it barely escapes.

The orbits of comets about the sun are interesting
examples of orbits of different total energies.  It can be
shown that when a satellite's total energy is positive, its
orbit will be in the shape of a hyperbola, which is an
open-ended curve, as shown in Figure (14a).  In this
orbit  the comet has a positive total energy and never
returns.

If the total energy of the comet is zero, the orbit will be
in the shape of an open curve, called a parabola (Figure
14b).  A comet in this kind of orbit will not return either.

When the comet's total energy is slightly less than zero,
it must return to the sun.  In this situation the comet's
orbit is an ellipse, even though it may be a very
extended ellipse.  A comparison of an extended ellipse
and a parabola is shown in Figure (14c).  From this
figure we can see that near the sun there is not much
difference in the motion of a comet with zero or slightly
negative total energy.  The difference can be seen at a
great distance, where the zero-energy comet continues
to move away from the sun, but the slightly negative-
energy comet returns.

The circular, or nearly circular, motion of the planets is
a limiting case of elliptical motion.  The small circular
orbits (Figure 14d) are occupied by planets that have
large negative total energies.  Thus the planets are
tightly bound to the sun.

Figure 14
a) Hyperbolic orbit of comet with positive total
energy.
b) Parabolic orbit of comet with zero total energy.
c)  Elliptical orbit of comet with slightly negative total
energy.  (Dashed lines show parabolic orbit for
comparison.)
d) Nearly circular orbits of the tightly bound (large
negative energy) planets.

a)

b)

c)

d)

hyperbola

parabola

ellipse

circle
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Example 4   Escape Velocity
At what speed must a shell be fired from a super cannon
in order that it escapes from the earth?  Does it make any
difference at what angle the shell is fired, so long as it
clears all obstructions?  (Neglect air resistance.)

Solution: If the shell is fired at a sufficiently great initial
speed so that its total energy is positive, it will eventu-
ally escape from the earth, regardless of the angle at
which it is fired (so long as it clears obstructions).  To
calculate the minimum muzzle velocity at which the
shell can escape, we will assume that the shell has zero
total energy, so that it barely escapes.  When  Etotal = 0
we have just after the shell is fired

 0 = 1
2

mv2 –
GMem

re

which gives

 v2 =
2GMe

re
(55)

Putting in numbers

  G = 6.67 × 10–8 cm3/gm sec2

Me = 5.98 × 1027 gm

re = 6.38 × 108 cm

we get

  
v2 =

2× 6.67 × 10–8 cm3/gm sec2 5.98 × 1027 gm

6.38 × 108 cm

= 2× 6.67 × 5.98
6.38

10–8 × 1027

108 cm3gm/gm cm sec2

= 1.25 × 1012 cm2/sec2

  vescape = 1.12 × 106 cm/sec

Converting this to more recognizable units, such as mi/
sec, we have

  vescape = 1.12 × 106 cm/sec × 1
1.6 × 105 cm/mi

= 7 mi/sec (11.2 km / sec )

This is also equal to 25,200 mi/hr, which is far faster
than the initial velocity required to put a satellite in an
orbit 100 mi high.

Exercise 12
Calculate the escape velocity required to project a
shell permanently away from the moon

   ( mmoon = 7.35 × 1025 gm, rmoon = 1.74 × 108 cm).

Exercise 13
Once a shell has escaped from the earth, what must its
speed be to allow it to escape from our solar system?

Exercise 14

Find the escape velocities from the earth and the moon,
using the planetary units given on page 8-14.
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BLACK HOLES
A special feature of satellite motion we have just seen
is that we can tell whether or not a satellite can escape
simply by comparing kinetic energy with the gravita-
tional potential energy.  If the satellite's positive kinetic
energy is greater in magnitude than the negative gravi-
tational potential energy, then the satellite escapes,
never to return on its own.  This is true no matter how
or from where the satellite is launched (provided it does
not crash into something.)

So far we have limited our discussion to slowly moving
objects where the approximate formula  1/2mv2  is
adequate to describe kinetic energy.  We got the
formula  1/2mv2  back in Equation 7 by expanding

 E = mc2  to get

   
E = mc2 =

m0c2

1 – v2/c2

≈ m0c2 + 1/2 m0v2

rest energy kinetic energy

(7)

The basic idea is that Einstein's formula  E = mc2  gives
us a precise formula for the sum of the rest energy and
the kinetic energy.  In the special case the particle is
moving slowly, we can use the approximate formula
for  1 – v2/c2  to get the result shown in Equation 7.

For familiar objects like bullets, cars, airplanes, and
rockets, the kinetic energy is  1/2 m0v2 , much, much,
much smaller than the rest energy  m0c2.  The kinetic
energy of a rifle bullet, for example, is enough to allow
the bullet to penetrate a few centimeters into a block of
wood.  The rest energy of the bullet, if converted into
explosive energy, could destroy a forest.  In fact, one
way to tell whether or not the approximate formula

 1/2 m0v2  is reasonably accurate, is to check whether
the kinetic energy is much less than the rest energy.  If
it is, you can use the approximate formula; if not, you
can't.

We now finish our discussion of satellite motion by
going to the opposite extreme, and consider the behav-
ior of particles whose kinetic energy is much greater
than their rest energy.  Such a particle must be moving
at a speed very close to the speed of light.  We
considered such a particle in Exercise 7 of Chapter 6.
There we saw that electrons emerging from the Stanford
linear accelerator travelled at a speed v =
.9999999999875 c, and had a mass 200,000 times
greater than the rest mass.  For such a particle, almost
all the energy is kinetic energy.  In the formula  E = mc2 ,
only one part in 200,000 represents rest energy.

Actually we wish to go one step farther, and discuss
particles with no rest energy, particles that move at the
speed of light.  The obvious example, of course, is the
photon, the particle of light itself.

From one point of view there is not much difference
between an electron travelling at a speed
.9999999999875 c with only 1 part in 200,000 of its
energy in the form of rest energy, and a photon travel-
ing at a speed c and no rest energy.  Taking this point
of view, we will take as the formula for the energy of
a photon  E = mc2 , and assume that this is pure kinetic
energy.

Applying the formula   E = mc2 to a photon implies
that a photon has a mass  mp = Ep/c2 .  We will now
make the assumption that this mass  mphoton is  gravi-
tational mass, and that photons have a gravitational
potential energy  – GMmp/r  like other objects.  Our
assumption, which is slightly in error, is that Newtonian
gravity, which is a non relativistic theory, applies to
particles moving near to or at the speed of light.  It turns
out that Einstein's relativistic theory of gravity gives
almost the same answers, that we are seldom off by
more than a factor of 2 in our predictions.
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Suppose we have a photon a distance r from a star of
mass  Ms .  If the photon has a mass  mp , then the
formula for the total energy of the photon, its kinetic
energy  mpc2 plus its gravitational potential energy

 – GMsmp/r  is

 
Etot = mpc2 –

GMsmp
r

Since  mp  appears in both terms, we can factor it out
(and also take out a factor of  c2 ) to get

 
Etot = mpc2 1 –

GMs

rc2
(56)

Equation 56 applies only when the photon is outside the
star, i.e., when the distance r is greater than the radius
R of the star.

In most cases, the gravitational potential energy is
much less than the kinetic energy of a photon, and
gravity has little effect on the motion of the photon.  For
example, if a photon were grazing the surface of the sun
(if r in Equation 56) were equal to the sun's radius  Rsun)
we would have

 
Etot = mpc2 1 –

GMs

Rsc
2

(57)

Putting in numbers   Ms = 1.99 × 1033gm ,
  Rs = 6.96 × 1010cm  we have

  
GMs

Rsc
2

=
6.67 × 10– 8 cm3

gm sec2 × 1.99 × 1033gm

6.96 × 1010cm × 3 × 1010 2 cm2

sec2

= .00000212

Thus

 Etot = mpc2 1 – .00000212 (58)

From Equation 58 we see that when a photon is as close
as it can get to the surface of the sun, the gravitational
potential energy contributes very little to the total
energy of the photon, only 2 parts in a million.

However, suppose that the a star had the same mass as
the sun but a much, much smaller radius.  If it's radius

 Rs were small enough, the factor  1 – GMs/Rsc
2  in

Equation 58 would become negative, and a photon
grazing the surface of this star would have a negative
total energy.  The photon could not escape from the star.
No photons emerging from the surface of such a star
could escape, and the star would cease to emit light.

Let us see how small the sun would have to be in order
that it could no longer radiate light.  That would happen
when the factor  1 – GMs/Rsc2  is zero, when photons
emerging from the surface of the sun have zero total
energy.  Putting in numbers we get

 GMs
Rsc

2 = 1 (59)

  
Rs =

GMs
c2

=
6.67 × 10– 8 cm3

cm sec2 × 1.99 × 1033cm

3 × 1010 2
cm2/sec2

  Rs = 1.48 × 105cm

= 1.48 kilometer (60)

Equation 60 tells us that an object with as much mass
as the sun, confined to a sphere of radius less than 1.48
kilometers, cannot radiate light.  Although we used the
non relativistic Newtonian gravity in this calculation,
Einstein's relativistic theory of gravity makes the same
prediction.
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In discussions of black holes, one often sees a reference
to the radius of the black hole.  What is usually meant
is the radius given by Equation 59, the radius at which
light can no longer escape if a mass  Ms  is contained
within a sphere of radius  Rs .

Do black holes exist?  Can so much mass be concen-
trated in such a small sphere?  The question has been
difficult to answer because black holes are hard to
observe since they do not emit light.  They have to be
detected indirectly, from the gravitational pull they
exert on neighboring matter.  In the sky there are many
binary star systems, systems in which two stars orbit
about each other.  In some examples we have observed
a bright star orbiting about an invisible companion.
Careful analysis of the orbit of the bright star suggests
that the invisible companion may be a black hole.
There is recent evidence that gigantic black holes, with
the mass of millions of suns, exists at the center of many
galaxies, including our own.

That a black hole cannot radiate light is only one of the
peculiar properties of these objects.  When so much
matter is concentrated in such a small volume of space,
the gravitational force becomes so great that other
forces cannot resist the crushing force of gravity, and as
far as we know, the matter inside the black hole
collapses to a point—a zero sized or very, very small
sized object.  At the present time we do not have a good
theory for what happens to the matter inside a black
hole. (We will have more to say about black holes in
later chapters.)

Exercise 15

Studies of the motion of the stars in our galaxy suggests
that at the center of our galaxy is a large amount of mass
concentrated in a very small volume.  For this problem,
assume that a mass of 100 million suns is concentrated
in the small volume.  If this massive object is in fact a
black hole, what is the radius from which light can no
longer escape?

A Practical System of Units
In the CGS system of units, where we measure distance
in centimeters, mass in grams and time in seconds, the
unit of force is the dyne (  1 dyne = 1 gm cm/sec2 ) and
the unit of energy is the erg (  1 erg = 1 gm cm2/sec2 ).
We have found the CGS system quite convenient for
analyzing strobe photographs with 1 cm grids.  But
when we begin to talk about forces and particularly
energy, the CGS system is often rather inconvenient.  A
force of one dyne is more on the scale of the force
exerted by a fly doing push-ups than the kind of forces
we deal with in the lab.  A baseball pitched by Roger
Clemens has a kinetic energy of over a million ergs and
a 100 watt light bulb uses ten million ergs of electrical
energy per second.  The dyne and particularly the erg
are much too small a unit for most every day situations.

In the MKS system of units, where we measure dis-
tance in meters, mass in kilograms and time in seconds,
the unit of force is the newton and energy the joule.  The
force required to lift a 1 kilogram mass is 9.8 newtons
(mg), and the energy of a Roger Clemens’ pitch is over
10 joules.  When working with practical electrical
phenomena, the use of the MKS system is the only
sensible thing to do.  The unit of power, the watt, is one
joule of energy per second.  Thus a 100 watt light bulb
consumes 100 joules of electrical energy per second.
Volts and amperes are both MKS units, the corre-
sponding CGS units are statvolts and esu, which are
almost never used.

Where CGS units are far superior is  in working with the
basic theory of atoms, as for the case of the Bohr theory
discussed in Chapter 36.  This is because the electric
force law has a much simpler form in CGS units.  What
we will do in the text from this point on is to use MKS
units almost exclusively until we get through the
chapters in electrical theory and applications.  Then we
will go back to the CGS system in most of our discus-
sions of atomic phenomena.



Chapter 11
Systems of Particles

So far in our applications of Newton’s second law, we
have treated objects as individual point particles. In
some problems, this appeared to be a reasonable
approximation.  But in others, like the motion of an
apple falling from a tree, it appeared to be a remark-
able result that the entire earth could be treated as a
point particle located at the center of the earth.  Newton
supposedly invented calculus to show that one could do
this.

In this chapter we will look at ways to handle systems
consisting of many particles. In particular, we will see
that often the concept of center of mass allows us to
treat a group of interacting particles as a single par-
ticle. This can lead to an enormous simplification of the
analysis and a clearer understanding of the result.

CHAPTER 11 SYSTEMS OF
PARTICLES

Diver - Movie
For a student project, Tobias Hays was videotaped
doing a series of dives, a few of which are shown in
this movie. Working frame by frame, you can see
that the diver's center of mass follows a parabolic
trajectory. (It was actually more instructive to use a
parabolic trajectory to locate the diver's center of
mass in various positions.)



11-2  Systems of Particles

CENTER OF MASS
To introduce the concept of center of mass, let us begin
with some examples of mechanical systems that at first
appear fairly complex, but which are greatly simplified
when we focus our attention  on the motion of the center
of mass.

Consider the motion of the earth about the sun.  To
analyze the problem, we could first treat the sun as a
point mass fixed at the origin and apply Newton’s
second law to the earth to determine the earth’s ellipti-
cal orbit.  On closer inspection, however, we note that
the earth is not a point particle but an earth-moon
system.  A more accurate treatment of the problem
requires us to consider two interacting particles both
orbiting the sun.

With a computer program it is not too difficult to set up
the earth-moon-sun system and directly solve for the
motion of the earth and moon.  Because the sun is so
massive, it is still a good approximation to place the sun
at rest at the origin of the coordinate system.  We then
have the earth subject to the gravitational force of the
sun and the moon, and the moon experiencing the
gravitational force of the sun and the earth.  If we
include all of these forces in the program, and start off
with reasonable initial conditions, we will get the
expected result that the earth goes about the sun in an
elliptical orbit with a slight wobble, and the moon goes
around the earth in a nearly circular orbit.  If we plot the
moon’s orbit, exaggerating the orbit radius as in Figure
(1), the orbit looks somewhat peculiar because it repre-

sents circular motion about a moving center.  It looks
like the drawing of epicycles from a text on ancient
Greek astronomy.

For a similar but much more difficult problem, con-
sider the globular cluster shown in Figure (2).  Globular
clusters are fairly common objects in our galaxy.  A
typical globular cluster  is a swarm of several million
stars all attracting each other to form a single gravita-
tionally bound body.  We can think of it as a confined
gas of stars, confined not by a bottle or a rubber balloon
but by the gravitational attraction between the stars.

The globular clusters in our galaxy lie outside the main
body of stars of the galaxy, typically orbiting around or
through the galaxy.  If we wished to calculate the orbit
of a globular cluster, our first approximation would be
to treat it as a point particle.  To do better than that with
a computer program, we might try to analyze the
motion of each star as we did in the earth-moon-sun
problem above.  But the futility of doing this would
soon become obvious.  Each of the millions of stars
interact not only with the gravitational force of the
galaxy, but with each other.  Each star is subject to
millions of forces, and any direct computer calculation
becomes impossibly complex.  One might try to sim-
plify the problem by considering a cluster of only a few

Figure 1
Motion of the moon around the sun.  In this
sketch, we have greatly exaggerated the size
of the moon's orbit about the earth in order
to show the epicycle like motion of the
moon.

Sun
Earth

Moon

Figure 2
Globular cluster (NCG 5272).



11-3

hundred stars, but even then a lot of time on a super
computer is needed for a meaningful prediction.

Despite all the forces involved, the motion of the cluster
can easily be analyzed if we focus on the motion of the
center of mass of the cluster.  When we calculate the
motion of the center of mass, all internal forces cancel,
and we have to consider only the net force of the galaxy
on the total mass of the stars.  In the earth-moon-sun
problem, the center of mass of the earth-moon system
travels in an elliptical orbit around the sun.  The earth
and moon each orbit about this center of mass point.
The calculation of the motion of the center of mass of
the earth-moon is the same as calculating the motion of
a point planet about the sun.

The idea of the center of mass is a familiar concept for
it is a balance point.  The center of mass of a long thin
rod is the point where the rod balances on your finger.
If you mark the balance point and throw the rod in the
air, giving it a spin, the balance point follows a smooth
parabolic trajectory while the rest of the rod rotates
about the balance point as shown in Figure (3).  The
balance point or center of mass moves as if all the mass
of the rod were concentrated at that point.

Although the idea of a center of mass or balance point
is fairly straightforward, the formula for the center of
mass of a collection of particles looks a bit peculiar at
first.  But when you get used to the formula, you will
find that it is fairly easy to remember and leads to
impressive simplifications when used in Newton’s
laws.

Center of Mass Formula
Suppose that we have a collection of n particles

 m1 , m2 , mn  , as shown in Figure (4).  The coor-
dinate vector for particle m1 is R1, that for  m2  is R2, etc.
We define the total mass M of the collection of
particles as simply the sum of the individual masses

  
M = m1 + m2 + mi = mi∑

i = 1

n

(1)

The coordinate vector  Rcom of the center of mass point
is then defined by the formula

   
MRcom = miRi∑

i

formula for
centerof mass
coordinate

(2)

Since this is a vector equation, it can be written as the
collection of the three scalar equations

  MXcom = mixi∑
i

(2a)

  MYcom = miyi∑
i

(2b)

  MZcom = mizi∑
i

(2c)

Figure 4
To calculate the center of mass of a collection of
particles, you start by constructing the coordinate
vector for each particle. You then use Equation 2 to
calculate the center of mass coordinate vector.

Figure 3
A meter stick tossed in the air rotates about its center
of mass (balance point).  The center of mass itself
travels along the parabolic path of a point projectile.
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where Xcom, Ycom and  Z com are the x, y and z
coordinates of the center of mass, and  x i ,  yi ,  and  zi
are the x, y, z coordinates of the i-th particle.

To see that Equation 2 does give the balance point of a
collection of particles, let us consider the simple case of
a horizontal massless rod of length l with two masses
m1 and m2 at each end, as shown in Figure (5).  If m1
is placed at the origin of the coordinate system, then
Equation 2a gives

   M Xcom = m1 × 0 + m2 l

X com  =  m2 l
M

  =  m2 l
m1 + m2

If m1 and  m2  are the masses of two children on a
seesaw of length l, then the pivot should be placed a
distance X com  from m1 for the children to balance.  (As
a quick check, if m1 =  m2 , then X com = l /2 which is
obviously correct.)

[If you want to calculate the center of mass of a
continuous object like an irregularly shaped sheet of
plywood, you can mark the plywood off into small
sections of mass   dmi  located at  ri.  Then M is the mass
of the whole sheet of plywood, and the x coordinate of
the center of mass is

  MXcom = xidmiΣ
i

→ xdm

where  xi  is the x coordinate of  ri.  You can then replace
the sum over the   dmi  by an integral. This is a typical
problem treated in an introductory calculus course
and will not be discussed further here.]

Exercise 1
The formula for center of mass looks like it depends on
where you place the origin of the coordinate system.  To
see that this is not true recalculate  Xcom  for the two
masses in Figure (5), placing the origin at  m2 , and show
that the pivot point comes out at the same place on the
rod.

Exercise 2
Show that the center or mass of the earth-moon system
is located inside the earth.

Exercise 3

An ammonia molecule consists of a nitrogen atom and
three hydrogen atoms located on the corners of a
tetrahedron, as shown in Figure (6).  Locate the center
of mass of the ammonia molecule.

Dynamics of the Center of Mass
Let us now see how the concept of center of mass can
be used to handle the dynamic behavior of a system of
particles.  Suppose we have a system with n particles.
The formula for their center of mass coordinate  Rcom
is from Equation 2

 MRcom = m1R1 + m2R2 + + mnRn (2)

If we differentiate Equation 2 with respect to time, and
note that the velocity  Vcom is given by   dRcom/dt, we
get

MVcom  =  m1v1 + m2v2 +  + m nvn (3)

where  vi = dR i /dt  is the velocity of the i-th particle.

l

Xcom

m1 m2

N

H

H

H

Figure 6
Structure of the ammonia molecule.

Figure 5
Calculating the center of mass for two particles.
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Equation 3 already has an interesting interpretation.
Since m1v1 is the linear momentum of particle 1, m2v2
that of particle 2, etc., we see that MVcom is equal to the
vector sum of the linear momenta of all the particles
under consideration.  We will come back to this point
when we discuss the concept of linear momentum in
more detail.

Differentiating Equation 3 with respect to time, noting
that   A com = dVcom /dt  is the acceleration of the center
of mass point, we get

 MA com = m1a1 + m2a2 + + mnan (4)

where  ai = dvi/dt is the acceleration of the i-th par-
ticle.

The final step is to use Newton’s second law to replace
 mai by the vector sum of the forces acting on particle

i.  Calling this sum   FiΣ  , we get

  MA com = F1Σ + F2Σ + + FnΣ (5)

Equation 5 tells us that  MAcom  is equal to the sum of
every force acting on all the particles.

If we wish to apply Equation 5 to the motion of
something as complex as a globular cluster, it looks like
we are still in trouble because, as we have mentioned,
each of the millions of stars in the cluster interacts with
all the other stars in the cluster.  Acting on each star is
the gravitational force of the galaxy plus the millions of
forces exerted by the other stars.

But Newton’s law of gravity provides an enormous
simplification.  When two objects interact gravitation-
ally, they exert equal and opposite forces on each other
as shown in Figure (7).  In that case  Fg1 = –Fg2  or if
we add these two forces of interaction we get

 Fg1 + Fg2 = 0

Let us now write out Equation 5 as it might be applied
to the globular cluster:

 
MA com = FG1 + F21 + F31 +

+ FG2 + F12 + F32 +

+

(6)

where  FG1 is the force of the galaxy on star #1, F21 is
the force of star #2 on star #1, F31 the force of star #3
on star #1, etc.  In the next collection of terms we have

 FG2 ,  the force of the galaxy on star 2, F12 the force of
star #1 on star #2, etc.

Rearranging the order in which we write the forces, we
get

 MA com = FG1 + FG2 + FGn

+ F21 + F12

+ F31 + F13 +

(7)

In Equation 7, we have separated the external forces
 FG1 + FG2 +  exerted by the galaxy on the indi-

vidual stars from the internal forces like F12 and F21
between stars in the cluster.  All the internal forces can
be grouped in pairs, like F12 + F21 , the force of star
#2 on star #1 plus the force of star #1 on star #2.
Because these are equal and opposite forces, all the
pairs of internal forces cancel (over a trillion pairs for
an average cluster), and we are simply left with the
vector sum of the external forces.  In our cluster
example, the vector sum of all the external forces is just
the net force  Fext  the galaxy exerts on the cluster, and
we are left with the fantastically simple result

  
MAcom = F

ext

equation for
center of
massmotion

(8)

Equation 8 tells us that the center of mass of the
globular cluster moves exactly as if the cluster were a
single mass point of mass M equal to the total mass of
the cluster subject to a single force  Fext   equal to the
total gravitational force exerted by the galaxy on all the
stars in the cluster.  This remarkable result explains

m2
Fg1m1

Fg2

r

Fg1 Fg2=  –

Figure 7
Two objects exert equal and
opposite forces on each other.
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why we can often represent a complex system by a
single mass point in the analysis of the system’s
behavior.

When this result is applied to the earth-moon system
shown in Figure (8), we have the following picture.
When we calculate the motion of the center of mass of
the earth and moon about the sun, the internal forces
between the earth and moon cancel, and we are left with

 
Mearth +Mmoon Acom = Fsun on earth +Fsun on moon

where  Fsun on earth is the force of the sun on the earth,
and  Fsun on moon that of the sun on the moon.  The center
of mass moves with the same acceleration as a point
particle of mass  (Mearth + Mmoon )  subject to the total
force the sun exerts on the two.  This results in an
elliptical orbit for the center of mass.

Exercise 4
Two air carts of equal mass are connected by a spring
as shown in Figure (9).  A small black marker is placed
at the center of the spring which remains at the center
of mass of the carts.  One of the carts is given a shove
to the right so that the two carts move off to the right in
an undulating drift.  Describe the motion of the black
marker.

NEWTON’S THIRD LAW
In our analysis of the motion of a globular cluster, the
great simplification came when all the internal forces
canceled in pairs in Equation 7, and we were left with
the result that the acceleration of the center of mass
point was determined solely by the external forces
acting on the swarm of stars.  The cancellation occurred
because the gravitational attraction between two ob-
jects is equal in magnitude and oppositely directed.

m2
Fg1m1

Fg2

What about other forces?  What if two stars are in
collision?  Is the force between them still equal and
opposite?  If not, then we would have to take internal
forces into account when predicting the motion of the
center of mass?  Unable to believe that this would
happen, Newton proposed that when two bodies inter-
act, then the force between them is always equal in
magnitude and oppositely directed, no matter what
forces are involved.  This assumption is known as
Newton’s Third Law of Mechanics.  The third law
guarantees that internal forces cancel in pairs and that
center of mass motion is determined only by external
forces.

[Newton’s first law, as we have mentioned, is that in the
absence of any external forces, an object will move with
uniform motion.  Although there is a direct conse-
quence of the second law   F = ma , Newton explicitly
stated the result, because it was not such an obvious
idea in Newton’s time,  when a horse and buggy was the
smoothest ride available.

In a traditional course in Newtonian mechanics,
Newton’s three laws are presented at the beginning as
basic postulates and everything else is derived from
them.  This was a logical approach for over 200 years
during which time there were no known exceptions to
these laws.  But with the discovery of special relativity
in 1905 and quantum mechanics in 1923, we now know
that Newton’s  laws are an approximate set of equa-
tions which apply with great accuracy to objects like
stars, planets, cars and baseballs, but which have to be
significantly modified when we consider objects mov-
ing at speeds near the speed of light, and which fail
completely on a subatomic scale.]

Figure 8
Forces on the earth and moon, as they go around
the sun. (The force of the sun on the earth is
much larger than the other three forces shown.)

earth

moon

Fsun on earth

Fsun on moon

Figure 9
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CONSERVATION OF LINEAR MOMENTUM

In Chapter 6, after introducing the recoil definition of
mass, we saw that the quantity m1v1 + m2v2 remained
unchanged when the two objects were recoiled from
each other.

V1 + V2 = 0

V1 = V2= 0

V1 V2

m1

m1

m1

m2

m2

m2

We proposed that this was one example of a more
general conservation law—the conservation of linear
momentum.  Now, using Newton’s third law, we can
explicitly demonstrate how the law of conservation of
momentum applies to objects obeying Newton’s laws.

Our discussion begins with Equation 3, reproduced
below as Equation 9, that was obtained by differentiat-
ing the formula for the center of mass of a system of
particles.  The result was

MVcom  =  m1v1 + m2v2 +  + m nvn

=  Ptotal                   
(9)

where Ptotal  =  m1v1 +  + m nvn is the vector sum
of the momenta of all the particles in the system.  We
will call this the total momentum of the system.  We see
from Equation 9 that this total momentum is simply the
total mass M times the velocity of the center of mass.

Differentiating Equation 9 with respect to time, as we
did in going from Equation 3 to 4 we get

dPtotal

dt
  =  m1a1 + m2a2 +  + m nan (10)

This is essentially Equation 4, except that we are
replacing MAcom by  dPtotal/dt  .

Using the fact that m1a1 is the vector sum of all the
forces acting on particle 1, m2a2 the sum acting on
particle 2, etc., we get

 dPtotal

dt
=

sum of all the forces
acting on all the particles

(11)

Now use Newton’s third law to cancel all the internal
forces, and we are left with

  
dPtotal

dt
= Fext

Newton's second law
for a system of particles (12)

where Fext is the vector sum of all the external forces
acting on the system.

If we have an isolated system with no external forces
acting on it  (if our globular cluster were drifting
through empty space), then

  
dPtotal

dt
= 0

for an
isolated
system

(13)

Equation 13 is our desired statement of the law of
conservation of linear momentum.  In words it says that
the total linear momentum of an isolated system is
conserved—does not change with time.  (Linear mo-
mentum is also conserved if there are external forces
but their vector sum is zero.  For example, a cart on an
air track experiences the downward force of gravity
and the upward force of the air, but these forces exactly
cancel.)

In deriving Equation 13, we had to use Newton’s
hypothesis that all internal forces cancel in pairs.  And
we also needed Newton’s second law to relate d mvi /dt
to the vector sum of the forces acting on the i-th particle.
However, the law of conservation of linear momentum
is known to apply on a subatomic scale where the
concepts of force and acceleration loose their meaning.
This suggests that our derivation of momentum conser-
vation is somehow backwards.  A more logical route is
to assume conservation of linear momentum as a basic
principle and derive the consequences.
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[To see how such a derivation would look, consider an
isolated system where there are no external forces. We
get from Equation 11

 
dPtotal

dt
=

vector sum of all the
internal forces acting
on the particles

(14)

But conservation of linear momentum requires that the
linear momentum of an isolated system be conserved.
Thus   d(PTotal)/dt  must be zero, and therefore the
vector sum of all the internal forces must be zero.  This
must be true no matter what kind of forces are involved.
Newton’s third law is a bit more restrictive in that it
requires the internal forces to cancel in pairs.  The
cancellation in pairs is the simplest picture, but not
necessarily required for conservation of linear mo-
mentum.]

Momentum Version
of Newton’s Second Law
In our discussion of Newton’s second law, we have
consistently assumed that the mass of a particle was
constant, so that we could take the m outside the
derivative.  For example, in going from Equation 3 to
Equations 4 and 5  in the center of mass derivation, we
used the following steps to relate the rate of change of
momentum of the i-th particle  d(m ivi)/dt   to the total
force Fi acting on the particle

d m ivi

dt
  =  m idvi

dt
  =  m iai  =  Fi (15)

If we take  F = ma to be the basic form of Newton’s
second law, we have to assume m is constant in order
to get  ma and then F .

Newton recognized that a slight generalization of the
second law would make it unnecessary to assume that
a particle’s mass was constant.  He actually expressed
the second law in the form

 
F =

dp

dt
=

d
dt

mv (16)

where F is the total force acting on a particle of mass
m, moving with a velocity v .  In the special case that
m is constant, then Newton’s second law becomes

F  =  
d mv

dt
  =  m dv

dt
  =  ma    (m = constant)

(17)

Thus we should view the Equation  F = ma as a
special case of the more general law  F = dp/dt  .

The momentum form of Newton’s second law is
advantageous if we are considering problems like that
in the following exercise where momentum is being
transferred to an object at a known rate and we wish to
determine the effective force.  A more basic application
is for relativistic problems where mass changes with
velocity.  Then we must use the momentum form of the
law in order to account for the mass change.  It is
interesting that Newton had the insight to present the
second law in a form that would handle Einstein’s
theory 200 years later.

Exercise 5
A boy is washing the door of his father’s car by squirting
a hose at the door.  Assume that the water comes out of
the hose at a rate of 20 kilograms (liters) per minute at
a speed of 12 meters/second.  When the water hits the
door it dribbles down the side.  What force, in newtons,
does the water exert on the door?

(To solve this, simply calculate the amount of momen-
tum per second that the water brings to the door.)
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COLLISIONS
In our every day experience, collisions are something
we usually try to avoid, whether it is running into a door
or an automobile accident.  Hitting a baseball is an
obvious exception.  In physics, collisions turn out to
play an extremely important role, particularly in the
study of elementary particles.  For example, the atomic
nucleus was discovered as a result of experiments
involving the collision between α  particles and atoms
in a gold foil.

Collisions generally happen rapidly, and one is not
used to observing what happens during a collision.  It
is usually a before and after scene, what was the
situation before the collision, and what did things look
like after.  In most physics experiments like those
involving elementary particles, that is all we can ob-
serve.  However we will begin our discussion of
collisions with an experiment that is explicitly de-
signed to allow us to study the situation during the
collision.

In this experiment, an air cart moving down an air track
collides with a force detector mounted at the end of the
track.  Rather than have the metal cart bounce off the
metal arm of the force detector, we slow the collision
down by mounting a stretched rubber band on the end
of the cart.  With the rubber band colliding with the
force detector, it takes several milliseconds for the
collision to occur and the cart to reverse directions.
During this time we can record both the force the cart
exerts on the force detector and the velocity of the cart.
Using the momentum form of Newton’s second law,
we will find that there is a particularly simple way to
analyze the collision in terms of the concept of impulse.

When collisions are either too rapid or on too small a
scale to be observed directly, we can almost always
apply the law of conservation of momentum to analyze
the results.  In elementary particle collisions, both
energy and momentum may be conserved.  In some
introductory physics lab experiments, momentum is
conserved during the collision and energy after. We
will see how this lets us make detailed predictions
about the behavior of the objects involved.

Impulse
An overview of the air cart force detector experiment
is shown in Figure (10).  Focusing on the momentum
involved, we see that the cart is initially moving down
the track with a momentum  pi  as shown in Figure
(10a).  In Figure (10b) it collides with the force detector,
and in (10c) is moving back up the track with a
momentum  pf .  The net effect of the collision is to
change the cart’s momentum from  pi  to  pf .

mB

pi

a) before collision

b) during collision

c) after collision

force 
detector

mB

mB

pf

Figure 10
Collision of an aircart with the force detector.
During the collision, the force detector first
has to push on the cart to stop it, and then
give an essentially equal push to move it out.
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During the collision itself, the force detector is exerting
a force  F t  on the cart.  The force  F t  acts for only a
short time, but can be measured in detail by the force
detector.  To relate this force to the observed change in
the momentum of the cart, we start with Newton’s law
in the form

 
F t =

dp
dt

(16 repeated)

Multiplying through by dt gives

 F t dt = dp (18)

Now integrate both sides of this equation from a time
ti  before the collision, when the cart momentum was

 pi , to a time tf  after the collision, when the cart
momentum was  pf .  We get

 

F t dt

ti

tf

= dp

pi

pf

= pf – pi (19)

Since  pf – pi  is the change in the momentum of the
cart as a result of the collision, we get

 
impulseof the
force F t

F t dt

ti

tf

=
change in the
momentum of
the air cart

(20)

This integral of  F t  over the time of the collision is
called the impulse of the force  F t .  The force exerted
by the force detector alters the momentum of the cart,
and how much it alters it is equal to the impulse of the
force.

In the air cart experiment, we will record the force  F t
from the output of the force detector, and directly
compare the integral of that force with the change in the
momentum of the cart.

Note that both  pf  and –  pi  are directed to the right. Thus
the magnitude of  pf – pi  is equal to the numerical sum

 pf + pi

 pf – pi = pf + pi

As a result, the impulse supplied by the force detector
has a magnitude  pf + pi or about 2  pi  if the cart comes
out at the same speed it went in. The force detector
supplies 2  pi  because one  pi  is required to stop the cart,
and the other is required to shove it out again.

Calibration of the Force Detector
The force detector is designed to put out a voltage that
is proportional to the force exerted on the detector
beam.  To convert this voltage reading to a force
measurement, we have to calibrate the force detector.
This is easily done by running a string from the air cart,
over a pulley and down to some weights as shown in
Figure (11).  As we add weights to the string we
increase the force the cart exerts on the beam.

Figure (12) shows the output of the force detector as we
added a series of 20 gm weights.   Adding 3 weights
changes the voltage by 42.8 millivolts (mV), thus each
weight changes the output voltage by 42.8/3 = 14.3
mV. (One millivolt =  10– 3  volts.) Each added weight
corresponds to an increase of the force by

  ∆F = mg = 20 gm × 980 cm/s2  = 19600 dynes.      Thus
the factor for converting from millivolts output for this
force detector, to dynes of force is

force 
detector

m
B

Figure 11
Calibrating the force detector.

Figure 12
Voltage output when 20 gram weights are added.
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 conversion
factor

= 19600 newtons
14.3 millivolts

= 1370
dynes

millivolts

(21)

The Impulse Measurement
One way to set up the collision experiment is shown in
Figure (13).  To soften the collision we have added a
metal bracket to the cart and stretched a rubber band
across the open end.  Adjusting the tension in the rubber
band allows us to change the length of time during
which the collision occurs.

Figure (14) shows a fairly typical output of the force
detector.  There is no force until the rubber band reaches
the detector.  The force then increases and then de-
creases symmetrically, and becomes 0 when the cart
leaves.  Using our calibration factor of 1370 dynes/mV,
we have graphed the force, in dynes, as a function of
time in Figure (15).

The impulse of this force is the integral of the force
curve from the time  t1  that the rubber band gets to the
force detector, to  t2  when it leaves.  Since we do not

have a formula for the curve, we cannot do the integral
analytically.  Instead, we have to use some graphical
technique to find the area under that curve.  One way is
to superimpose the curve on graph paper and count the
squares underneath.  A slightly less accurate way we
will use is to construct a triangle whose area is, to our
best estimate, equal to the area under the curve.  We
have done this with the dashed line triangle seen in
Figure (15).  We have adjusted the triangle so that the
extra area at the top matches the area lost at the sides.

The area of a triangle is (1/2 base × altitude).  In Figure
(15), the base of the triangle is 3.00–2.60 = 0.40
seconds.  The height is seen to be close to 56800 dynes.
Thus the area is

  area of
triangle

= 1
2 × 0.40 sec × 56800 dynes

= 11360 dyne seconds
(22)

Equation 22 is our result for the impulse of the force
F(t).

Although the force detector measures the magnitude of
the force F(t) that the cart exerts on the detector, by
Newton’s third law, this should be equal in magnitude
but oppositely directed to the force exerted by the
detector on the cart.  Thus the magnitude of the impulse
calculated in Equation 22 should be equal to the
magnitude of the change in the momentum of the cart,
as a result of the collision.

top view of aircart 

force 
detector beam

rubber band

Figure 13
A rubber band is used to soften the collision.

Figure 14
Output of the force detector. There is zero force
before the cart arrives and after it leaves.

dynes

13700

27400

0

41100

54800

Figure 15
Force versus time graph. The area under the force curve
is about equal to the area of the triangle we drew.
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Exercise 6
(a) What is the direction of the force exerted by the force
detector on the cart?

(b)  What is the direction of the vector   ∆p = pf – pi?

(c)  How do these two directions compare?

Change in Momentum
To measure the momentum of the cart before and after
the collision, we mounted a 10 cm long sail on the top
of the cart as shown in the side view of Figure (16).
Mounted above the track is a light source and a photo-
detector seen in the top view.  When the sail on the cart
interrupts the light beam, there is an abrupt change in
the voltage output by the photodetector.  The lower,
dashed curves in Figures (14) and (17) are from the
output of the photodetector.  In Figure (17a) we are
measuring the length of time the sail took to pass by the
photocell on the way down to the force detector.  We
see that this time was 400 milliseconds or .400 seconds.
Thus the velocity of the cart on the way down was

 vi = 10 cm
.400 sec

= 25 cm
sec (23)

On the way back, we find from Figure (17c) that the sail
took 412 milliseconds or .412 seconds to pass the
photodetector.  Thus the final speed of the cart was

 vf = 10 cm
.412 sec

= 24.27 cm
sec (24)

The cart, sail and rubber band apparatus had a total
mass of  mcart  which was measured to be

 mcart = 227 gm (25)

v

photo
detector 10 cm long card

a) side view

b) top viewphoto
detector

light
source

10 cm long card

Figure 16
One way to measure the velocity of the aircart is to
mount a 10 cm long sail is mounted on top of the aircart.
While the sail is interrupting the light beam, there is a
change in the output voltage of the photo detector.

Figure 17a
Simultaneous recording of both the voltage
output from the force detector (solid line)
and the photo detector (dashed line).

Figure 17b,c
Measuring the
length of time the
sail took to go past
the photodetector.
The 10 cm sail took
400 milliseconds to
pass on the way in
(upper curve) and
412 milliseconds on
the way out. We see
it slowed down a bit.

(Another way to
determine the speed
of the aircart is to tilt
the airtrack and
release the cart from
a known height.)
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Thus the initial and final momenta have magnitudes

  pi = mvi = 227 gm × 25.0 cm
sec

= 5680
gm cm

sec

  pf = mvf = 227 gm × 24.27 cm
sec

= 5510
gm cm

sec
The magnitude   ∆p  of the change in momentum is the
sum of these two values

  ∆p = pi + pf = 5680
gm cm

sec + 5510
gm cm

sec

  
change in the
linear momentum
of the aircart

= ∆p = 11200
gm cm

sec

(26)

From Equation 22, we saw that the total impulse
supplied by the force detector was

 
total impulse
from the
force detector

= F t dt
ti

tf

= 11360 dyne sec

(27)
We see that to within a quite reasonable experimental
error, the total impulse supplied by the force detector
equals the change in linear momentum of the aircart.

Exercise 7
Explain why   ∆p in Equation 26 is the sum of the magni-
tudes pi  and pf .

Exercise 8
Show that the dimensions of impulse (dyne seconds)
are the same as momentum (gm cm/sec).

Exercise 9

How much energy, in joules, did the cart lose in the
collision with the force detector?  What percentage of
the cart’s initial kinetic energy was this?

Momentum Conservation
during Collisions
In our force detector experiment we used a rubber band
to slow down the collision so that we could do a more
accurate analysis of the impulse.  Even so the impulsive
force  F t  acted for only a very short time.  The most
important point of the experiment is that, no matter how
short the time is, the impulse, the time integral of  F t  is
equal to the total change in momentum.  If we had let the
metal end of the cart strike the force detector, the
collision would have taken much less time, but the force
would have been much greater.  The integral of the
larger force over the shorter time would still equal the
change in the momentum of the cart.

Suppose that, instead of an air cart colliding with a force
detector, we had two air carts colliding with each other.
During the collision they would by Newton’s third law,
exert equal and opposite forces  F t  on each other.  Thus
they would exert upon each other equal and opposite
impulses  F t dt .  As a result, the momentum gained
by one cart would precisely be equal to the momentum
lost by the other.  The net result is conservation of
momentum during the collision.

Now consider a slightly more complex situation.  Sup-
pose I throw a red billiard ball up in the air, and you
throw a blue billiard ball, and the two balls collide before
landing.

During this collision, more forces are involved.  There
is the force of the red billiard ball on the blue one, the
force of the blue billiard ball on the red one, and there are
the gravitational forces acting on both.  To study the
change in the momenta of the balls, it appears that we
must now account for all four forces at once.

However there is something special about the impulsive
forces found in collisions.  These forces are usually very
large but act for a very short time.  During this short
time the collision forces are usually much larger than
external forces like gravity.  So much larger, in fact, that
we can usually neglect external forces during a colli-
sion.  Since the collision forces conserve linear momen-
tum, we get the result that linear momentum is con-
served during a collision even if external forces are
present.  The only exception would be if the collision is
so slow that the external forces have time to act and
change the system’s momentum during the collision.
This is usually not the case.
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Collisions and Energy Loss
While we can use conservation of linear momentum in
the analysis of a collision, often energy conservation is
not applicable.  If the objects are deformed or give off
heat, light or sound, energy escapes in ways that are
difficult to measure.

In some situations, however, we can use momentum
conservation to figure out how much energy must be
“lost” to deformation, heat, sound, etc.  Suppose, for
example, we hang a steel ball of mass M from a string
as shown in Figure (18), and throw a putty ball of mass
m at the steel ball.  The putty ball is initially moving at
a speed  vi , then hits and sticks to the steel ball.  The two
move off together at speed  vf .

Even though energy is “lost” when the putty ball
squashes up against the steel ball, momentum is con-
served during the collision.  The initial momentum is all
carried by the putty ball, and is thus

  pi = mvi
initial
momentum (28)

After the collision the two move off together at a speed
 vf  and thus have a total momentum

 pf = m+M vf (29)

Since momentum is conserved, we have

 pi = pf

 mvi = m+M vf (30)

Solving for the final speed  vf , we get

 vf = m
m+M vi (31)

We can now calculate the amount of energy that must
be dissipated in this collision.  The initial energy  Ei  is
the kinetic energy of the putty ball

 Ei = 1
2mvi

2 (32)

The final energy  Ef  is the kinetic energy of the two
together

 Ef = 1
2

m+M vf
2 (33)

The energy “lost”, which must have gone into deform-
ing the putty ball, is

 Elost = Ei – Ef

= 1
2

mvi
2 – 1

2
m+M vi

2 (34)

Using Equation 31 for  vf  in Equation 34 gives

 
Elost = 1

2mvi
2 – 1

2 m+M
mvi

m+M

2

= 1
2mvi

2 – 1
2

m2

m+M vi
2

= 1
2mvi

2 1 – m
m+M

 Elost = 1
2mvi

2 M
m+M (35)

It may be somewhat surprising that even though we
may not have the slightest idea how energy is lost
during the deformation of the putty, we can calculate
precisely how much energy this uses.

Exercise 10

Check that Equation 35 gives reasonable results for the
two special cases M = 0 and M =  ∞  (for m ≠  0).

Exercise 11

A 500 gram steel ball is suspended from a string as
shown in Figure (18).  It is struck by a putty ball that
sticks, and half the putty ball’s initial kinetic energy is lost
in the collision.  What is the mass of the putty ball?

v
Mm i

putty ball

before collision
steel ball

vM mf

just after collision

m

Figure 18
Collision of a putty ball with a steel ball.



11-15

After the putty ball has collided with the steel ball in our
preceding example, the two will rise together to a
maximum height h and final angle  θf  before swinging
back down again.  This is illustrated in Figure (19).  We
can predict this height h by applying energy conserva-
tion after the collision.  The kinetic energy  Ef  just after
the collision is transformed into gravitational potential
energy (m + M)gh at the top of the swing, giving

 1
2 m+M vf

2 = m+M gh

or

 
h =

vf
2

2g (36)

If you want to calculate the final angle  θf , you use the
fact that   h = – cos θf  as can be seen from Figure
(19).

This example of the steel and putty ball is essentially
equivalent to the ballistic pendulum discussed in Exer-
cise 12.  In that problem a block of wood of mass M is
suspended from two strings as shown in Figure (20).  A
bullet of mass m is fired into the block and the block
with the bullet stuck inside rises to a height h as shown.

vM mf

just after collision

M

m

m h

θf

θ f
co

s

Figure 19
After the collision, energy is conserved. This
allows us to calculate how high the ball rises.

You can assume that momentum is conserved during
the collision, energy afterward, and from a measure-
ment of the height h, determine the speed  vi  of the
bullet before it hit the block.  This provides a rather
simple, inexpensive way to measure the speed of
bullets.

From the prospective of an introductory physics course,
the ballistic pendulum experiment clearly distinguishes
the use of momentum conservation and energy conser-
vation.  During the collision, momentum is conserved
but energy is not.  During the rise up to a height h,
energy is conserved but momentum is not.  To analyze
such problem, you must develop an understanding of
when you can apply the conservation laws and when
you cannot. (For a safer ballistic pendulum demonstra-
tion, see Figure (21) on the next page.)

Exercise 12
(a)  A bullet of mass  mb traveling at a speed vb is fired
into a block of wood of mass M hanging at rest as
shown in Figure (20).  The combined block and bullet
rise to a height h.  Find a formula for the speed vb of
the bullet.

(b)  For part (a), suppose the bullet's mass is  mb = 10 gm,
the block of wood has a mass M = 1000 gm, and the final
height h is 12 cm.  What was  vb in cm/sec?

Vm
M

M

h

Figure 20
Ballistic pendulum experiment.
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Exercise 13
In a lecture demonstration that is safer to perform than
the above ballistic pendulum experiment, a wastebas-
ket is suspended from two cords and a pillow is placed
inside the wastebasket, as shown in Figure (21).

Various members of the class are selected to throw a
softball into the wastebasket.  A scale is constructed to
indicated how fast the ball was thrown.  If the mass m of
the softball is 200 gm, the mass M of the wastebasket
and pillow is 1000 gm, and the length of the suspension
cords are 2 meters from the ceiling to the center of the
wastebasket, determine the distance (x) that the end of
the basket travels if the ball is thrown at 40 miles/hour.

Collisions that Conserve
Momentum and Energy
When a bullet plows into a block of wood, a consider-
able amount of energy goes into deforming the wood
and bullet.  On the other hand if two hardened steel ball
bearings collide, almost all the energy stays in the form
of kinetic energy of the particles and very little is “lost”
as heat, sound, and the deformation of the objects.
When no energy is lost this way, we say that the
collision is elastic.  If energy is lost, then the collision
is called inelastic.

On an atomic and subatomic scale we do not have the
usual  sound and friction, and small deformations may
not be allowed.  In these circumstances there is no way
for energy to become “lost” and the resulting collisions
are truly elastic.  Thus in the study of the collisions of
atomic and subatomic particles, we have examples
where both energy and linear momentum are con-
served.

Figure (22), shown previously in Chapter 6 as Figure
(6-3), shows the track of a proton as it moves through
a hydrogen bubble chamber.  The incoming track ends
when the proton strikes a hydrogen nucleus (another
proton) that is part of the liquid hydrogen.  Three
dimensional stereoscopic photographs show that the
two protons recoil from each other at an angle of 90°.
Here we are looking at the behavior of matter on a
subatomic scale where Newtonian mechanics does not
apply, and we would like to find out what we can learn
from this collision.

Does this photograph show us that momentum and
energy are still conserved on the subatomic scale?  To
find out we will analyze the collision of larger objects
like steel ball bearings, where momentum is conserved
and energy nearly so, and see if the results explain what
we see in Figure (22).

Pi
Pf1

Pf2

Figure 22
An incoming proton collides with a proton at
rest.  The two protons recoil at right angles.

m M

20 40 60 80 mph

Cord of length l

X

V

Figure 21
A safer ballistic pendulum experiment
for classroom demonstrations.



11-17

Elastic Collisions
We will start with the simplest elastic collision we can
think of—a ball of mass is traveling at a velocity vi
strikes an identical ball at rest,  as shown in Figure (23).
We will assume that the collision is straight on so that
the two balls go off in the same direction at speeds v1
and v2 as shown.  The idea is to apply conservation of
momentum and energy in order to predict the final
speeds v1 and v2.

From conservation of momentum we get

  
mvi = mv1 + mv2

momentum
conservation

(27)

Canceling the m’s we have

vi  =  v1 + v2 (28)

From conservation of energy we have

  1
2

mvi
2 =

1
2

mv1
2 +

1
2

mv2
2 energy

conservation
(29)

The 1/2 m’s cancel and we have

vi2  =  v12 + v22 (30)

If we square Equation (28) we get

vi2  =  v12 + 2v1v2 + v22 (31)

Comparing this with Equation (30) we see that

v1v2  =  0

I.e., either v2 = 0, which means there was no collision
at all, or v1 = 0 which means that ball 1 stops dead in
its tracks and ball 2 goes on at the initial speed vi.

That ball 1 stops dead in its tracks explains the common
toy where two or more steel balls are suspended from
a string as shown in the end view—Figure (24a).  One
of the balls is pulled back as shown in Figure (24b) and
released.  At the collision, it comes to rest and the
second ball goes on.  Then the second ball comes back,
strikes the first one and stops, and the first ball goes
back up.  For good hard steel balls, this process goes on
for a long time before we see motion decrease.

If energy were not conserved, if some were lost in the
collision, then both balls would move forward after the
collision.  In the extreme case the balls would stick and
move off together.  This is a completely inelastic
collision where the maximum energy is lost (consistent
with conservation of momentum).  If you perform this
experiment and notice that the incoming ball really
comes to rest, that is experimental proof that both
energy and momentum were in fact conserved in the
collision.

end view side view
(a) (b)

m m m m

Vi V1 V2

Figure 24
When the balls collide, the moving ball stops and
the stationary ball moves on at the same speed.

Figure 23
Collision of two identical steel balls.
We want to calculate v1 and v2 .
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In the next simplest example, suppose the two balls of
Figure (23) collide but bounce off at an angle as shown
in Figure (25), ball 1 coming off at a velocity  v1 , and
ball 2 at a velocity  v2  as shown.  In this case we have
the same formula for conservation of energy, but
conservation of momentum must now be written as the
vector equation

  
mvi = mv1 + mv2

momentum
conservation (32)

Again the m’s cancel and we are left with the following
vector equation for the velocity vectors

vi  =  v1 + v2 (32a)

The equation if pictured in Figure (26).

Recall that energy conservation gave
  

vi
2 = v1

2 + v2
2 energy

conservation (30)

which is simply the Pythagorean theorem when ap-
plied to the triangle in Figure (26).  Thus the incoming
speed vi  must be the hypotenuse and  v1  and  v2  the sides
of a right triangle.  Energy conservation requires that
the two balls emerge from the collision at right angles.

To state this result another way, if two equal masses
collide and one is originally at rest, they always
emerge at right angles (or the incoming one stops).
This is experimental evidence that both energy and
momentum are conserved in the collision.

It is this way that we learn that energy and momentum
are both conserved during the collision of two protons
in a hydrogen bubble chamber.  This is a remarkable
result considering that we do not have to know any-
thing about what kind of forces were involved in the
collision.

If we have elastic collisions between objects of differ-
ent masses, moving at each other with different speeds,
as in Figure (27), we still have the conservation of
momentum

m1v1 i + m2v2 i  =  m1v1 f + m2v2 f (33)

and conservation of energy
1
2

m1v1 i
2  + 1

2
m2v2 i

2   =  1
2

m1v1 f
2  + 1

2
m2v2 f

2 (34)

The only problem is that the algebra quickly becomes
messy.

If you are in the business of working with collision
problems, you will find it much easier to go to a
coordinate system where the center of mass of the
colliding particles is at rest.  In this coordinate system
the particles go in and come out symmetrically and the
equations are easy to solve.  Then you transform back
to your original coordinate system to see what the
particle velocities should be in the laboratory.

2
V2f

V1f

m V2i

V1i

1m

2m

1m

V1 V2

Vi
Figure 26
Equation 30 requires that the
velocity vectors form a right triangle.

m m

m

m

V1

V2

Vi

Figure 25
If the collision is not straight on,
the balls come off at an angle.

Figure 27
Arbitrary collision of two balls.
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DISCOVERY OF THE ATOMIC NUCLEUS
In his early experiments with radioactivity, Ernest
Rutherford found that radioactive atoms emitted three
kinds of radiation which, as we have mentioned, he
called α rays,  β rays and γ rays.  The α rays turned out
to be heavy positively charged particles, later identified
as helium nuclei. The β rays were beams of negatively
charged particles later determined to be electrons, and
the neutral γ rays turned out to be high energy particles
of light (photons).

In the early 1900s, before 1912, it was not clear how
these particles were emitted or what the structure of the
atom was.  Since J. J. Thomson’s experiments with
electron beams in 1895, it was known that atoms
contained electrons, and it was also known that com-
plete atoms were electrically neutral and much more
massive than an electron.  Thus the atom had to have
mass and positive charge in some form or other, but no
one knew what form.  By 1912 the plum pudding model
was quite popular.  This was a picture in which mass
and positive charge was spread throughout the atom
like the pudding, and the electrons were located at
various points, like the plums.  A rather vague picture
at best.

In 1912 Rutherford and Hans Geiger began a series of
experiments using beams of radioactive particles to
probe the structure of matter.  These experiments could
begin after Geiger had developed a tube to detect
radioactive particles.  This device later became known
as a Geiger counter, and is still used through the world
to monitor radiation.

In the first set of experiments, a beam of α particles
were aimed at a gold foil.  It was expected that some of
the α particles would be slightly deflected as they
passed through the positive matter in the gold atoms,  or
came near electrons.  To the utter amazement of both
Rutherford and Geiger, some of the α particles bounced
straight back out of the gold foil, with essentially the
same kinetic energy they had going in.

We have seen from our analysis of the elastic collision
of two equal mass particles, that the incoming particle
stops and the struck particle continues on.  Only if the
mass of the struck particle is greater than the mass of the
incoming particle, will the incoming particle bounce
back.  And only if the mass  of the struck particle is
much greater than the mass of the incoming particle
will the incoming particle rebound with nearly the
same energy that it had coming in.  Thus Rutherford
and Geiger’s observation that some of the α particles
bounced right back out of the gold foil, indicated that
they struck a solid object much more massive than an
α particle.

Most α particles passed through the gold foil without
much deflection, indicating that most of the volume of
the gold foil was devoid of mass.  The few collisions
that did result in a recoil indicated that the mass in a gold
foil was concentrated in incredibly small regions of
space.  A more detailed analysis showed that the
scattering was caused by an electric force, thus they
knew that both the mass and positive charge were
located in a tiny region of the atom.  In this way the
atomic nucleus was discovered.
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NEUTRINOS
The discovery of the neutrino, or at least the prediction
of its existence, is another important event in the history
of physics that is related to the conservation of energy
and linear momentum.

After Rutherford’s discovery of the nucleus, it became
clear that the high energy radioactive emissions, α, β,
and γ rays, must be coming from the nucleus of the
atom.  Thus a study of these rays should give valuable
information about the nature of the nucleus itself.

After a number of years of experimentation it was
determined that whenever an α particle or γ ray was
emitted, the energy carried out by the α particle or γ ray
was precisely equal to the energy lost by the nucleus.
But decays involving β particles were different.  In
studying β decays, one always got a spread of energies
of the β particle.  Sometimes the β particle carried out
almost all the energy lost by the nucleus, and some-
times only the relatively small rest energy of the
electron.  By the late 1920s  it was clear that energy was
apparently not conserved in β decay reactions.  Neils
Bohr proposed that the law of conservation of energy
had to be modified for nuclear reactions involving β
decays.  The new rule was that the final energy was
always less than or equal to the initial energy.

In 1930 Wolfgang Pauli, one of the founders of quan-
tum theory, objected to the idea that energy was not
conserved in β decay events.  Pauli noted that the
conservation of energy, linear momentum, and angular
momentum are all apparently violated at the same time
in β decay.  Either the entire structure of physical law
was being violated, or there was another explanation.
Pauli’s other explanation was that the energy, the linear
momentum, and the angular momentum were all being
carried out at the same time by an unseen particle.

If Pauli’s particle existed, it would need the following
properties:  (1) it had to be electrically neutral because
no electric charge was lost in β decays; (2) it would
have to have a very small rest mass because the electron
or β particle sometimes carried out almost all the
available energy, leaving none for creating the new
particle’s rest mass; (3) the new particle had to have
almost no interaction with matter, otherwise someone
would have seen it.

Initially there was not much enthusiasm for Pauli’s idea
of an undetectable particle.  At that point no one had
seen an electrically neutral particle, and the fact that it
did not interact with matter made it seem too specula-
tive.

In 1932 the neutron was discovered which demon-
strated that neutral particles did exist.  Shortly after that
Enrico Fermi developed a detailed theory of the weak
interaction in which neutrinos played a significant role.
(Fermi called Paul’s particle the neutrino, or “little
neutral one” to distinguish it from the more massive
neutron.)  Detailed verification of Fermi’s weak inter-
action theory convinced the physics community that
neutrinos should exist.

The neutrino, actually detected in 1956 and now com-
monly seen in numerous experiments, is a remarkable
particle in that it is subject to only the weak and
gravitational interactions.  All other known particles
are subject to the electric and nuclear forces.  For
example π mesons are subject to the nuclear force, and
can travel only a short distance through matter before
colliding with a nucleus and being stopped.

The muon discussed in the relativity chapter, does not
feel the strong nuclear force and therefore can travel
much farther through matter (hundreds of meters)
before being stopped.  Muons are electrically charged
and therefore are stopped by the weaker electric inter-
action.  Photons also interact through the electric
interaction, and therefore have a limited range travel-
ing through matter.  (An X-ray is an example of a
photon passing through matter.)
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The weak interaction is so weak compared to the
nuclear or electric force, that a particle like the neutrino
which feels only the weak interaction force, can travel
incredible distances through matter before being
stopped.  To have a good chance of stopping a single
neutrino with a stack of lead, one would need a pile of
lead, light years thick.

This does not mean that neutrinos are impossible to
detect.  Instead of using a detector light years across to
detect one neutrino, one can use a source that produces
an incredible number of neutrinos and use a reasonable
sized detector so that one has some chance of stopping
a few neutrinos.  In 1956 Cowan and Rines placed a
tank car full of carbon tetrachloride cleaning fluid in
front of a nuclear reactor that was estimated to emit
about 1015 neutrinos per square centimeter per second.
They observed that about two chlorine atoms per
month in the tank car of carbon tetrachloride were
converted by neutrino interactions into argon atoms
which were counted individually.

In modern experiments carried out using high energy
particle accelerators, neutrino reactions are routinely
seen.  The reason that more neutrinos are detected in
these experiments is that the weak interaction becomes
less weak as the energy of the particles involved
increases.  The high energy accelerators produce neu-
trinos with great enough energy that they are not too
difficult to detect.  As a result, the neutrino interactions
has become an important research tool in the study of
the basic interactions of matter.  Neutrinos make a
particularly clean tool for these studies because they
have no nuclear or electric interactions.  Neutrino
experiments are not contaminated by effects of the
nuclear and electric forces.

Neutrino Astronomy
An exciting development involving neutrinos is the
birth of neutrino astronomy.  In the fusion reaction that
powers our sun, where four hydrogen nuclei (protons)
end up as a helium 4 nucleus, the weak interaction and
the β decay process comes into play in the conversion
of two of the protons into the neutrons of the helium
nucleus.  Thus the emission of neutrinos must accom-
pany the fusion reaction, and the neutrinos themselves
must carry off a significant amount of the energy
liberated by the fusion reaction.

In a star like the sun, the fusion reaction takes place
down in the core of the star where the temperatures are
highest.  Any light emitted by the fusion reaction
should take the order of about 10,000 years to work its
way out.  Thus if the fusion reaction in the sun were shut
off today, it would be roughly  10,000 years before the
sun dimmed.

Neutrinos, however, escape from the core of the sun
without delay.  If the fusion reaction stopped and we
were monitoring the neutrinos from the sun, we would
know about it within 8 minutes.  As a result there is
considerable incentive to observe the solar neutrinos,
for that gives us a picture of what is happening in the
sun’s core now.

To study solar neutrinos, and do other experiments like
look for decay of the proton, several large neutrino
detectors have been set up around the world.  Solar
neutrinos have been monitored fairly carefully for over
a decade, and there is an unexplained, perhaps disturb-
ing result.  Only about one third as many neutrinos are
being emitted by the sun as we expect from what we
think the fusion reaction should produce.  Perhaps we
are not detecting all we should, but the detectors are
getting better and the number remains at 1/3.  This is
one of the major puzzles of astronomy.
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That neutrino astronomy is really here was dramati-
cally illustrated with the supernova explosion of 1987.
On the average, supernovas occur about once per
century per galaxy.  Kepler saw the last supernova
explosion in our galaxy 400 years ago.  In 1987 a
graduate student spotted the sudden appearance of a
bright star in the large Magellanic cloud, a close small
neighboring galaxy.  This was the first supernova
explosion in the local region of our galaxy in 400 years.

In a supernova explosion, huge quantities of neutrinos
should be emitted.  In fact a fair fraction of the energy
of the explosion should be carried out by neutrinos.

Theoretical models of supernova explosions suggest
that light should take about three hours to work its way
out through the expanding envelope of gas before it
starts its trek through space at the speed c.  Neutrinos,
on the other hand, should escape without being slowed
down, and have a three hour head start on the light.  If
neutrinos have no rest mass, and therefore travel at the
speed of light,  they should have reached the earth about
three hours before the light.  Two of the major neutrino
detectors, one in the US and one in a tunnel in the Alps,
detected significant pulses of neutrinos about three
hours before the flare-up of the star was seen. (This was
determined by a later analysis of the neutrino data.)
That event marks the birth of neutrino astronomy on a
galactic scale.
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CHAPTER 12 ROTATIONAL MOTION

Our discussion of rotational motion begins with a
review of the measurement of angles using the concept
of radians.  We will refer to an angle measured in
radians as an angular distance.  If we are discussing
an object that is rotating, we will describe the rotation
in terms of the increase in angular distance, namely an
angular velocity.  And if the speed of rotation is
changing, we will describe the change in terms of an
angular acceleration.

In Chapter 7, linear momentum and angular momen-
tum were treated as distinctly separate topics.  The
main point of this chapter is to develop a close analogy
between the two concepts.  The linear momentum of an
object is its mass m times its linear velocity v .  We will
see that angular momentum can be expressed as an
angular mass times an angular velocity.  (Angular
mass is more commonly known as moment of inertia).
Then, using the formalism of the vector cross product
(mentioned in Chapter 2), we will see that angular
momentum can be treated as a vector quantity, which
explains the bicycle wheel experiments we discussed in
Chapter 7.

The fundamental concept of Newtonian mechanics is
that the total force F  acting on an object is equal to the
time rate of change of the object’s linear momentum;

 F = dp/dt .  Using the vector cross product formalism,
we will obtain a complete angular analogy to this
equation.  We will find that a quantity we call an

angular force is equal to the time rate of change of
angular momentum.  (The angular force is more com-
monly known as torque).

The angular analogy to Newton’s second law looks a
bit peculiar at first.  It involves lever arms and vectors
that point in funny directions.  After some demonstra-
tions to show that the equation appears to give reason-
able results, we apply the equation to predict the
motion of a gyroscope.  The prediction appears to be
absurd, but we find that that is the way a gyroscope
behaves.

Our focus in this chapter is on angular momentum
because that concept will play such an important role
in our later discussions of atomic physics and electrons
and nuclear magnetic resonance.  There are other
important and interesting topics such as rotational
kinetic energy and the calculation of moments of
inertia which we discuss in more detail in the appendix.
These topics are not difficult and lead to some good
lecture demonstrations and laboratory experiments.
We put them in an appendix because they do not play
the essential role that angular momentum does in our
later discussions.
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RADIAN MEASURE
From the point of view of doing calculations, it is more
convenient to measure an angle in radians than the
more familiar degrees.  In radian measure the angle θ
shown in Figure (1) is the ratio of the arc length  s  to the
radius r of the circle

  θ ≡ s
r radians (1)

Since s and r are both distances, the ratio  s/r  is a
dimensionless quantity.  However we will find it
convenient for the angular analogy to keep the name
radians as if it were the actual dimension of the angle.
For example we will measure angular velocities in
radians per second, which is analogous to linear
velocities measured in meters per second.

Since the circumference of a circle is   2πr , the number
of radians in a complete circle is

  θ complete
circle = 2πr

r = 2π

In discussing rotation, we will often refer to going
around one complete time as one complete cycle.  In
one cycle, the angle θ  increases by   2π.  Thus   2π is the
number of radians per cycle.  We will find it conve-
nient to assign these dimensions to the number   2π:

  
2π radians

cycle (2)

To relate radians to degrees, we use the fact that there
are 360 degrees/cycle and dimensional analysis to find
the number of degrees/radian

  360 degrees
cycle × 1

2π
cycles
radian

= 360
2π

degrees
radian = 57.3 degrees

radian

(3)

Fifty seven degrees is a fairly awkward unit angle for
purposes of drafting and
navigation; no one in his or
her  right mind would mark
a compass in radians.  How-
ever, in working with the
dynamics of rotational mo-
tion, radian measure is the only reasonable choice.

Angular Velocity
The typical measure of angular velocity you may be
familiar with is revolutions per minute (RPM).  The
tachometer in a sports car is calibrated in RPM; a
typical sports car engine gives its maximum power
around 5000 RPM.  Engine manufacturers in Europe
are beginning to change over to revolutions per second
(RPS), but somehow revving an engine up to 83 RPS
doesn't sound as impressive as 5000 RPM.  (Tachom-
eters will probably be calibrated in RPM for a while.)
In physics texts, angular velocity is measured in radians
per second.  Since there are   2π radians/cycle, 83
revolutions or cycles per second corresponds to

  2π × 83 = 524  radians/second.  Few people would
know what you were talking about if you said that you
should shift gears when the engine got up to 524 radians
per second.

Exercise 1

What is the angular velocity, in radians per second,
of the hour hand on a clock?

Figure 1
The angle θθ  in radians is defined as the ratio
of the arc length s to the radius r:     θθ = s/r .

r

s
θ

1 radian = 57.3o



12-3

Angular Analogy
At this point we have a complete analogy between the
rotation of a motor shaft and one dimensional linear
motion.  This analogy becomes clear when we write out
the definitions of position, velocity, and acceleration:

(7)

As far as these equations go, the analogy is precise.
Therefore any formulas that we derived for linear
motion in one dimension must also apply to angular
motion.  In particular the constant acceleration formu-
las, derived in Chapter 3, must apply.  If the linear and
angular accelerations a and  α  are constant, then we get

Constant Acceleration Formulas
     Linear motion (a = const)       Angular motion ( αα  = const)

  
x = v0t +

1
2

at2 θ = ω0 t +
1
2

α t2 (8)

  v = v0 + at ω = ω 0 + αt (9)

Exercise 2
An electric motor, that turns at 3600 rpm (revolutions per
minute) gets up to speed in 1/2 second. Assume that the
angular acceleration α was constant while the motor
was getting up to speed.

a)  What was α  (in radians/  sec2 )?

b)   How many radians, and how many complete cycles,
did the shaft turn while getting up to speed?

θ (t)

ω

Figure 2
End of a shaft rotating at an angular velocity ω .

Our formal definition of angular velocity is the time
rate of change of an angle.  We almost always use the
Greek letter ω (omega) to designate angular velocity

   angular
velocity ω ≡ dθ

dt
radians
second

(4)

When thinking of angular velocity ω picture a line
marked on the end of a rotating shaft.  The angle θ  is
the angle that the line makes with the horizontal as
shown in Figure (2).  As the shaft rotates, the angle   θ t
increases with time, increasing by   2π every time the
shaft goes all the way around.

Angular Acceleration
When we start a motor, the angular velocity of the shaft
starts at ω = 0 and increases until the motor gets up to
its normal speed.  During this start-up,   ω t  changes
with time, and we have an angular acceleration α
defined by

   
angular

acceleration α ≡ dω
dt

radians
second2 (5)

The angular acceleration α has the dimensions of
 radians/sec2 since the derivative gives us another

factor of time in the denominator.  Combining Equa-
tion 4 and 5  relates α to θ by

  

α =
d2θ

dt2
(6)

Linear
motion

x   meters

 v = dx
dt

meters
second

 a =
dv
dt

meters

second2

   
 

=
d2x

d t2

Angular
motion

θ  radians

  ω = dθ
dt

radians
second

  α =
dω
dt

radians

second2

    
  

=
d2 θ
dt2

Distance

Velocity

Acceleration
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Tangential Distance,
Velocity and Acceleration
So far we have used the model of a rotating shaft to
illustrate the concepts of angular distance, velocity and
acceleration.  We now wish to shift the focus of our
discussion to the dynamics of a particle traveling along
a circular path.  For this we will use the model of a small
mass m on the end of a massless stick of length r shown
in Figure (3).  The other end of the stick is attached to
and is free to rotate about a fixed axis at the origin of our
coordinate system.  The presence of the stick ensures
that the mass m travels only along a circular path of
radius r.  The quantity   θ(t) is the angular distance
travelled and   ω(t) the angular velocity of the particle.

When we are discussing the motion of a particle in a
circular orbit, we often want to know how far the
particle has travelled, or how fast it is moving.  The
distance s along the path (we could call the tangential
distance) travelled is given by Equation 1 as

   s = r θ tangential
distance (10)

The speed of the particle along the path, which we can
call the tangential speed  vt,  is the time derivative of the
tangential distance s(t)

  vt =
ds(t)

dt
= d

dt
r θ(t) = r

dθ(t)
dt

where r comes outside the derivative since it is con-
stant.  Since   dθ(t) /dt is the angular velocity ω, we get

   vt = rω tangential
velocity (11)

The tangential acceleration  at , the acceleration of the
particle along its path, is the time derivative of the
tangential velocity

  
a t =

dvt(t)
dt

=
d[rω(t)]

dt
= r

dω(t)
dt

= rα

   a t = rα tangential
acceleration (12)

where again we took the constant r outside the deriva-
tive, and used   α = dω /dt .

Figure 3
Mass rotating on the end of a massless stick.

m

θ

r

pivot

ω

massless stick

Figure 4
Particle moving at a constant speed in a circle of
radius r accelerates toward the center of the circle
with an acceleration of magnitude   ar = v2/r.

v

r
v2

a  =r

r
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Radial Acceleration
If the angular velocity ω is constant, if we have a
particle traveling at constant speed in a circle, then

  α = dω/dt = 0  and there is no tangential acceleration
 at .  However, we have known from almost the begin-

ning of the course that a particle traveling at constant
speed v in a circle of radius r has an acceleration
directed toward the center of the circle, of magnitude

 v2/r , as shown in Figure (4).  We will now call this
center directed acceleration the radial acceleration  a r

  
a r =

vt
2

r
radial
acceleration

(13)

Exercise 3

Express the radial acceleration  ar  in terms of the orbital
radius r and the particle’s angular velocity ω.

If a particle is traveling in a circular orbit, but its speed
 vt  is not constant, then it has both a radial acceleration
 ar = vt

2/ r , and a tangential acceleration    at = rα .  The
radial acceleration is always directed toward the center
of the circle and always has a magnitude  v2/r .  The
tangential acceleration, if it exists, is tangential to the
circle, pointing forward (counterclockwise) if α is
positive and backward if α is negative. These accelera-
tions are shown in Figure (5).

Bicycle Wheel
For much of the remainder of the chapter, we will use
a bicycle wheel, often weighted with wire wound
around the rim, to illustrate various phenomena of
rotational motion.  Conceptually we can think of the
bicycle wheel as a collection of masses on the ends of
massless rods as shown in Figure (6).  The massless
rods form the spokes of the wheel, and we can think of
the masses m as fusing together to form the wheel.
When forming a wheel, all the masses have the same
radius r, same angular velocity ω and same angular
acceleration  α .  If we choose one point on the wheel
from which to measure the angular distance θ, then as
far as angular motion is concerned, it does not make any
difference whether we are discussing the mass on the
end of a rod shown in Figure (3) or the bicycle wheel
shown in Figure (6).  Which model we use depends
upon which provides a clearer insight into the phenom-
ena being discussed.

Figure 6
Bicycle wheel as a collection of masses
on the end of massless rods.

Figure 5
Motion with radial and tangential acceleration.

r
va  = r

2

2

a  = t rα

= rω

ω

r
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ANGULAR MOMENTUM
In Chapter 7, we defined the angular momentum  of
a mass m traveling at a speed v in a circle of radius r as

 = mvr (7-11)

As we saw, in Figure
(7-9) reproduced here,
the quantity  = mvr
did not change when
we had a ball moving
in a circle on the end of
a string, and we pulled
in on the string.  The
radius of the circle de-
creased, but the speed
increased to keep the
product  vr  constant.
This was our introduction to the concept of the conser-
vation of angular momentum.

After that, we went on to consider some rather interest-
ing experiments where we held a rotating bicycle
wheel while standing on a freely turning platform.  We
found that these experiments could be explained quali-
tatively if we thought of the angular momentum of the
bicycle wheel as being a vector quantity  which
pointed along the axis of the wheel, as shown in Figure
(7-15) reproduced below.  What we will do now is
develop the formalism which treats angular momen-
tum as a vector.

Angular Momentum
of a Bicycle Wheel
We will begin our discussion of the angular momen-
tum of a bicycle wheel using the picture of a bicycle
wheel shown in Figure (6), i.e., a collection of balls on
the end of massless rods or spokes.  If the wheel is
rotating with an angular velocity  ω , then  each ball has
a tangential velocity  vt  given by Equation 11a

  vt = rω (11 repeated)

If the i-th ball in the wheel (identified in Figure 7) has
a mass  mi , then its angular momentum i  will be given
by

  i = mivtr = mi(rω)r

  i = (mir
2)ω (14)

Assuming that the total angular momentum L of the
bicycle wheel is the sum of the angular momenta of
each ball (we will discuss this assumption in more
detail shortly) we get

  L = iΣ
i

= mir
2ωΣ

i
(15)

Since each mass  mi  is at the same radius r and is
traveling with the same angular velocity  ω , we get

  L = miΣ
i

r2ω

Noting that   M = miΣ
i

is the total mass of the bicycle
wheel, we get

   
L = Mr2ω angular momentum

of a bicycle wheel (16)

2

Figure 7–9
Ball on the end of a string,
swinging in a circle.

Figure 7–15
When the bicycle wheel is turned over and its angular
momentum points down, the person starts rotating with
twice as much angular momentum, pointing up.

r

vt

mi

Figure 7

The angular momentum of the i’th ball is  mivtri .

Movie
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Angular Velocity as a Vector
To explain the bicycle wheel experiment discussed in
Chapter 7, we assumed that the angular momentum  L
was a vector pointing along the axis of the wheel as
shown in Figure (8a).  We can obtain this vector
concept of angular momentum by first defining a
vector angular velocity ω as shown in Figure (8b).
We will say that if a wheel is rotating with an angular
velocity   ωrad/sec , the vector ω has a magnitude of

  ωrad/sec , and points along the axis of rotation as shown
in Figure (8b).  Since the axis has two directions, we use
a right hand convention to select among them.  Curl the
fingers of your right hand in the direction of the
direction of the rotation, and the thumb of your right
hand will point in the direction of the vector ω.

Angular Momentum as a Vector
Since the vector ω points in the direction we want the
angular momentum vector  L  to point, we can obtain a
vector formula for  L  by simply replacing  ω  by ω
in Equation 16 for the angular momentum of the
bicycle wheel

   
L = Mr2 ω

vector formula for the
angular momentum
of a bicycle wheel

(17)

ANGULAR MASS OR
MOMENT OF INERTIA
Equation 17 expresses the angular momentum  L  of a
bicycle wheel as a numerical quantity  Mr2  times the
vector angular velocity ω.  This is not very different
from linear momentum p  which is the mass (M) times
the linear velocity vector v

 p = Mv (18)

We obtain an analogy between linear and angular
momentum if we call the quantity  Mr2  the angular
mass of the bicycle wheel.  Designating the angular
mass by the letter I, we get

  L = I ω (19)

  
I = Mr2

angular mass
(moment of inertia)
of a bicycle wheel

(20)

The quantity I is usually called moment of inertia
rather than angular mass, but angular mass provides a
better description of what we are dealing with.  We will
use either name, depending upon which seems more
appropriate.

L

ω

Figure 8a
The angular
momentum
vector.

Figure 8b
The angular
velocity
vector.
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Calculating Moments of Inertia
Equation 20 is not the most general formula for calcu-
lating moments of inertia.  The bicycle wheel is special
in that all the mass is essentially out at a single radius
r.  If, instead, we had a solid wheel where the mass was
spread out over different radii, we would have to
conceptually break the wheel  into a number of separate
rim-like wheels of radii ri  and mass  mi , calculate the
moment of inertia of each rim, and add the results
together to get the total moment of inertia.

In Appendix A we have relatively complete discussion
of how to calculate moments of inertia, and how
moment of inertia is related to rotational kinetic energy.
There you will see that rotational kinetic energy is

  1/2 Iω2 , which is analogous to the linear kinetic energy
 1/2 Mv2 .  This material is placed in an appendix, not

because it is difficult, but because we do not wish to
digress from our discussion of the analogy between
linear and angular momentum.  At this point, one
example and one exercise should be a sufficient intro-
duction to the concept of moment of inertia.

Example 1

Calculate the moment of inertia, about its axis, of a
cylinder of mass M and outside radius R.  Assume that
the cylinder has uniform density.

Solution:  We conceptually break the cylinder into a
series of concentric cylinders of radius r and thickness
dr as shown in Figure (9).  Each hollow cylinder has a
mass given by

  dm = M × end area of hollow cylinder
total end area

= M × 2πr dr
πR2 = M × 2r dr

R2
(21)

Since all the mass in the hollow cylinder is out at a
radius r, just as it is for a bicycle wheel, the hollow
cylinder has a moment of inertia dI given by

  dI = dm × r2

= M × 2r dr
R2 × r2 = 2Mr3dr

R2 (22)

The total moment of inertia of the cylinder is the sum
of the moments of inertia of all the hollow cylinders.
This addition is done by integrating the formula for dI
from r = 0 out to r = R.

 
I solid

cylinder = dI
r = 0

r = R

= 2Mr3dr
R2

r = 0

r = R

= 2M
R2 r3dr

r = 0

r = R

= 2M
R2

r4

4
0

R

= 2MR4

4R2

 
I solid

cylinder = 1
2 MR2 (23)

dr

R

r

Figure 9
Calculating the moment of inertia of
a cylinder about its axis of rotation.
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Two points are made in Example 1, The first is that
calculating the moment of inertia of an object usually
requires an integration, because different parts of the
object are out at different distances r from the axis of
rotation.  Secondly we see that the moment of inertia of
a solid cylinder is less than the moment of inertia of a
bicycle wheel of the same mass and outer radius
(  1/2MR2  for the cylinder versus  MR2  for the bicycle
wheel).  This is because all the mass of the bicycle
wheel is out at the maximum radius R, while most of the
mass of the solid cylinder is in at smaller radii.

A considerable amount of time can be spent discussing
the calculation of moments of inertia of various shaped
objects.  Rather than do that here, we will simply
present a table of the moments of inertia of common
objects of mass M and outer radius R, about an axis that
passes through the center.

     Object      Moment of Inertia

     cylindrical shell       1 MR2

     solid cylinder       1 21 2 MR2

     spherical shell       2 32 3 MR2

     solid sphere       2 52 5 MR2

Exercise 4

As shown in Figure (10) we have a thick-walled hollow
brass cylinder of mass M, with an inner radius  Ri  and
outer radius  Ro.   Calculate its moment of inertia about
its axis of symmetry. Check your answer for the case

 Ri = 0 (a solid cylinder) and for  Ri = R0 (which corre-
sponds to the bicycle wheel).

VECTOR CROSS PRODUCT
The idea of having the angular velocity ω being a
vector pointing along the axis of rotation gave us a nice
analogy between linear momentum  p = Mv  and angu-
lar momentum   L = Iω .  But to obtain the dynamical
equation for angular momentum, the one analogous to
Newton’s second law for linear momentum, we need
the mathematical formalism of the vector cross product
defined back in Chapter 2.  Since we have not used the
vector cross product before now, we will briefly review
the topic here.

If we have two vectors  A  and  B  like those shown in
Figure (11), the vector cross product   A × B  is defined
to have a magnitude

  A × B = A B sin θ (24)

where  A  and  B  are the
magnitudes of the vectors  A
and  B,  and θ  is the small
angle between them.  Note
that when the vectors are par-
allel,   sin θ = 0  and the cross
product is zero.  The cross product is a maximum when
the vectors are perpendicular.  This is just the opposite
from the scalar dot product which is a maximum when
the vectors are parallel and zero when perpendicular.
Conceptually you can think of the dot product as
measuring parallelism while the cross product mea-
sures perpendicularity.

The other major difference between the dot and cross
product is that with the dot product we end up with a
number (a scalar), while with the cross product, we end
up with a vector.  The direction of   A × B  is the most
peculiar feature of the cross product; it is perpendicu-
lar to the plane defined by the vectors  A  and B .  If we
draw  A  and B  on a sheet of paper as we did in Figure
(11), then the directions perpendicular to both  A  and

 B  are either up out of the paper or down into the paper.
To decide which of these two directions to choose, we
use the following right hand rule.  (This is an arbitrary
convention, but if you use it consistently in all of your
calculations, everything works out OK).

Ri

oR

Figure 10
Thick-walled hollow cylinder.

A

B

θ

Figure 11
The vectors   A and B.
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Right Hand Rule for Cross Products
To find the direction of the vector   A × B , point the
fingers of your right hand in the direction of the first
vector in the product (namely  A ).  Then, without
breaking your knuckles, curl the finger of your right
hand toward the second vector  B .  Curl them in the
direction of the small angle θ .  If you do this correctly,
the thumb of your right hand will point in the direction
of the cross product   A × B .  Applying this to the
vectors in Figure (11), we find that the vector   A × B
points up out of the paper as shown in Figure (12).

Exercise 5
(a) Follow the steps we just mentioned to show that

  A × B  from Figure (11) does point up out of the paper.

(b) Show that the vector   B × A  points down into the
paper.

If you did the exercise (5b) correctly, you found that
  B × A  points in the opposite direction from the vector
  A × B .  In all previous examples of multiplication you

have likely to have encountered, the order in which you
did the multiplication made no difference.  For ex-
ample, both 3 x 5 and 5 x 3 give the same answer 15.  But
now we find that   A × B = –B × A  and the order of the
multiplication does make a difference.  Mathemati-
cians say that cross product multiplication does not
commute.

There is one other special feature of the cross product
worth noting.  If  A  and  B  are parallel, or anti parallel,
then they do not define a unique plane and there is no
unique direction perpendicular to both of them.  Vari-
ous possibilities are indicated in Figure (13).  But when
the vectors are parallel or anti parallel,   sin θ = 0  and
the cross product is zero.  The special case where the
cross product does not have a unique direction is when
the cross product has zero magnitude with the result
that the lack of uniqueness does not cause a problem.

A   B

A   B

A A

B B

θ
A

B

Figure 12
Right hand rule for vector cross
product    A ×× B. Point the fingers of your
right hand in the direction of the first
vector A  and then curl them in the direction
of the second vector B  (without breaking
your knuckles). Your thumb will then point
in the direction of the cross product    A ×× B.

Figure 13
If the vectors A andB are either parallel or
antiparallel, then as shown above, there is a whole
plane of vectors perpendicular to both A and  B.
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CROSS PRODUCT DEFINITION
OF ANGULAR MOMENTUM
Let us now see how we can use the idea of a vector cross
product to obtain a definition of angular momentum
vectors.  To explain the bicycle wheel experiments, we
wanted the angular momentum to point along the axis
of the wheel as shown in Figure (14a).  Since there are
two directions along the axis, we have arbitrarily
chosen the direction defined by the right hand conven-
tion shown.  (Curl the fingers of your right hand in the
direction of the rotation and your thumb will point in
the direction of L ).

In Figure (14b) we went to the masses and spoke model
of the bicycle wheel, and selected one particular mass
which we called  mi .  This mass is located at a coordi-
nate vector  r i  from the center of the wheel, and is
traveling with a velocity  vi .  According to our defini-
tion of angular momentum in Chapter 7, using the
formula  = mvr , the ball’s angular momentum should
be

 = mirivi (7-11 again)

What we want to do now is to turn this definition of
angular momentum into a vector that points down the
axis of the wheel.  This we can do with the vector cross
product of  r i  and  vi .  We will try the definition of the
vector  

i  as

  
i = mi r i× vi (25)

Exercise 6
a)   Look at Figure (14c) show-
ing the vectors ri (which point
into the paper) and vi .  Point the
fingers of your right hand in the
direction of ri  and then curl
them toward the vector vi .  Does
your thumb point in the direc-
tion of the vector i shown?  (If it
does not, you have peculiar
knuckle joints or are not follow-
ing instructions).

b)   Choose any other mass that forms the bicycle wheel
shown in Figure (14b).  Call that the mass  mi.  Show that
the vector    i = mi r i × vi  also points down the axis,
parallel to i.  Try this for several different masses, say
one at the top, one at the front, and one at the bottom of
the wheel.

If you did Exercise 6 correctly, you found that all the
angular momentum vectors   

i = mi r i × vi  were par-
allel to each other, all pointing down the axis of the
wheel.  We will define the total angular momentum of
the wheel as the vector sum of the individual angular
momentum vectors  

i

   
L

total angular
momentum
of wheel

= iΣ
i

= mi r i × viΣ
i

(26)

It is easy to add the vectors  
i  because they all point in

the same direction, as shown in Figure (15). Thus we
can add their magnitudes numerically.  (It is just the
numerical sum we did back in Equation 15).

L

vi

mi
ri

i

vi

mi

ri
i

axis of
rotation

Figure 14a
Right hand
rule for
angular
momentum.

Figure 14b
Angular
momentum of one
of the balls in the
ball-spoke model of
a bicycle wheel.

Figure 14c
The three vectors

  ri , vi and i

4

5

3

6

7

2

1

Figure 15
Since all the
angular
momentum
vectors i point
in the same
direction, we
can add them up
numerically.
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To do the sum starting from Equation (26) we note that
for each mass  mi , the vectors  r i  and  vi  are perpen-
dicular, thus

   r i × vi = r v sin θ
= r v for θ = 90°

Then note that for a rotating wheel, the speed v of the
rim is related to the angular velocity ω  by

v = rω (11 repeated)

so that

  r i × vi = r v = r rω = r2ω (27)

Finally note that the vector ω points in the same
direction as   r i × vi , so that Equation 27 can be written
as the vector equation

   r i × vi = r2ω for all
mass mi

(28)

Using Equation 28 in Equation 26 gives

  L = iΣ
i

= mi r i× viΣ
i

= miΣ
i

r2ω

= Mr2ω
   

L = Mr2ω
angular momentum
of a rotating
bicycle wheel

(29)

where M is the sum of the individual masses  mi .
Equation 29 is the desired vector version of our original
Equation 16.

The important point to get from the above discussion is
that by using the vector cross product definition of
angular momentum   

i = mi r i × vi , all the  
i  for each

mass in the wheel pointed down the axis of the wheel,
and we could thus calculate the total angular momen-
tum by numerically adding up the individual  

i .

The   r × p Definition of
Angular Momentum
A slight rewriting of our definition of angular momen-
tum, Equation 25, gives us a more compact, easily
remembered result.  Noting that the linear momentum
p  of a particle is  p = mv , then a particle’s angular
momentum  can be written

  = mr × v

= r × mv

  
= r × p (30)

In Chapter 7, we saw that the magnitude of the angular
momentum  if a particle was given by the formula

  = r⊥p (7-15)

where  r⊥  was the lever arm or perpendicular distance
from the path of the particle to the point O about which
we were measuring the angular momentum.  This was
illustrated in Figure (7-10) (reproduced here), where a
ball of momentum p , passing by an axis O, is caught by
a hook and starts rotating in a circle.

r

v

i

i
θ

p = mv

path of ball

r  perpendicular distance from path of ball to point O

=

O

b)      

a)

p = mv

O

r

c)

p
 =

 m
v

O

r

ball catches 
on hook

ball heading
for hook

ball swinging in circle, 
with angular momentum

= mvr

Figure 7-10
As the ball is caught by the hook, its
angular momentum, about the point O,
remains unchanged. It is equal to   (r⊥⊥ p) .



12-13

 After the ball is caught it is traveling in a circle with an
angular momentum   = r⊥mv = r⊥p .  By defining the
angular momentum as   r⊥p  even before the ball was
caught, we could say that the ball had the same angular
momentum   r⊥p  before it was caught by the hook as it
did afterward; that the angular momentum was un-
changed when the ball was grabbed by the hook.

The idea that the angular momentum is the linear
momentum times the perpendicular lever arm  r⊥  fol-
lows automatically from the cross product definition of
angular momentum   = r × p .  To see this, consider a
ball with momentum p  moving past an axis O as shown
in Figure (16a).  At the instant of time shown, the ball
is located at a coordinate vector r  from the axis.  The
angle between the vectors r  and p  is the angle θ
shown in Figure (16b).  The vector cross product   r × p
is given

  = r × p = rp sin θ (31)

However we note that the lever arm or perpendicular
distance  r⊥  is given from Figure (16a)

  r⊥ = r sin θ (32)

Combining Equations 31 and 32 gives

  = r × p = (r sinθ)p = r⊥p (33)

which is the result we used back in Chapter 7.

Exercise 7

Using the vectors r  and p  in Figure (16), does the
vector   = r × p   point up out of the paper or down into
the paper?

The intuitive point you should get from this discussion
is that the magnitude of the vector cross product   r × p
is equal to the magnitude of p times the perpendicular
lever arm  r⊥ .  We will shortly encounter the cross
product   r × F  where F  is a force vector.  We will
immediately know that the magnitude of   r × F  is   r⊥F
where again  r⊥  is a perpendicular lever arm.

r

r

path of ball

paxis
θθ

Ο

r

p

θ

Figure 16a
The coordinate
vector r and the
lever arm  r⊥⊥ are
related by

   r⊥⊥ = r sinθθ.

Figure 16b
The angle between
r and p  is  θθ.
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ANGULAR ANALOGY TO
NEWTON’S SECOND LAW
We now have the mathematical machinery we need to
formulate a complete angular analogy to Newton’s
second law.  We do this by noting that to go from
linear momentum p  to angular momentum , we took
the cross product with the coordinate vector r

  = r × p (30 repeated)

The origin of the coordinate vector r  is the point about
which we wish to calculate the angular momentum.

To obtain a dynamical equation for angular momen-
tum , we start with Newton’s second law which is a
dynamical equation for linear momentum p

 
F =

dp
dt

(11-16)

where F  is the vector sum of the forces acting on the
particle.

With one mathematical trick, we can reexpress
Newton’s second law in terms of angular momentum.
The mathematical trick involves evaluating the expres-
sion

  d
dt

r × p (34)

In the ordinary differentiation of the product of two
functions a(t) and b(t), we would have

 d
dt

ab = da
dt

b + a db
dt

(35)

The same rules apply if we differentiate a vector cross
product.  Thus

  d
dt

r × p = dr
dt

× p + r × dp
dt (36)

Equation 36 can be simplified by noting that

 v = dr
dt

so that

  dr
dt

× p = v × p = v × mv = 0 (37)

This product is zero because the vectors v  and  p = mv
are parallel to each other, and the cross product of
parallel vectors is zero.  Thus Equation 36 becomes

  d
dt

r × p = r ×
dp
dt (38)

With this result, let us return to Newton’s law for linear
momentum

 
F =

dp
dt

(39)

As long as we do the same thing to both sides of an
equation, it is still a correct equation.  Taking the vector
cross product   r ×  on both sides gives

  
r × F = r ×

dp
dt (40)

Using Equation 38 in Equation 40 gives

  
r × F =

d
dt

r × p (41)

Finally note that   r × p  is the particle’s angular mo-
mentum , thus

  
r × F =

d
dt

(42)

Equation (39) told us that the net linear force is equal to
the time rate of change of linear momentum.  Equation
42 tells us that something,   r × F , is equal to the time
rate of change of angular momentum.  What should we
call this quantity   r × F ?  The obvious name, from an
angular analogy would be an angular force.  Then we
could say that the angular force is the time rate of
change of angular momentum, just as the linear force
is the time rate of change of linear momentum.

The world does not use the name angular force for
  r × F .  Instead it uses the name torque, and usually

designates it by the Greek letter τ  (“tau”)

   
torque τ ≡ r × F

definition
of torque

(43)

With this naming, the angular analogy to Newton’s
second law is

   
τ =

d
dt

torque = rate
of change of
angular momentum

(44)
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ABOUT TORQUE
To gain an intuitive picture of the concept of torque

  τ = r × F, imagine that we have a bicycle wheel with a
fixed axis, and push on the rim of the wheel with a force
F  as shown in Figure (17).  In (17a) the force F  is
directed through the axis of the wheel, in this case the
force has no lever arm  r⊥ .  In (17b), the force is applied
above the axis, while in (17c) the force is applied below
the axis.

Intuitively, you can see that the wheel will not start
turning if you push right toward the axis.  When you
push above the axis as in (17b), the wheel will start to
rotate counter clockwise.  By our right hand convention
this corresponds to an angular momentum directed up
out of the paper.

In (17c), where we push below the axis, the wheel will
start to rotate clockwise, giving it an angular momen-
tum directed down into the paper.

Exercise 8

In Figure (17) we have separately drawn the vectors F
and r  for each diagram.  Using the right hand rule for
cross products, find the direction of   τ = r × F  for each of
these three diagrams.

If you did Exercise 8 correctly, you found that   r × F = 0
for Figure (17a), that   τ = r × F  pointed up out of the
paper in (17b), and down into the paper in (17c).  Thus
we find that when we apply a zero torque as in (17a), we
get zero change in angular momentum.  In (17b) we
applied an upward directed torque, and saw that the
wheel would start to turn to produce an upward directed
angular momentum.  In (17c), the downward directed
torque produces a downward directed angular momen-
tum.  These are all results we would expect from the
equation   τ = d /dt .

In our discussion of angular momentum, we saw that
  = r × p  had a magnitude   = r⊥p  where  r⊥  was the

perpendicular lever arm.  A similar result applies to
torque.  By the same mathematics we find that the
magnitude of the torque τ  produced by a force F  is

  τ = r⊥F (45)

where  r⊥  is the perpendicular lever arm seen in Figures
(17b,c).

Intuitively, the best way to remember torque is to think
of it as a force times a lever arm.  To turn an object, you
need both a force and a lever arm.  In Figure (17a), we
had a force but no lever arm.  The line of action of the
force went directly through the axis, with the result that
the wheel did not start turning.  In both cases (17b) and
(17c), there was both a force and a lever arm  r⊥ , and the
wheel started turning.

To get the direction of the torque, to determine whether
τ  points up or down (and thus gives rise to an up or down
angular momentum), use the right hand rule applied to
the vector cross product   τ = r × F .  A convention,
which we will use in the next chapter on Equilibrium, is
to say that a torque that points up out of the paper is a
positive torque, while a torque pointing down into the
paper is a negative one.  With this convention, we see that
the force in Figure (17b) is exerting a positive torque
(and creating positive angular momentum), while the
force in Figure (17c) is producing a negative torque (and
creating negative angular momentum).

Fr
r

⊥

F

r

F
a)

b)

c)

r

F r

F
r r
⊥

F
θ

θ

r

Figure 17
Both a force F and a lever arm  r⊥⊥ are needed to
turn the bicycle wheel. The product   r⊥⊥F is the
magnitude of the torque ττ acting on the wheel.
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CONSERVATION OF
ANGULAR MOMENTUM
In our discussion of a system of particles in Chapter 11,
we saw that if we had a system of many interacting
particles, with internal forces  Fi internal  between the
particles, as well as various external forces  Fi external ,
we obtained the equation

 Fexternal = dP
dt

(11-12)

where  Fexternal  is the vector sum of all the external
forces acting on the system, and P  is the vector sum of
all the momenta  pi  of the individual particles.  This
result was obtained using Newton’s third law and
noting that all the internal forces cancel in pairs.  In the
case where there is no net external force acting on the
system, then  dP/dt = 0  and the total linear momentum
of the system is conserved.

We can obtain a similar result for angular momentum
by starting with the definition of the total angular
momentum  L  of a system as being the vector sum of
the angular momentum of the individual particles  

i

   
L ≡ iΣ

i

definition of the
total angular momenta
of a system of particles

(46)

Differentiating Equation (46) with respect to time
gives

  dL
dt

=
d i
dtΣ

i
(47)

For an individual particle i, we have

   d i
dt

= τi = r i × Fi

Equation 44
applied to
particle i

(48)

where  Fi  is the vector sum of the forces acting on the
particle i.  As shown in Figure (18), we can take  r i  to
be the coordinate vector of the i-th particle.  For this
discussion, we can locate the origin of the coordinate
system anywhere we want.

Substituting Equation (48) into Equation (47) gives

  dL
dt

=
d i
dt

= r i × FiΣ
i

Σ
i

Now break the net force  Fi  into the sum of the external
forces  Fi external  and the sum of the internal forces

 Fi internal .  This gives

  dL
dt

= r i × Fi externalΣ
i

+ r i × Fi internalΣ
i

= τi externalΣ
i

+ τi internalΣ
(49)

Next assume that all the internal forces are equal and
opposite as required by Newton’s third law, and are
directed toward or away from each other.  In Figure
(19) we consider a pair of such internal forces and note
that both coordinate vectors  r 1  and  r 2  have the same
perpendicular lever arm   r ⊥ .  Thus the equal and
opposite forces  F1,2 external and  F2,1 internal  create equal
and opposite torques which cancel each other in Equa-
tion (49).  The result is that all torques produced by
internal forces cancel in pairs, and we are left with the
general result

  
τexternal =

dL
dt

(50)

where   τexternal  is the vector sum of all the external
torques acting on the system of particles, and  L  is the
vector sum of the angular momentum of all of the
particles.

i

i th particle

r

F12 internal

1

F21 internal

1

2

r
r

2r

Figure 18
Coordinate
vector for the
i th particle.

Figure 19
Both coordinate
vectors  r1 and

 r2 have the same
perpendicular
lever arm   r⊥⊥
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In order to define torque or angular momentum, we
have to choose an axis or origin for the coordinate
vectors  r i .  (Both torque and angular momentum
involve the lever arm   r ⊥  about that axis.)  Equation 50
is remarkably general in that it applies no matter what
origin or axis we choose.  In general, choosing a
different axis will give us different sums of torques and
a different total angular momentum, but the new torques
and angular momenta will still obey Equation 50.

In some cases, there is a special axis about which there
is no external torque.  In the bicycle wheel demonstra-
tions where we stood on a rotating platform, the freely
rotating platform did not contribute any external torques
about it own axis, which we called the z axis.  As long
as we did not touch another person or some furniture,
then the z component of the external torques were zero.
Since Equation 50 is a vector equation, that implies

  τz external =
dLz
dt

= 0 (51)

and we predict that the z component of the total angular
momentum (us and the bicycle wheel) should be
unchanged, remain constant, no matter how we turned
the bicycle wheel.  This is just what we saw.

Another consequence of Equation 50 is that if we have
an isolated system of particles with no net external
torque acting on it, then the total angular momentum
will be unchanging, will be conserved.  This is one
statement of the law of conservation of angular mo-
mentum.  Our derivation of this result relied on the
assumption of Newton’s third law that all internal
forces are equal and opposite and directed toward each
other.  Since angular momentum is conserved on an
atomic, nuclear and subnuclear scale of distance, where
Newtonian mechanics no longer applies, our deriva-
tion is in some sense backwards.  We should start with
the law of conservation of angular momentum as a
fundamental law, and show for large objects which
obey Newtonian mechanics, the sum of the internal
torques must cancel.  This is the kind of argument we
applied to the conservation of linear momentum in
Chapter 11 (see Equation 11-14).

2

Figure 7–15 repeated
Since the platform is completely free to rotate about the z axis, there are no z directed external
torques acting on the system consisting of the platform, person and bicycle wheel. As a result the
z component of angular momentum is conserved when the bicycle wheel is turned over.
(Note: when the wheel is being held up, we are looking at the under side.)

Movie
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GYROSCOPES
The gyroscope provides an excellent demonstration of
the predictive power of the equation   τ = dL dtdL dt.
Gyroscopes behave in peculiar, non intuitive ways.
The fact that a relatively straightforward application of
the equation   τ = dL dtdL dt  predicts this bizarre behavior,
provides a graphic demonstration of the applicability
of Newton’s laws from which the equation is derived.

Start -up
For this discussion, a bicycle wheel with a weighted
rim will serve as our example of a gyroscope.  To
weight the rim, remove the tire and wrap copper wire
around the rim to replace the tire.  The axle needs to be
extended as shown in Figure (20).

As an introduction to the gyroscope problem, start with
the bicycle wheel at rest, hold the axle fixed, and apply
a force F to the rim as shown in Figure (20).  The force
shown will cause the wheel to start spinning in a
direction so that the angular momentum  L   points to the
right as shown.  (Curl the fingers of your right hand in
the direction of rotation and your thumb points in the
direction of  L .)

The force F, in Figure (20), produces a torque
  τ = r × F  that also points to the right as shown.  (The

right hand convention used here is to point your fingers
in the direction of the first vector r , curl them in the
direction of the second vector F, and your thumb points
in the direction of the cross product   r × F = τ.)

When we start with the bicycle wheel at rest, and apply
the right directed torque shown in Figure (20), we get
a right directed angular momentum  L. Thus the torque
τ  and the resulting angular momentum  L  point in the
same direction.  In addition, the longer we apply the
torque, the faster the wheel spins, and the greater the
angular momentum  L. Thus both the direction and
magnitude of  L  are consistent with the equation

  τ = dL dtdL dt.

ω

r

L
axel

τ = r x F

F

Figure 20
Spinning up the bicycle wheel. Note that the
resulting angular momentun L points in the
same direction as the applied torque ττ .

Figure 25 Movie
The gyroscope really works!
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rope

rope

mg

r
LO

axel

τ = r x mgF

mg

r
axis for
torque

rope

r

LO
axel

τ = r x mg

mg points down

looking down on wheel

Figure 21
Suspend the spinning bicycle wheel by a rope
attached to the axle. The gravitational force  mg
has a lever arm r  about the axis O. This creates
a torque    ττ = r ×× mg  pointing into the paper.

Figure 22
Looking down from the ceiling, the vector  mg
points down into the paper and    ττ = r ×× mg
points to the top of the page.  In this view we
can see both the vectors L  and ττ .

P r e c e s s i o n
When we apply the equation   τ = dL dtdL dt  to a gyro-
scope that is already spinning, and apply the torque in
a direction that is not parallel to  L, the results are not so
obvious.

Suppose we get the bicycle wheel spinning rapidly so
that it has a big angular momentum vector  L,  and then
suspend the bicycle wheel by a rope attached to the end
of the axle as shown in Figure (21).

To predict the motion of the spinning wheel, the first
step is to analyze all the external forces acting on it.
There is the gravitational force  mg  which points
straight down, and can be considered to be acting at the
center of mass of the bicycle wheel, which is the center
of the wheel as shown.  Then there is the force of the
rope which acts along the rope as shown.  No other
detectable external forces are acting on our system of
the spinning wheel.

One thing we know about the force  Frope is that it acts
at the point labeled O where the rope is tied to the axle.
If we take the sum of the torques acting on the bicycle
wheel about the suspension point O, then  Frope has no
lever arm about this point and therefore contributes no
torque.  The only torque about the suspension point O
is produced by the gravitational force  mg  whose lever
arm is  r ,  the vector going from point O down the axle
to the center of the bicycle wheel as shown in Figure
(21).

The formula for this gravitational torque   τg  is

   
τg = r × mg

torque about point O
produced by the
gravitational force
on the bicycle wheel

(52)

The new feature of the gyroscope problem, which we
have not encountered before, is that the torque τ  does
not point in the same direction as the angular momen-
tum L   of the bicycle wheel.  If we look at Figure (21),
point the fingers of our right hand in the direction of the
vector  r ,  and curl our fingers in the direction of the
vector  mg,  then our thumb points down into the paper.
This is the definition of the direction of the vector cross
product   r × mg.  But the angular momentum L of the
bicycle wheel points along the axis of the wheel to the
right in the plane of the paper.  In order to view both the
angular momentum vector L  and the torque vector τ
in the same diagram, we can look down on the bicycle
wheel from the celing as shown in Figure (22).

When we started the wheel spinning, back in Figure
(20), the torque τ  and angular momentum  L pointed in
the same direction, and we had the simple result that the
longer we applied the torque, the more angular mo-
mentum we got.  Now, with the torque and angular
momentum pointing in different directions as shown in
Figure (22), we expect that the torque will cause a
change in the direction of the angular momentum.
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To predict the change in L , we start with the angular
form of Newton’s second law

  τ = dL
dt

and multiply through by the short (but finite) time
interval dt to get

  dL = τ dt (53)

Equation 53 gives us  dL,which is the change in the
bicycle wheel’s angular momentum as a result of
applying the torque τ  for a short time dt.

To see the effect of this change  dL,  we will use some
of the terminology we used in the computer prediction
of motion.  Let us call  Lold the old value of the angular
momentum that the bicycle wheel had before the time
interval dt, and  Lnew the new value at the end of the
time interval dt.  Then  Lnew will be related to  Lold by
the equation

 Lnew = Lold + dL (54)

Using Equation 53 for  dL  gives

  Lnew = Lold + τdt (55)

A graph of the vectors  Lold,  Lnew, and   τ dt is shown
in Figure (23).  In this figure the perspective is looking
down on the bicycle wheel, as in Figure (22).

Since the torque τ  is in the horizontal plane, the vector
  Lnew = Lold + τ dt  is also in the horizontal plane.

And since τ  and  Lold  are perpendicular to each other,
 Lnew has essentially the same length as  Lold.  What is

happening is that the vector L is starting to rotate
counter clockwise (as seen from above) in the horizon-
tal plane.

One final, important point.  For this experiment we
were careful to spin up the bicycle wheel so that before
we suspended the wheel from the rope, the wheel had
a big angular momentum pointing along its axis of
rotation.  When we apply a torque to change the
direction of L, the axis of the wheel and the angular
momentum vector L move together.  As a result the axis
of the bicycle wheel also starts to rotate counter clock-
wise in the horizontal plane.  The bicycle wheel, instead
of falling as expected, starts to rotate sideways.

Once the bicycle wheel has turned an angle  dθ side-
ways, the axis of rotation and the torque τ  also rotate
by an angle   dθ, so that the torque τ  is still perpendicular
to L as shown in Figure (24).  Since τ  always remains
perpendicular to L, the vector   τ dt cannot change the
length of L.  Thus the angular momentum vector L
remains constant in magnitude and rotates or “pre-
cesses” in the horizontal plane.  This is the famous
precession of a gyroscope which is nicely demon-
strated using the bicycle wheel apparatus of Figure
(21).

newL

Lold

dθ
τ dt

Figure 23
The vectors    Lold, Lnew and ττ dt  as seen
from the top view of Figure 22.

rope

r

LO
axel

τ = r x mg

mg points down

looking down on wheel

Figure 22 repeated
Looking down from
the ceiling.

L0

L1

L 2

L 3

0

1

2

τ dt
dθ

τ dt

dθ

τ dt

dθ

Figure 24
After each time step dt, the angular
momentum vector L (and the bicycle
wheel axis) rotates by another angle   dθθ.
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To calculate the rate of precession we note from
Figures (23) or (24) that the angle   dθ is given by

  dθ = τdt
L (56)

where we use the fact that   τdt is a very short length, and
thus   sin dθ  and  dθ are equivalent.  Dividing both
sides of Equation 56 through by dt, we get

  dθ
dt

= τ
L (57)

But   dθ/dt  is just the angular velocity of precession,
measured in radians per second.  Calling this preces-
sional velocity   Ωprecession(  Ω  is just a capital ω
“omega”), we get

   

Ωprecession =
τ
L

precessional
angular velocity
of a gyroscope

(58)

Exercise 9
A bicycle wheel of mass m, radius r, is spun up to an
angular velocity ω.  It is then suspended on an axle of
length h as shown in Figure (21).  Calculate

(a) the angular momentum L of the bicycle wheel.

(b) the angular velocity of precession.

(c) the time it takes the wheel to precess around once
(the period of precession).  [You should be able to
obtain the period of precession from the angular
velocity of precession by dimensional analysis.]

(d) A bicycle wheel of total mass 1kg and radius 40cm,
is spun up yo a frequency    f = 2πω = 10 cycles/sec. The
handle is 30cm long. What is the period of precession
in seconds? Does the result depend on rhe mass of the
bicycle wheel?

If you try the bicycle wheel demonstration that we
discussed, the results come out close to the prediction.
Instead of falling as one might expect, the wheel
precesses horizontally as predicted.  There is a slight
drop when you let go of the wheel, which can be
compensated for by releasing the wheel at a slight
upward angle.

If you look at the motion of the wheel carefully, or study
the motion of other gyroscopes (particularly the air
bearing gyroscope often used in physics lectures) you
will observe that the axis of the wheel bobs up and
down slightly as it goes around.  This bobbing, or
epicycle like motion, is called nutation.  We did not
predict this nutation because we made the approxima-
tion that the axis of the wheel exactly follows the
angular momentum vector.  This approximation is very
good if the gyroscope is spinning rapidly but not very
good if L  is small.  Suppose, for example we release the
wheel without spinning it.  Then it simply falls.  It starts
to rotate, but along a different axis.  As it starts to fall
it gains angular momentum in the direction of τ .  A
more accurate analysis of the motion of the gyroscope
can become fairly complex.  But as long as the gyro-
scope is spinning fast enough so that the axis moves
with L , we get the simple and important results dis-
cussed above.
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APPENDIX
Moment of Inertia and
Rotational Kinetic Energy

In the main part of the text, we briefly discussed
moment of inertia as the angular analogy to mass in the
formula for angular momentum.  As linear momentum
p  of an object is its mass m times its linear velocity v

  p = mv linear momentum (A1)

the angular momentum  is the angular mass or
moment of inertia I time the angular velocity ω

   = Iω angular momentum (A2)

In the simple case of a bicycle wheel, where all the mass
is essentially out at a distance (r) from the axis of the
wheel, the moment of inertia about the axis is

  
I = Mr2 moment of inertia

of a bicycle wheel (A3)

where M is the mass of the wheel.

When the mass of an object is not all concentrated out
at a single distance (r) from the axis, then we have to
calculate the moment of inertia of individual parts of
the object that are at different radii r, and tie together the
various pieces to get the total moment of inertia.  This
usually involves an integration, like the one we did in
Equations 21 through 23 to calculate the moment of
inertia of a solid cylinder.

For topics to be discussed later in the text, the earlier
discussion of moment of inertia is all we need.  But
there are topics, such as rotational kinetic energy and its
connection to moment of inertia, which are both inter-
esting, and can be easily tested in both lecture demon-
strations and laboratory exercises.  We will discuss
these topics here.

ROTATIONAL KINETIC ENERGY
Let us go back to our example, shown in Figure (3)
repeated here, of a ball of mass m, on the end of a
massless stick of length r, rotating with an angular
velocity  ω .  The speed v of the ball is given by Equation
11 as

  v = rω (11 repeated)

and the ball’s kinetic energy will be

  kinetic
energy = 1

2mv2 = 1
2m rω 2

= 1
2 mr2 ω2 (A4)

Since the ball’s moment of inertia I about the axis of
rotation is  mr2 , we get as the formula for the ball’s
kinetic energy

   kinetic
energy = 1

2 Iω2 analogous
to 1/2mv2 (A5)

We see the angular analogy working again.  The ball
has a kinetic energy, due to its rotation, which is
analogous to   1/2mv2 , with the linear mass m replaced
by the angular mass I and the linear velocity v replaced
by the angular velocity ω .

m

θ

r

pivot

ω

massless stick

Figure 3 repeated
Mass rotating on the end of a massless stick.
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If we have a bicycle wheel of mass M and radius r
rotating at an angular velocity ω, we can think of the
wheel as being made up of a collection of masses on the
ends of rods as shown in Figure (6) repeated here.  For
each individual mass  m i , the kinetic energy is  1/2 m iv

2

where   v = r ω  is the same for all the masses.  Thus the
total kinetic energy is

  kinetic energy
of bicycle wheel

= 1
2 m ir

2ω2Σ
i

= 1
2 r2ω2 m iΣ

i

= 1
2 r2ω2M

where the sum of the masses   m iΣ  is just the mass M
of the wheel. The result can now be written

  kinetic energy
of bicycle wheel

= 1
2 Mr2 ω2

= 1
2 Iω2 (A6)

If we call  Mr 2  the angular mass, or moment of inertia
I of the bicycle wheel, we again get the formula

  1 21 2 Iω2 for kinetic energy of the wheel.  Thus we see
that, in calculating this angular mass or moment of
inertia, it does not make any difference whether the
mass is concentrated at one point as in Figure (3), or
spread out as in Figure (6).  The only criterion is that the
mass or masses all be out at the same distance r from the
axis of rotation.

In most of our examples we will consider objects like
bicycle wheels or hollow cylinders where the mass is
essentially all at a distance r from the axis of rotation,
and we can use the formula  Mr 2  for the moment of
inertia.  But often the mass is spread out over different
radii and we have to calculate the angular mass.  An
example is a rotating shaft shown back in Figure (9),
where the mass extends from the center where r = 0 out
to the outside radius r = R.

Suppose we have an arbitrarily shaped object rotating
an angular velocity ω about some axis, as shown in
Figure (A1). To find the moment of inertia, we will
calculate the kinetic energy of rotation and equate that
to   1/2Iω2  to obtain the formula for I.  To do this we
conceptually break the object into many small masses

 dm i  located a distance  ri  from the axis of rotation as
shown. Each  dmi will have a speed   vi = ri ω , and thus
a kinetic energy

  kinetic energy
of object

= 1
2m ivi

2Σ
i

= 1
2m iri

2ω2Σ
i

= 1
2

ω2 m ir i
2Σ

i

= 1
2

ω2 I (A7)

From Equation A7, we see that the general formula for
moment of inertia is

  
I = m ir i

2Σ
i

(A8)

Figure 6 repeated
Bicycle wheel as a collection of masses
on the end of massless rods.

ω

r

axis of
rotation

mi

ir

ω

Figure A1
Calculating the moment of inertia of
an object about the axis of rotation.
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In example 1, Equations 21 through 23, we showed you
how to calculate the moment of inertia of a solid
cylinder about its axis of symmetry.  In that example we
broke the cylinder up into a series of concentric shells
of radius ri  and mass  dmi , calculated the moment of
inertia of each shell  dmi ri

2 , and summed the results
as required by Equation A7.  As in most cases where we
calculate a moment of inertia, the sum is turned into an
integral.

In Exercise 3 which followed Example 1, we had you
calculate the moment of inertia, about its axis of
symmetry, of a hollow thick-walled cylinder.  The
calculation was essentially the same as the one we did
in Example 1, except that you had to change the limits
of integration.  The following exercise gives you more
practice calculating moments of inertia, and shows you
what happens when you change the axis about which
the moment of inertia is calculated.

Exercise  A1

Consider a uniform rod of mass M and length L as
shown in Figure (A2).

a)    Calculate the moment of inertia of the rod about the
center axis, labeled axis 1 in Figure (A2).

b)    Calculate the moment of inertia of the rod about an
axis that goes through the end of the rod, axis 2 in Figure
(A2).  About which axis is the moment of inertia greater?
Explain why.

COMBINED
TRANSLATION AND ROTATION
In our discussion of the motion of a system of particles,
we saw that the motion was much easier to understand
if we focused our attention on the motion of the center
of mass of the system.  The simple feature of the motion
of the center of mass, was that the effects of all internal
forces cancelled. The center of mass moved as if it were
a point particle of mass M,  equal to the total mass of
the system, subject to a force F equal to the vector sum
of all the external forces acting on the object.

When the system is a rigid object, we have a further
simplification. The motion can then be described as the
motion of the center of mass, plus rotation about the
center of mass.  To see that you can do this, imagine that
you go to a coordinate system that moves with the
object’s center of mass.  In that coordinate system, the
object’s center of mass point is at rest, and the only
thing a rigid solid object can do is rotate about that
point.

A key advantage of viewing the motion of a rigid object
this way is that the kinetic energy of a moving, rotating,
solid object is simply the kinetic energy of the center of
mass motion plus the kinetic energy of rotation.  Ex-
plicitly, if an object has a total mass M, and a moment
of inertia  Icom  about the center of mass (parallel to the
axis of rotation of the object) then the formula for the
kinetic energy of the object is

  kinetic energy
of moving and
rotating object

= 1
2 MVcom

2 + 1
2 I com ω2 (A9)

where  Vcom  is the velocity of the center of mass and ω
the angular velocity of rotation about the center of
mass.

More important is the idea that motion can be separated
into the motion of the center of mass plus rotation about
the center of mass.  To emphasize the usefulness of this
concept, we will first consider an example that can
easily be studied in the laboratory or at home, and then
go through the proof of the equation.

axis 1axis 2

L

m

Figure A2
Calculating the moment of inertia of a long thin rod.
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Example—Objects Rolling
Down an Inclined Plane
Suppose we start with a cylindrical object at the top of
an inclined plane as shown in Figure (A3), and measure
the time the cylinder takes to roll down the plane.  Since
we do not have to worry about friction for a rolling
object, we can use conservation of energy to analyze
the motion.

If the cylinder rolls down so that its height decreases by
h as shown, then the loss of gravitational potential
energy is mgh.  Equating this to the kinetic energy
gained gives

  
mgh =

1
2

m vcom
2 +

1
2

I ω2
(A10)

where m is the mass of the cylinder,  vcom the speed of
the axis of the cylinder, I the moment of inertia about
the axis and ω the angular velocity.

If the cylinder rolls without slipping, there is a simple
relationship between   vcom  and ω.  We are picturing the
rolling cylinder as having two kinds of motion—
translation and rotation.  The velocity of any part of the
cylinder is the vector sum of  vcom   plus the velocity due
to rotation.

At the point where the cylinder touches the inclined
plane, the rotational velocity has a magnitude   vrot = ω r,
and is directed back up the plane as shown in Figure
(15).  If the cylinder is rolling without slipping, the
velocity of the cylinder at the point of contact must be
zero, thus we have

   
vcom + ω r = 0 rolling without

slipping (A11)

Thus we get for magnitudes

  ωr = vcom ; ω = vcom /r (A12)

Using Equation A12 in A10 gives

 
mgh =

1
2

mvcom
2 +

1
2

I
vcom

2

r2

=
1
2

m +
I

r2
vcom

2 (A13)

Let us take a look at what is happening physically as the
cylinder rolls down the plane.   In our earlier analysis
of a block sliding without friction down the plane, all
the gravitational potential energy mgh went into ki-
netic energy  1/2 mvcom

2 .  Now for a rolling object, the
gravitational potential has to be shared between the
kinetic energy of translation  1/2 mvcom

2  and the kinetic
energy of rotation   1/2 Iω2.   The greater the moment of
inertia I, the more energy that goes into rotation, the less
available for translation, and the slower the object rolls
down the plane.

In our discussion of moments of inertia, we saw that for
two cylinders of equal mass, the hollow thin-walled
cylinder had twice the moment of inertia as the solid
one.  Thus if you roll a hollow and a solid cylinder down
the plane, the solid cylinder will travel faster because
less gravitational potential energy goes into the kinetic
energy of rotation.  You get to figure out how much
faster in Exercise A2.

h

θ

vcom ωr
r

ω

Figure A3
Calculating the speed of an object rolling down a plane.

Figure A4
The velocity at the point of contact is the sum of the
center of mass velocity and the rotational velocity.
This sum must be zero if there is no slipping.
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Before you work Exercise A2, think about this ques-
tion.  The technician who sets up our lecture demon-
strations has a metal sphere, and does not know for sure
whether the sphere is solid or hollow.  (It could be a
solid sphere made of a light metal, or a hollow sphere
made from a more dense metal.)  How could you find
out if the sphere is solid or hollow?

Exercise A2
You roll various objects down the inclined plane shown
in Figure (A3).

(a) a thin walled hollow cylinder

(b) a solid cylinder

(c) a thin walled sphere

(d) a solid sphere

and for comparison, you also slide a frictionless block
down the plane:

(e) a frictionless block

For each of these, calculate the speed  vcom  after the
object has descended a distance h.  (It is easy to do all
cases of this problem by writing the object’s moment of
inertia in the form   I = αMR2,, where   α = 1 for the hollow
cylinder, 1/2 for the solid cylinder, etc.)  What value of α
should you use for the sliding block?

Writing your results in the form   vcom = β 2gh  summa-
rize your results in a table giving the value of β in each
case. (β = 1 for the sliding block, and is less than 1
for all other examples.)

Exercise A3   A Potential Lab Experiment

In Exercise A2 you calculated the speed  vcom  of various
objects after they had descended a distance h.  A block
sliding without friction has a speed v given by

 mgh =1/2 mv2 , or  v = 2gh .  The rolling objects were
moving slower when they got to the bottom.  For all
heights, however, the speed of a rolling object is slower
than the speed of the sliding block by the same constant
factor.  Thus the rolling objects moved down the plane
with constant acceleration, but less acceleration than
the sliding block.  It is as if the acceleration due to gravity
were reduced from the usual value g.  Using this idea,
and the results of Exercise A2, predict how long each of
the rolling objects take to travel down the plane.  This
prediction can be tested with a stop watch.

PROOF OF THE
KINETIC ENERGY THEOREM
We are now ready to prove the kinetic energy theorem
for rotational motion.  If we have an object that is
rotating while it moves through space, its total kinetic
energy is the sum of the kinetic energy of the center of
mass motion plus the kinetic energy of rotational
motion about the center of mass.  The proof is a bit
formal, but shows what you can do by working with
vector equations.

Consider a solid object, shown in Figure (A5), that is
moving and rotating.  Let  Rcombe the coordinate
vector of the center of mass of the object.  We will think
of the object as being composed of many small masses

 m i   which are located at  Ri  in our coordinate system,
and a displacement  r i  from the center of mass as
shown.  As we can see from Figure (A5), the vectors

 Rcom,  Ri  and  r i  are related by the vector equation

 Ri = Rcom + ri (A14)

We can obtain an equation for the velocity of the small
mass  mi  by differentiating Equation A14 with respect
to time

 dRi
dt

=
dRcom

dt
+

d ri
dt

(A15)

mi

comRi

Rcom

ir

Figure A5
Analyzing the motion of a small piece of an object.
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which can be written in the form

 Vi = Vcom + vi (A16)

where  Vi = dRi /dt  is the velocity of  mi in our coordi-
nate system,  Vcom = dRcom/dt  is the velocity of the
center of mass of the object, and  vi = dr i /dt  is the
velocity of  m i   in a coordinate system that is moving
with the center of mass of the object.

The kinetic energy of the small mass  m i  is

 1
2

m iVi
2 = 1

2
m i Vi • Vi

= 1
2

m i Vcom + vi • Vcom + vi

= 1
2

m i Vcom
2 + 2Vcom • vi + vi

2

= 1
2

m iVcom
2 + 1

2
mivi

2 + miVcom • vi

(A17)
The total kinetic energy of the object is the sum of the
kinetic energy of all the small pieces  mi

  total
kinetic
energy

= 1
2

miVi
2Σ

i

= 1
2

Vcom
2 miΣ

i
+ 1

2
mivi

2Σ
i

+ Vcom • miviΣ
i

(A18)
In two of the terms, we could take the common factor

 Vcom outside the sum.

Now the quantity  mivi  that appears in the last term of
Equation A18 is the linear momentum of  mi as seen in
a coordinate system where the center of mass is at rest.
To evaluate the sum of these terms, let us choose a new
coordinate system whose origin is at the center of mass
of the object as shown in Figure (A6).  In this coordinate
system the formula for the center of mass of the small
masses  mi is

  r com = m i r iΣ
i

= 0 (A19)

Differentiating Equation 19 with respect to time gives

 
  
mi

dr i
dtΣ

i
= m iv iΣ

i
= 0 (A20)

Equation A20 tells us that when we are moving along
with the center of mass of a system of particles, the total
linear momentum of the system, the sum of all the  mivi,
is zero.

Using Equation A20 in A18 gets rid of the last term.  If
we let   M = miΣ

i
 be the total mass of the object, we get

  
total
kinetic
energy

= 1
2 MVcom

2 + 1
2 m ivi

2Σ
i

(A21)

Equation A21 applies to any system of particles, whether
the particles make up a rigid object or not.  The first
term,  1 21 2MVcom

2  is the kinetic energy of center of mass
motion, and   1 21 2 mivi

2Σ  is the kinetic energy as seen
by someone moving along with the center of mass.  If
the object is solid, then in a coordinate system where the
center of mass is at rest, the only thing the object can do
is rotate about the center of mass.  As a result the kinetic
energy in that coordinate system is the kinetic energy
of rotation.  If the moment of inertia about the axis of
rotation is  Icom , then the total kinetic energy is

  1 21 2MVcom
2 + 1 21 2 Icomω2  where ω is the angular ve-

locity of rotation.  This is the result we stated in
Equation A9.

mi

com

ir

Figure A6
Here we moved the origin of the coordinate
system to the center of mass.



Chapter 13
Equilibrium

When does a structure fall over, when does a bridge
collapse, how do you lift a weight in a way that
prevents serious injury to your back?  We begin to
answer such questions by applying Newton’s laws to
an object that has neither linear nor angular accel-
eration.  The most interesting special case is when an
object is at rest and will stay that way, when it is not
about to tip over or collapse.

CHAPTER 13 EQUILIBRIUM
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EQUATIONS FOR EQUILIBRIUM
If the center of mass of an object is not accelerating,
then we know that the vector sum of the external forces
acting on it is zero.  If the object has no angular
acceleration, then the sum of the torques about any axis
must be zero.  These two conditions

  sum of
external

forces
Fi externalΣ

i
= 0 (1)

  sum of
torques

about
any axis

τi externalΣ
i

= 0 (2)

are what we will consider to be the required conditions
for an object to be in equilibrium.

Equations 1 and 2 are a complete statement of the basic
physics to be discussed in this chapter.  Everything else
will be examples to show you how to effectively apply
these equations in order to understand and predict when
an object will be in equilibrium.  In particular we wish
to show you some techniques that make it quite easy to
apply these equations.

Example 1  Balancing Weights
As our first example, suppose we have a massless rod
of length L and suspend two masses  m1 and  m2 from the
ends of the rod as shown in Figure (1).  The rod is then
suspended from a string located a distance x from he
left end of the rod.  What is the distance x and how
strong a force F must be exerted by the string?

Solution:  The first step is to sketch the situation and
draw the forces involved, as we did in Figure (1).  Our
system  will be the rod and the two masses.  The external
forces acting on this system are the two gravitational
forces  m1g  and   m2g , and the force of the string F .
Since all the forces are y directed, when we set the
vector sum of these external forces to zero we have

  ΣFy = F – m1g – m2g = 0 (3)

Thus we get for F

 F = m1+ m2 g (4)

and we see that F must support the weight of the two
masses.

To figure out where to suspend the rod, we use the
condition that the net torque produced by the three
external forces must be zero.  Since a torque is a force
times a lever arm about some axis, you have to choose
an axis before you can calculate any torques.  The
important point in equilibrium problems is that you can
choose the axis you want.  We will see that by
intelligently selecting an axis, we can simplify the
problem to a great extent.

Our definition of a torque τ  caused by a force F is

  τ = r × F (5)

where r  is a vector from the axis O to the point of
application of the force F as shown in Figure (2).

In this chapter we do not need the full vector formalism
for torque that we used in the discussion of the gyro-
scope.  Here we will use the simpler picture that the
magnitude of a torque caused by a force F is equal to
the magnitude of F times the lever arm r⊥ , which is the
distance of closest approach between the axis and the
line of action of the force F as shown in Figure (2).  If
the torque tends to cause a counter clockwise rotation,
as it is in Figure (2), we will call this a positive torque.
If it tends to cause a clockwise rotation, we will call that
a negative torque.

L – xx

F

m1
m2

m1g

m2 g

O

Figure 1
Masses  m1 and  m2 suspended from a massless
rod.  At what position x do we suspend the rod
in order for the rod to balance?
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(In Figure (2), the vector   r × F points up out of the
page.  If the vector F were directed to cause a clockwise
rotation, then   r × F would point down into the paper.
[It is good practice to check this for yourself.]  Thus we
are using the convention that torques pointing up are
positive, and those pointing down are negative.)

Returning to our problem of the rod and weights shown
in Figure (1), let us take as our axis for calculating
torques, the point of suspension of the rod, labeled
point O in Figure (1).  With this choice, the force F
which passes though the point of suspension, has no
lever arm about point O and therefore produces no
torque about that point.

The gravitational force  m1g  has a lever arm x about
point O and is tending to rotate the rod counter clock-
wise.  Thus  m1g  produces a positive torque of magni-
tude  m1gx.  The other gravitational force  m2g  has a
lever arm (L – x) and is tending to rotate the rod
clockwise.  Thus  m2g  is producing a negative torque
magnitude  – m2g L – x .  Setting the sum of the
torques about point O equal to zero gives

 m1gx – m2g L – x = 0 (6)

 

x =
m2

m1 + m2
L (7)

Let us check to see that Equation 7 is a reasonable
result.  If  m1 = m2 , then we get  x = L/2 which says
that with equal weights, the rod balances in the center.
If, in the extreme,  m1 = 0 , then we get x = L, which
tells us that we must suspend the rod directly over  m 2 ,
also a reasonable result.  And if  m2 = 0 we get x = 0 as
expected.

We obtained Equation 7 by setting the torques about
the balance point equal to zero.  This choice had the
advantage that the suspending force F had no lever arm
and therefore did not appear in our equations.  We
mentioned earlier that the condition for equilibrium
was that the sum of the torques be zero about any axis.
In Exercises 1 and 2 we have you select different axes
about which to set the torques equal to zero.  With these
other choices, you will still get the same answer for x,
namely Equation 7, but you will have two unknowns,
F and x, and have to solve two simultaneous equations.
You will see that we simplified the work by choosing
the suspension point as the axis and thereby eliminating
F from our equation.

Exercise 1
If we choose the left end of the rod as our axis, as shown
in Figure (3), then only the forces F  and  m2g  produce
a torque

(a) Is the torque produced by F  positive or negative?

(b) Is the torque produced by  m2g  positive or negative?

(c) Write the equation setting the sum of the torques
about the left end equal to zero.  Then combine that
equation with Equation 4 for F and solve for x.  You
should get Equation 7 as a result.

Exercise 2

Obtain two equations for x and F in Figure (1) by first
setting the torques about the left end to zero, then by
setting the torques about the right end equal to zero.
Then solve these two equations for x and see that you
get the same result as Equation 7

Figure 2
The torque    ττ = r ×× F has a magnitude    τ = r⊥ ×× F.

F

axis
o τ  = r x Fo

r

r axis

L

x

F

m2

m2 g

m1 g m2 g= +

Figure 3
Torques about the left end of the rod.
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GRAVITATIONAL FORCE ACTING
AT THE CENTER OF MASS
When we are analyzing the torques acting on an
extended object, we can picture the gravitational force
on the whole object as acting on the center of mass
point.  To prove this very convenient result, let us
conceptually break up a large object of mass M into
many small masses  mi  as shown in Figure (4), and
calculate the total gravitational torque about some
arbitrary axis O.  An individual particle  mi  located a
distance xi down the x axis from our origin O produces
a gravitational torque τi given by

  τi = mig xi (8)

where  mig is the gravitational force and xi  the lever
arm.  Adding up the individual torques τi to obtain the
total gravitational torque   τO gives

  τO = τiΣ
i

= migxiΣ
i

= g mixiΣ
i

(9)

But the sum   Σmixi  is by definition equal to M times
the x coordinate of the center of mass of the object

  MXcom ≡ mixiΣ
i

(10)

Using Equation 10 in 9 gives

  τO = MgXcom (11)

Equation 11 says that the gravitational torque about any
axis O is equal to the total gravitational force  Mg times
the horizontal coordinate of the center of mass of the
object.  Thus the gravitational torque is just the same as
if all of the mass of the object were concentrated at the
center of mass point.

Exercise 3

A wheel and a plank each have a mass M.  The center
of the wheel is attached to one end of a uniform beam
of length L.  A nail is driven through the center of mass
of the plank and nailed into the other end of the beam as
shown in Figure (5).  Where do you attach a rope around
the beam so that the beam will balance?  Explain how
you got your answer.

mi g

mi

O
axis

x i

rope

beam
length L

plank mass m

wheel
mass m

Figure 5
A wheel and a plank are attached
to the ends of a uniform beam.

Figure 4
Conceptually break the large object of mass M into
many small pieces of mass   m i , located a distance  x i
down the x axis from our arbitrary origin O.
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TECHNIQUE OF SOLVING
EQUILIBRIUM PROBLEMS
In our discussion of the balance problem shown in
Figure (1), we saw that there were several ways to solve
the problem.  We always have the condition that for
equilibrium the vector sum of the forces is zero

  ΣiFi = 0  and sum of the torques τi about any axis is
zero   Σiτi = 0 .  By choosing various axes we can
easily get enough, or more than enough equations to
solve the problem.  If we are not careful about the way
we do this however, we can end up with a lot of
simultaneous equations that are messy to solve.

Our first solution of the equilibrium condition for
Figure (1) suggests a technique for simplifying the
solution of equilibrium problems.  In Equation 6 we set
to zero the sum of the torques about the balance point
O shown in Figure (1) reproduced here.  We wanted to
calculate the position x of the balance point, and were
not particularly interested in the magnitude of the force
F.  By taking the torques about the point O where F has
no lever arm, F does not appear in our equation.  As a
result the only variable in Equation 6 is x, which can be
immediately solved to give the result in Equation 7.  As
we saw in Exercises 1 and 2, if we chose the torques
about any other point, both variables x and F appear in
our equations, and we have to solve two simultaneous
equations.

We will now consider some examples and exercises
that look hard to solve, but turn out to be easy if you take
the torques about the correct point.  The trick is to find
a point that eliminates the unknown forces you do not
want to know about.

Example 3  Wheel and Curb
A boy is trying to push a wheel up over a curb by
applying a horizontal force  Fboy  as shown in Figure
(6a).  The wheel has a mass m, radius r, and the curb a
height h as shown.  How strong a force does the boy
have to apply?

Solution:  We will consider the wheel to be the object
in equilibrium, and as a first step sketch all the forces
acting on the wheel as shown in Figure (6b).  We can
treat this as an equilibrium problem by noting that as the
wheel is just about to go up over the curb, there is no
force between the bottom of the wheel and the road.

There is, however, the force of the curb on the wheel,
labeled  Fcurb in Figure (6b).  We know the point at
which  Fcurb acts but we do not know off hand either the
magnitude or direction of  Fcurb, nor are we asked to find

 Fcurb.

Fcurb

O

no forcemg

Fboy

Figure 6a
A boy, exerting a horizontal force on the axle of a
wheel, is trying to push the wheel up over a curb.
How strong a force must the boy exert?

mg

Fboy

h

r

L – xx

F

m1
m2

m1g

m2 g

O

Figure 1 (Repeated)
We can eliminate any force by a proper choice of axis.

Figure 6b
Forces on the wheel as the wheel is
just about to go up over the curb.
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The final slip in solving this problem is to relate the
distance  to the wheel radius r and curb height h.  As
shown in Figure (6d), the right triangle from the axle to
the curb has sides  , (r – h) and hypotenuse r. By the
Pythagorean theorem we get

 r2 = 2 + r – h
2

or
 
= 2 rh– h2 (13)

which finishes the problem.

Exercise 4

The direction of  Fcurb  is slightly off in Figure (6b). Explain
what would happen to the wheel if  Fcurb  pointed as
shown.

We can eliminate the unknown force  Fcurb by setting to
zero the torques about the point O where the curb
touches the wheel.  Since  Fcurb has no lever arm about
this point, it will not appear in the resulting equation.

In Figure (6c) we have sketched the geometry of the
problem.  About the point O the force  Fboy  has a lever
arm (r – h) and is tending to cause a clockwise rotation
about point O.  Thus  Fboy  is producing (by our conven-
tion) a negative torque, of magnitude  Fboy  (r – h).  The
gravitational force  mg  has a lever arm  shown in
Figure (6c), and is tending to produce a counter clock-
wise rotation.  Thus it is producing a positive torque of
magnitude  + mg  about point O.  Since there are no
other torques about point O, setting the sum of the
torques equal to zero gives

 – Fboy(r – h) + mg = 0

Fboy = mg
r – h

(12)

We immediately see that if the curb is as high as the
axle, if r = h, there is no finite force that will get the
wheel over the curb.

Figure 6c
Geometry of the problem.

(r – h)

O

mg

Fboy

r

r 2 r

Figure 7a
A frictionless rod is placed in a
hemispherical frictionless bowl.  What is
the equilibrium position of the rod?

axel

curb
(r – h)

r

Figure 6d
Figure 7a
We simulated a  frictionless rod in a hemispherical
frictionless bowl by placing ball bearing rollers at
one end of the rod and the edge of the “bowl”. The
rod always comes to rest at this angle.
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Example 4  Rod in a Frictionless Bowl
We include the problem here, first because it gives
some practice with what we mean by a frictionless
surface, but more importantly it is an example where
we can gain considerable insight without solving any
equations.

You place a frictionless rod of length 2r in a frictionless
hemispherical bowl of radius r.  Where does the rod
come to rest?  (Put in just enough friction to have it
come to rest.)  The situation is diagramed in Figure (7a).
In Figure (7b), we have made a reasonably accurate
simulation of the problem by using a semi circular
piece of plastic for the bowl and placing small rollers on
one end of the rod and one rim of the bowl to mimic the
frictionless surfaces.  In Figure (7c) we have sketched
the forces acting on the rod.  There is the downward
force of gravity  mg  that acts at the center of mass of the
rod, the force  Fb  exerted by the bowl on the end of the
rod, and the force  Fr  exerted by the rim.

The idealization that we have a frictionless surface is
equivalent to the statement that the surface can only
exert normal forces, forces perpendicular to the sur-
face.  Thus the force  Fb  exerted by the frictionless

surface of the bowl is normal to the bowl and points
toward the center of the circle defining the bowl.  The
force  Fr  between the rim of the bowl and the friction-
less rod must be perpendicular to the rod as shown.

Off hand we know nothing about the magnitude of the
forces  Fb  and  Fr , only their directions.  If we extend the
lines of action of  Fb and  Fr  they will intersect at some
point above the rod as shown in Figure (7c).  If we set
to zero the sum of the torques about this intersection
point, where neither  Fb  or  Fr  has a lever arm, then
neither  Fb  or  Fr  will contribute.  The only remaining
torque is that produced by the gravitational force  mg .
If the rod is in equilibrium, then the torque produced by

 mg about the intersection point must also be zero, with
the result that the line of action of  mg  must also pass
through the intersection point as shown in Figure (7d).
Thus the rod will come to rest when the center of mass
of the rod lies directly below the intersection point of

 Fb  and  Fr  .  This result is nicely demonstrated by
comparing the prediction, Figure (7d), with the experi-
ment, Figure (7b).

mg

Fb

Fr

Figure 7c
Forces acting on the rod.  Because the bowl is
frictionless, Fb is perpendicular to the surface of
the bowl.  Because the rod is frictionless Fr is
perpendicular to the rod.

mg

Fb

Fr

Figure 7d
For equilibrium, the center of mass must lie directly
below the intersection point of Fb and Fr.
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Exercise 6  Ladder Problem
A ladder is leaning against a frictionless wall at an angle
θ as shown in Figure (9).  Assume that the ladder is
massless, and that a person of mass m is on the ladder.

The force between the ground and the bottom of the
ladder can be decomposed into a normal component

  Fn , and a horizontal component  Ff  that can exist only
if there is friction between the ladder and the ground.

It is traditional in introductory texts to say that the ladder
will start to slip if the friction force  Ff  exceeds a value of

  µFn  where µ is called the “coefficient of static friction”.
This idea is reasonable in that as the normal force   Fn
increases, so does the gripping or friction force  Ff .
However the coefficient µ depends so much upon the
circumstances of the particular situation, that the theory
is not particularly useful.  What, for example, should you
use for the value of µ if the ends of the ladder sink down
into the ground?

However for the sake of this problem, assume that the
ladder will just start to slip when    Ff = µFn .  Assume that
µ has the value   µ = 1/ 3 = .557 .

(a) at what angle θ would you place the ladder so that it
will not start to slip until the person climbing it just
reaches the top?

(b) at what angle θ would you place the ladder so that
it will not start to slip until the person has gone half way
up?

Figure 9
Ladder leaning against a frictionless wall.

Ff

θ

Fn

Fn

mg

person of
mass m

massless ladder

frictionless surface

= µF

Exercise 5
A spherical ball of mass m, radius r, is suspended by a
string of length attached to a frictionless wall as shown
in Figure (8).

(a) show that the line of action of the tension force T (the
line of the string) passes through the center of the ball.

(b) find the tension T.

r

T

Figure 8
Ball suspended from a frictionless wall.
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In  Equation 13 we have two unknowns,  F2  and  Td   Thus
we need another equation.  If we take the bridge as a whole,
and calculate the torques on about the point a (to eliminate
the force  F1 ), we get

  
ΣTabouta = F2 3 – mg

5
2

= 0 (14)

Solving Equation 14 for  F2  gives

 
F2 =

5
6

mg (15)

Using this value in Equation 13 gives

 
Td =

– mg

3 3
(18)

The minus (–) sign indicates that the beam is under com-
pression.

Exercise 7

Find the tension (or compression in the beam that goes
from point (d) to point (e) in the bridge problem of Figure
(10a).

Example 5  A Bridge Problem
A bridge is constructed from massless rigid beams of length
.  The ends of the beams are connected by a single large bolt

that acts more or less like a big hinge.  As a result the only
forces you can have in each beam is either tension or
compression (i.e. each beam either pulls or pushes along the
length of the beam.)  The idea is to be able to calculate the
tension or compression force in any of the beams when a
load is placed on the bridge.

In this example, we will place a mass m in the center of the
right most span as shown in Figure (10a).  To illustrate the
process of calculating tension or compression in the beams,
we will calculate the force in the upper left hand beam.  For
now we will assume that the beam  is under tension and
exerts a force  Td on joint d as shown.  If it turns out that the
beam is under compression, then the magnitude of  Td will
turn out to be negative.  Thus we do not have to know ahead
of time whether the beam is under tension or compression.

Solution:  When you have a statics problem involving an
object with a lot of pieces, and you want to calculate the
force in one of the pieces, the first step is to isolate part of the
object and consider that as a separate system with external
forces acting on it.  In Figure (10b) we have chosen as our
isolated system the part of the bridge made from the girders
that have been drawn in heavy lines.  The external forces
acting on this isolated system are the gravitational force  mg
acting on the mass m, the supporting force  F2 that holds up
the right end of the bridge, (we will assume that the ends of
the bridge are free to slide back and forth, so that the
supporting forces  F1 and  F2 point straight up).  In addition
the tension (or compression) forces we have labeled  Td ,

 Tc1  and  Tc2  are also acting on our isolated section of the
bridge.

Looking at Figure (10b), it is immediately clear that the
forces we do not want to know anything about are the
tension forces  Tc1  and  Tc2 .  We can eliminate these forces
by setting to zero the torques about the joint labeled c.  Using
our convention that counter clockwise torques are positive
and clockwise ones are negative, we get

  
ΣTaboutc = F2 2 – mg

3
2

+ Td
3

2
= 0

(13)
where we used the fact that  Td's  lever arm h is the altitude
of an equilateral triangle.

3 
2

F1 F2

h = 3 
2

mg

b

a

d f

c e
gm

Td

Tc1

Tc2

2 2

Figure 10b
Finding the tension in the span from b to d.

Figure 10a
Bridge with a truck on the last span.

mg

b

a

d f

c e
gm

Td
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Exercise 8  Working with Rope
As most sailors know, if you use rope correctly, you can
create very large tension forces without exerting that
strong a force yourself.  Suppose, for example, you wish
to make a raft out of two long logs with two short spacer
planks between them as shown in Figure (11a).  You
wish to hold the raft together with a rope around the
center as shown.

The first step is to tie, as tightly as you can, the logs
together as shown in the end view of Figure (11b).  Then
take another piece of rope and tie it as tightly as you can
as shown in Figure (11c).  If you do a reasonably good
job, you can create a large tension in the rope holding
the logs together.

To analyze the problem, let T1  be the tension in the rope
holding the logs together, and T2 the tension in the line
between the ropes as shown in Figure (11d).  For this
problem, assume that angle θ in Figure (11d) is 5
degrees, and the tension T2  that you could supply in
winding the line around the ropes was 200 newtons
(enough force to lift a 20 kilogram mass).  What is the
tension T1  in the ropes holding the logs together?

Figure 11a
Constructing a raft by tying two logs together, with
wood spacers.

Figure 11b
End view of raft.

Figure 11c
Tightening the rope.

T2

T1

T2

T1 T1T1

θ

Figure 11d
Tensions in the ropes.
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LIFTING WEIGHTS
AND MUSCLE INJURIES
The previous exercise on tying a raft together illustrates
the fact that with some leverage, you can create large
tensions in a rope. Similar large forces can exist in your
muscles when you lift weights, particularly if you do
not lift the weights properly.

To illustrate the importance of lifting heavy objects
correctly, consider the sketch of Figure (12) showing a
shopper holding a funny looking 10 kg shopping bag
out at arms length.  We wish to determine the forces that
must be exerted on the backbone and by the back
muscles in order to support this extra weight.

To analyze the forces, think of the upper body and arm
as essentially a rigid object supported by the backbone
and back muscles as shown.  Since we are interested in
the extra forces required to lift the weight, we will
ignore the weight of the upper body itself.

The external forces acting on the upper body are the
upward compressional force  Fb  acting on the
backbone, and the downward force  Fm  acting at the
point where the back muscle is attached to the thigh-
bone.  (This is in reaction to the upward force exerted
on the thigh bone by the contacting back muscle.)
There is also the weight  mg  of the shopping bag.  We
are letting L be the horizontal distance from the back-
bone to the shopping bag, and  the separation between
the point where the thigh bone pushes up on the
backbone and pulls down on the back muscle.

If we want to solve for the force  Fm  exerted by the back
muscle we can eliminate  Fb from our equation by
setting to zero the sum of the torques about point b, the
point where the thigh bone contacts the backbone.  We
get

  Σ τabout b = Fm – MgL = 0

Fm = mg L (9)

We see that the back muscle has to pull down with a
force that is a factor of  L /  times greater than the
weight mg of the shopping bag.  With  = 2 cm , you
see that if you hold the shopping bag out at arms length,
say L = 80 cm, then  Fm  is  L / = 40  times as great as
the weight of the shopping bag.  For you to lift a 10 kg
bag at arms length, your back is essentially lifting a 10
kg  ×  40 = 400 kg mass, which has a weight of almost
half a ton!  If instead you pulled your arm in so that L
was only 20 cm, then  Fm  drops 1/4 of its original value.
Do your back a favor and do not lift heavy objects out
at arms length.

Exercise 9

Write a single equation that allows you to solve for the
compressional force Fb exerted on the backbone, as
shown in Figure (12).

Figure 12
Forces on the backbone .

back
muscle

Fm

mg Fb

L = 80 cm
   = 2 cm

b

funny 
looking
shopping 
bag
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Exercise 10
Figure (13) shows the structure of the lower leg and foot.
Assume that this person is raising her heel a bit off  the
ground, so that her foot is touching the floor at only one
place, namely the point labeled P in the diagram. Also
assume that the calf muscle is attached to the foot
bones at the point labeled (a), and that the leg bone acts
at the pivot point (b). If her mass is 60 kilograms, what
must be the forces exerted by the calf muscle and the
leg bone? Compare the strength of these forces with her
weight. (This and the next problem adapted from Halliday
& Resnick.)

Exercise 11

The arm in Figure  (14) is holding a 20 kilogram mass.
The arm pivots around the points marked  with a small
black circle.  What is the compressional force on the
bones in this joint? (Neglect the mass of the arm.)

5 15 cm
P

calf muscle

leg bone

cm

a b

30 cm

muscle

pivot
point

m

3.5 cm

Figure 14
Arm

Figure 13
Foot



CHAPTER 14 OSCILLATIONS AND
RESONANCE

Oscillations and vibrations play a more significant
role in our lives than we realize.  When you strike a bell,
the metal vibrates, creating a sound wave.  All musical
instruments are based on some method to force the air
around the instrument to oscillate.  Oscillations from
the swing of a pendulum in a grandfather’s clock to the
vibrations of a quartz crystal are used as timing
devices.  When you heat a substance, some of the
energy you supply goes into oscillations of the atoms.
Most forms of wave motion involve the oscillatory
motion of the substance through which the wave is
moving.

Despite the enormous variety of systems that oscillate,
they have many features in common, features exhibited
by the simple system of a mass on a spring.  As a result
we will focus our attention on the analysis of the motion
of a mass on a spring, describing ways in which other
forms of oscillation are similar.

Chapter 14
Oscillations
and Resonance
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OSCILLATORY MOTION
Suspend a mass on the end of a spring as shown in
Figure (1), gently pull the mass down and let go.  The
mass will oscillate up and down about the equilibrium
position.  How do we describe the kind of motion we
are looking at?

One of the best ways to see what kind of motion we are
dealing with is to perform the demonstration illustrated
in Figure (2a).  In that demonstration, we place a
rotating wheel beside an oscillating mass, and view the
two objects via a TV camera set off to the side as shown.
A white tape is placed around the mass, and a short stick
is mounted on the rotating wheel as seen in the edge
view, Figure (2b).  This edge view is the one displayed
by the TV camera.

The wheel is mounted on a variable speed motor, which
allows us to adjust the angular velocity of the ω of the
wheel so that the wheel goes around once in precisely
the same length of time it takes the mass to bob up and
down once.  The height of the wheel is adjusted so that
when the mass is at rest at its equilibrium position, the
white stripe on the mass lines up with the axis of the
wheel.  As a result if the stick is in a horizontal position
(3 o’clock or 9 o’clock) and the mass is at rest, the stick
and the white stripe line up on the television image.

Now pull the mass down so that the white stripe lines
up with the lowest position of the stick the same height
as the stick when the stick is at the bottom position (6
o’clock).  Start the motor rotating at the correct fre-
quency and release the mass when the stick is at the
bottom.  If you do this just right, some practice may be
required, you will see in the television picture that the
white stripe and the stick move up and down together
as if they were a single object.

From this demonstration we conclude that the up and
down oscillatory motion of the mass is the same as
circular motion viewed sideways.  As a result we can
use what we know about circular motion to understand
oscillatory motion.  As a start, we will say that the
oscillatory motion has an angular frequency ω that is
the same as the angular velocity ω of the rotating wheel
when the mass and the stick go up and down together.

Figure 2b
Side view of the oscillating mass and rotating wheel,
as seen by the TV camera.  When the motor is
adjusted to the correct frequency, the mass and the
stick are observed to move up and down together.

Figure 1
Mass suspended from a spring.  If you gently pull
the mass down and release it, it will oscillate up
and down about the equilibrium position.

m

Figure 2a
Lecture setup for comparing the oscillation of a
mass on a spring with a rotating wheel.  A stick
is mounted on the rotating wheel, and a TV
camera off to the side provides a side view of
the oscillating mass and rotating wheel.

rotating
wheel

white
tape

stick

motor

mass on
a spring

rotating
wheel

ω

TV Camera
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THE SINE WAVE
There is another way to picture the sideways view of
circular motion.  As more or less a thought experiment,
suppose that we take our rotating wheel with a stick
shown in Figure (2a) and shine a parallel beam of light
at it, sideways, as shown in Figure (3).  Now picture a
truck with a big billboard mounted on the back, driving
away from the light source as shown on the right side
of Figure (3).  The image of the stick will move up and
down on the billboard as the truck moves forward.

Finally picture the line traced out in space by the image
of the stick on the moving billboard.  The image is
going up and down with a frequency ω and moves
forward at a speed v, the speed of the truck.  The result
is an undulating curve we call a sine wave.

To make this definition of the sine wave more specific,
assume the truck crosses the point x = 0 just when the
angle θ of the stick is zero as shown in Figure (3).  Let
us imagine that the truck drives at a speed   v = ω , so that

the distance   x = vt = ω t  that the truck has travelled is
the same as the angular distance   θ = ωt  that the stick
has travelled.  Finally let the radius of the circle around
which the stick is travelling be r = 1, so that the
undulating curve goes up to a maximum value y = + 1
and down to a minimum value y = – 1.  With these
conditions, the curve traced out is the mathematical
function

  y = sin θ = sin (ωt) (1)

Let us remove the truck and billboard and look at the
sine curve itself more carefully as shown in Figure (4).
The horizontal axis of the sine curve is the angular
distance   θ = ωt  that the rotating stick has travelled.
Starting at 0 when   θ = 0 , the sine curve completes one
full cycle or undulation just when the wheel has gone
around once and   θ = 2π .  Thus one cycle of a sine wave
goes from 0 to   2π  as shown in Figure (4).  The sine
wave reaches a maximum height at   θ = π/2 , goes back
to zero again at   θ = π , has a minimum value at   3π/2
and completes the cycle at   θ = ωt = 2π .

θy
0

π/2

π

3π/2

rotating
wheel

lig
h

t 
so

u
rc

e

π
2

3π
2

2ππ
0 θ = ωt5π

2

3π

1

−1

billboard
on truck

image of stick
on billboard

v = ω

ω

stick

Figure 3
Project the image of the stick onto the back of a truck moving
at a speed v = ωt, and the image traces out a sine wave.

θ
0

π/2

π

3π/2

π
2

3π
2

2π
π

0 θ = ωt

1

−1ω

Figure 4
The sine curve    y = sin θθ = sin ωω t .
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Exercise 1

Somewhere back in the dim past, you learned that   sin θ
was the ratio of the opposite side to the hypotenuse in
a right triangle.  Applied to Figure (5), this is

  sin θ ≡ y/r (2)

Show that this older definition of   sin θ , at least for angles
θ between 0 and   π/2 , is the same as the definition of

  sin θ  we are using in Figure (3) and (4).

As you can see from Exercise 1, our rotating stick
picture of the sine wave is mathematically equivalent
to the definition of   sin θ you learned in your first
trigonometry class.  What may be new conceptually is
the dynamic aspect of the definition.  Figures (3) and (4)
connect rotational motion to oscillatory motion and to
the shape of a sine wave.  The relationship between the
static picture and the dynamic one is that the angular
distance θ is equal to the angular velocity ω times the
elapsed time t.

The basic question for the dynamic picture is how long
does one oscillation take.  The time for one oscillation
is called the period T of the oscillation.  We can
therefore ask what is the period T of an oscillation
whose angular velocity, or angular frequency is ω.

The solution to this problem is to note that the sine wave
completes one cycle when   θ = 2π .  But θ is just the
angular distance   ω t .  Thus, if t = one period T, we have

  θ = ωT = 2π

   
T =

2π
ω

period of
a sinusoidal
oscillation

(3)

To remember formulas like Equation 3, we can use the
same set of dimensions we used in our discussion of
angular motion.  If we remember the dimensions

   ω radians
second

angular frequency

2π radians
cycle

T seconds
cycle

period

f
cycles
second

frequency

then we can go back and forth between the quantities ω,
T and f simply by making the dimensions come out
right.

θ

r

x

y

sin θ    y/r

θ y
0

π/2

π

3π/2

rotating
wheel

ω

stick

r

Figure 5
Our old definition of    sinθθ.
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For example

  
T sec

cycle
=

2π radians
cycle

ω radians
sec

= 2π
ω

sec
cycle

  
f

cycles
sec =

ω radians
sec

2π radians
cycle

= ω
2π

cycles
sec

 T sec
cycle

= 1

f
cycles

sec

= 1
f

sec
cycle

We repeated these dimensional exercises, because it is
essential that you be able to easily go back and forth
between quantities like frequency, angular frequency,
and period.

Exercise 2
(a)  A spring is vibrating at a rate of 2 seconds per cycle.
What is the angular velocity ω of this oscillation?

(b) What is the period of oscillation, in seconds, of an
oscillation where   ω =1 ?

Exercise 3
As shown in Figure (6), an air cart sitting on an air track
has springs attached to the ends of the track as shown.
We are taking x = 0 to be the equilibrium position of the
cart.  It turns out that the car oscillates back and forth
with the same kind of sinusoidal motion as the mass on
the end of a spring shown in Figures (1) and (2).

Assume that the mathematical formula for the coordi-
nate x of the cart is

  x = x0 sin ωt

where

 x0 = 4 cm ;      ω = 3
radians

sec

(a)  Figure (7) is an x–t graph of the position of the air cart
in Figure (6).  We have drawn in the sine curve, and
drawn tick marks at important points along the x and t
axis.  On the x axis, the tick marks are at the maximum
and minimum values of x.  On the t axis, the tick marks
are at 1/4, 1/2, 3/4 and 1 complete cycle.  Insert on the
graph, the numerical values that should be associated
with these tick marks.

(b) Where will the cart be located at the time
  t =300 π seconds ?

ω

x = 0 equilibrium

x

Figure 6
Mass with springs on an air cart.  We take
the equilibrium position to be x = 0.

x

t

Figure 7
The x-t graph for the motion
of the air cart in Figure 6.
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Phase of an Oscillation
Our sine waves, by definition, begin at 0 when   θ = 0.
This is equivalent to saying that in Figure (2), the truck
crossed x = 0 at the same instant that the rotating wheel
crossed    θ = 0 .  We did not have to make this choice, the
rotating wheel could have been at any angle φ when the
truck crossed t = 0 as shown in Figure (8).  If the stick
were up at an angle φ when the truck crossed the zero
of the horizontal axis, we say that the resulting sine
wave has a phase φ.  The formula for the resulting sine
curve is

   
y = sin ωt + φ φ is the

phaseangle (4)

You can see from this equation that at t = 0, the angle
of the sine wave is   θ = ωt + φ = φ

In Figure (9) we have sketched the sine wave for
several different phases.  At a phase   φ = π/2 , the wave
starts at 1 for   θ = 0  and goes down to 0 at

  θ = π /2 = 90°.   This is just what   cos θ does, and we
have what is called a cosine wave.  We have

  cos ωt = sin ωt + π/2 (6)

When the phase angle gets up to π or 180°, the sine
wave is reversed into a   – sin ωt  wave.  At   φ = 2π  we
are back to the sine wave we started with.

t = 0

t
φ

phase
angle

φ

ω

2ππ}

Figure 8
The phase angle  φ.

φ = 0

φ = 

2ππ0

2ππ

π
2

φ = 3π
2

sine wave

cosine wave

2π

πφ = π

–sine wave

2ππ
–cosine wave

2ππ

φ = 2π

sine wave

Figure 9
Various phases of the sine wave.  When   φφ = ππ / 2, the
wave is called a cosine wave.  (It matches the
definition of a cosine, which starts out at 1 for    θθ = 0.
At a phase angle   φφ = ππ or 180°, the sine wave has
reversed and become    –sin (ωω t).  At   φφ = 2π, we are back
to a sine wave again.
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Exercise 4
In trigonometry class, or somewhere perhaps, you were
given the trigonometric identity

 sin a +b = sin a cos b +sin b cos a

Use this result to show that

  sin ω t +π/2 = cos ω t (7a)

  sin ω t +π = – sin ω t (7b)

   sin ω t +3 π/2 = – cos ω t (7c)

  sin ω t +2π = sin ω t (7d)

These are the results graphed in Figure (9).

MASS ON A SPRING;
ANALYTIC SOLUTION
Let us now apply Newton’s laws to the motion of a
mass on a spring and see how well the results compare
with the sinusoidal motion we observed in the demon-
stration of Figure (2).  In our analysis of the spring
pendulum in Chapter 9 (see Figure 9-4) we saw that the
spring exerted a force whose strength was linearly
proportional to the amount the spring was stretched, a
result known as Hooke’s law.

When we have the one dimensional motion of a mass
oscillating about its equilibrium position, as illustrated
in Figure (10), then we get a very simple formula for the
net force on the object.  If we displace the cart of Figure
(10) by a distance x from equilibrium, there is a
restoring force whose magnitude is proportional to x
pushing the cart back toward the equilibrium position.

We can completely describe this restoring force by the
formula

   
F = – kx

Hooke's law
restoring force

(8)

If x = 0, the cart is at its equilibrium position and there
is no force. If x is positive, as in Figure (10), the
restoring force is negative, pointing back to the equilib-
rium position. And if x is negative, the restoring force
points in the positive direction. All these cases are
handled by the formula F = –kx.

For a mass bobbing up and down on a spring, shown in
Figure (11), there is both a gravitational and a spring
force acting on the mass.  But if you measure the net
force starting from the equilibrium position, you still
get a linear restoring force.  The net force is always
directed back toward the equilibrium position and has
a strength proportional to the distance x the mass is
away from equilibrium.  Thus Equation 8 still describes
the net force on the mass.

x

x
x

–kx

F

F

F = –kxs

(restoring force)

(distance 
 stretched)

Figure 10
If the cart is displaced a distance x from
equilibrium, there is a restoring force F = - kx.

Figure 11
Restoring force for a mass on a spring.

equilibrium
position

xF
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Exercise 5
Describe experiments you could carry out in the labo-
ratory to measure the force constant k for the air cart
setup of Figure (10).  To do this you are given the air cart
setup, a string, a pulley, and some small weights.

Sketch the setup you would use to make the measure-
ments, and include some simulated data to show how
you would obtain a numerical value of k from your data.
(This is the kind of exercise you would do ahead of time
if you planned to do a project studying the oscillatory
motion of the air cart and spring system.

To apply Newton’s laws to the problem of the oscillat-
ing mass, let x(t) be the displacement from equilibrium
of either the air cart of Figure (10) or the mass of Figure
(11).  The velocity  vx and the acceleration  a x  of either
the cart or mass is

  
vx ≡

dx t
dt

(9)

  
ax ≡

dvx
dt

=
d2x t

dt2 (10)

The x component of Newton’s second law becomes

 Fx = ma x

 
– kx = m

d2 x

dt2
(11a)

where we used Hooke’s law, Equation 8 for  Fx .

The result, Equation 11a, involves both the variable
x(t) and its second derivative  d2x/dt2.  An equation
involving derivatives is called a differential equation,
and one like Equation 11a, where the highest derivative
is the second derivative, is called a second order
differential equation.  Differential equations are harder
to solve than algebraic equations like  x2 = 4, because
the answer is a function or a curve, rather than simple
numbers like  ± 2.

When working with differential equations, there is a
traditional form in which to write the equation.  The
highest derivative is written to the far left, all terms with
the unknown variable are put on the left side of the
equation, and the coefficient of the highest derivative is
set to one.  (A reason for this tradition is that only a few
differential equations have been solved.  If you write
them all in a standard form, you may recognize the one
you are working with.) Putting Equation 11a in the
standard form by dividing through by m and rearrang-
ing terms gives

  
d2x

dt2 +
k
m

x = 0 (11)

A standard way to solve a differential equation is to
guess the answer, and then plug your guess into the
equation to see if the guess works. A course in differ-
ential equations basically teaches you how to make
good guesses. In the absence of such a course,  we have
to use whatever knowledge we have about the system
in order to make as good a guess as we can.  That is why
we did the demonstration of Figure (2).  In that demon-
stration we saw the oscillating mass moved the same
way as a stick on a rotating wheel, when the wheel is
viewed sideways.  We then saw that this sideways view
of rotating motion is described by the mathematical
function   sin ωt .  From this we suspect that a good
guess for the function x(t) may be

   x t = sin ωt initial guess (12)

In order to see if this guess is any good, we need to
substitute values of x and  d2x/dt2  into Equation 11.
To do this, we need derivatives of   x = sin ωt .

From your calculus course you learned that

  d
dt

sin ωt = ω cos ωt (13)

  d
dt

cos ωt = – ω sin ωt (14)
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Thus if we start with

  x = sin ω t (12)

we have

  dx
dt

= ω cos ωt (15)

  d2x
dt2 = d

dt
dx
dt

= d
dt

ω cos ωt

= ω – ω sin ωt

d2x
dt2 = – ω2sin ωt (16)

To check our guess   x = sin ω t ,  we substitute the
values of x from Equation 12 and  d2x/dt2 from Equa-
tion 16 into the differential Equation 11.  We get

  d2x
dt2 + k

m x = 0

– ω2sin ωt + k
m sin ω t = 0 (17)

We put the question mark over the equal sign, because
the question we want to answer is whether   x = sin ωt
can be a solution to our differential equation.  Can the
sum of these two terms be made equal to zero as
required by Equation 11?

The first thing we note in Equation 17 is that the
function (   sin ωt ) cancels.  This is encouraging, be-
cause if we ended up with two different functions of
time, say a   sin ωt  in one term and a   cos ωt  in the other,
there would be no way to make the sum of the two terms
to be zero for all time, and we would not have solved the
equation.  However because the (   sin ωt ) cancels, we
are left with

  
– ω2 +

k
m

=? 0 (18)

Equation 18 is easily solved with the choice

   
ω =

k
m

angular frequency
of oscillating cart (19)

Thus we have shown not only that (   x = sin ωt ) is a
solution of Newton’s second law, but we have also
solved for the frequency of oscillation ω.  Newton’s
second law predicts that the air cart will oscillate at a
frequency   ω = k/m .  This result is easily tested by
experiment.

Exercise 6
(a) In the formula (   x =sin ω t ),  ω  is the angular fre-
quency of oscillation, measured in radians per second.
Using the formula    ω = k/m  and dimensional analysis,
find the predicted formula for the period T of the
oscillation, the number of seconds per cycle.

(b) A mass m = 245 gms is suspended from a spring as
shown in Figure (12).  The mass is observed to oscillate
up and down with a period of 1.37 seconds.  From this
determine the spring constant k.  How could this result
have been used in the spring pendulum experiment
discussed in Chapter 9 (page 9-3)?

(You can check your answer, since the ball and spring
of Figure (12) are the same ones we used in the spring
pendulum experiment.)

?

Figure 12
The spring constant can be determined by
measuring the period of oscillation.

m
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The guess we made in Equation 12, (   x = sin ωt ) is not
the only possible solution to our differential Equation
11.  In the following exercises, you show that

  x = A sin (ωt) (12a)

is also a solution, where A is an arbitrary constant.
Since the function   sin (ωt)  oscillates back and forth
between the values + 1 and – 1, the function   A sin (ωt)
oscillates back and forth between + A and – A.  Thus
A represents the amplitude of the oscillation.  The fact
that Equation 12a, with arbitrary A, is also a solution to
Newton’s second law, means that a sine wave with any
amplitude is a solution.  (This is true as long as you do
not stretch the spring too much.  If you pull a spring out
too far, if you exceed what is called the elastic limit, the
spring does not return to its original shape and its spring
constant changes.)

Exercise 7

As a guess, try Equation 12a as a solution to the
differential Equation 11.  Follow the same kind of steps
we used in checking the guess   x =sin (ω t ) , and see
why Equation 12a is a solution for any value of A.

Exercise 8
(a)  Show that the guess

  x =A cos (ω t) (12b)

is also a solution to our differential Equation 11.  This
should be an expected result, because the only differ-
ence between a sine wave and a cosines wave is the
choice of the time t = 0 when we start measuring the
oscillation.

(b)  The sine and cosine waves are only special cases
of the more general solution

  x =A sin (ω t +φ) (12c)

where φ is the phase of the oscillation discussed in
Figure (9).  Show that Equation 12c is also a solution of
our differential Equation 11.  [Hint: the derivative of

  sin (ωt +φ)  is   – ω cos (ω t +φ) .  You can, if you want,
prove this result using Equations 13 and 14 and the
trigonometric identities

 sin (a +b) =sin a cos b +cos a sin b

 cos (a +b) =cos a cos b – sin a sin b

Remember that φ is a constant.]

Exercise 9
We do not want you to think every function is a solution
to Equation 11.  Try as a guess

   x =e– αt (20)

which represents an exponentially decaying curve
shown in Figure (13).  To do this you need to know that

   d
dt

e– αt = – αe– αt (21)

When you try Equation 20 as a guess, what goes wrong?
Why can’t this be a solution to our differential equation?
[Or, by what crazy way could you make it a solution?]

e– α t

1

Figure 13
The exponential decay curve    e– αα t .
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Conservation of Energy
Back in Chapter 10 we calculated the formula for the
potential energy stored in the springs when we pulled
the cart of Figure (10) a distance x from equilibrium.
The result was

 spring
potential
energy

Uspring = 1
2 k x2 (10-28)

We then used the law of conservation of energy to
predict how fast the cart would be moving when it
crossed the x = 0 equilibrium line if it were released
from rest at a position  x = x0 .  The idea was that the
potential energy  1

2 kx0
2  the springs have when the cart

is released, is converted to kinetic energy  1
2 mv0

2  the
cart has when it is at x = 0 and its speed is  v = v0 .

Exercise 10

See if you can derive Equation 10-28 without looking
back at Chapter 10.  If you cannot, review the derivation
now.

Using conservation of energy to predict the speed of the
air cart was particularly useful back in Chapter 10
because at that time we did not have the analytic
solution for the motion of the cart.  Now that we have
solved Newton’s second law to predict the motion of
the cart, we can turn the problem around, and see if
energy is conserved by the analytic solution.

An analytic solution for the position x(t) and velocity
v(t) of the cart is

  x(t) = sin ωt

v(t) =
dx
dt

= ω cos ωt
(22)

For this solution, the kinetic and potential energies are

  kinetic
energy

1
2

mv2 = 1
2

mω2cos2 ωt (23)

  potential
energy

1
2

kx2 = 1
2

k sin2 ωt (24)

The total energy  Etot  of the cart at any time t is

  total
energy = kinetic

energy + potential
energy

Etot = 1
2

mω2cos2 ωt + 1
2

k sin2 ωt
(25)

At first sight, Equation 25 does not look too promising.
It seems that  Etot  is some rather complex function of
time, hardly what we expect if energy is conserved.
However remember that the frequency ω is related to
the spring constant k by   ω = k/m , thus we have

  1
2

mω2 = 1
2

m k
m

2

= 1
2

m k
m = 1

2
k (26)

Thus the two terms in our formula for  Etot  have the
same coefficient  1

2 k , and  Etot  becomes (using Equa-
tion 26 in 25)

  E tot = 1
2

k cos2 ωt + sin2 ωt (27)

Equation 27 can be simplified further using the trigo-
nometric identity

 cos2 a + sin2 a = 1 (28)

for any value of a.  Thus the term in square brackets in
Equation 27 has the value 1, and we are left with

  
Etot =

k
2

(29)

The total energy of the mass and spring system is
constant as the oscillator moves back and forth.  Energy
is conserved after all !

Exercise 11
What is the total energy of an oscillating mass whose
amplitude of oscillation is A?  [Start with the solution

   x(t) = A sin ω t ,  calculate v(t), and then  calculate

 Etot = 1
2 kx2 + 1

2 mv2 .
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THE HARMONIC OSCILLATOR
The sinusoidal motion we have been discussing, which
results when an object is subject to a linear restoring
force  F = – kx, is called simple harmonic motion and
the oscillating system is often called a harmonic
oscillator.  These general names are used because there
are many examples in physics of simple harmonic
motion.  In some cases the sine wave solution   sin ωt
is an exact solution of a Hooke’s law problem.  In many
other cases, the solution is approximate, valid only for
small amplitude oscillations where the displacements
x do not become too big.  In the following sections we
will consider examples of both kinds of problems.

The Torsion Pendulum
One example of simple harmonic motion is provided
by part of the apparatus used by Cavendish to detect the
gravitational force between two lead balls.  The appa-
ratus, illustrated back in Figure (8-8), contains two
small lead balls mounted on a light rod, which in turn
is suspended from a glass fiber as shown in Figure
(14a).  (Such glass fibers are easy to make.  Heat the
center of a glass rod in a Bunsen burner until the glass
is about to melt, and then pull the ends of the rod apart.
The soft glass stretches out into a long thin fiber.)

If you let the rod with two balls come to rest at its
equilibrium position, then rotate then rod by an angle θ
in the horizontal plane as shown in the top view of
Figure (14b), the glass fiber exerts a torque tending to
rotate the rod back to its equilibrium position.  Careful
experiments have shown that the restoring torque
exerted by the glass fiber is proportional to the angular
distance θ that the rod has been rotated from equilib-
rium.  The rod is acting like an angular spring, produc-
ing a restoring torque  τr  given by an angular version of
Hooke’s law

   τr = – kθ angular version
of Hooke's law (30)

In the Cavendish experiment two large balls of mass M
are placed near the small balls as shown in Figure (15).

θ

r

m

m

M

Fg

Fg

M

Figure 15
In the Cavendish experiment, a torque is exerted
on the torsion pendulum by the gravitational force
of the large lead spheres. In the new equilibrium
position, the gravitational torque just balances the
restoring torque of the torsion pendulum.

Figure 14b
Top view of the torsion pendulum.  The light drawing
shows the equilibrium position of the pendulum, the
dark drawing shows the pendulum displaced by an
angle θ.  In this displaced position, the glass fiber
exerts a restoring torque    ττrestoring = – kθθ .

θ

equilibrium
position

m m

gl
as

s 
fib

er

Figure 14a
Side view of the torsion pendulum
used in the Cavendish experiment.
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The gravitational forces  Fg  between the large and
small balls produce a net torque   τg  on the suspended
rod of magnitude

  τg = 2 rFg (31)

where r is the distance from the center of the rod to the
small mass (the lever arm), and the factor of 2 is from
the fact that we have a gravitational force acting on each
pair of the balls.

The suspended rod will finally come to rest at an angle
  θ0 where the gravitational torque  τg  just balances the

glass fiber restoring torque τr , so that there is no net
torque  the rod.  Equating the magnitudes of τr  and  τg ,
Equations 30 and 31 gives us

  τg = τr

  2r Fg = kθ0 (32)

Equation 32 can then be solved for the gravitational
force  τg  in terms of the rod length 2r, the restoring
constant k, and the rest angle   θ0 .

The problem the Cavendish experiment has to over-
come is the fact that the gravitational force between the
two lead balls is extremely weak.  You need an appa-
ratus where the tiny gravitational torque  τg  produces
an observable deflection   θ0 .  That means that the
restoring torque  τr  must also be very small.  That was
why the long glass fiber was used to suspend the rod,
for it produces an almost immeasurably small restoring
torque.

In order to carry out the experiment and measure the
gravitational force  Fg , you need to know the restoring
torque constant k that appears in Equation 32.  But the
feature of the glass fiber that makes it good for the
experiment, the small value of k, makes it hard to

directly measure the value of k.  To determine k by
direct measurement would mean applying known forces
of magnitude  Fg , but the only forces around that are
sufficiently weak are the gravitational forces you are
trying to measure.

Fortunately there is an easy way to obtain an accurate
value of the restoring constant k.  Remove the large lead
balls, displace the rod from equilibrium by some
reasonable angle θ as shown in Figure (14b), and let go.
You will observe the rod to swing back and forth in an
oscillatory motion.  The rod, two balls, and glass fiber
of Figure (14a) form what is called a torsion pendu-
lum, and the oscillation is caused by the restoring
torque of the glass fiber.  The glass fiber is acting like
an angular spring, creating an angular harmonic mo-
tion in strict analogy to the linear harmonic motion of
a mass suspended from a spring.

The analogy applies directly to the equations of motion
of the two systems.  For a linear one dimensional
system like a mass on a spring, Newton’s second law
is

 
Fx = max = m

d2x

dt2

The angular version of Newton’s second law, applied
to the simple case of an object rotating about a fixed
axis, is from Equation 30 of Chapter 12

  
τ = I α = I

d2θ

dt2
(12-20)

where τ  is the net torque, I the angular mass or moment
of inertia, and α the angular acceleration of the object
about its axis of rotation.
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For the linear harmonic oscillator (mass on a spring),
the force  Fx  is a linear restoring force  Fx = – kx,
which gives rise to the equation of motion and differ-
ential equation

 
Fx = – kx = m d2x

dt2 (11a)

 d2x

dt2
+

k
m

x = 0 (11)

For our torsion pendulum, the restoring torque is
  τr = – kθ which gives rise to the equation of motion

and differential equation

  τr = – kθ = I d2θ
dt2 (33a)

  d2θ

dt2
+

k
I

θ = 0 (33)

Equations 11 and 33 are the same if we substitute the
angular distance θ for the linear distance x, and the
angular mass I for the linear mass m.  For the linear
motion, we saw that the spring oscillated back and forth
at an oscillation frequency   ω0  and period T given by

  ω0 = k
m

T = 2π
ω0

= 2π m
k

(19)

By strict analogy, we expect the torsion pendulum to
oscillate with a frequency   ω0  and period T given by

  ω0 = k
I

T = 2π
ω0

= 2π I
k

(34)

where I is  the moment of inertia of the rod and two balls
about the axis defined by the glass fiber (as shown in
Figure 14).

As a result, by observing the period of oscillation of the
rod and two balls (with the big masses M removed),
you can determine the restoring constant k of the glass
fiber, and use that result in Equation 32 to solve for the
gravitational force  Fg .  Because you can measure
periods accurately by timing many swings, k can be
measured accurately, and the Cavendish experiment
allows you to do a reasonably good job of measuring
the gravitational force  Fg .

Exercise 12
Solve the differential Equation 33 by starting with the
guess

  θ(t) = A sin (ω0t) (35)

Check that Equation 35 is in fact a solution of Equation
33, and find the formula for the frequency   ω0  of the
oscillation.  Also use dimensional analysis find the
period of oscillation.

Exercise 13
In the commercial Cavendish experiment apparatus
shown in  Figure 8-8, the small balls each have a mass
of 170 gms, the distance between the small balls is 12
cm, and the observed period of oscillation is 24 minutes.

(a)  Calculate the value of the restoring constant k of the
glass fiber.

(b)  How big a torque, measured in dyne centimeters, is
required to rotate the glass fiber by an angle of one
degree.  (Remember to convert degrees to radians.)
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times the tangential acceleration.  The tangential com-
ponent of the gravitational force is always directed
toward the bottom equilibrium position, thus it is a
restoring force of the form

  Ftangential = – mg sin θ (36)

As the mass moves along the arc, the speed of the ball
is related to the angle θ by

  vtangential = dθ
dt (37)

a result from the beginning of our discussion of circular
motion in Chapter 12.  (See the discussion before
Equation 12-11.)  Differentiating Equation 37, we get
for the tangential acceleration

  
atangential =

dvtangential

dt
= d2θ

dt2 (38)

Thus Newton’s second law gives

 Ftangential = ma tangential

  
– mg sinθ = m d2θ

dt2 (39)

Dividing through by  m  and rearranging terms gives
us the differential equation

   
d2θ
dt2

+
g

sin θ = 0
equation for a
simple pendulum (40)

Equation 40, the differential equation for the simple
pendulum, is more complex than the equations we have
been discussing that lead to simple harmonic motion.
If you try as a guess that the motion is sinusoidal and try
the solution   θ = sin ωt , it does not work.  You are
asked to see why in the following exercise.

Exercise 14
Try substituting the guess

   θ = sin ωt

into Equation 40 and see what goes wrong.  Why can’t
you make the left side zero with this guess?

The Simple Pendulum
Perhaps the most well-known example of oscillatory
motion is the simple pendulum which consists of a
mass swinging back and forth on the end of a string or
rod.  The regular swings of this pendulum serve as the
basic timing device of the grandfather’s clock.

When we begin to analyze the simple pendulum, we
will find that it is not quite so simple after all.  The
restoring force is not strictly a linear restoring force and
we end up with a differential equation whose solution
is more complex than the sinusoidal oscillations we
have been discussing.  What allows us to include this
example in our discussion of simple harmonic motion
is the fact that, for small amplitude oscillations, the
restoring force is approximately linear, and the result-
ing motion is approximately sinusoidal.

Figure (16) is a sketch of a simple pendulum consisting
of a small mass m swinging on the end of a string of
length .  The downward gravitational force  mg  has a
component of magnitude   mg sinθ  directed along the
circular path of the ball.

Since the ball is constrained to move along the circular
arc, we can analyze the motion of the ball by equating
the tangential forces acting along the arc to the mass

m

θ

θ

mg sin θ

mg

Figure 16
Simple pendulum consisting of a mass
swinging on the end of a string.  The
gravitational force has a component    mg sinθθ
in the direction of motion of the mass.
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There is a solution to Equation 40, it is just not the sine
curve we have been discussing.  The solution is a curve
called an elliptic integral, a curve generated much as
we generated the sine curve in Figure (3), except that
the stick whose shadow generates the curve has to
move around an elliptical path rather than around the
circular path used in Figure (3).  Elliptic integrals carry
us farther into the theory of functions than we want to
go in this text, thus we will not  discuss the exact
solution of the differential Equation 40.

Small Oscillations
The problem with Equation 40 is the appearance of the
function   sin θ in the second term on the left hand side.
It is this term that seems to keep us from using the
oscillatory solution.

In Figure (17) we look again at the geometry of the
simple pendulum.  In that figure we have a right triangle
whose small angle is θ, hypotenuse the string length ,
and opposite side x.  The definition of the sine of the
angle θ is

  
sin θ ≡

opposite side
hypotenuse

=
x

(41)

The definition of the angle θ, in radian measure, is the
arc length divided by the radius  of the circular arc

  θ ≡
arc length

radius
=

arc length
(42)

From Figure (17) we see that for small angles θ the
opposite side x and the arc length  are about the same.
The smaller the angle θ, the more nearly equal they are.
If we restrict our analysis to small amplitude swings,
we can replace   sin θ by θ in Equation 40, giving us the
differential equation

   
d2θ
dt2

+
g θ = 0

equation for small
oscillations of a
simple pendulum

(43)

Equation 43 is an equation for simple harmonic mo-
tion.  If we try the guess   θ = sin ω0t , and plug the
guess into Equation 43, we can solve the equation
provided the frequency   ω0  and the period of oscilla-
tion T have the values

  
ω0 =

g

   
T = 2π

ω0
= 2π g

period of a
simple pendulum (44)

Exercise 15
Substitute the guess     θ = A sin ω0t  into Equation 43
and show that you get a solution provided    ω02 = g/ .
Then use dimensional analysis to derive a formula for
the period of the oscillation.

From Equation 44, we see that the period of the oscilla-
tion of a simple pendulum depends only on the gravita-
tional acceleration g and the length  of the pendulum.
It does not depend on!tXe mass m of the swinging
object, nor on the amplitude of the oscillation, provided
that the amplitude is kept small.  For these reasons the
simple pendulum makes a good timing device.

Exercise 16

How long should a simple pendulum be so that it’s
period of oscillation is one second?

x

θ

arc length

Figure 17

   sin θθ =
x         θθ =

arc length
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Simple and Conical Pendulums
In Chapter 9 we analyzed the motion of a conical
pendulum.  The conical pendulum also consists of a
mass on a string, but the mass is swung around in a
circle as shown in Figure (18), rather than back and
forth along an arc as for a simple pendulum.

From our analysis of the conical pendulum, we found
that the period of rotation was given by the formula

   
Tcp = 2π h

g
period of a
conical pendulum (9-34)

 where h is the height shown in Figure (18).  Consider-
ing the trouble we went through to get an approximate
solution to the simple pendulum, it seems surprising
that Equation 9-34 is an exact solution to Newton’s
second law for any achievable radius x of the circle.

For small circles, where  x << , the height h and the
string length  are approximately the same and we have

  
Tcp = 2π

g
h

≈ 2π
g

(45)

But this is just the period of a simple pendulum if the
oscillations are kept small.  Since the two pendulums
have the same period for small oscillations, it makes no
difference, as far as the period is concerned, whether
we swing the balls back and forth or around in a circle.
This prediction is easily checked by experiment.

Exercise 17
You can do your own experiments to show that as you
increase the amplitude of a simple pendulum, the
period of oscillation starts to get longer.  In contrast,
when you increase the radius of the circle for a conical
pendulum, the height h and the period  Tcp  become
shorter.

(a) From your own experiments estimate how much
longer the period of a simple pendulum is when the
maximum angle   θmax  is 90° than when   θmax  is small.
(Is it 20% longer, 30% longer?  Do the experiment and
find out.  Does this percentage depend on the length 
of the string?

(b)  For a conical pendulum, at what angle  θ0  (shown
in Figure 18) is the period half as long as it is for small
angles  θ0 ?  Give your answer for  θ0  in degrees.

x

θ0

h

m

Figure 18
The conical pendulum.
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Exercise 18
Another way to analyze the simple pendulum is to treat
the mass and the string as a rigid object that can rotate
about an axis through the top end of the string as shown
in Figure (19).  Then use the angular version of Newton’s
second law in the form

  τ = I d2θ
dt2 (12-20)

where τ is the net torque, and (I) the moment of inertia,
of the mass and string about the axis 0.

(a)   When the string is at an θ  angle as shown in Figure
(19), what is the torque τ about the axis 0, exerted by the
gravitational force  mg ?

(b)   What is the moment  of  inertia I of the mass and
string about the axis 0?

(c)   Show that when you use the above values for τ and
(I) in Equation 12-20 you get the same differential
Equation 40 that we got earlier for the simple pendulum.

Exercise 19  A Physical Pendulum

A uniform rod of length is pivoted at one end as shown
in Figure (20).  It is free to swing back and forth about this
axis, forming what is called a physical pendulum. A
simple pendulum is one where the mass is all concen-
trated at the end as in Figure (19).  In a physical
pendulum the mass is distributed in some other way, in
this case uniformly along the rod.

(a)  What is the torque τ  about the axis 0 exerted by the
gravitational force on the rod?  (In Chapter 13 near
Equation 13-11, we showed that when calculating the
torque exerted by a gravitational force, you may as-
sume that all the mass is concentrated at the center of
gravity of the object.)

(b)  What is the moment  of inertia (I) of the rod about the
axis at the end of the rod?  (See exercise 5 in Chapter
12.)

(c)  Write the differential equation for the motion of the
rod.  (Use the procedure outlined in Exercise 18.)

(d)  Find the period of small oscillations of the rod.

mg

axis O

θ

axis O

m

θ

mg

Figure 19
The simple pendulum
treated as a rigid object.

Figure 20
A physical pendulum.
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NON LINEAR RESTORING FORCES
The simple pendulum is an example of an oscillator
with a non linear restoring force.  In Figure (21), we
show the actual restoring force (   mg sin θ) and the
linear approximation (   mg θ) that we used in order to
solve the differential equation for the pendulum’s
motion.  You can see that if the angle θ always remains
small, much less than   π/2  in magnitude, then the linear
force (   mg θ) is a good approximation to the non linear
force (   mg sin θ).  Since the linear force gives rise to
sinusoidal simple harmonic motion, we expect sinusoi-
dal motion for small oscillations of the simple pendu-
lum. What we are seeing is that a linear restoring force
is described by a straight line, and that the non linear
restoring force can be approximated by a straight line
in the region of small oscillations.

In physics, there are many examples of complex, non
linear restoring forces which for small amplitudes can
be approximated by a linear restoring force, and which
therefore lead to small amplitude sinusoidal oscilla-
tions.  A rather wild example which we will discuss
shortly, is the collapse of the Tacoma Narrows bridge.
The bridge undoubtedly started oscillating with small
amplitude sinusoidal oscillations.  What happened was
that these oscillations were continually driven by the
shedding wind vortices until the amplitude of oscilla-
tion became large and the restoring force was no longer
linear.  (There was still a more or less sinusoidal motion
almost up to the point when the bridge collapsed.)

θmg

F          restoring

θ
   π

–mg sin θ
2

−

   π
2

region where 
sin θ   θ 

Figure 21
The non linear restoring force    mg sinθθ  can be approximated by
the straight line (linear term)    mg θθ  if we keep the angle θθ  small.

F          = 

mg sin θ
restoring

m

θ

θ
mg
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MOLECULAR FORCES
One of the most important examples of a non linear
restoring force is the molecular force between atoms.
Consider, for example, the hydrogen molecule which
consists of two hydrogen atoms held together by a
molecular force.  (We will discuss the origin of the
molecular force in Chapter 17.)

In the hydrogen molecule, the hydrogen atoms have an
equilibrium separation, and the molecular force pro-
vides a restoring force to this equilibrium separation.
The restoring force, however, is quite non linear.  If you
try to squeeze the atoms together, you quickly build up
a large repulsive force that keeps the atoms from
penetrating far into each other.

If you try to pull the atoms apart, there is an attractive
force that pulls the atoms back together.  The attractive
force never gets too big, and then dies out when the
separation gets much larger than an atomic diameter.

In Figure (22) we have sketched the molecular force as
a function of the separation of the atoms, the origin
being at the equilibrium position.  This graph is not too
unlike Figure (21) where we have the force curve for
the simple pendulum.  For the pendulum, the equilib-
rium position is at   θ = 0 , thus the origin of both curves
represents the equilibrium position.

While the overall shape of the force curves for the
simple pendulum and the molecular force are quite
different, right in close to the origin both curves can be
approximated by a straight line, a linear restoring force.
As long as the amplitudes of the oscillation remain
small, we effectively have a linear restoring force and
any oscillations should be simple harmonic motion.

In Chemistry texts one often sees molecular forces as
being represented by springs as shown in Figure (23).
The spring force, given by Hooke’s law, is our ideal
example of a linear restoring force.  We can now see
that, while the molecular force in Figure (22) does not
look like a linear spring force, if the amplitude of
oscillation remains small, the spring force provides a
reasonably good approximation to the actual molecu-
lar force.  The chemist’s diagrams are not so bad after
all.

In a crystal, like quartz, where you have many atoms
held together by molecular forces, it is possible to get
all the atoms oscillating together.  Each atom only
oscillates a very small distance about its equilibrium
position, but all the oscillations can add up to produce
a fairly large, quite detectable oscillation of the crystal
as a whole.  An advantage of a quartz crystal is that these
oscillations can be both driven and detected by electric
fields.  This vibration or simple harmonic motion of a
small quartz crystal is used as the basic timing device
for digital watches, computers, and almost all forms of
modern electronics.

In Galileo’s time we used small oscillations of a non
linear harmonic oscillator, the simple pendulum, as a
basic time device.  Now we use the small oscillations
of a non linear harmonic oscillator, the atoms in a quartz
crystal, as our most convenient timing device.  The
main thing we have changed in the last 300 years is not
the basic physics, but the size and frequency of the
device.

Figure 22
Sketch of the molecular force between two hydrogen
atoms.  As long as the atoms stay close to the
equilibrium position, the force can be represented by
a straight line—a linear restoring force.

molecular
force

H H

equilibrium
separation

repulsive

region where we have
an approximately linear
restoring force

separation
of atoms

attractive

Figure 23
Representation of the molecular
force by a spring force.

H H
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DAMPED HARMONIC MOTION
If you start a pendulum swinging or a quartz crystal
oscillating, and do not keep the oscillation going with
some kind of external force, the oscillation will even-
tually die out due to friction forces.  Such a dying
oscillation is called damped harmonic motion.

The analysis of damped harmonic motion starts out
quite easily.  In Newton’s second law add a damping
force like the air resistance term we added to our
analysis of projectile motion.  (See Chapter 3, Figure
31.)  We could write, for example

 Ftot = Frestoring + Fdamping

 Ftot = – kx – bvx (46)

where  x t  is the coordinate of the oscillator,
 vx t = dx/dt  its velocity, and we are assuming a

simple linear damping proportional to  –v  with a
strength b.

Using Equation 46 in Newton’s second law gives

 Ftot = – kx – bvx = max (47)

With  ax = d2x/dt2, this becomes, after dividing through
by m and rearranging terms

  
d2x

dt2
+

b
m

dx
dt

+
k
m

x = 0 (48)

Equation 48 is our new differential equation for damped
harmonic motion.  It is like our old differential Equa-
tion 11a for undamped oscillation, except that it has the
additional term  b

m
dx
dt  representing the damping.

If we were doing a computer solution of harmonic
motion, adding the damping term represents hardly any
extra effort at all.  In the appendix to this chapter we
discuss a short computer program to handle harmonic

motion.  Starting with the first version of the program
that has no damping, you can include damping by
changing the line

 LET F = – k * x

to the new line

 LET F = – k * x – b * v (49)

and placing your choice for the damping constant b in
the initial conditions.

In contrast, when working with differential equations
analytically you find that a very small change in the
equation can make a great deal of difference in the
effort required to obtain a solution.  Adding a bit of
damping to a harmonic oscillator changes the curve
from a pure sinusoidal motion to a dying sine wave.  If
you try using a pure sine wave as a guess for the solution
to the differential Equation 48 for damped harmonic
motion, the guess does not work because the pure sine
wave has the wrong shape.  The decay of the sine wave
has to be built into your guess before the guess stands
a chance of working.

The difficult part about solving differential equations is
that you essentially have to know the answer before
you can solve the equation.  You only have to know
general features like the fact that in working with
Equation 11a you are dealing with a sinusoidal oscilla-
tion.  You can then use the differential equation to
determine explicit features like the frequency of the
oscillation.  It is helpful to have a physical example to
tell you what the general features of the motion are, so
that you can begin the process of solving the equation.
That is why we begin this chapter with the demonstra-
tion in Figure (2) that the motion of a mass on a spring
is similar to circular motion seen sideways, namely
sinusoidal motion.
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To set up a physical model for damped harmonic
motion is not too difficult.  One way to add damping to
the air cart and springs oscillator is to run a string from
the air cart over a pulley to a small weight as shown in
Figure (24).  The idea was to have the weight move up
and down in a glass of water to give us fluid damping.
But it turned out that there was enough friction in the
pulley itself to give us considerable damping.

To record the motion of the cart, we used the air cart
velocity detector that we used in Chapter 8 to study the
momentum of air carts during collisions.  Figure (25a)
shows the velocity of the air cart damped only by the
friction in the pulley.  In Figure (25b) water was added
to the glass so that the weight on the string was moving
up and down in water.  The result was considerably
more damping with the curve almost dying out before
any oscillations take place.

It turns out that mechanical oscillators like a pendulum
or a mass on a spring are not particularly convenient
devices for studying damped harmonic motion, or
forced harmonic motion which is the subject of the next

section.  It is hard to control the damping, just adding
the pulley in Figure (24) gave us almost too much
damping.  Worse yet, the damping that we get from
friction in a pulley, or a mass moving up and down in
water, is not a simple linear damping force of the form
– bv.  What is remarkable about these systems is that
much more complex forms of damping give us results
similar to what we would get with linear damping.

In Chapter 27 we will study the behavior of basic
electric circuits made from electrical components called
capacitors, inductors, and resistors.  It turns out that the
amplitude of the currents in these circuits obey differ-
ential equations that are exactly like our oscillator
Equations (11) and (45).  The damping is caused by the
resistor in the circuit, the damping is accurately given
by a linear damping term proportional to the amount of
resistance in the circuit.  (The resistance can be changed
simply by turning a knob on a resistance pot.)

Figure (26), taken from Chapter 27, is an example of
damped harmonic motion in an electric circuit.  Here
we have a curve with enough oscillations so that we can
see how the wave is damped.  In Chapter 27 we will see
that the amplitude of the oscillation dies exponentially,
following a mathematical curve of the form   e– αt .  As
a result, the wave in Figure (26) has the form

   
x = Ae– αt sin ωt

decaying
amplitude

sine wave
oscillation

(50)

glass

Figure 24
Adding damping to the air cart oscillator.

Figure 25a
Damping caused by the
pulley and weight alone.

Figure 25b
Resulting motion when water
was added to the glass.
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It turns out that if we use Equation 50 as our guess for
a solution to our differential Equation 48 for damped
harmonic motion, the guess works, and we can deter-
mine both the frequency ω  and decay rate α  in terms
of the constants that appear in Equation 48.

When we study electric circuits, you will get much
more experience with the exponential function   e– αt ,
and you will have a better laboratory setup for studying
damped and forced harmonic motion.  In other words,
now, with our somewhat crude mechanical experi-
ments and lack of familiarity with exponential damp-
ing, is not the best part of the course to go deeply into
the mathematical analysis of these motions.  What we
will do instead is discuss the motions more or less
qualitatively and leave the more detailed analysis for
later.

Exercise 20  Damped Harmonic Motion
We won’t let you completely off the hook for doing
mathematical analysis of damped harmonic motion.
Start with Equation 5a as a guess for the form for the
displacement x(t) for a damped harmonic oscillator

  x(t) = Ae– αt sin (ω t)

use the following rules of differentiation to calculate
 dx/dt  and  d2x/dt2

   d
dt

e– αt = – αe– αt

 d
dt

a(t)b(t) =
da
dt

b +a
db
dt

and show that when you try this guess in the differential
Equation 48, you do in fact get a solution, and that

 ω and α are given by

  
ω =

k
m

–
b2

4m2
α =

b
2m

(51)

You can see that in the absence of damping, when
b = 0, we get back to our old result    ω = k/m .

Critical Damping
In Figure (25b) the damping was so great that the
motion damped out almost before the curve had a
chance to oscillate.  It turns out that there is a critical
amount of damping that just kills all oscillations.  Any
further increase in damping and the mass just coasts to
rest.

The idea of critical damping can be seen in our analytic
solution for damped harmonic motion obtained Exer-
cise 20.  Equation 51 gives us a formula for the
frequency of oscillation ω in terms of the constants k
and b.  We can see as the frequency of oscillation goes
to zero, i.e., the period of oscillation becomes infinite
when

 k
m

=
b2

4m2
; b = 2 mk

  
b = 4mk

critical
damping

(52)

Equation 52 is the condition for critical damping
because if the period of oscillation is infinite there are
no oscillations.Figure 26

Damped harmonic motion seen in an electric
circuit. Note the difference in time scales. The
electrical oscillations we will study are usually of
much higher frequency than the mechanical ones.
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RESONANCE
When you are pushing a child on a swing, you time your
pushes to coincide with the motion of the child.  Usu-
ally you give a shove just after the child has swung back
and is starting forward again.

If you push forward just as the child is swinging
forward, your force F and the child’s velocity v  are in
the same direction, the dot product  F • v  is positive,
and you are adding energy to the child’s motion.
Initially the energy you add goes into increasing the
amplitude of the swing.  After a while friction effects
become large enough that the energy you add in each
push is dissipated by friction in each swing.  (If there is
not enough friction, or you push too hard, the child will
end up going over the top.)

The key to getting the child swinging was to time your
shoves so that  F • v  was always positive.  If you pushed
the child at random intervals, so that  F • v  was some-
times positive, sometimes negative, you would be
sometimes adding energy and sometimes removing it.
The net result would be that your shoves would not be
particularly effective in helping the child to swing.

To make sure that you are always adding energy to the
child's swing, you want to time your shoves with the
natural frequency of oscillation of the child.  When you
do this, we say that your shoves are in resonance with
the oscillation of the child.

The striking feature of resonance is that a small re-
peated force can produce a large oscillation.  If the
damping is small then by adding just a little energy with
each shove, the energy accumulates until you end up
with a very energetic oscillation.  A rather dramatic
consequence of this effect is shown in Figure (27)
where we see the Tacoma Narrows bridge oscillating
wildly and then collapsing.

The new bridge was dedicated in April of 1940.  Three
months later a reasonably stiff breeze started the bridge
oscillating, an oscillation that finally destroyed the
bridge’s integrity.

The brute force of the wind itself did not destroy the
bridge.  The bridge  was designed to handle far stronger
winds.  What happened was that as the wind was
blowing over the bridge, vortices began to peel off the
bridge. Whenever fluid flows past a cylindrical object
at the right speed, vortices began to peel off, first on one
side of the cylinder, then the other, and are carried
downstream, forming a wake of vortices seen in the
wind tunnel photograph of Figure (28).  This vortex
structure is called a Karmen vortex street after the
hydrodynamicist Theodore Von Karmen.

In the case of the Tacoma Narrows bridge, vortices
alternately peeled off the top and bottom of the down
wind side of the bridge, rocking the bridge at its natural
frequency of oscillation.  While no separate jolt by any
one vortex would have much effect on the bridge, the

Figure 27a
Tacoma Narrows bridge oscillating in the
winds of a mild gale on July 1, 1940.

Figure 27b
After a couple of hours
the bridge collapsed.
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resonance between the peeling of vortices and the
oscillation of the bridge caused the oscillations to grow
to destructive proportions.

The example of the Tacoma Narrows bridge illustrates
how widely the ideas of simple harmonic motion and
resonance apply to physical systems.  The bridge is far
more complex than a mass on a spring, and the vortex
street (line of vortices) exerts a rather complex driving
force.  However the bridge had a natural frequency, the
vortices provided a small driving force at that fre-
quency, and we got a resonant amplification of the
oscillation.

To apply Newton’s second law to resonant motion, we
have to add an oscillating driving force to the system
under study.  As we have seen from the Tacoma
Narrows bridge discussion, we do not need to know the
exact form of the driving force, all we need is a
repetitive force that can be timed with the natural
oscillation.  For the theoretical analysis we can use the
simplest mathematical form we can find for the driving
force, which turns out to be a sine wave.

To write a formula for the driving force, let    ω0 be the
natural frequency of oscillation (   ω0 = k/m  if the
damping is small), and let ω be the frequency of the
driving force.  Then the total force, acting on the
oscillating system like a mass on a spring, can be
written

  Fx tot = – kx – bv + Fd sin (ωt) (52)

where in the driving term,  Fd ,  represents the ampli-
tude or strength of the sinusoidal driving force.  Using
Equation 52 in Newton’s second law  Fx tot = max
gives

  
– kx – b

dx
dt

+ Fd sin ωt = m
d2x

dt2
(53)

Dividing through by m and rearranging terms gives

   
d2x

dt2
+

b
m

dx
dt

+
kx
m

= Fdsin ωt

(54)

Equation 54 is the standard form for the differential
equation representing forced or resonant harmonic
motion.  It is the simplest equation we can write whose
solution has the features we associate with the phenom-
ena of resonance.

In our study of electric circuits, we can easily create a
circuit whose behavior is accurately described by
Equation 54.  We saw that we could use resistors to add
linear damping of the form – bv.  It is not hard to add a
purely sinusoidal driving force of the form   Fd sin (ωt) ,
where we can adjust the driving frequency by turning
a knob.  In other words, with electric circuits we can
accurately study the predictions of Equation 54.

With mechanical systems like a mass on a spring, it is
hard to get linear damping, and the sinusoidal driving
force is usually simulated by some trick such as wig-
gling the supported end of the spring at a frequency ω.
Despite the crudeness of the experiment, the equation
gives a surprisingly good prediction of what we see.

Since we will later have a laboratory setup that accu-
rately matches Equation 54, we will postpone (until
Appendix 1) the mathematical solution of Equation 54.
Instead we will investigate the resonance phenomena
qualitatively, using the simple setup of a mass on a
spring, where we hold the other end of the spring in our
hand and move our hand up and down at a frequency
ω as shown in Figure (29).Figure 28

Karman vortex street in the flow of water past a
circular cylinder.  The vortices peel off of alternate
sides of the cylinder and flow downstream forming a
double line of vortices. (Reynolds number = 140.)
Photograph by Sadatoshi Taneda.
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Resonance Phenomena
We have already seen that if we hold our hand still, pull
the mass down, and let go, the mass oscillates up and
down at the natural frequency   ω0 = k/m .  You can
observe some damping, because the mass finally stops
oscillating.  But the damping is small and has no
noticeable effect on the resonant frequency.  (We can
neglect the term  b2/4m2  in Equation 51.)

Now try a very different experiment.  Stop the mass
from oscillating, and slowly move your hand up and
down a small distance.  If you do this slowly enough
and carefully enough, the mass will move up and down
with your hand (just as if the spring were not there).  In
this case the formula for the motion of the mass is

  x = x0 sin ωt ω << ω0 (55)

where the frequency ω of the oscillation of the mass is
the frequency of ω the oscillation of your hand.  This
only happens if you oscillate your hand at a frequency
much much lower than the natural oscillation fre-
quency  ω0 .

In the next experiment, keep the oscillations of your
hand small in amplitude, but start moving your hand up
and down rapidly, at a frequency ω considerably
greater than the natural frequency   ω0

.  Now, what
happens is that the mass oscillates at the same fre-
quency as your hand, but out of phase.  When your hand
is going down, the mass is coming up, and vice versa.
Now the formula for the displacement x of the mass is

  x = –x0 sin ωt ω > > ω0 (56)

where the minus  sign tells us that the mass is oscillating
out of phase with our hand.

A way we can write both Equations 55 and 56 is in the
form

  x = x0 sin (ωt + φ) (57)

where φ  is the phase angle of the oscillation (see
Figures 8 and 9 and Equation 4 at the beginning of this
chapter for a discussion of phase angle.)  In Equation
56, where   ω << ω0  and there was no phase difference,
the phase angle φ  is zero.  In Equation 56 where

  ω > > ω0 , and the motion is completely out of phase,
the phase angle φ  is π or 180°.

Equations 55 and 56 represent the two extremes of
driven harmonic motion.  The mass moves with a small
amplitude at the same frequency ω as the driving force.
When the driving frequency is much less than the
natural frequency   ω0 , the difference in phase between
the driving force and the response of the mass is zero
degrees.  When   ω >> ω0 the phase difference in-
creases to π or 180°.

As the third experiment, start at the low frequency
where the mass is following your hand, and slowly
increase the frequency ω of oscillation of your hand,
keeping the amplitude of oscillation constant. As ω
approaches   ω0 , the amplitude of oscillation of the
mass increases.  When you get close to the natural
frequency   ω0 , the oscillation becomes so large that the
mass will most likely jump off the spring.  This is the
phenomena of resonance, the phenomenon that de-
stroyed the Tacoma Narrows bridge.

How big the oscillation of the mass becomes depends
mainly how close you are to resonance, how close ω is
to   ω0 , and how big the damping force is relative to the
driving force.  The formula for the amplitude  x0  of the
motion of the mass obtained by solving Equation 54 is

  
x0 =

Fd/m

ω2 – ω0
2 + b/m 2ω2 (58)

where  Fd  is the strength of the driving force, ω the
driving frequency,   ω0 = k/m  the natural frequency
and b the damping constant.  In the absence of damping
(b = 0), Equation 58 predicts an infinite amplitude at the
resonant frequency   ω = ω0

.  Such an infinite ampli-
tude is prevented either by damping or by the destruc-
tion of the system.  (A damping mechanism could have
saved the Tacoma Narrows bridge.)

Figure 29
Experimental setup for
a qualitative study of
resonance phenomena.

M

ω

x

m
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Exercise 21
To derive Equation 21, you start with Equation 57 as a
guess

  x = x0 sin ω t +φ (57)

and substitute that into the differential Equation 54.  It
turns out that you can get a solution provided that the
amplitude  x0 has the value given by Equation 58, and
the phase angle φ is given by

     
tan φ =

b mb m ω

ω2 – ω0
2 (59)

Doing the work, actually substituting Equation 57 into 54
and getting Equations 58 and 59 for  x0 and φ is a
somewhat messy job which we leave to Appendix 1 on
the next page. Here we would rather have you develop
an intuitive feeling for the solutions in Equations 58 and
59 by working the following exercises.

(a)  Write the formula for  x0 in the case b = 0.  Sketch the
resulting curve using the axes shown in Figure (30).
Explain what happens as   ω → ω0

.

(b)  When the damping is not zero, find the formula for
the amplitude of oscillation  x0 at the resonant fre-
quency   ω → ω0

.  Check the dimensions of your an-
swer.

(c)  What  is the phase angle φ at resonance?  How does
the phase angle change as we go from   ω << ω0

 to
  ω >> ω0

?

In Figure (31) we have graphed the amplitude  x0  for
a fixed driving force  Fd , as a function of ω for several
values of the damping constant b.  The main point to get
from this diagram is that the smaller the damping, the
sharper the resonance.

Transients
There is one more qualitative experiment we want to do
with our simple apparatus of the hand held spring and
mass of Figure (29).  Instead of gently starting the mass
moving as we had you do in the earlier experiments, let
the mass fall from some small height and move your
hand up and down at the same time.

If you just let the mass drop from some small height, it
will oscillate up and down at the resonant frequency

  ω0
.  If you just start moving your hand slowly at a

frequency ω , the mass will move at the same frequency
as your hand, building up to an amplitude given more
or less by Equation 58 and shown in Figure (31), the
driven oscillation we have been discussing.

If you drop the weight and move your hand at the same
time, you get both kinds of motion at once.  You get the
natural oscillation at a frequency   ω0

 that eventually
dies out due to damping, and the driven oscillation at
the frequency ω that eventually builds up to an ampli-
tude  x0 .  For a while, before the natural oscillation has
died out, the resulting motion is a mixture of two
frequencies of oscillation and can look quite complex.
The natural oscillation is called a transient because it
eventually dies out.  But until the transients do die out,
forced harmonic motion can be fairly complicated to
analyze.  In the next chapter we will study a powerful
technique called Fourier analysis that allows us to
study complex motions that involve such a mixture of
oscillations.

Figure 30
Use these axes to
sketch the amplitude
vs. frequency for no
damping.

amplitude

0 1.0 1.2 1.40.80.6
frequency

ω/ω
Figure 31
Amplitude of the oscillation for various values
of the damping constant.  The amplitude of the
driving force  Fd  is the same for all curves.

amplitude

0 1.0 frequencyω/ω
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APPENDIX 14–1
SOLUTION OF THE
DIFFERENTIAL EQUATION
FOR FORCED HARMONIC MOTION
The equation we wish to solve is Equation 54

  d2x
dt2 + b

m
dx
dt

+ k
m x =

Fd
m sin ωt (54)

where our guess for a solution is Equation 57

  x = x0 sin ωt + φ (57)

The quantities   x0 and φ are the unknown amplitude and
phase of the oscillation that we wish to determine.

To simply plug our guess into Equation 54 and grind
away leads to a sufficiently big mess that we could
easily make a mistake.  We will instead simplify things
as much as possible to make the calculation easier.  The
first step is to define the constants

  ω0
2 = k/m ; b′ = b/m ; F′ = Fd /m (60)

Next we wish to get the phase angle into the forcing
term so that it appears only once in our equation.  We
can do this by using a time scale t′ where

  ωt′ = ωt + φ ⇒ ωt = ωt′ – φ (61)

In terms of the new constants and t′ our differential
equation becomes

  d2x
dt2 + b′ dx

dt
+ ω0

2 x = F′ sin ωt′ – φ (62)

Our guess, and its first and second derivative are
  x = x0 sin ωt′ (63a)

  dx
dt

= ω x0 cos ωt′ (63b)

  d2x

dt2
= – ω2 x0 sin ωt′ (63c)

In deriving dx/dt we used the fact that

  dx
dt

=
dx
dt′

dt′
dt

=
dx
dt′

where   t′ = t – φ/ω  so that   dt′/dt = 1 .  We will also
use the trigonometric identity

  sin a + b = sin a cos b + cos a sin b

to write

  F′ sin ωt′ – φ
= F′ sin ωt′ cos – φ + F′ sin – φ cos ωt′
= F′ sin ωt′ cos φ – F′ sin φ cos ωt′

(64)

where we used

   cos – φ = cos φ , sin – φ = – sin φ

Substituting Equation 63 and 64 into  62, and separately
collecting terms with   sin ωt′  and   cos (ωt′) , we get

  
sin ωt′ – ω2x0 + ω0

2x0 – F′cos φ +

cos ωt′ ωb′x0 + F′sin φ

= 0 (65)

Because there are both   cos (ωt′)  terms and   sin ωt′
terms in Equation 65, there is no way to make every-
thing add up to zero for all times unless the coefficients
of both   cos (ωt′)  and of   sin ωt′  are separately equal
to zero.  This gives us the two equations

  F′sin φ = – ωb′x0 (66)

  F′cos φ = ω0
2 – ω2 x0 (67)
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If we divide Equation 66 by Equation 67, the  F′  and  x0
cancel and we get

  sin φ
cos φ

=
– ωb′

ω0
2 – ω2

tan φ =
b/m ω

ω2 – ω0
2

(59)

This is the result we stated earlier, namely Equation 59.

To solve for the amplitude  x0  of the oscillation, we can
use Equation 66 to get

  x0 = F′
ωb′sin φ (68)

To find the   sin φ  from the   tan φ  which we already
know, construct the right triangle shown in Figure (32).
We have made the opposite and adjacent sides so that
the ratio comes out as   tan φ , and the hypotenuse is
given by the Pythagorean theorem. Thus   sin φ  is

  sin φ = ωb′
ω2 – ω0

2 + ω2b′2
(69)

Substituting 69 into 68, and setting   b′ = b/m,   F′ = Fd/m ,
we get

   
x0 =

Fd/m

ω2 – ω0
2 + ω2b2/m2

(58)

which is our earlier Equation 58 for  x0 .

Transients
In our qualitative discussion of forced harmonic mo-
tion, we saw that in addition to the driven oscillation

  xdriven = x0 sin ωt + φ  we have just studied , we
could also have transient motion at the natural fre-
quency   ω0

.  In controlled experiments, you observe
that any transient motion present initially finally dies
out and you are eventually left with just the driven
motion.

The transient motion  x tr(t)  is just damped harmonic
motion that satisfies the equation of motion

 d2x

dt2
+

b
m

dx
dt

+
k
m

x = 0 (48)

The question we wish to answer now is whether the
forced harmonic motion equation

  d2x

dt2
+

b
m

dx
dt

+
k
m

x = Fd sin ωt (54)

allows us to have both driven and transient motion at
the same time.  In other words, is a guess of the form

  x = x0 sin ωt + φ + xtr (70)

where x is the sum of the driven motion and an arbitrary
amount of transient motion, is this sum also a solution
of Equation 54?

If you substitute our new guess 70 into 54, the driven
term satisfies the whole equation and the transient
terms add up to zero because of Equation 48, thus we
do get a solution.  Transient motions are allowed by
Newton’s second  law.

Figure 32
Triangle to go from tanθ to sinθ.
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APPENDIX 14-2
COMPUTER ANALYSIS
OF OSCILLATORY MOTION
In this appendix, we will use the computer to analyze
the motion of the oscillating air cart shown in Figure
(33).  For this problem, the computer solution does not
have the elegance of the calculus solution we have been
discussing.  The calculus approach gives us a single
solution valid for all values of the experimental param-
eters.  With the computer we have to alter the program
and rerun it any time we want to change a parameter
such as the mass of the cart, the spring constant, or the
initial position or velocity.  The calculus approach
gives us a single formula valid for all values of the
experimental parameters.

However, the advantage of using the computer is that
we can easily modify the program to include new
physical phenomena.  For example, to add damping, all
we have to do is change the command

LET  F   =   –K*X

to the command

LET  F   =   –K*X –b*V

and rerun the program.  To  add damping to the calculus
solution, we had to work with a differential equation
(48) that was much more difficult to solve than the
equation for undamped motion (11).

The computer opens up a number of possibilities for
student project work.  For example, in our discussion of
the simple pendulum shown in Figure (21), we had to
limit our analysis to small amplitude swings of the

pendulum.  For large amplitude swings, the restoring
force became non linear which led to a differential
equation that is difficult to solve.  As the amplitude
increases, there is a lengthening of the period that is
easy to measure but difficult to predict using calculus.
However with the computer, it is as easy to use the exact
force   Mg sin θ  as it is to use the approximate linear
force   Mgθ .  Thus with the computer you can predict
the lengthening of the period and compare your results
with experiment.

In Appendix I, we made a considerable effort to predict
the effects of adding a time dependent driving force to
a harmonic oscillator.   The work paid off in that we got
Equations 58 and  59 which provide a general descrip-
tion of resonance phenomena.  With the computer you
do not get these elegant formulas, but it is much easier
to add a time dependent force and see what happens.  In
effect the computer solutions can be used as a labora-
tory to test the predictions of Equations 58 and 59.  This
provides an opportunity for a lot of project work.

Figure 33
Reproduction of Figure (10), showing an oscillating
air cart. If the cart is displaced a distance x from
equilibrium, there is a restoring force F = - kx. The
force is measured by adding weights as shown.

x

x
x

–kx

F

F

F = –kxs

(restoring force)

(distance 
 stretched)
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English Program
In Chapters 5 and 8 our usual approach for solving a
new mechanics problem on the computer was to modify
an old working program.  But because the harmonic
oscillator is an easy one dimensional problem, we will
start over with a new program.  Our general procedure
has been to first write an English program that de-
scribed the steps using familiar notation.  Once we
checked the steps to see that the program did what we
wanted, we then translated the program into an actual
computer language such as BASIC.

The English program for the oscillating air cart is
shown in Figure 34.  In the first section, we state the
experimental constants, namely the mass M of the air
cart and the spring restoring constant K.  For this
particular experiment, the cart has a mass M of 191
grams, and the spring constant K was 3947 dynes/cm.
As indicated in Figure (33), the spring constant K was
determined by tying a string to the mass, running the
string over a pulley, and hanging weights on the other
end.  We got a linear force verses the distance curve like
the one in Figure (9-4), and used the same method to
find K.

In the next section of the program, we choose an
explicit set of initial conditions.  For this problem we
start the cart from rest  V0 = 0  at a distance 10 cm to
the right of the equilibrium position  X0 = 0 .  The cart
is released at time  T0 = 0 .

In the lab we observed that the period of oscillation was
about 1.5 seconds.  Thus a calculational time step

 dt = .01seconds gives us about 150 points for one
oscillation, enough points for a smooth plot.

The calculational loop is similar to the one in the
projectile motion program of Figure (5-18), page
5-16, except that for one dimensional motion we do not
need vectors, and the old command

 LET A = g

is replaced by

LET  F   =   –K*X

LET  A  =  F/M

On the next page we repeat this English program and
show its translation into the computer language
BASIC.

              English Program

! --------- Experimental constants
LET M  =  191 grams        (cart mass)

LET K  =  3947 dynes/cm  (spring constant)

! --------- Initial conditions

LET  X0  =  10 cm

LET  V0  =  0     (release from rest)

LET  T0   =  0      (start clock)

! --------- Computer Time Step
LET  dt = .01

! --------- Calculational loop
DO

 LET Xnew = Xold + Vold*dt

 LET F = –K*X    (spring force)

LET  A  =  F/M

 LET Vnew = Vold + Aold*dt

 LET Tnew = Told + dt

PLOT   X vs T

LOOP UNTIL T  > 15

END

Figure 34
English program for the motion of
an oscillating cart on an air track.
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              English Program

! --------- Experimental constants
LET M  =  191 grams        (cart mass)

LET K  =  3947 dynes/cm  (spring constant)

! --------- Initial conditions

LET  X0  =  10 cm

LET  V0  =  0     (release from rest)

LET  T0   =  0      (start clock)

! --------- Computer Time Step
LET  dt = .01

! --------- Calculational loop
DO

 LET Xnew = Xold + Vold*dt

 LET F = –K*X    (spring force)

LET  A  =  F/M

 LET Vnew = Vold + Aold*dt

 LET Tnew = Told + dt

PLOT   X vs T

LOOP UNTIL T  > 15

END

Figure 34 repeated
English program for the motion of an oscillating cart
on an air track.

BASIC Program

Figure 35a
BASIC program for the motion of an oscillating cart
on an air track.

Figure 35b
Output of the BASIC program, showing the
oscillation of the cart.

The BASIC Program
Because no vectors are involved in the harmonic
oscillator program, the translation into BASIC is al-
most automatic.  Drop the subscripts “new” and “old”,
fix up the PLOT statement, add the plotting window
commands, and you have the result shown in Figure
(35a).  Select RUN and you get the plot of oscillating
motion shown in Figure (35b).



14-33

The plot of Figure (35b) nicely shows the sinusoidal
oscillation, but does not tell us the numerical value of
the period of oscillation.  To determine the period, we
modified the program as shown in Figure (36a). The
main change is to replace the PLOT statement by a
PRINT statement.  To  reduce the output, we included
MOD statement (as described in Exercise 5-5, page
5-9) so that only every tenth calculated point would be
printed.  From the output shown in Figure (36b), we see
that the period is close to 1.4 seconds.  A more accurate
value of the period can be obtained by not using the
MOD statement and printing every value as shown in
Figure (36c). From this section of data we see that the
period is closer to 1.39 seconds.

Exercise 22
Show that the frequency of oscillation seen in the
computer output of Figure (36) is consistent with the
calculus derived equation

            ω = k/M

Figure 36a
Program for numerical output.

Figure 36c
Detailed numerical output. By printing every
calculated numerical value, we can more accurately
determine the period of oscillation.

Figure 36b
Numerical output.
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Damped Harmonic Motion
In Figure (37a) we modified the projectile motion
program of Figure (35a) to include damping The only
change, shown in boxes in Figure (37a) is to replace

LET  F   =   –K*X

by

LET  F   =   –K*X –b*V

where we gave b the numerical value of 100 to get the
result shown in Figure (35b).

Exercise 23
(This is more of an introduction to project work)

In our analysis of damped harmonic motion in Exercise
20, we predicted that the frequency for damped har-
monic motion would be

       ω = k
M – b2

4m2                             (51)

In the special case that

      k
M = b2

4m2 ; b = 4mk                (51a)

we get   ω = 0 which is the case of critical damping,
where oscillations cease.

Run the damped harmonic oscillator program of Figure
(35a) for values of b near  4mk  and show that oscilla-
tions cease when you get to this critical value.

Figure 37b
Plot of damped harmonic motion.

Figure 37a
BASIC program for the damped harmonic motion.
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CHAPTER 15 ONE DIMENSIONAL WAVE
MOTION

In the last few chapters we have followed the straight-
forward procedure of identifying the forces on an
object, setting the vector sum of the forces equal to the
mass times acceleration, and solving the resulting
equation.  We began with problems like those involving
circular motion where we knew the acceleration and
could solve the equation immediately, the conical
pendulum being an example.  With oscillatory motion
we ended up with a differential equation whose solu-
tion had to be guessed.  The observation that oscilla-
tory motion looks like circular motion viewed sideways
helped greatly in this guess.

For damped and forced harmonic motion, it was not
hard to write the differential equations, but the solu-
tions involved mathematical functions and techniques
that may not have been not familiar to the reader.  In
this chapter we are dealing with the subject of wave
motion, where it turns out that the differential equation
describing the motion has derivatives in both time and
space.  Setting up and solving such an equation re-
quires mathematical discussions that are best left to a
more advanced level course.  Fortunately we can study
the physics of wave motion without working with
differential equations.

If we went through the effort to derive the differential
equation for wave motion, we would end up with what
is called a wave equation.  Once you have a wave
equation, you can guess a solution and plug in your

guess just as we did for the simpler equations for
oscillatory motion.  For oscillatory motion, when we
plugged in our guess    sin (ω t) , we ended up with a
simple equation    ω = k/m  for the frequency of the
oscillation.  For wave equations, if you plug in a guess
representing a wave traveling through the medium,
you end up with a simple equation for the speed of the
wave.

There are some famous wave equations in physics.  In
1860 James Clerk Maxwell combined the equations for
electricity with those for magnetism and, to his sur-
prise, ended up with a wave equation.  He initially had
no idea what the wave was, but he could calculate the
speed of the wave.  Whatever wave he was dealing with
travelled at a speed of   3×108 meters per second or 1
foot per nanosecond.  As he knew of only one thing that
travelled at that speed—light—he concluded that he
had an equation for light waves and that the theory
leading to this equation was the theory of light.  He had
discovered that light was an electric and magnetic
phenomena.

In 1925, Louis De Broglie explained some baffling
phenomena in atomic physics by proposing that elec-
trons have a wave nature.  Erwin Schrödinger then
went further and derived a wave equation for the
electron, an equation known as Schrödinger’s equa-
tion  that serves as the theoretical foundation for
almost all of chemistry.
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In 1929 Paul Dirac constructed a relativistic generali-
zation of Schrödinger’s equation.  The problem with
Dirac’s equation was that it had solutions for two
different kinds of wave, one representing the electron
and the other an unknown particle of the opposite
charge.  A particle similar to the electron but opposite
in charge, the positron, was observed in a cloud
chamber experiment carried out by Carl Anderson in
1933.

It turns out that the relativistic wave equation for all
elementary particles has two solutions, one solution
like the electron representing matter, the other, like the
positron, representing antimatter.  And the wave equa-
tions predict that if a matter particle encounters its
corresponding antimatter particle, the two particles
can annihilate each other.  There is an entire world of
antimatter, the existence of which was predicted by
Dirac’s wave equation.

With wave equations playing such an important role in
physics, one might think it is unfortunate that we are not
prepared to derive and solve wave equations.  Actually
that is a blessing.  There are certain general, simple
principles that apply to all forms of wave motion,
principles that allow you to understand and predict
many features of the behavior of waves.  These prin-
ciples apply not only to waves like water and sound
waves whose behavior can be deduced from Newtonian

mechanics, but to light and electron waves where
Newtonian mechanics does not apply.  Thus by learn-
ing these general principles of wave motion, you are
developing a foundation in physics that goes beyond
Newtonian mechanics.

The two basic principles of wave motion we will discuss
in this text are the principle of superposition and the
Huygens principle.  The principle of superposition is
a fancy way of saying that waves add.  If two waves are
moving through each other, they produce a total wave
that is the sum of the two waves.  Since waves can have
negative amplitudes (troughs) this addition of waves
can produce cancellation.  Two waves running into
each other can, under the right circumstances, cancel
each other out.  This cancellation is clearly a wave
phenomena, particles are not expected to do that.

The other general principle of wave motion is Huygens
principle, which tells us how waves spread out in space.
In this and the next chapter we will focus our attention
on one dimensional waves which do not spread out.
Thus we do not need Huygens principle at this point.
Later in Chapter 33, we discuss two and three dimen-
sional waves and phenomena such as interference and
diffraction.  In that chapter we do everything using the
principle of superposition and the Huygens principle.
In that chapter no calculus is used and we obtain results
that apply to a broad spectrum of phenomena, even to
sub atomic particles where concepts like velocity and
acceleration no longer have meaning.
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WAVE PULSES
We begin our discussion of wave motion with the wave
pulses we described in Chapter 1 on Special Relativity.
To create a wave pulse on a stretched rope, you flick the
end of the rope and a pulse travels down the rope as
shown in Figure (1-4) reproduced here.  This is called
a transverse wave because the particles in the rope
move perpendicular or transverse to the direction of
motion of the wave pulse.

With a stretched Slinky we were able to observe two
different kinds of wave motion, the transverse wave
seen in Figure (1-5) and a compressional wave seen in
Figure (1-6).  The compressional wave is also called a
longitudinal wave because the particles in the spring

are moving longitudinally or parallel to the direction of
motion of the wave pulse.

Sound waves are usually compressional waves travel-
ing through matter.  A sound wave pulse in air can be
viewed as a region of compressed gas where the
molecules are closer together as shown in Figure (1).  It
is the region of compression that moves through the gas
in much the same way as the region of compressed coils
moves along the Slinky as seen in Figure (1-6).

To create the compressional wave on the Slinky we
pulled back on the end of the Slinky and let go.  This
gives a small impulse directed down the Slinky.  In
much the same way we can use a loudspeaker cone to
create the pressure pulse in the air column of Figure (1).
Here the impulse can be provided by applying a voltage
pulse to the speaker causing the speaker cone to sud-
denly jump forward.  (If the speaker cone suddenly
jumps back, you get a pulse consisting of a region of
low pressure traveling down the tube.)

A transverse or sideways force in the medium tends to
restore the medium to its original shape.  For a trans-
verse wave on a stretched rope, the tension on the rope
provides the restoring force.  For waves on the surface
of a liquid, gravity or surface tension supplies the
restoring force.  But for waves passing through the bulk
of a liquid or a gas, there are no transverse restoring
forces and the only kind of waves we get are the
compressional sound waves.

a)

b)

c)

d)

Figure 1-4
Wave traveling down a rope.

Figure 1-5
Transverse wave on a Slinky

Figure 1-6
Compressional wave on a Slinky.

Figure 1
A sound wave pulse traveling down through a tube
of air.  The pulse consists of a region of compressed
air where the air molecules are closer together.
This region of compression moves through the gas
much as the region of compressed coils moves along
the Slinky in Figure 1-6.

Vwave

speaker
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The main difference between a liquid and a solid is that
in a liquid the molecules can slide past each other, while
in a solid the molecules are held in place by molecular
forces.  These forces which prevent molecules from
sliding past each other can also supply a transverse
restoring force allowing a solid to transmit both trans-
verse and compressional waves.  An earthquake, for
example, is a sudden disruption of the earth that pro-
duces both transverse waves called S waves and longi-
tudinal or compressional waves called P waves.  These
waves can easily be detected using a device called a
seismograph which monitors the vibration of the earth.
It turns out that the S and P waves from an earthquake
travel at different speeds, and will thus arrive at a
seismometer at different times.  By measuring the
difference in arrival time and knowing the speed of the
waves, you can determine how far away the earthquake
was.

Exercise 1
The typical speed of a transverse S wave through the
earth is about 4.5 kilometers per second, while the
compressional P wave travels nearly twice as fast,
about 8.0 kilometers per second.  On your seismo-
graph, you detect two sharp pulses indicating the
occurrence of an earthquake.  The first pulse is from the
P wave, the second from the S wave.  The pulses arrive
three minutes apart.  How far away did the earthquake
occur?

(Building a seismograph is a favorite high school sci-
ence fair project.  Basically you suspend a large mass
from springs and have a pen which is attached to the
mass draw a line on moving stripchart paper as shown
in Figure (2).  When the earth shakes, the stripchart
shakes with the earth, but the mass remains more or less
stationary.  The result is a squiggly line on the stripchart
whose amplitude is the amplitude of vibration of the
earth.

SPEED OF A WAVE PULSE
One way to predict the speed of a wave is to set up the
differential equation for the wave, plug in a traveling
wave solution and let the equation tell you the speed.
Without the wave equation we can in some cases
deduce the speed of the wave using clever tricks.  One
example is the transverse wave on a rope, whose speed
we will calculate now.  Another is the speed of Maxwell’s
wave of electric and magnetic forces which we will
discuss in Chapter 32.

To calculate the speed of a transverse wave on a rope,
consider a wave pulse moving down a rope at velocity
v as shown in Figure (3a).  To analyze the pulse,
imagine that you are running along with the pulse at the
same velocity v.  From your point of view, shown in
Figure (3b), the pulse is at rest and the rope is moving
back through the pulse at a speed v.

Now look at the top of the wave pulse.  For any
reasonably shaped pulse, the top of the pulse will be
circular, fitting around a circle of radius r as shown in
Figure (3c).  This radius r is also called the radius of
curvature of the rope at the top of the pulse.

Finally consider a short piece of rope of length  at the
top of the pulse as shown in Figure (3d).  If this piece
of rope subtends an angle   2θ  on the circle, as shown,
then   = 2 rθ  and the mass m of this section of rope is

   
m = µ = µ2rθ massof short

sectionof rope
(1)

where µ is the mass per unit length of the rope.

The net force on this piece of rope is caused by the
tension T in the rope.  As seen in Figure (3d), the ends

Figure 2
Sketch of a simple seismograph for detecting
earthquake waves.  When the earth shakes, the mass
tends to remain at rest, thus the pen records the relative
motion of the stationary mass and shaking earth.

heavy mass
with pen
attached

earth jiggling

rotating drum with
stripchart paper
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of the piece of rope point down at an angle θ.  Thus the
tension at each end has a downward component

  T sin (θ) for a total downward force  Fy of magnitude

   
Fy = 2T sin (θ) ≈ 2Tθ

downward
componentof
tension force

(2)

If we keep the angle θ small, just look at a very small
section of the rope, then we can approximate   sin (θ) by
θ as we did in Equation 2.

The final step is to note that this section of rope is
moving at a speed v around a circle of radius r.  Thus we
know its acceleration; it is accelerating downward,
toward the center of the circle, with a magnitude  v2/r.

  
ay =

v2

r

downward
accelerationof
sectionof rope

(3)

Applying Newton’s second law to the downward com-
ponent of the motion of the section of rope, we get using
Equations 1, 2 and 3

  Fy = may

2Tθ = µ2rθ v2

r

(4)

Both the variables r and θ cancel, and we are left with
  T = µv2

   
v = T

µ
speed of a wave pulse
on a rope with tension T,
mass per unit length µ

(5)

A result we stated back in Chapter 1.

Figure 3d
The ends of the rope point down at an angle θθ ,
giving a net restoring force    Fy = 2 T sin θθ .

r θ θ

θθ
Tsin θTsin θ

Τ

= 2 r θ

Τ

Figure 3a
Wave pulse, and an observer, moving
to the right at a speed v.

v (pulse)

v

v (rope)

r
Figure 3c
Assume that the top of the pulse fits
over a circle of radius r.

Figure 3b
From the moving observer’s point of view, the
pulse is stationary and the rope is moving
through the pulse at a speed v.

v (rope)
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DIMENSIONAL ANALYSIS
In the above derivation of the speed of a transverse
pulse on a rope, we avoided solving a differential
equation by observing that the rope at the top of the
pulse, from the moving observer’s point of view, was
moving with circular motion whose acceleration we
know.  For other kinds of wave pulses, particularly the
compressional pulse seen in Figure (1-6), we do not
have a simple circular motion, and a non calculus
derivation of the wave speed becomes even more
convoluted than the derivation we just went through.
We could do it, but it is not worth the effort, especially
since there are more straightforward ways of predicting
wave speeds when one has the differential equation for
the wave motion.

What we will do instead is use a technique called
dimensional analysis to predict the speed of the wave.
With dimensional analysis, you do not work out equa-
tions.  Instead you determine what the relevant vari-
ables are, and then combine those variables in such a
way that the dimensions are correct.  If you have
selected the correct variables, you get an answer that is
correct to within a constant factor, and sometimes the
correct answer.

To see how dimensional analysis works, let us first
apply it to the example we just worked out—to find the
speed of a transverse wave pulse on a rope. (For clarity,
we will italicize the variable names.  We will also use
MKS units.)  The first step is to do some experiments to
find out what variables the speed depends upon.  You
choose a rope, stretch it, and soon discover that the
speed of the pulse depends upon the tension T. Thus T
is one of the variables.  Then you try two ropes of the
same length but different mass m, and discover that you
get different wave speeds for the same tension.  Thus
the mass m is one of the relevant variables.  Another
experiment with 2 ropes of the same mass but different
lengths, gives different wave speeds.  Thus the rope
length L is also important.  Further experiments indi-
cate that the speed of the pulse does not depend upon
such variables as the color of the rope, the material from
which it is constructed, or the time of day.  Thus you
conclude that the relevant variables and their dimen-
sions are

  
T

kg m(meter)

sec2
, m kg, L m (6)

From these variables we have to construct the velocity.

  v m
sec (7)

The only variable with the dimensions of seconds in it
is the tension T, thus T must be included in our formula
for  v.  To get rid of kilograms, we must divide T by m
to give

  T
kg m
sec2 *

1
m kg

= T
m

m
sec2

We are getting there, but we must have the same power
of meters and sec in order to get a velocity.  If we
multiply T/m  by L  meters, we get

  T
m

m
sec2 * L m = T L

m
m2

sec2

Finally we get the correct dimensions by taking the
square root, giving

   v = T L
m

m
sec = T

µ
m
sec (8)

where we noted that    µ = m /L  is the mass per unit
length.

Equation 8 tells us that no matter what the theory is, if
the only relevant variables are T, m and L, the speed of
the wave must be proportional to   T µT µ  for the dimen-
sions to work out.  We may have missed a factor of
1/2 or   2π , but the functional dependence must be right.

Let us now use dimensional analysis to predict the
speed of the compressional Slinky pulse shown in
Figure (1-6), or any compressional pulse on a stretched
spring.  Since a stretched spring has a tension T and a
mass per unit length µ, one might guess that   T µT µ
could also be the formula for the compressional wave.
However compressional and transverse waves do not
have the same speed.  Even more important, you can get
different wave speeds for the same value of    T µT µ, by
using different springs.  It turns out that the tension T is
not a relevant variable.

Compressional waves depend upon the stiffness of a
material, not the tension.  For example a compressional
sound pulse will travel down a steel rod whether or not
the rod is under tension.  Pulling on the ends of the steel
rod does not noticeably change the speed of the sound
pulse.  Increasing the tension in a spring stretches the
spring and therefore changes the mass per unit length.
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It is the change in mass per unit length, not the change
in tension, which affects the speed of the compres-
sional pulse.

What variable is related to the inherent stiffness of a
spring?  The one that comes to mind is the spring
constant k that appears in Hooke’s law

   F = – kx ;

k = F
x

newtons
meter Hooke′s law

(9)

The stiffer the spring, the greater the spring constant k.

Suppose we decide, after enough experimentation, that
the relevant variables for the compressional pulse on a
spring are the spring constant k, spring mass m and
spring length L.  We obtain the dimensions of k from
Hooke’s law,

   
k newtons

meter = k
kg ⋅ m sec2kg ⋅ m sec2

m = k
kg

sec2

thus we have to construct a quantity with dimensions
m/sec from the variables

  k
kg

sec2 , M kg, L m

The only way we can do it is to divide k by m to get rid
of kilograms and multiply by   L2 to get

  kL2

m
m2

sec2

Taking the square root gives a quantity with the dimen-
sions of a velocity

   
v = kL2

m = kL
µ

speed of a
compressional
wave on a spring

(10)

where again    µ = m /L  is the mass per unit length. This
is our prediction for the speed of a compressional wave
on a spring.  The actual speed could differ by a constant
factor like 2, but it must have this functional depen-
dence if we are correct in our assumption that the only
relevant variables are k, m and L.

In the formula    v = kL/µ , the appearance of the
product kL, rather than k alone may at first seem
surprising.  But it turns out that the inherent stiffness of

a spring is proportional to kL and not just k, with the
result that the speed of the pulse is related to the
stiffness, as we suspected.

To see why the inherent stiffness is related to kL,
imagine that we wind a long spring and cut it in half to
create two identical springs of length  L1 .  As shown in
Figure (4a), if we apply a force F to one of the springs,
and measure the distance    ∆x  that the spring stretches,
we can use Hooke’s law to calculate that the spring
constant  k1  is given by

   
k1 =

F
∆x

(11)

Now attach the two springs back together and stretch
the combination with the same force F as shown in
Figure (4b).  Since each spring feels the same force F,
each stretches a distance    ∆x , and the pair stretch a
distance 2   ∆x .  Thus from Hooke’s law the   k2  of the
combination is given by

   
k2 =

F
2∆x

=
1
2

F
∆x

=
k1

2
(12)

where we used    k1 = F/∆x  from Equation 11.

Figure 4b
Measuring the spring constant
of two connected springs.

2 L1

F

2F = k  (2∆x) ;      k   = F/2∆x         k  = k  /22 12

(unstretched)

    (stretched)
∆x 2∆x

Figure 4a
Measuring the spring constant of a spring.

L1

1

F

F = k  ∆x ;  k   = F/ x1

∆x

(unstretched)

    (stretched)
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When we attach two identical springs together, we end
up with a longer spring but we are not changing the
inherent stiffness of the spring.  More importantly we
do not change the speed of the wave pulse.  Connecting
the two springs and keeping the tension F the same
merely gives the pulse a longer distance to travel.

Note, however, that when we attach the two springs, the
spring constant is cut in half, but the length is doubled,
with the result that the product kL is unchanged.
Explicitly we have

  
k2L2 =

k1

2
2L1 = k1L1 (13)

It should now appear more reasonable that the speed of
the wave pulse should be given by    kL/µ .  Both the
quantity kL, and the mass per unit length µ  are inherent
properties of the spring that do not depend on the length
of the spring.  It is thus reasonable that the speed of the
wave pulse should also involve only these variables.

Project Suggestion
We have spent some time discussing the speed of
pulses on a stretched spring for two reasons.  One is that
we used these pulses as our main example of wave
motion in our introduction to special relativity in Chapter
1.  The second is that measuring the speed of pulses on
a spring makes a nice project, not much equipment is
needed, and you can fairly easily measure the variables
needed to test Equation 10.

An additional advantage is that Equation 10 might or
might not be right.  Since it was derived by dimensional
analysis, it could be off by a constant factor like 1/2 or

  2π .  Therefore you have the challenge of determining
whether or not there are some missing constant factors.

We expect that the wave speed should be proportional
to      kL /µ , and if this does not turn out to be correct, we
have made some mistake in our analysis of what vari-
ables are important.  For example, in our analysis, we
said nothing about the unstretched length   L0 of the
spring.  Should   L0 also appear in the formula for   vwave?
The way to find out is to do some experiments.

The experiments are made a bit easier by noting that

     
v =

kL
µ =

kL2

m
= L

k
m

where we used     µ = m/L .

SPEED OF SOUND WAVES
The quantity kL that appeared in our formula for the
speed of a wave pulse is essentially the stiffness of a unit
length spring.  By stiffness we mean the ratio of the
force applied to stretch a unit length of spring, to the
amount of stretch    ∆x  that we get.  The same ideas also
apply to stretching a steel rod or any one dimensional
object that has an elasticity and obeys Hooke’s law.

In engineering texts, the force applied to a unit length,
area, or volume is given the generic name stress, and
the resulting displacement that the stress causes is
called a strain.  The ratio of the stress to the strain, is
called the modulus.  For our spring, the stress is the
tension force F, and the strain is the change in length per
unit length, or    ∆x/L .  The ratio of the stress to the strain,

   F/(∆x /L) = FL /∆ x  is called Young’s modulus.  From
Hooke’s law,    F/∆ x = k , thus Young’s modulus is

   FL /∆ x = kL,  the quantity we have been discussing.

When we have a compressional wave in a gas, we can
think of the compression as being caused by a pressure
pulse that travels through the gas.  In the region where
the gas is compressed, there is a slight excess pressure.
The speed of the wave pulse depends upon the response
of the gas to this excess pressure.

Using the engineering terminology, the excess pres-
sure    ∆P  represents the stress and the fractional change
in volume,    ∆V/V  the corresponding strain.  In this case
the ratio of the stress    ∆P  to the strain    ∆V/V is called the
bulk modulus B.The formula for B is thus

   B = ∆P/ ∆V /V      bulk modulus (15)

In Chapter 17 we will discuss the concept of a pressure
in a gas, and see how changes in pressure are related to
changes in volume.  Until we get to that chapter, any
detailed discussion of the concept of bulk modulus is
premature.  What we will do now is assume that it is the
bulk modulus B essentially represents the “stiffness” of
the gas and should appear in the formula for the speed
of a sound wave.  We will then use dimensional
analysis to figure out what the formula should be.
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From this table we see that the speed of sound is
considerably higher in the light gasses helium and
hydrogen than in the more dense gas air.  (The differ-
ence in density is why helium and hydrogen filled
balloons float in air.)  The compressibility or bulk
modulus is usually the same for all gases at a given
pressure, thus the higher speed in hydrogen or helium
is due to the lower density, as we would expect from the
formula     v = B ρB ρ .

Exercise 2
Steel is much stiffer than aluminum.  (You make much
better springs from steel than aluminum.)  Yet the speed
of sound is greater in aluminum than steel.  Why?

Exercise 3
You tap the end of a 10 meter long steel rod with a
hammer.  How long before the tap can be detected at
the other end of the rod?

Exercise 4
A dimensional analysis problem
that you should attempt now.

When working with the theory of electric and magnetic
phenomena, using the MKS system of units, one en-
counters two rather mysterious constants labeled  ε0
(epsilon naught) and  µ0  (mu naught).  The constant  ε0

appears in the formula for electric forces, and   µ0  in the
formula for magnetic forces.  These constants have the
following dimensions

  
ε0

coulomb
2

seconds
2

kilogram meter 3 (18)

  µ0
kilogram meter

coulomb
2

(19)

where a coulomb is a unit of electrical charge.  The
numerical values of  ε0  and   µ0  are to be found on the
inside cover of this text along with other important
physical constants.

(a) what combination of the constants  ε0  and   µ0  have
the dimensions of a velocity?

(b) from the numerical value of this velocity, what do you
think it is the velocity of?

In the ratio    B = ∆P/ ∆V /V , the denominator    ∆V /V
is dimensionless, thus B has the dimensions of pressure
which is a force per unit area.

  B newtons
meter2 = B

kg m
sec2 m2 = B

kg
sec2 m

(15)

To construct a quantity involving B that has the dimen-
sions of a velocity, we have to get rid of the kilograms
by dividing by some quantity related to the mass of the
gas.  The only reasonable choice is the gas density

  ρ kg/m3, thus we now have

   B kg/(sec2 m)
ρ kg/m3 = B

ρ
m2

sec2 (16)

which is the square of a velocity.  Taking the square
root, we get

   
v = B

ρ
speed of a
sound wave (17)

a result we stated back in Chapter 1.

Equation 17 holds not only for a gas, but also for
compressional sound waves in a liquid and a solid.
Liquids and solids, being far more incompressible than
a gas, have a much greater bulk modulus B and
therefore higher speeds of sound.  The speed of sound
in various substances is given in Table 15-1.

Substance Speed of Sound
in meters/sec

Gases (at atmospheric pressure)
Air at 0° C 331
Air at 20° C 343
Helium at 20° C 965
Hydrogen at 20° C 1284

Liquids

Water at 0° C 1402
Water at 20° C 1482
Sea water at 20° C 1522

Solids

Aluminum 6420
Steel 5941
Granite 6000
Nuclear matter near c

Table 15-1
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Conceptually we can separate all wave motion into two
classes.  There are the relatively smooth waves that can
pass through each other like the circular ripples of
Figure (1-2), and the relatively wild waves that crest,
crash and change their shapes.  The relatively smooth
waves all obey what is called a linear wave equation.
The properties of these waves are well understood and
their behavior easy to predict.  The wild waves obey
nonlinear wave equations.  We know very little about
the behavior of nonlinear waves, and in most cases find
it very difficult to make predictions about their behav-
ior. (Ocean waves, for example, are linear until they
start to crest.  When you see whitecaps,  the waves have
become nonlinear.)

In this text we will restrict our discussion to the smooth,
linear waves that behave like the circular ripples.
Fortunately, most kinds of wave motion we encounter
in nature, including almost all examples of light waves
and the probability waves of quantum mechanics, are
linear and therefore relatively easy to analyze.  But
there are growing applications for nonlinear waves,
particularly in the field of laser optics.

LINEAR AND NONLINEAR
WAVE MOTION
Few sights are more awesome than the crashing of
ocean rollers on a rocky beach during a storm.  The
waves seen in Figure (3) of Chapter 1, produced by
hurricane Bertha hundreds of miles out to sea, were
crashing against the rocky shores of Mt. Desert Island,
Maine, in July 1990.  Hundreds of tourists and local
television station reporters were at the beach to observe
the event.  At one spot, called ‘Thunder Hole’, the
crashing waves created a loud boom and a geyser of
water that went 40 or 50 feet in the air.

A very different sight are the circular ripples emerging
from where raindrops have hit a puddle of water, seen
in Figure (1-2), reproduced here. The special feature of
these ripples is that they maintain their identity as they
move through each other.  They are still circular waves
even after moving through other waves.

a)

b)

c)

d)

Figure 5
Two wave crests running into each other
add up to produce a bigger crest.

Figure 1-2
Rain drops creating circular waves on a puddle.

Figure 1-3
This ocean wave from Hurricane Bertha (July 31, 1990).
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THE PRINCIPLE OF
SUPERPOSITION
Figure (1-2) illustrates one aspect of linear wave mo-
tion.  The waves can move through each other and
emerge undisturbed.  The waves are still circular and
unbroken after they have crossed.

There is another simple feature of this wave motion that
is a bit harder to see from that picture.  While the waves
are crossing, they produce a wave whose height is the
sum of the heights of the individual waves.  If two crests
are moving through each other, the crests add to
produce a higher crest.  Two troughs produce a deeper
trough, and a crest and a trough will tend to cancel as
they move through each other.

This adding of the heights of crossing waves is more
easily illustrated for the case of one dimensional wave
pulses traveling down a rope.  In Figure (5), two similar
crests add together to produce a doubly high crest for an
instant.  In Figure (6) we see that a similar shaped crest
and trough will cancel at the instant they are together.
Figure (7) illustrates the idea that as any two wave
shapes move through each other, they produce a wave
shape whose height at any point along the rope is the
sum of the heights of the individual waves moving
through each other.

The concept that waves can maintain their identity as
they move through each other, and that they produce a
resultant wave whose height or amplitude is the sum of
the heights or amplitudes of the individual waves, this
concept is known as the principle of superposition.  In
more colloquial language, the principle of superposi-
tion says that waves add.  The principle of superposi-
tion is one of the key concepts of linear wave motion.
It distinguishes linear from nonlinear wave motion.
When nonlinear waves interact, you get something
different than the simple sum of the two waves.

Before leaving our discussion of the principle of super-
position, we wish to take one further look at part (c) of
Figure (6).  That is the point where an equal shaped
crest and trough are right on top of each other, precisely
cancelling each other out.  This kind of cancellation of
waves is a common feature of wave motion.  In fact, it
is what distinguishes wave motion from what we have
been calling particle motion.  If two particles run into
each other, they do not cancel like the waves of Figure
(6).  They bounce or crash but not cancel.

a)

b)

c)

d)

Figure 6
When a crest meets a trough, there is a
short time when the waves cancel.

Figure 7
In general, for linear wave motion. We obtain
the shape of the resulting wave by adding the
amplitudes of the individual waves.

v

v
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SINUSOIDAL WAVES
If you ask someone to describe wave motion, they are
likely to picture water waves and sketch a curve that
looks like a sine wave.  A sine wave represents just one
of many possible shapes for a wave.  But it is an
important shape because it is often seen in nature and
it is easy to handle mathematically.  We will see shortly
that any arbitrary wave shape can be constructed from
sine waves, thus the sine wave can be thought of as a
basic building block of wave motion.

To relate the mathematical sine function to wave
motion, recall our definition of sine function shown
back in Figure (14-4).  The point of that figure is that the
sine function is the sideways projection of circular
motion.  As the arrow rotates at an angular velocity ω,
the angle θ that the arrow has rotated increases as

  θ = ω t .  On the right we have graphed the height of the
rotating arrow as a function of the angle   θ = ω t  to
obtain a sine curve.

To actually create the sine wave shape seen in Figure
(14-4), you can start shaking one end of a long rope as
shown in Figure (8).  If you move your hand up and

down with a sinusoidal oscillation, a sinusoidal shaped
wave will start traveling down the rope, at a speed

  vwave = T/µ .  This creates an example of what is
called a traveling sine wave.

The problem with creating traveling sine waves on a
rope, is that the wave reaches the end of the rope,
reflects, and moves back through the incoming wave,
complicating the situation.  A better example of travel-
ing sine waves can be seen on the surface of a lake or
the ocean where there is plenty of room for the waves
to move before they strike an object or a shore.

There are two distinct ways to view a traveling sine
wave.  One is to move along with the wave.  Then all
you see is a stationary sinusoidal shape.  The other is to
stand still and let the wave pass by you.  Then you will
see the wave oscillate up and down as successive crests
and troughs pass by you.  This is illustrated in Figure (9)
where we have sketched a traveling sinusoidal water
wave passing a fixed post in the water.  If you move
along with the wave, then the shape of the wave does
not change.  But if you look at the post, the level of the
water is moving up and down with a sinusoidal oscil-
lation.

Figure 8
Sine wave created on a
stretched rope.

θ
0

π/2

π

3π/2

π
2

3π
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π

0 θ = ωt
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−1ω

ω vwave

x

λ

Figure 14-4
Definition of the
function

   sinθθ = sin (ωω t).
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Wavelength, Period, and Frequency
We usually describe a wave in terms of its wavelength
λ , frequency f or period T. The easy way to remember
how to go back and forth between these quantities, is to
use dimensions.

When we view the shape of a traveling sine wave, the
predominant feature is the wavelength, the distance λ
between crests shown in Figure (8).  Considering that
one full cycle of the wave fits between the crests, we
can assign the dimensions of meters per cycle to λ .

   λ meters
cycle

wavelength

When we let the wave pass by us and view the up and
down motion of the surface, we see an oscillation
whose period is T seconds per cycle and frequency is
f cycles per second.

Since the period T is the length of time it takes one
wavelength λ  of the wave to pass by at a speed  vwave ,
we have (distance = speed times time)

  λ meters
cycle

= vwave
meters
second

T second
cycle (20)

By assigning the dimensions meter/cycle to λ  and
sec/cycle to T, we can get the relationship   λ = vwaveT
from dimensions without having to memorize formu-
las, or even having to think very much.

Figure 9
Traveling sine wave on the surface
of water.  The sine wave shape
moves as a unit along the surface
at a speed   vwave . But if we look at a
fixed post in the water, the water
level at the post oscillates up and
down with a sinusoidal oscillation.

As an example of using dimensions to derive a formula,
let us see if we can get a formula for the frequency f of
a wave of wavelength λ .  The idea of using dimensions
is to try something, then see if the dimensions match.  If
they don't match, change the formula until they do.  As
a guess, let us try the formula

   f = vwaveλ guess

Putting in dimensions, we have

  
f

cycles
sec = vwave

meters
sec × λ meters

cycle

= vwaveλ meters2

sec cycle

Clearly the dimensions do not match.  We have to
change the formula so that meters cancel and we get
cycles upstairs.  This can be done if we move λ
downstairs, giving

  
f

cycles
sec =

vwave meters/sec

λ meters/cycle

=
vwave

λ
cycles

sec (21)

which works.  Thus the correct formula is    f = vwave/λ ,
a result that can be a bit tricky to figure out other ways.

ω t = 0

vwave

λ
0

ω t = 

ω t = 

ω t = 

ω t = 

π

π
2

3π
2

2π

post
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Angular Frequency ωω
In Figure (14-4), we reminded ourselves that a sinusoi-
dal oscillation is equivalent to the sideways view of
circular motion.  If the vector on the left side of Figure
(14-4) is rotating with an angular velocity ω  radians
per cycle, we get one rotation, one period T of the
oscillation, when the angle   θ = ωt  goes from 0 at t = 0,
to   2π  at t = T.  Thus at the end of one period,

  θ = ωT = 2π .

Again we can avoid memorizing new formulas by
using dimensions.  We note that   2π is the number of
radians in a full circle or cycle.  Thus we will assign to
it the dimensions

  
2π radians

cycle
(23)

Then to find the formula, for example, for the wave's
angular frequency ω  in terms of the wave's period T,
we have

  
ω radians

sec =
2π radians / cycle

T sec / cycle

=
2π
T

radians
sec

(23)

Exercise 5 (Do this one now.)
For a traveling sine wave moving at a speed  vwave , use
dimensions to find

(a) λ  in terms of  vwave  and ω

(b)  vwave  in terms of λ  and T

(c) T in terms of λ  and ω

(d) f in terms of ω

Spacial Frequency k
When we let a traveling wave pass by us, we observe
a sinusoidal oscillation in time.  This oscillation can be
described in terms of the number of seconds in each
cycle (T seconds/cycle), in terms of the frequency

 (f cycles/second)  or the angular frequency
  (ω radians/second) .

If instead we look at the whole wave at one instant of
time, or move along with the wave, we see a sinusoidal
oscillation in space.  We have described this spacial
oscillation in terms of the wavelength, the number of
meters in each cycle (λ  meters/cycle).  What we are
missing is a spacial analogy to frequency, the number
of cycles or radians per meter.

By dimensions we immediately see that

  1
λmeters

cycle

= 1
λ

cycles
meter

is the special analogy to the time frequency f, and that

  2π radians/cycle

λ meters/cycle
=

2π
λ

radians
meter

is the spacial analogy to the angular frequency ω .

In physics texts, it is not common to use a special
symbol to designate the spacial frequency   1/λ
(cycles/meter), but it is standard practice to designate
the angular spacial frequency   2π/λ  (radians/meter) by
the letter k

   kradians
meter ≡ 2π

λ
radians
meter

spacial
frequency (24)
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The standard name for k is the lackluster expression
wave number, which says very little about the quantity.
Instead we will refer to k as the spacial frequency of the
wave.  The higher the spacial frequency k, the more
radians we get in a meter, just as the higher the time
frequency  ω , the more radians we get in one second.

When you first study wave motion, it may be an
irritating complication to have two kinds of frequency,
f cycles/sec and  ω  radians/sec (or two spacial frequen-
cies   1/λ  cycles/meter and k radians/meter).  Why not
stick with cycles which are much easier to visualize
than radians?  The answer is that in the formulas for sine
waves, the sine function basically has to be expressed
in terms of an angle, as in   sin θ , and radians are an
angle.  To convert time  t  to an angle, we multiply by

 ω  as in

  θ radians = ω radians
sec × t sec

= ωt radians (25a)

while to convert the distance x to an angle we multiply
by k as in

  θ radians = k radians
meter × x meters

= kx radians (25b)

Using Equations 25a or 25b, we can express the single
function   sin θ  either as   sin ωt , a sine wave in time
shown in Figure (10a), or as  sin kx, a sine wave in space
shown in Figure (10b).  From these graphs we can see
that when   ωt  gets up to   2π , we have one period T, and
when kx gets up to   2π  we have one wavelength λ .

Exercise 6 (Try this now.)

You have a traveling sine wave moving at a speed  vwave .
Using dimensions find the formula for  vwave  in terms of
the wave's time frequency ω  and spacial frequency k.

Figure 10
Sine waves in time and space.

ωt

ωT = 2π

y

π

a) Time:  sin(θ)  =  sin(ωt)

2π

(one period)

kx

kλ = 2π

y

π

b) Space:  sin(θ)  =  sin(kx)

2π

(one wavelength)

t = T

x = λ
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Traveling Wave Formula
Thus far we have formulas for a time varying sine wave

  sin ωt , and a space varying wave sin kx.  Now we want
a formula for a traveling sine wave whose amplitude
varies in both space and time.  The answer turns out to
be

   y = sin θ = sin kx – ωt traveling
sine wave (26)

What we will do is show that this formula represents a
sine wave moving down the x axis.

Figure (11) shows a sinusoidal shape that is moving
down the x axis at a speed  vwave .  If we describe the
wave by the function   sin θ , then it is the origin

  sin θ = 0  that moves down the axis at a speed  vwave .
Thus what we need is a formula for θ  so that when we
set   θ = 0 , that point does move down the x axis at the
desired speed.

The answer we gave in Equation 26 suggests that the
correct formula for θ  is

  θ = kx – ωt (27)

Setting   θ = 0  we get

  θ = 0 = kx – ωt ; kx = ωt

  x = ω
k

t (28)

But if the   θ = 0 point travels at a speed  vwave , then after
a time t, it has traveled a distance x given by

 x = vwavet (29)

Comparing  Equations (28) and (29), we see that the

point   θ = 0  moves along the x axis at a speed

  vwave = ω
k

(30)

If you did Exercise 6, you recognize that the quantity

  ω/k  has the dimensions of a velocity

  ω
k

radian/sec
radian/meter

= ω
k

meter
sec = vwave (31)

Thus the origin does move down the x axis at a speed
 vwave , and the formula   kx – ωt , is our desired trav-

eling wave formula.

Exercise 7

Explain what kind of a wave is represented by the
formula   y = sin kx + ωt .

θ = 0

v      t

θ = 0

θ = 0

wave

v      wave

v      wave

v      wave

y = sin(θ)

Figure 11
The cycle begins at θ  = 0.
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Phase and Amplitude
The Equation 26 for a traveling wave can be general-
ized by noting that the wave can have an arbitrary
amplitude A, and an arbitrary constant phase angle φ
to give

  y = A sin kx – ωt + φ (32)

The amplitude A just makes the sine wave bigger or
smaller, and the phase angle φ  shifts the sine wave to
the left or right.

 To see precisely how the phase angle φ  shifts the sine
wave, we have in Figure (12) compared   sin θ  and

  sin θ + φ .  The function   sin θ + φ  crosses zero
when the angle   θ + φ = 0  or at   θ = – φ .  Thus adding
a phase angle φ  shifts the sine wave back a distance

  – φ  radians.  If, for example, we set   φ = π/2 , the wave
is shifted back 1/4 of a wavelength, and we have
converted a sine wave into a cosine wave.

0
θ

y = sin (θ)

(θ) = 0

vwave

0
θ

y = sin (θ  + φ)

(θ + φ) = 0

–φ

vwave

Figure 12
Adding a phase angle φφ  shifts
the wave back a distance φφ .
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STANDING WAVES
In addition to the waves traveling down a rope, another
kind of wave pattern that is easy to achieve are those
shown in Figure (13).  All you have to do is shake the
end of the rope at the right frequency and one of these
waves will appear.  Change the frequency and you can
change to one of the other patterns.

The waves in Figure (13) are called standing waves
because the pattern does not move along the rope.  The
points of zero amplitude, the points called nodes of the
wave, stay at fixed positions while the rope between
nodes oscillates back and forth.

The difference between the wave patterns is character-
ized by the number of nodes.  In Figure (13) all the
waves have nodes at the ends, and there are zero, one,
two and three nodes in between as we go from the left
to the right pattern.

The two kinds of waves on a rope, the traveling wave
of Figures (8) and (9) and the standing wave of Figure
(13) are closely related to each other.  A careful
demonstration shows how traveling waves can turn
into standing waves.

If you start shaking a rope a traveling wave starts down
the rope as shown in Figure (8).  After a while the wave
reaches the other end of the rope, is reflected, and starts
moving back the other way.  This reflection is most
easily seen if you send a single pulse down the rope so
that you can see it bounce off the fixed end and come
back to you.

If you send a series of pulses down the rope, if you
create a traveling sine wave, then the reflected pulses
have to move back through the pulses that are still
coming in.  You now have the superposition of two
traveling waves moving through each other in opposite
directions.

Figure 13
Standing waves on a rope.
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You might think that the sum of two traveling waves
moving through each other could lead to a complex
pattern, and when you try it in a demonstration it often
looks that way.  The problem with a demonstration is
that the reflected wave reaching your hand can reflect
again and you begin to build up a mixture of many
waves.

If you do the demonstration carefully, however, you
can observe a simple result.  The sum of the traveling
wave and the reflected wave, moving through each
other, is a standing wave.  The addition of two travel-
ing waves of equal amplitude and wavelength moving
in opposite directions through each other is illustrated
in Figure (14).  The two traveling waves are shown on
lines (a) and (b) at five different times  t = 0, T/4, T/2,
3T/4 and T, where T is the period of the waves.  On the
bottom line (c) we have added the amplitudes of the two
traveling waves to get a picture of the amplitude of the
resulting wave.

In the first frame t = 0, the two waves match exactly,
producing a sum that has twice the amplitude of either
traveling wave.  A quarter of a period later, at t = T/4,
the traveling waves are precisely opposite each other.
And the sum is zero all along the wave.  This never
happens in a traveling wave.  A traveling wave is never
completely flat, there is always a crest moving along.

At time t = T/2, half a period later, the traveling waves
again line up producing a wave of twice the amplitude.
Note now that the points in the sum wave that were
below the axis at t = 0 are now above the axis at
t = T/2, and vice versa.  At time t = 3T/4 the traveling
waves are again out of phase and add up to zero.  At
t = T, we are back to where we started.

From line (c) of Figure (14), we see that the nodes of the
sum wave remain stationary and the rope between the
nodes oscillates up and down.  This is exactly what we
see in the photographs of the standing rope waves in
Figure (13).

t = 0 t = T/4 t = T/2 t = 3T/4 t = T

(a)

(b)

(c)

Figure 14
Making a standing wave out of two traveling waves on a rope.  In the top line (a) we show a traveling
wave moving to the right.  A section of rope is shown at times t = 0, T/4, T/2, 3T/4 and T, where T is the
period of the wave.  In (b) we have, in the same section of rope, five views of a traveling wave moving to
the left.  In (c), we have added the two traveling waves and get a standing wave with stationary nodes.  To
demonstrate the addition, at the center of each time frame we have drawn arrows to show the height of
the wave at that point.  The length of the bottom arrow is the sum of the lengths of the upper two arrows.
To add two waves, you add up the heights at each point along the wave.
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Using a trigonometric identity, we can show math-
ematically that the sum of two traveling waves moving
through each other creates a standing wave.  The
formula for a sine wave traveling to the right is from
Equation 26.

  ymoving right = A sin kx – ωt (26)

If you worked Exercise 6, you found that the formula
for a similar wave moving left is

  ymoving left = A sin kx + ωt (33)

 The formula for the sum of the two waves is

  ysum wave = A sin kx – ωt + A sin kx + ωt

The trigonometric identity we will use is

  sin a ± b = sin a cos b ± cos a sin b (34)

This gives

  sin kx – ωt = sin kx cos ωt – cos kx sin ωt

  sin kx + ωt = sin kx cos ωt + cos kx sin ωt

Add these two sine waves, the   cos kx sin ωt  terms
cancel and we are left with

   ysum wave = 2A sin kx cos ωt (35)

To interpret Equation 35, write it in the form

  ysum wave = A x cos ωt (36a)

where the x dependent amplitude  A x is

 A x = 2A sin kx (36b)

Equation 36a tells us that the entire wave is oscillating
in time as   cos ωt .  However the amplitude of the
oscillation depends upon the position x long the wave.
Equation (36b) tells us how the amplitude varies with
position.  It varies sinusoidally as sin kx, with nodes
permanently located at the points where sin kx = 0.  This
sinusoidal variation in the amplitude along the wave is
clearly seen in the photographs of the standing waves
on the rope, Figure (13).

WAVES ON A GUITAR STRING
Perhaps the clearest example of standing waves are the
waves on the strings of a stringed instrument such as the
guitar.  The advantage of working with these waves is
that you get to both see the shape of the wave and hear
its frequency.

The shape of guitar string waves are the same as the
standing rope waves in Figure (13).  In Figure (15), we
have sketched the allowed standing wave patterns on a
string of length L.  Because the string is fixed at the
ends, we can only have waves with nodes at the ends.

bridge string nut

L

λ   = 2L1

first 
harmonic or 
fundamental

second 
harmonic

third 
harmonic

fourth 
harmonic

fifth 
harmonic

n th 
harmonic

1

λ   = 2L2
2

λ   = 2L3
3

λ   = 2L4
4

λ   = 2L5
5

λ   = 2Ln
n

Figure 15
Allowed standing waves on a guitar string.  The
formula for the wavelength of the nth harmonic
is seen to be    λλn = 2 L / n .
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The wave with no nodes between the ends is called the
fundamental or  first harmonic.  Its wavelength is 2L,
twice the length of the string.  In the second harmonic,
with one node in the middle, a full wave fits on the
string at one time and we have   λ2 = L  .  Each time we
add a node we go up to one higher harmonic. (The
second harmonic is also called the first overtone, etc.)

The general formula for the wavelength of the nth
harmonic can be seen is we write the progression of
wavelengths in the form

  λ1 =
2L
1

; λ2 =
2L
2

; λ3 =
2L
3

, etc.

It is clear that the formula for   λ n  is simply

   
λn =

2L
n

wavelength of
the nth harmonic

(37)

The easiest way to remember Equation 36 is draw a
sketch of the allowed standing waves and write down
the progression   λ1 = 2L/1, λ2 = 2L/2, etc.

Frequency of Guitar String Waves
What notes do you hear when you pluck a guitar string?
That depends very much upon how you pluck it.
Usually when you pluck the string, you create a number
of the standing wave patterns at one time, and the note
you hear is a rich mixture of the frequencies of the
individual waves.

With care, however, you can pluck the string so that
most of the vibration is in one of the harmonics.  A
gentle pluck at the center of the string will excite mostly
the fundamental or first harmonic.  Pluck the string  1 41 4
of the way from one end and briefly place your finger
at the center of the string to create a node there. This
way you can excite mostly the second harmonic.  You
will then notice that the sound of the note is one octave
above the sound of the fundamental.  Accomplished
guitar players can selectively excite still higher har-
monics.

What are the frequencies of oscillations of these vari-
ous standing wave patterns?  We can answer this
question because of our knowledge that standing waves

can be made from two traveling waves moving through
each other.  The resulting standing wave has the same
frequency and wavelength as the traveling wave, thus
we can use the traveling wave formulas to determine
the frequency of the standing wave.

Using dimensions, we see that a traveling wave of
wavelength   λ cm/cycle , traveling at a speed v cm/sec,
has a frequency f cycles/second given by

  f
cycles

sec = v meter
sec × 1

λ meter/cycle

= v
λ

cycles
sec (38)

The speed v of a transverse wave on a string, that has
a mass per unit length µ, and tension T, is from Equation
5

  
vwave =

T

µ
(5)

Using Equation 5 in Equation 38 gives us as the
formula for the frequency of the traveling wave

  
f =

1

λ
T

µ
(39)

The same Equation 39 must also apply to the standing
waves on the guitar string.  We get for the frequency  fn
of the nth harmonic, which has a wavelength  fn ,

   
fn =

1
λn

T
µ

frequency of the
nth harmonic

(40)

For anyone who has tuned a guitar, Equation 40 makes
a lot of sense.  First note that when you go from the first
harmonic   λ1 = 2L, to the second harmonic   λ2 = L, the
wavelength is cut in half and the frequency doubles.  A
doubling of the frequency of a note corresponds to
going up one octave.

When you are tuning the guitar, you raise the frequency
of a string by tightening it and increasing the tension.
That is also predicted by Equation 40.
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On a guitar or most stringed instruments the low notes
are played on fat wires that have a greater mass per unit
length µ than the skinny wires used for the high notes.
The reason for using the fat wire is that you can increase
the tension and still keep the frequency down.  The
more tension in the wire and the more mass in the wire,
the more energy you  can store in the wire and the louder
the sound you can produce.  It is hard to get as much
sound out of the low frequency strings and you need all
the help you can get.

Exercise 8
You have a guitar string of length L, with a tension T and
a mass per unit length µ.  (L is the distance from the nut
to the bridge.)

(a) What is the f frequency of the fundamental mode of
vibration?  Express your answer in terms of L, T, and µ.

(b) Show that the nth harmonic has a frequency n times
as great as the fundamental.

Exercise 9
One end of a wire is attached to a post as shown in
Figure (16). The wire is then run over a pulley where a
mass m is hung on the other end.  The distance d from
the post to the pulley is 1 meter and the mass of one
meter length of the wire is 5 grams.

(a) How big a mass m must be hung on the wire in order
to get the wire to vibrate in its fundamental mode at a
frequency of 440 cycles/second, which is middle A?
(Answer: 395.10 kg).

(b) Describe four distinct ways one could double the
frequency of oscillation of the wire.

(c) How much mass would you have hung on the wire
in Figure (16) to get the wire to oscillate in its fundamen-
tal mode at a frequency two octaves above middle A?
(Answer 6321.63 kg.)

Sound Produced by a Guitar String
When you pluck a guitar string, the standing wave on
the string produces a traveling sound wave in the air.
This is analogous to plucking the end of a rope to
produce a traveling wave along the rope as illustrated
in Figure (8b).  The wavelength of the sound wave is
determined by the frequency of oscillation of the string
and the speed of sound.  (It is not the same as the
wavelength of standing waves on the string.)

Exercise 10
A guitar string is tuned to oscillate at a frequency of 440
cycles/second in its fundamental mode.  What are the
wavelengths of the sound waves produced by the first
three harmonics

(a) in air at 20° C

(b) in helium at 20° C

m

d

Figure 16
An easy way to adjust the
tension in a vibrating string
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CHAPTER 16 FOURIER ANALYSIS, NOR-
MAL MODES AND SOUND

In Chapter 15 we discussed the principle of superposi-
tion—the idea that waves add, producing a composite
wave that is the sum of the component waves.  As a
result, quite complex wave structures can be built from
relatively simple wave forms.  In this chapter our focus
will be on the analysis of complex wave forms, finding
ways to determine what simple waves went into con-
structing a complex wave.

As an example of this process, consider what happens
when white sunlight passes through a prism.  White
light is a mixture of all the colors, all the wavelengths
of the visible spectrum. When white light passes through
a prism, a rainbow of colors appears on the other side.
The prism separates the individual wavelengths so that
we can study the composition of the white light.  If you
look carefully at the spectrum of sunlight, you will
observe certain dark lines; some very specific wave-
lengths of light are missing in light from the sun.  These
wavelengths were absorbed by elements in the outer
atmosphere of the sun.  By noticing what wavelengths
are missing, one can determine what chemical ele-
ments are in the sun’s atmosphere.  This is how the
element Helium (named after Helios, Greek for sun)
was discovered.

This example demonstrates how the ability to separate
a complex waveform (in this case white sunlight) into
its component wavelengths or frequencies, can be a
powerful research tool.  The sounds we hear, like those
produced by  an orchestra, are also a complex mixture
of waves.  Even individual instruments produce com-
plex wave forms.  Our ears are very sensitive to these
wave forms.  We can distinguish between a note played
on a Stradivarius violin and the same note played by the
same person on an inexpensive violin.  The only
difference between the two sounds is a slight difference
in the mixture of the component waves, the harmonics
present in the sound.  You could not tell which was the
better violin by looking at the waveform on an oscillo-
scope, but your ear can easily tell.

You can hear these subtle differences because the ear
is designed in such a way that it separates the complex
incoming sound wave into its component frequencies.
The information your brain receives is not what the
shape of the complex sound wave is, but how much of
each component wave is present.  In effect, your ear is
acting like a prism for sound waves.
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When we study sound in the laboratory, the usual
technique is to record the sound wave amplitude using
a microphone, and display the resulting waveform on
an oscilloscope or computer screen.  If you want to, you
can generate more or less pure tones that look like sine
waves on the screen.  Whistling is one of the best ways
to do this.  But if you record the sound of almost any
instrument, you will not get a sine wave shape.  The
sound from virtually all instruments is some mixture of
different frequency waves.  To understand the subtle
differences in the quality of sound of different instru-
ments, and to begin to understand why these differ-
ences occur, you need to be able to decompose the
complex waves you see on the oscilloscope screen into
the individual component waves.  You need something
like an ear or a prism for these waves.

A way to analyze complex waveforms was discovered
by the French mathematician and physicist Jean
Baptiste Fourier, who lived from 1786 to 1830.  Fou-
rier was studying the way heat was transmitted through
solids and in the process discovered a remarkable
mathematical result.  He discovered that any continu-
ous, repetitive wave shape could be built up out of
harmonic sine waves.  His discovery included a math-
ematical technique for determining how much of each
harmonic was present in any given repetitive wave.
This decomposition of an arbitrary repetitive wave
shape into its component harmonics is known as
Fourier analysis.  We can think of Fourier analysis
effectively serving as a mathematical prism.

The techniques of Fourier analysis are not difficult to
understand.  Appendix A of this chapter is a lecture on
Fourier analysis developed for high school students
with no calculus background (explicitly for my
daughter’s high school physics class).  To apply Fou-
rier analysis you have to be able to determine the area

under a curve, a process known in calculus as integra-
tion.  While the idea of measuring the area under a
curve is not a difficult concept to grasp, the actual
process of doing this, particularly for complex wave
shapes, can be  difficult.  Everyone who takes a calculus
course knows that integration can be hard.  The
integrals involved in Fourier analysis, particularly the
analysis of experimental data are much too hard to do
by hand or by analytical means.

People find integration hard to do, but computers
don’t.  With a computer one can integrate any experi-
mental wave shape accurately and rapidly.  As a result,
Fourier analysis using a computer is very easy to do.  A
particularly fast way of doing Fourier analysis on the
computer was discovered by Cooley and Tukey in the
1950s.  Their computer technique or algorithm is
known as the Fast Fourier Transform or FFT for
short.  This algorithm is so commonly used that one
often refers to a Fourier transform as an FFT.

The ability to analyze data using a computer, to do
things like Fourier analysis, has become such an
important part of experimental work that older tech-
niques of acquiring data with devices like strip chart
recorders and stand alone oscilloscopes have become
obsolete.  With modern computer interfacing tech-
niques, important data is best recorded in a computer
for display and analysis.  We have developed the
MacScope™  program, which will be used often in this
text, for recording and displaying experimental data.
The main reason for writing the program was to make
it a simple and intuitive process to apply Fourier
analysis.  In this chapter you will be shown how to use
this program.  With the computer doing all the work of
the analysis, it is not necessary to know the mathemati-
cal processes behind the analysis, the steps are dis-
cussed in the appendix.  But a quick reading of the
appendix should give you a feeling for how the process
works.
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HARMONIC SERIES
We begin our discussion with a review of the standing
waves on a guitar string, shown in Figure (15-15)
reproduced here.  We saw that the wavelengths   λn of
the allowed standing waves are given by the formula

  λn = 2L
n (15-37)

Where L is the length of the string, and n takes on
integer values n = 1, 2, 3, .....

Each of these standing waves has a definite frequency
of oscillation that was given in Equation 15-38 as

   
fn

cycles
sec

=
v

λn

meters secmeters sec

meters cyclemeters cycle

=
v

λn

cycles
sec

(15-38)

If we substitute the value of   λn from Equation 15-37
into Equation 15-38, we get as the formula for the
corresponding frequency of vibration

  
fn =

vwave
λn

=
vwave
2L n2L n

= n
vwave
2L (1)

For n = 1, we get

 f1 =
vwave
2L

(2)

All the other frequencies are given by

  fn = nf1 harmonic series (3)

This set of frequencies is called a  harmonic series.  The
fundamental frequency or first harmonic is the fre-
quency  f1.  The second harmonic  f2 has twice the
frequency of the first.  The third harmonic  f3 has a
frequency three times that of the first, etc.  Note also that
the fundamental has the longest wavelength, the second
harmonic has half the wavelength of the fundamental,
the third harmonic one third the wavelength, etc.

It was Fourier’s discovery that any continuous repetitive
wave could be built up by adding together waves from a
harmonic series.  The correct harmonic series is the one
where the fundamental wavelength   λ1 is equal to the
period over which the waveform repeats.

To begin our discussion of Fourier analysis and the
building up of waveforms from a harmonic series, we will
first study the motion of two air carts connected by
springs and riding on an air track.  We will see that these
coupled air carts have several distinct modes of motion.
Two of the modes of motion are purely sinusoidal, with
precise frequencies.  But any other kind of motion
appears quite complex.

However, when we record the complex motion, we
discover that the velocity of either cart is repetitive.  A
graph of the velocity as a function of time gives  us a
continuous repetitive wave.  According to Fourier’s
theorem, this waveform can be built up from sinusoidal
waves of the harmonic series whose fundamental fre-
quency is equal to the repetition frequency of the wave.
When we use Fourier analysis to see what harmonics are
involved in the motion, we will see that the apparent
complex motion of the carts is not so complex after all.

bridge string nut

L

λ   = 2L1

first 
harmonic or 
fundamental

second 
harmonic

third 
harmonic

fourth 
harmonic

fifth 
harmonic

n th 
harmonic

1

λ   = 2L2
2
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λ   = 2L4
4

λ   = 2L5
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Figure 15-15
Standing waves on a guitar string.
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NORMAL MODES OF OSCILLATION
The reason musical instruments generally produce
complex sound waves containing various frequency
components is that the instrument has various ways to
undergo a resonant oscillation.  Which resonant oscil-
lations are excited with what amplitudes depends upon
how the instrument is played.

In Chapter 14 we studied the resonant oscillation of a
mass suspended from a spring, or equivalently, of a cart
on an air track with springs attached to the end of the
cart, as shown in Figure (1).  This turns out to be a very
simple system—there is only one resonant frequency,
given by   ω = k mk m .  The only natural motion of the
mass is purely sinusoidal at the resonant frequency.
This system does not have the complexity found in
most musical instruments.

Things become more interesting if we place two carts
on the air track, connected by springs as shown in
Figure (2).  We will call this a system of two coupled
air carts.

When we analyzed the one cart system, we found that
the force on the cart was simply F = –kx, where x is the
displacement of the cart from its equilibrium position.
With two carts, the force on one cart depends not only
on the position of that cart, but also on how far away the
other cart is.  A full analysis of this coupled cart system,
using Newton’s second law, leads to a pair of coupled
differential equations whose solution involves matri-
ces and eigenvalues.  In this text we do not want to get
into that particular branch of mathematics.  Instead we
will study the motion of the carts experimentally, and
find that the motion, which at first appears complex,
can be explained in simple terms.

In order to record the motion of the aircarts, we have
mounted the velocity detector apparatus shown in
Figure (3).  The apparatus consists of a 10 turn wire coil
mounted on top of the cart, that moves through the
magnetic field of the iron bars suspended above the
coil.  The operation of the velocity detector apparatus
depends upon Faraday’s law of induction which will be
discussed in detail in Chapter 30 on Faraday’s law.  For
now all we need to know is that a voltage is induced in
the wire coil, a voltage whose magnitude is propor-
tional to the velocity of the cart.  This voltage signal

ω

air cart

Figure 1
Cart and springs on an air track.

Figure2
System of coupled air carts.

Figure 3
Recording the velocity
of one of the aircarts. A
10 turn coil is mounted
on top of one of the
carts. The coil moves
through the magnetic
field between the angle
irons, and produces a
voltage proportional to
the velocity of the cart.
This voltage is then
recorded by the
Macintosh oscilloscope.
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from the wire coil is carried by a cable to the Macintosh
oscilloscope where it is displayed on the computer
screen.

When you first start observing the motion of the
coupled aircarts, it appears chaotic. One cart will stop
and reverse direction while the other is moving toward
or away from it, and there is no obvious pattern. But
after a while, you may discover a simple pattern. If you
pull both carts apart and let go in just the right way, the

carts come together and go apart as if one cart were the
mirror image of the other.  This motion of the carts is
illustrated in Figure (4a). We will call this the vibra-
tional mode of motion.

In Figure (4b) we have used the velocity detector to
record the motion of one of the coupled air carts when
the carts are moving in the vibrational mode.  You can
see that the curve closely resembles a sine wave.

air cart air cart

air cartair cart

air cart air cart

air cart air cart

air cart air cart

Figure 4b
Vibrational mode of oscillation of the coupled
aircarts. The voltage signal is proportional to
the velocity of the cart that has the coil on top.

Figure 5a
Sloshing mode of motion of the coupled aircarts.

Figure 5b
A pure sloshing mode is harder to get.  Here we
came close, but it is not quite a pure sine wave.

air cart

air cart air cart

air cart air cart

air cart air cart

air cart

air cartair cart

Figure4a
Vibrational motion of the coupled air carts.
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If you play around with the carts for a while longer, you
will discover another way to get a simple sinusoidal
motion.  If you pull both carts to one side, get the
positions just right, and let go, the carts will move back
and forth together as illustrated in Figure (5a).  We will
call this the sloshing mode of motion of the coupled air
carts.  In Figure (5b) we have recorded the velocity of
one of the carts in the sloshing mode, and see that the
curve is almost sinusoidal.

In general, the motion of the two carts is not sinusoidal.
For example, if you pull one cart back and let go, you
get a velocity curve like that shown in Figure (6).  If you
start the carts moving in slightly different ways you get
differently shaped curves like the one seen in Figure
(7).  Only the vibrational and sloshing modes result in
sinusoidal motion, all other motions are more complex.
To study the complex motion of the carts, we will use
the techniques of Fourier analysis.

Figure 7
Another example of the complex
motion of the coupled air carts.

Figure 6
Complex motion of the coupled air carts.

FOURIER ANALYSIS
As we mentioned in the introduction, Fourier analysis
is essentially a mathematical prism that allows us to
decompose a complex waveform into its constituent
pure frequencies, much as a prism separates sunlight
into beams of pure color or wavelength.  We have just
studied the motion of coupled air carts, which gave us
an explicit example of a relatively complex waveform
to analyze.  While the two carts can oscillate with
simple sinusoidal motion in the vibrational and slosh-
ing modes of Figures (4) and (5), in general we get
complex patterns like those in Figures (6) and (7).
What we will see is that, by using Fourier analysis, the
waveforms in Figures (6) and (7) are not so complex
after all.

The MacScope program was designed to make it easy
to perform Fourier analysis on experimental data.  The
MacScope tutorial gives you considerable practice
using MacScope for Fourier analysis.  What we will do
here is discuss a few examples to see how the program,
and how Fourier analysis works.  We will then apply
Fourier analysis to the curves of Figures (6) and (7) to
see what we can learn.  But first we will see how
MacScope handles the analysis of more standard curves
like a sine wave or square wave.
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Analysis of a Sine Wave
In Figure (8a) we attached MacScope to a sine wave
generator and recorded the resulting waveform.  The
sine wave generator, which is usually called a signal
generator, is an electronic device that we will use
extensively in laboratory work on the electricity part of
the course.  Typically the device has a dial that allows
you to select the frequency of the wave, a knob that
allows you to adjust the wave amplitude, and some
buttons by which you can select the shape of the wave.
Typically you can choose between a sine wave shape,

 , a square wave shape 
and a triangular wave  .

In Figure (8a) we have selected one cycle of the wave
and see that the frequency of the wave is 1515 Hz
(1.515 KHz), which is about where we set the fre-
quency dial at on the signal generator. To get Figure
(8b) we pressed the Expand button that appears once
a section of curve has been selected. This causes the
selected section of the curve to fill the whole display
rectangle.

The selection rectangle is obtained by holding down
the mouse bottom and dragging across the desired
section of the curve.  The starting point of the selection
rectangle can be moved by holding down the shift key
while moving the mouse.  The data box shows the
period  T of the selected rectangle, and the correspond-
ing frequency f.  If you wish the data box to remain after
the selection is made, hold down the option key when
you release the mouse button.  This immediately gives
you the ImageGrabber™, which allows you to select
any section of the screen to save as a PICT file for use
in a report or publication.

In Figure (9), we went up to the Analyze menu of
MacScope and selected Fourier Analysis. As a result
we get the window shown in Figure (10).  At the top we
see the selected one cycle of a sine wave.  Beneath, we
see a rectangle with one vertical bar and a scale labeled
Harmonics.  The vertical bar is in the first position,
indicating that the section of the wave which we
selected has only a first harmonic. Beneath the ex-

Figure 8a
Sine wave from a signal generator. Selecting one cycle
of the wave, we see that the frequency of the wave is
about 1.5 kilocycles (1.515 KHz). (Here we also see
some of the controls that allow you to study the
experimental data. The scrollbar labeled “S” lets you
move the curve sideways. The “T” scrollbar changes
the time scale, and the “O” scrollbar moves the curve
up and down. In the text, we will usually not show
controls unless they are important to the discussion.)

Figure 8b
Once we have selected a section of curve, a new control
labeled Expand appears. When we press the Expand
button, the selected section of the curve fills the entire
display rectangle as seen above. (The control then
becomes a Reset button which takes us back to the full
curve.)
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Figure 9
Choosing Fourier Analysis.

panded curve, there is a printout of the period and
frequency of the selected section. Here we see again
that the frequency is 1.515 KHz.

For Figure (11), we pressed Reset to see the full curve,
selected 4 cycles of the sine wave, and expanded that.
In the lower rectangle we now see one vertical bar over
the 4th position, indicating that for the selected wave
we have a pure fourth harmonic.  In the MacScope
tutorial we give you a MacScope data file for a section
of a sine wave.  Working with this data file, you should
find that if you select one cycle of the wave, anywhere
along the wave, you get an indication of a first har-
monic.  Select two cycles, and you get an indication of
a pure second harmonic, etc.

The basic function of the Fourier analysis program in
MacScope is to determine how you can construct the
selected section of the wave from harmonic sine
waves.  The first harmonic has the frequency of the
selected section.   For example, suppose that you had a
10 cycle per second sine wave and selected one cycle.
That selection would have a frequency of 10 Hz and a
period of 0.1 seconds. The second harmonic would
have a frequency of 20 Hz, and the third harmonic 30
Hz, etc.  The nth harmonic frequency is n times greater
than the first harmonic.  Fourier’s discovery was that
any continuous repeating wave form can be con-
structed from the harmonic sine waves.  So far we have
considered only the obvious examples of sections of a
pure sine wave.  We will now go on to more complex
examples to see how a waveform can be constructed by
adding up the various harmonics.

Figure 10
In the MacScope program, Fourier Analysis acts only
on the selected section of the curve. Since we selected
only one cycle, we see only a first harmonic.

Figure 11
When 4 cycles are selected, the wave form consists
of a pure 4th harmonic. We see the period of the
selected section of wave, which is 4 times longer
than one cycle. This makes the frequency 1/4 as
high. (The difference between 1515 Hz /4 and 390.6
Hz indicates the accuracy of graphical selection.)
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Analysis of a Square Wave
The so called square wave , whose
shape is shown in Figure (12), is commonly used in
electronics labs to study the response of various elec-
tronic circuits.  The waveform regularly jumps back
and forth between two levels, giving it a repeated
rectangular shape.  The ideal mathematical square
wave jumps instantaneously from one level to another.
The square waves we study in the lab are not ideal;
some time is always required for the transition.

It is traditional to use the square wave as the first
example to show students how a complex wave form
can be constructed from harmonic sine waves.  This is
a bit ironic, because the ideal square wave has discon-
tinuous jumps from one level to another, and therefore
does not satisfy Fourier’s theorem that any continuous
wave shape can be made from harmonic sine waves.
The result is that if you try to construct an ideal square
wave from sine waves, you end up with a small blip at
the discontinuity (called the Gibb’s effect).  Since our
focus is experimental data where there is no true
discontinuity, we will not encounter this problem.

In Figure (12) we have selected one cycle of the square
wave. Selecting Fourier Analysis, we get the result
shown in Figure (13).  We have clicked on the Expand
button so that only the selected section of the wave

shows in the upper rectangle.  In the lower rectangle,
which we will now call the FFT window, we see that
this section of the square wave is made up from various
harmonics.  The MacScope program calculates 128
harmonics, but we have clicked three times on the
Scale button to expand the harmonics scale so that we
can study the first 16 harmonics in more detail.

In Figure (14) we have clicked on the first bar in the FFT
window, the bar that represents the amplitude of the
first harmonic.  In the upper window you see one cycle
of a sine wave superimposed upon the square wave.
This is a picture of the first harmonic.  It represents the
best possible fit of the square wave by a single sine
wave.  If you want a better fit, you have to add in more
sine waves.

In Figure (15) we clicked on the bar in the 3rd harmonic
position, the bar representing the amplitude of the 3rd
harmonic in the square wave.  In the upper window you
see a sine wave with a smaller amplitude and three
times the frequency of the first harmonic.  If you select
a single harmonic, as we have just done in Figure (15),
MacScope prints the frequency of both the first har-
monic and the selected harmonic above the FFT win-
dow.  Here you can see that the frequency of the first
harmonic is 201.6 Hz and the selected harmonic fre-
quency is 604.9 Hz as expected.

Figure 12
The square wave. The wave shape goes back
and forth periodically between two levels. Here
we have selected one cycle of the square wave.

Figure 13
Expanding the one cycle selected, and choosing
Fourier Analysis, we see that this wave form has
a number of harmonics. The computer program
calculates the first 128 harmonics. We used the
Scale button to display only the first 16.
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If we select both the first and third harmonics together
(either by dragging a rectangle over both bars, or by
holding down the shift key while selecting them indi-
vidually), the upper window displays the sum of the
first and third harmonic, as shown in Figure (16).  You
can see that the sum of these two harmonics gives us a
waveform that is closer to the shape of the square wave
than either harmonic alone.  We are beginning to build
up the square wave from sine waves.

In Figures (17, 18 and 19), we have added in the 5th, 7th
and 9th harmonics.  You can see that the more harmon-
ics we add, the closer we get to the square wave.

One of the special features of a square wave is that it
contains only odd harmonics—all the even harmonics
are absent.  Another is that the amplitude of the nth
harmonic is 1/n times as large as that of the first
harmonic.  For example, the third harmonic has an
amplitude only 1/3 as great as the first.  This is
represented in the FFT window by drawing a bar only
1/3 as high as that of the first bar.  In the MacScope
program, the harmonic with the greatest amplitude is
represented by a bar of height 1.  All other harmonics
are represented by proportionally shorter bars.

Figure 14
Select the first harmonic by clicking on the first bar.

Figure 15
Select the second harmonic by clicking on the second bar.

Figure 16
Sum of the first and second harmonic
is obtained by selecting both.

Figure 17
Sum of the
harmonics
1, 3, and 5.

Figure 19
Sum of the
harmonics
1, 3, 5, 7, 9.

Figure 18
Sum of the
harmonics
1, 3, 5, 7.
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Repeated Wave Forms
Before we apply the Fourier transform capability of
MacScope to the analysis of experimental data, there is
one more feature of the analysis we need to discuss.
What we are doing with the program is reconstructing
a selected section of a waveform from harmonic sine
waves.  Anything we build from harmonic sine waves
exactly repeats at the period of the first harmonic.
Thus our reconstructed wave will always be a repeating
wave, beginning again at the same height as the begin-
ning of the previous cycle.

You can most easily see what we mean if you select a
non repeating section of a wave.  In Figure (20) we have
gone back to a sine wave, but selected one and a half
cycles.  In the FFT window you see a slew of harmon-
ics.  To see why these extra harmonics are present, we
have in Figure (21) selected the first 9 of them and in the
upper window see what they add up to.  It is immedi-
ately clear what has gone wrong.  The selected harmon-
ics are trying to reconstruct a repeating version of our
1.5 cycle of the sine wave.  The extra spurious harmon-
ics are there to force the reconstructed wave to start and
stop at the same height as required by a repeating wave.

If you are analyzing a repeating wave form and select
a section that repeats, then your harmonic reconstruc-
tion will be accurate, with no spurious harmonics.  If

your data is not repeating then you have to deal one way
or another with this problem.  One technique often used
by engineers is to select a long section of data and
smoothly force the ends of the data to zero so that the
selected data can be treated as repeating data.  Hope-
fully, forcing the ends of the data to zero does not
destroy the information you are interested in.  You can
often accomplish the same thing by throwing away
higher harmonics, assuming that the lower harmonics
contain the interesting features of the data.  You can see
that neither of these techniques would work well for our
one and a half cycles of a sine wave selected in Figure
(21).

In this text, our use of Fourier analysis will essentially
be limited to the analysis of repeating waveforms.  As
long as we select a section that repeats, we do not have
to worry about the spurious harmonics.

(Most programs for the acquisition and analysis of
experimental data have an option for doing Fourier
analysis.  Unfortunately,  few of them allow you to
select a precise section of the experimental data for
analysis.  As a result the analysis is usually done on a
non repeating section of the data, which distorts the
resulting plot of the harmonic amplitudes.  For a
careful analysis of data, the ability to precisely select
the data to be analyzed is an essential capability.)

Figure 20
When we select one and a half cycles of a sine wave,
we get a whole bunch of spurious harmonics.

Figure 21
The spurious harmonics result from the fact that
the reconstructed wave must be repeating—must
start and stop at the same height.
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ANALYSIS OF THE
COUPLED AIR CART SYSTEM
We are now ready to apply Fourier analysis to our
system of coupled air carts.  Recall that there were two
modes of motion that resulted in a sinusoidal oscilla-
tion of the carts, the vibrational motions shown in
Figure (4) and the sloshing mode shown in Figure (5).
In Figures (22) and (23) we expanded the time scales so
that we could accurately measure the period and fre-
quency of these oscillations.   From the data rectangles,
we see that the frequencies were 1.11Hz and 0.336 Hz
for the vibrational and sloshing modes respectively.

When the carts were released in an arbitrary way, we
generally get the complex motion seen in Figures (6)
and (7).  What we wish to do now is apply Fourier
analysis to these waveforms to see if any simple
features underlie this complex motion.

In Figure (24), which is the waveform of Figure (6), we
see that there is a repeating pattern.  The fact that the
pattern repeats means that it can be reconstructed from
harmonic sine waves, and we can use our Fourier
analysis program to find out what the component sine
waves are.

In Figure (24) we have selected precisely one cycle of
the repeating pattern.  This is the crucial step in this
experiment—finding the repeating pattern and select-
ing one cycle of it.  How far you have to look for the
pattern to repeat depends upon the mass of the carts and
the strength of the springs.

Figure 22
Vibrational mode of Figure (4). We have expanded
the time scale so that we could accurately measure
the period and frequency of the oscillation.

Figure 23
Sloshing mode of Figure (5). Less of an expansion of
the time scale was needed to measure the period here.

Figure 24
Complex mode of the coupled aircarts. We
see that the waveform repeats, and have
selected one cycle of the repeating wave.



16-13

Expanding the repeating section of the complex wave-
form, and choosing  Fourier Analysis gives us the
results shown in Figure (25). What we observe from the
Fourier analysis is that the complex waveform is a
mixture of two harmonics, in this case the third and
tenth harmonic.  If we click on the bar showing the
amplitude of the third harmonic, we see that harmonic

drawn in the display window of Figure (26), and we
find that the frequency of this harmonic is 0.336 Hz.
This is the frequency of the sloshing mode of Figure
(23).  Clicking on the bar above the tenth harmonic, we
get the harmonic drawn in the display window of
Figure (27), and see that the frequency of this mode is
1.12 Hz, within a fraction of a percent of the 1.11 Hz
frequency of the vibrational mode of Figure (22).

Figure 25
Fourier analysis of one cycle of the complex
waveform. The FFT rectangle shows us that the
wave consists of only two harmonics.

Figure 27
Selecting the tenth harmonic, we see that its
frequency is essentially equal to the frequency
of the vibrational mode of motion.

Figure 26
When we click on the third harmonic bar, we see that
the frequency of the third harmonic is precisely the
frequency of the sloshing mode of oscillation.

Figure 28
Selecting both modes shows us that the complex motion
is simply the sum of the two sinusoidal modes of motion.
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If we select both the third and tenth harmonics, the sum
of these two harmonics is shown in Figure (28).  These
two harmonics together so closely match the experi-
mental data that we had to move the experimental curve
down in order to see both curves.  What we have
learned from this experiment is that the complex
motion of Figure (6) is a mixture of the two simple,
sinusoidal modes of motion.

Back in Figures (6) and (7), we displayed two wave-
forms, representing different complex motions of the
same two carts. Starting with the second waveform of
Figure (7), we selected one cycle of the motion, ex-
panded the selected section, and chose Fourier Analy-
sis. The result is shown in Figure (29). What we see is
that the second complex waveform is also a mixture of
the third and tenth harmonics. The first waveform in
Figure (25) had more of the third harmonic, more of the
sloshing mode, while the second waveform of Figure
(29) has more of the tenth harmonic, the vibrational
mode. Both complex waveforms are simply mixtures
of the vibrational and sloshing modes. They have
different shapes because they are different mixtures.

This experiment is beginning to demonstrate that for
the two coupled aircarts, there is a strict limitation to the
kind of motion the carts can have.  They can either
move in the vibrational mode, or in the sloshing mode,

or in some combination of the two modes.  No other
kinds of motion are allowed!  The various complex
motions are just different combinations of the two
modes.

Adding another aircart so that we have three coupled
aircarts, the motion becomes still more complex. How-
ever if we look carefully, we find that the waveform
eventually repeats. Selecting one repeating cycle and
choosing Fourier Analysis, we got the results shown in
Figure (30). We observe that this complex motion is
made up of three harmonics.

The sinusoidal modes of motion of the coupled air carts
are called  normal modes.  The general rule is that if you
have n coupled objects, like n carts on an air track
connected by springs, and they are confined to move in
1 dimension, there will be n normal modes.  (With 2
carts, we saw 2 normal modes. With 3 carts, 3 normal
modes, etc.) This result, which will play an important
role in our discussion of the specific heat of molecules,
can be extended to motion in 2 and 3 dimensions.  For
example, if you have n coupled particles that can move
in 3 dimensions, as in the case of a molecule with n
atoms, then the system should have 3n normal modes
of motion.  Such a molecule should have 3n indepen-
dent ways to vibrate or move.  We will have more to say
about this subject in the next chapter.

Figure 29
The second complex mode of motion, from
Figure (7), is simply a different mixture of the
same vibrational and sloshing modes of motion.

Figure 30
One cycle of the waveform for three coupled aircarts.
With three carts, we get three normal modes of motion.
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THE HUMAN EAR
The human ear performs a frequency analysis of sound
waves that is not unlike the Fourier analysis of wave motion
which we just studied.  In the ear, the initial analysis is done
mechanically, and then improved and sharpened by a
sophisticated data analysis network of nerves.  We will
focus our attention on the mechanical aspects of the ear’s
frequency analysis.

Figure (31) is a sketch of the outer and inner parts of the
human ear.  Sound waves, which consist of pressure varia-
tions in the air, are funneled into the auditory canal by the
external ear and impinge on the eardrum, a large membrane
at the end of the auditory canal.  The eardrum (tympanic)
membrane vibrates in response to the pressure variations in

the air.  This vibrational motion is then transferred via a lever
system of three bones (the malleus, incus, and stapes) to a
small membrane covering the oval window of the snail
shaped cochlea.

The cochlea, shown unwound in Figure (32), is a fluid filled
cavity surrounded by bone, that contains two main channels
separated by a membrane called the basilar membrane.
The upper channel (scala vestibuli) which starts at the oval
window, is connected at the far end to the lower channel
(scala tympani) through a hole called the helicotrema.  The
lower channel returns to the round window which is also
covered by a membrane.  If the stapes pushes in on the
membrane at the oval window, fluid flows around the
helicotrema and causes a bulge at the round window.

Figure 31
The human ear. Sound,
entering the auditory
canal, causes vibrations
of the eardrum. The
vibrations are transferred
by a bone lever system to
the membrane covering
the oval window.
Vibrations of the oval
window membrane then
cause wave motion in the
fluid in the cochlea.
(Adapted from Lindsey and
Norman, Human
Information Processing.)

Figure 32
Lever system of the inner ear and an unwound view of the cochlea. The
basilar membrane separates the two main fluid channels in the cochlea.
Vibrations of the basilar membrane are detected by hair cells. (Adapted
from Principles of Neural Science Edited by E. R. Kandel and J. H. Schwartz,
Elsevier/North-Holland, p260.)
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The purpose of the lever system between the eardrum
and the cochlea is to efficiently transfer sound energy
to the cochlea.  The eardrum membrane is about 25
times larger in area than the membrane across the oval
window.  The lever system transfers the total force on
the eardrum to an almost equal force on the oval
window membrane.  Since force equals pressure times
area, a small pressure variation acting on the large area
of the eardrum membrane results in a large pressure
variation at the small area at the oval window.  The
higher pressures are needed to drive a sound wave
through the fluid filled cochlea.

If the oval window membrane is struck by a pulse, a
pressure wave travels down the cochlea.  The basilar
membrane, which separates the two main fluid chan-
nels, moves in response to the pressure wave, and a
series of hair cells along the basilar membrane detect
the motion.  It is the way in which the basilar membrane
responds to the pressure wave that allows for the
frequency analysis of the wave.

Figure (33) is an idealized sketch of a straightened out
cochlea.  (See Appendix B for more realistic sketches.)
At the front end, by the oval window, the basilar

membrane is narrow and stiff, while at the far end it is
about 5 times as wide and much more floppy.  To see
why the basilar membrane has this structure, we have
in Figure (34) sketched a mechanical model that has a
similar function as the membrane.  In this model we
have a series of masses mounted on a flexible steel band
and attached by springs to fixed rods as shown.  The
masses are small and the springs stiff at the front end.
If we shake these small masses, they resonate at a high
frequency   ω = k mk m .  Down the membrane model,
the masses get larger and the springs weaken with the
result that the resonant frequency becomes lower.

If you gently shake the steel band at some frequency   ω0
a small amplitude wave will travel down the band and
soon build up a standing wave of that frequency.  If   ω0
is near the resonant frequency of one of the masses, that
mass will oscillate with a greater amplitude than the
others.  Because the masses are connected by the steel
band, the neighboring masses will be carried into a
slightly larger amplitude of motion, and we end up with
a peak in the amplitude of oscillation centered around
the mass whose frequency ω  is equal to   ω0. (In the
sketch, we are shaking the band at the resonant fre-
quency   ω7 of the seventh mass.)

oval 
window

round window

stapes

bone

100µm

33 mm

500 µm

basilar membrane

basilar membrane

scala vestibuli

scala tympani
helicotrema

1
ω 

2 3 4 5 6 7 8 9 10 11

7

masses
rod

steel 
band

Figure 33
The basilar membrane in
the cochlea. (Adapted from
Green, An Introduction to
Hearing, John Wiley &
Sons, p66.)

Figure 34
Spring model of the basilar
membrane. As we go down the
steel band, the masses become
larger, the springs weaker, and
the resonant frequency drops.
If we vibrate the end of the
band at some frequency, the
mass which resonates at that
frequency will have the biggest
amplitude of oscillation.



16-17

Because the masses m get larger and the spring con-
stants k get smaller toward the far end, there is a
continuous decrease in the resonant frequency as we go
down the band.  If we start shaking at a high frequency,
the resonant peak will occur up near the front end.  As
we lower the frequency, the peak of the oscillation will
move down the band, until it finally gets down to the
lowest resonant frequency mass at the far end.  We can
thus measure the frequency of the wave by observing
where along the band the maximum amplitude of
oscillation occurs.

The basilar membrane functions similarly.  The stiff
narrow membrane at the front end resonates at a high
frequency around 20,000 Hz, while the wide floppy
back end has a resonant frequency in the range of 20 to
30 Hz.  Figure (35) shows the amplitude of the oscilla-
tion of the membrane in response to driving the fluid in
the cochlea at different frequencies.  We can see that as
the frequency increases, the location of the maximum
amplitude moves toward the front of the membrane,
near the stapes and oval window.  Figure (36) depicts
the shape of the membrane at an instant of maximum
amplitude when driven at a frequency of a few hundred
Hz.  The amplitude is greatly exaggerated; the basilar
membrane is about 33 millimeters long and the ampli-
tude of oscillation is less than .003 mm.

Although the amplitude of oscillation is small, it is
accurately detected by a system of about 30,000 hair
cells.  How the hair cells transform the oscillation of the
membrane into nerve impulse signals is discussed in
Appendix B at the end of this chapter.

The human ear is capable of detecting tiny changes in
frequency and very subtle mixtures of harmonics in a
sound.  Looking at the curves in Figure (35) (which
were determined from a cadaver and may not be quite
as sharp as the response curves from a live membrane),
it is clear that it would not be possible to make the ear’s
fine frequency measurements simply by looking for
the peak in the amplitude of the oscillation of the
membrane.  But the ear does not do that.  Instead,
measurements are continuously made all along the
membrane, and these results are fed into a sophisticated
data analysis network before the results are sent to the
brain.  The active area of current research is to figure out
how this data analysis network operates.
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Figure 35
Amplitude of the motion of the basilar membrane at
different frequencies. (Adapted from Principles of
Neural Science Edited by E. R. Kandel and J. H.
Schwartz, Elsevier/North-Holland, p 263.)

Figure 36
Response of the basilar membrane to a moderately low
frequency driving force. (From Vander,A; Sherman,J;
and Luciano,D. Human Physiology, 4th edition, 1985,
P662. McGraw Hill Publishing Co., NY.)
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STRINGED INSTRUMENTS
The stringed instruments provide the clearest example
of how musical instruments function.  The only pos-
sible modes of oscillation of the string are those with
nodes at the ends, and we have seen that the frequencies
of these modes form a harmonic series   fn = nf1.   This
suggests that if we record the sound produced by a
stringed  instrument and take a Fourier transform to see
what harmonics are present in the sound, we can tell
from that what modes of oscillation were present in the
vibrating string.

This is essentially correct for the electric stringed
instruments like the electric guitar and electric violin.
Both of these instruments have a magnetic pickup that
detects the velocity of the string at the pickup, using the
same principle as the velocity detector we used in the
air cart experiments discussed earlier in this chapter.
The voltage signal from the magnetic pickup is then
amplified electronically and sent to a loudspeaker.
Thus the sound we hear is a fairly accurate representa-
tion of the motion of the string, and an analysis of that
sound should give us a good idea of which modes of
oscillation of the strings were excited.

The situation is different for the acoustic stringed
instruments, like the acoustic guitar used by folk sing-
ers, and the violin, viola, cello and base, found in
symphony orchestras.  In these instruments the vibra-
tion of the string does not produce that much sound
itself.  Instead, the vibrating string excites resonances
in the sound box of the instrument, and it is the sound
produced by the resonating sound box that we hear.  As
a result the quality of the sound from an acoustic string
instrument depends upon how the sound box was
constructed.  Subtle differences in the shape of the
sound box and the stiffness of the wood used in its
construction can lead to subtle differences in the har-
monics excited by the vibrating string.  The human ear
is so sensitive to these subtle differences that it can
easily tell the difference between a great instrument
like a 280 year old Stadivarius violin, and even the best
of the good instruments being made today.  (It may be
that it takes a couple of hundred years of aging for a very
good violin to become a great one.)

To demonstrate the difference between electric and
acoustic stringed instruments, and to illustrate how
Fourier analysis can be used to study these differences,
my daughter played the same note, using the same
bowing technique, on the open E string of both her
electric and her acoustic violins.  Using the same
microphone in the same setting to record both, we
obtained the results shown in Figure (37).

From Figure (37) we immediately see why acoustic
stringed instruments sound differently from their elec-
tric counterparts.  With the acoustic instruments you
get a far richer mixture of harmonics.  In the first trial,
labeled E(1) Electric Violin, the string was bowed so
that it produced a nearly pure 4th harmonic.  The sound
you hear corresponds to a pure tone of frequency
657.8/4 = 264 Hz.  The corresponding sound produced
by the acoustic violin has predominately the same 4th
harmonic, but a lot of the sound is spread through the
first 8 harmonics.

A number of recordings were made, so that we could
see how the sounds varied from one playing to the next.
The examples shown in Figure (37) are typical.  It is
clear in all cases that for this careful bowing a single
harmonic predominated in the electric violin while the
acoustic violin produced a mixture of the first eight.  It
is rather surprising that the ear hears all of these sounds
as representing the same note, but with a different
quality of sound.

We chose the violin for this comparison because by
using a bow, one can come much closer to exciting a
pure mode of vibration of the string.  We see this
explicitly in the E(1) Electric Violin example.  When
you pluck or strum a guitar, even if you pluck only one
string, you get a far more complex sound than you do
for the violin.  If you pluck a chord on an acoustic guitar,
you get a very complex sound.  It is the complexity of
the sound that gives the acoustic guitar a richness that
makes it so effective for accompanying the human
voice.

Figure 37
Comparison of the sound of an electric and an
acoustic violin. In each case the open E string was
bowed as similarly as possible. The electric violin
produces relatively pure tones. The interaction
between the string and the sound box of the acoustic
violin gives a much richer mixture of harmonics.
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E(2) Acoustic Violin

E(3) Acoustic Violin

E(1) Acoustic Violin

E(2) Electric Violin

E(1) Electric Violin

E(3) Electric Violin
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Recording the sound of an instrument and using Fou-
rier analysis can be an effective tool for studying
musical instruments, but care is required.  For example,
in comparing two instruments, start by choosing a
single note, and try to play the note the same way on
both instruments.  Make several recordings so that you
can tell whether any differences seen are due to the way
the note was played or due to the differences in the
instruments themselves.  With careful work, you can
learn a lot about the nature of the instrument.

In the 1970s, before we had personal computers, stu-
dents doing project work would analyze the sound
produced by instruments or the voice, using a time
sharing mainframe computer system to do the Fourier
analysis.  Hours of work were required to analyze a
single sound, but the results were so interesting that
they served as the incentive to develop the MacScope™
program when the Macintosh computer became avail-
able

I particularly remember an early project in which two
students compared the spinet piano, the upright piano
and the grand piano.  They recorded middle C played
on each of these pianos.  Middle C on the spinet
consisted of a wide band of harmonics.  From the
upright there were still a lot of harmonics, but the first,
third, and fifth began to predominate.  The grand piano
was very clean with essentially only the first, third, and
fifth present.  You could clearly see the effect of the
increase in the size of the musical instrument.

The same year, another student, Kelly White, took a
whale sound from the Judy Collins record Sound of the
Humpback Whales.  Listening to the record, the whale
sounds are kind of squeaky.  But when the sound was
analyzed, the results were strikingly similar to those of
the grand piano.  The analysis suggested that the whale
sounds were by an instrument as large as, or larger, than
a grand piano.  (The whale’s blowhole acts as an organ
pipe when the whale makes the sound.)

WIND INSTRUMENTS
While the string instruments are all based on the
oscillation of a string, the wind instruments, like the
organ, flute, trumpet, clarinet, saxophone, and glass
bottle, are all based on the oscillations of an air column.
Of these, the bottle is the most available for studying the
nature of the oscillations of an air column.

When you blow carefully across the top of a bottle, you
hear a sound with a very definite frequency.  Add a little
water to the bottle and the frequency of the note rises.
When you shortened the length of a string, the pitch
went up, thus it is not surprising that the pitch also goes
up when you shorten the length of the air column.

You might guess that the mode of vibration you set up
by blowing across the top of the bottle has a node at the
bottom of the bottle and an anti node at the top where
you are blowing.  For a sine wave the distance from a
node to the next anti node is 1/4 of a wavelength, thus
you might predict that the sound has a wavelength 4
times the height of the air column, and a frequency

  f =
vsound

λ =
vsound

4d
forλ = 4d (4)

This prediction is not quite right as you can quickly find
out by experimenting with various shaped bottles.  Add
water to different shaped bottles, adjusting the levels of
the water so that all the bottles have the same height air
columns.  When you blow across the top of the different
bottles, you will hear distinctly different notes, the
fatter bottles generally having lower frequencies than
the skinny ones.  Unlike the vibrating string, it is not just
the length of the column and the speed of the wave that
determine the frequency of oscillation, the shape of the
container also has a noticeable effect.

λ
4

Figure 38
Blowing across the top of
a bottle produces a note
whose wavelength is
approximately 4 times the
height of the air column.
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Despite this additional complexity, there is one com-
mon feature to the air columns encountered in musical
instruments.  They all have unique frequencies of
oscillation.  Even an organ pipe that is open at both
ends—a situation where you might think that the length
of the column is not well defined—the air column has
a precise set of frequencies.  The fussiness in defining
the length of the column does not fuzz out the sharpness
of the resonance of the column.

Organ pipes, with their straight sides, come closest to
the simple standing waves we have seen for a stretched
instrument string.  In all cases, the wave is excited at one
end by air passing over a sharp edge creating a turbulent
flow behind the edge.  This turbulence excites the air
column in much the same way that dragging a sticky
bow across a violin string excites the oscillation of the
string.

The various modes of oscillation of an air column in an
organ pipe are shown in Figure (39).  All have an anti
node at the end with sharp edges where the turbulence
excites the oscillation.  The open ended pipes shown in
Figure (39a) also have anti nodes at the open end, while
the closed pipes of Figure (39b) have a node at the far
end.  The pictures in Figure (39a) are a bit idealized, but
give a reasonably accurate picture of the shape of the
standing wave.  We can compensate for a lack of
accuracy of these pictures by saying, for example, that
the anti node of the open ended pipes lies somewhat
beyond the end of the pipe.

Exercise 1

(a) Find the formula for the wavelength  λn  of the nth
harmonic of the open ended pipes of Figure (39).

(b) Assuming that the frequencies of vibration are given
by     f(cycle/sec) =v(meter /sec) λ (meter /cycle)v(meter /sec) λ (meter /cycle)  where v
is the speed of sound, what is the formula for the allowed
frequencies of the open organ pipe of length L?

(c) What should be the length L of an open ended organ
pipe to produce a fundamental frequency of 440 cycles/
second, middle A?

(d) Repeat the calculations of parts a, b, and c for the
closed organ pipes of Figure (39).

(e) If you have the opportunity, find a real organ and
check the predictions you have made (or try the experi-
ment with bottles).

If you start with an organ pipe, and drill holes in the side,
essentially converting it into a flute or one of the other
wind instruments like a clarinet, you considerably alter
the shape and frequency of the modes of oscillation of
the air column.  As a first approximation you could say
that you create an anti node at the first open hole.  But
then when you play these instruments you can make
more subtle changes in the pitch by opening some holes
and closing others.  The actual patterns of oscillation
can become quite complex when there are open holes,
but the simple fact remains that, no matter how com-
plex the wave pattern, there is a precise set of resonant
frequencies of oscillation.  It is up to the maker of the
instrument to locate the holes in such a way that the
resonances have the desired frequencies.

a)

b)Figure 39
Modes of oscillation of an air column
in open and closed organ pipes.
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PERCUSSION INSTRUMENTS
We all know that the string and wind instruments
produce sound whose frequency we adjust to produce
melodies and chords.  But what about drums?  They
seem to just make noise.  Surprisingly, drumheads have
specific modes of oscillation with definite frequencies,
just as do vibrating strings and air columns.  But one
does not usually adjust the fundamental frequency of
oscillation of the drumhead, and the frequencies of the
higher modes of oscillation do not follow the harmonic
patterns of string and wind instruments.

To observe the standing wave patterns corresponding
to modes of vibration of a drumhead, we can drive the
drumhead at the resonant frequency of the oscillation
we wish to study.  It turns out to be a lot easier to drive

a drumhead at a precise frequency than it is to find the
normal modes of the coupled air cart system.

The experiment is illustrated in Figure (40).  The
apparatus consists of a hollow cardboard cylinder with
a rubber sheet stretched across one end to act as a
drumhead.  At the other end is a loudspeaker attached
to a signal generator.  When the frequency of the signal
generator is adjusted to the resonant frequency of one
of the normal modes of the drumhead, the drumhead
will start to vibrate in that mode of oscillation.

To observe the shape and motion of the drumhead in
one of its vibrational modes, we place a strobe light to
one side of the drumhead as shown.  If you adjust the
strobe to the same frequency as the normal mode
vibration, you can stop the motion and see the pattern.

strobe 
light

speaker

plywood frame

rubber
sheet

Figure 40
Studying the modes of oscillation of a drumhead.

Figure 41
Modes of oscillation of a drumhead. (Adapted from Vibration and Sound
by Phillip M. Morse, 2nd ed., McGraw-Hill, New York, 1948.)

a) b)

f )

c)

e)d)
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Turn the frequency a bit off resonance, and you get a
slow motion moving picture of the motion of that
mode.

Some of the low frequency normal mode or standing
wave patterns of the drumhead are illustrated in Figure
(41).  In the lowest frequency mode, Figure (41a), the
entire center part of the drumhead moves up and down,
much like a guitar string in its lowest frequency mode.
In this pattern there are no nodes except at the rim of the
drumhead.

In the next lowest frequency mode, shown in Figure
(41b), one half the drumhead goes up while the other
half goes down, again much like the second harmonic
mode of the guitar string.  The full two dimensional
nature of the drumhead standing waves begins to
appear in the next mode of Figure (41c) where the
center goes up while the outside goes down.  Now we
have a circular node about half way out on the radius of
the drumhead.

As we go up in frequency, we observe more complex
patterns for the higher modes.  In Figure (41d) we see
a pattern that has a straight node like (41b) and a circular
node like (41c).  This divides the drumhead into 4
separate regions which oscillate opposite to each other.
Finer division of the drumhead into smaller regions can
be seen in Figures (41e) and (41f).  The frequencies of
the various modes are listed with each diagram.  You
can see that there is no obvious progression of frequen-
cies like the harmonic progression for the modes of a
stretched string.

When you strike a drumhead you excite a number of
modes at once and get a complex mixture of frequen-
cies.  However, you do have some control over the
modes you excite.  Bongo drum players, for example,
get different sounds depending upon where the drum is
struck.  Hitting the drum in the center tends to excite the
lowest mode of vibration and produces a lower fre-
quency sound.  Striking the drum near the edges excites
the higher harmonics, giving the drum a higher fre-
quency sound.

Even more complex than the modes of vibration of a
drumhead are those of the components of a violin. To
construct a successful violin, the front and back plates
of a violin must be tuned before assembly. Figure (42)
shows a violin backplate under construction, while
Figure (43) shows the first 6 modes of oscillation of a
completed backplate. Note again that the resonant
frequencies do not form a harmonic series.

Figure 42
Back plate of a violin
under construction. The
resonant frequencies are
tuned by carving away
wood from different
sections of the plate.

Figure 43
Modes of oscillation of the backplate made visible by holographic techniques. Quality violins
are made by tuning the frequencies of the various modes. (Figures 42 and 43 from “The
Acoustics of Violin Plates,” by Carleen Maley Hutchins, Scientific American, October 1981.)

116Hz 167Hz 222Hz 230Hz 349Hz 403Hz
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SOUND INTENSITY
One of the amazing features of the human eardrum is
its ability to handle an extreme range of intensities of
sound waves.  We define the intensity of a sound wave
as the amount of energy per second being carried by
a sound wave through a unit area.  In the MKS system
of units, this would be the number of joules per second
passing through an area of one square meter.  Since one
joule per second is a unit of power called a watt, the
MKS unit for sound intensity is watts per square meter.
The human ear is capable of detecting sound intensities
as faint as  10– 12watts /m2,  but can also handle inten-
sities as great as  1watt /m2  for a short time.  This is an
astounding range, a factor of  1012 in relative intensity.

The ear and brain handle this large range of intensities
by essentially using a logarithmic scale.  Imagine, for
example, you are to sit in front of a hi fi set playing a
pure tone, and you are told to mark off the volume
control in equal steps of loudness.  The first mark is
where you just barely hear the sound, and the final mark
is where the sound just begins to get painful.  Suppose
you are asked to divide this range of loudness into what
you perceive as 12 equal steps.  If you then measured
the intensity of the sound you would find that the
intensity of the sound increased by approximately a
factor of 10 after each step.  Using the faintest sound
you can hear as a standard, you would measure that the
sound was 10 times as intense at the end of the first step,
100 times as intense after the second step, 1000 times
at the third, and  1012  times as intense at the final step.

The idea that the intensity increases by a factor of 10 for
each equal step in loudness is what we mean by the
statement that the loudness is based on a logarithmic
scale.  We take the faintest sound we can hear, an
intensity  I0 = 10– 12watts/m2  as a basis.  At the first
setting  I = I0, at the second setting  I1 = 10 I0 , at the
3rd setting  I2 = 100 I0 , etc.  The factor  I/I0  by which
the intensity has increased is thus

 I0/I0 = 1 (I0 = 10– 12 watts/m2)
I1/I0 = 10
I2/I0 = 100
. . . . . . . .

I12/I0 = 1012 (5)

Taking the logarithm to the base 10 of these ratios gives

 Log10 I0/I0 = Log10 1 = 0

Log10 I1/I0 = Log10 10 = 1

Log10 I2/I0 = Log10 100 = 2

. . . . . . . .

Log10 I12/I0 = Log10 1012 = 12 (6)

Bells and Decibels
The scale of loudness defined as  Log10 I/I0  with

 I0 = 10–12watts/m2  is measured in bells, named after
Alexander Graham Bell, the inventor of the telephone.

  
loudness of a sound
measured in bells

≡ Log10
I
I0

I0 = 10–12watts/m2
(7)

From this equation, we see that the faintest sound we
can hear, at  I = I0, has a loudness of zero bells.  The
most intense one we can stand for a short while has a
loudness of 12 bells.  All other audible sounds fall in the
range from 0 to 12 bells.

It turns out that the bell is too large a unit to be
convenient for engineering applications.  Instead one
usually uses a unit called the decibel (db) which is
1/10 of a bell.  Since there are 10 decibels in a bell, the
formula for the loudness ββ , in decibels, is

  
β decibels = 10 db Log10

I
I0

(8)

On this scale, the loudness of sounds range from 0
decibels for the faintest sound we can hear, up to 120

decibels (   10 × 12  bells) for the loudest sounds we can
tolerate.
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The average loudness of some of the common or well
known sounds is given in Table 1.

Table 1   Various Sound Levels in db
threshold of hearing 0
rustling leaves 10
whisper at 1 meter 20
city street, no traffic 30
quiet office 40
office, classroom 50
normal conversation at 1 meter 60
busy traffic 70
average factory 80
jack hammer at 1 meter 90
old subway train 100
rock band 120
jet engine at 50 meters 130
Saturn rocket at 50 meters 200

An increase in loudness of 10 db corresponds to an
increase of 1 bell, or an increase of intensity by a factor
of 10.  A rock band at 110 db is some 100 times as
intense (2 factors of 10) as a jack hammer at 90 db.  A
Saturn rocket is about  1020  times as intense as the
faintest sound we can hear.

Our sensitivity to sound depends not only to the inten-
sity of the sound, but also to the frequency.  About the
lowest frequency note one can hear, and still perceive
as being sound, is about 20 cycles/second.  As you get
older, the highest frequencies you can hear decreases
from around 20,000 cycles/sec for children, to 15,000
Hz for young adults to under 10,000 Hz for older
people.  If you listen to too much, too loud rock music,
you can also decrease your ability to hear high fre-
quency sounds.

Figure (44) is a graph of the average range of sound
levels for the human ear.  The faintest sounds we can
detect are in the vicinity of 4000 Hz, while any sound
over 120 db is almost uniformly painful.  The fre-
quency ranges and sound levels usually encountered in
music are also shown.
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Figure 44
Average range of sound
levels for the human ear.
Only the very young can
hear sound frequencies up
to 20,000 Hz. (Adapted
from Fundamental
Physics by Halliday and
Resnick, John Wiley &
Sons.)
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Sound Meters
Laboratory experiments involving the intensity or loud-
ness of sound are far more difficult to carry out than
those involving frequencies like the Fourier analysis
experiments already discussed.  From the output of any
reasonably good microphone, you can obtain a rela-
tively good picture of the frequencies involved in a
sound wave.  But how would you go about determining
the intensity of a sound from the microphone output?
(There are commercial sound meters which have a
scale that shows the ambient sound intensity in deci-
bels.  Such devices are often owned by zoning boards
for checking that some factory or other noise source
does not exceed the level set by the local zoning
ordinance, often around 45 db.  The point of our
question is, how would you calibrate such a device if
you were to build one?)

The energy in a wave is generally proportional to the
square of the amplitude of the wave.  A sound wave can
be viewed as oscillating pressure variations in the air,
and the energy in a sound wave turns out to be propor-
tional to the square of the amplitude of the pressure
variations.  The output of a microphone is more or less
proportional to the amplitude of the pressure varia-
tions, thus we expect that the intensity of a sound wave
should be more or less proportional to the square of the
voltage output of the microphone.  However, there is a
great variation in the sensitivity of different micro-
phones, and in the amplifier circuits used to produce
reasonable signals.  Thus any microphone that you
wish to use for measuring sound intensities has to be
calibrated in some way.

Perhaps the easiest way to begin to calibrate a micro-
phone for measuring sound intensities is to use the fact
that very little sound energy is lost as sound travels out
through space.  Suppose you had a speaker radiating
100 watts of sound energy, and for simplicity let us
assume that the speaker radiates uniformly in all direc-
tions and that there are no nearby walls.

If we are 1 meter from this speaker, all the sound energy
is passing out through a 1 meter radius sphere centered
on the speaker. Since the area of a sphere is   4πr2 , this
1 meter radius sphere has an area of   4πmeters2,  and the
average intensity of sound at this 1 meter distance must
be

  average intensity of
sound 1 meter from
a 100 watt speaker

= 100 watts
4π meters2

= 8.0 watts
meters2

(9)

If we wish to convert this number to decibels, we get

  
β sound intensity 1 meter

from a 100 watt speaker

= 10 db Log
I
I0

= 10 db Log10
8.0 watts / m2

10–12 watts / m2

= 10 db ×Log10 8 × 1012

= 10 db × 12.9

= 129 db (10)

From our earlier discussion we see that this exceeds the
threshold of pain.  One meter from a 100 watt speaker
is too close for our ears.  But we could place a
microphone there and measure the amplitude of the
signal output for our first calibration point.



16-27

Move the speaker back to a distance of 10 meters and
the area that the sound energy has to pass through
increases by a factor of 100 since the area of a sphere
is proportional to  r2.  Thus as the same 100 watts passes
through this 100 times larger area, the intensity drops
to 1/100 of its value at 1 meter.  At a distance of 10
meters the intensity is thus  8/100 = .08 watts/m2  and
the loudness level is

  
β 10 meters from a

100 watt speaker

= 10 db Log10
.08 watts / m2

10–12 watts / m2

= 109 db (11)

We see  that when the intensity drops by a factor of 100,
it drops by 20 db or 2 bells.

To calibrate your sound meter, record the amplitude of
the signal on your microphone at this 10 meter distance,
then set the microphone back to a distance of 1 meter,
and cut the power to the speaker until the microphone
reads the same value as it did when you recorded 100
watts at 10 meters.  Now you know that the speaker is
emitting only 1/100th as much power, or 1 watt.
Repeating this process, you should be able to calibrate
a fair range of intensities for the microphone signal.  If
you get down to the point where you can just hear the
sound, you could take that as your value of  I0, which
should presumably be close to  I0 = 10– 12watts/m2 .
Then calibrate everything in db and you have built a
loudness meter.  (The zoning board, however, might
not accept your meter as a standard for legal purposes.)

Exercise 2

What is the loudness, in db, 5 meters from a 20 watt
speaker?   (Assume that the sound is radiated uniformly
in all directions).

Exercise 3

You are playing a monophonic record on your stereo
system when one of your speakers cuts out.  How many
db did the loudness drop?  (Assume that the intensity
dropped in half when the speaker died.  Surprisingly
you can answer this question without knowing how loud
the stereo was in the first place.  The answer is that the
loudness dropped by 3 db).

Speaker Curves
When you buy a hi fi loudspeaker, you may be given a
frequency response curve like that in Figure (45), for
your new speaker.  What the curve measures is the
intensity of sound, at a standard distance, for a standard
amount of power input at different frequencies.  It is a
fairly common industry standard to say that the fre-
quency response is “flat” over the frequency range
where the intensity does not fall more than 3 db from its
average high value.  In Figure (45), the response of that
speaker, with the woofer turned on, is more or less
“flat” from 62 Hz up to 30,000 Hz.

Why the 3 db cutoff was chosen, can be seen in the
result of Exercise 3.  There you saw that if you reduce
the intensity of the sound by half, the loudness drops
by 3 db.  This is only 3/120 (or 1/36) of our total hearing
range, not too disturbing a variation in what is supposed
to be a flat response of the speaker.
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Figure 45
Speaker response curve from a recent audio magazine.
The dashed line shows the response when the woofer is
turned off.  (We added the dotted lines at + and – 3 db.)
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APPENDIX A
FOURIER ANALYSIS LECTURE
In our discussion of Fourier Analysis, we saw that
any wave form can be constructed by adding to-
gether a series of sine and cosine waves.  You can
think of the Fourier transform as a mathematical
prism which breaks up a sound wave into its various
wavelengths or frequencies, just as a light prism
breaks up a beam of white light into its various colors
or wavelengths.  In MacScope, the computer does
the calculations for us, figuring out how much of
each component sine wave is contained in the sound
wave.  The point of this lecture is to give you a
feeling for how these calculations are done.  The
basic ideas are easy, only the detailed calculations
that the computer does would be hard for us to do.

Square Wave
In Figure A-1 we show a MacScope window for a
square wave produced by a Hewlett Packard oscilla-
tor.

We have selected precisely one cycle of the wave, and
see that the even harmonics are missing.  A careful
investigation shows that the amplitude of the Nth odd
harmonic is 1/N as big as the first (e.g., the 3rd
harmonic is 1/3 as big as the first, etc.).  Thus the
mathematical formula for a square wave F(t)  can be
written:

  F(t)  =   (1)sin(t)  +  (1/3)sin(3t)  +  (1/5)sin(5t)
              +  (1/7)sin(7t)  ...

where, for now, we are assuming that the period of the
wave is precisely 2π seconds.  The coefficients (1),
(1/3), (1/5), (1/7), which tell us how much of each sine
wave is present, are called the Fourier coefficients.
Our goal is to calculate these coefficients.

Calculating Fourier Coefficients
In general we cannot construct an arbitrary wave out of
just sine waves, because sine waves, sin(t), sin(2t), etc.,
all have a value 0 at t = 0 and at t = 2π.  If our wave is
not zero at the beginning (t = 0) of our selected period,
or not zero at the end (t = 2π), then we must also include
cosine waves which have a value 1 at those points.
Thus the general formula for breaking an arbitrary
repetitive wave into sine and cosine waves is:

 F(t) = A0 + A1cos(1t) + A2cos(2t)

+ A3cos(3t) + ...

+ B1sin(1t) + B2sin(2t)

+ B3sin(3t) + ... (A-1)

The question is: How do we find the coefficients
 A0, A1, A2, B1, B2  etc. in Equation (A1)?  (These are

the Fourier coefficients.)

To see how we can determine the Fourier coefficients,
let us take an explicit example.  Suppose we wish to find
the coefficient  B3, representing the amount of sin(3t)
present in the wave.  We can find  B3 by first multiplying
Equation (1) through by sin(3t) to get:

Figure A-1
The square wave has only odd harmonics.
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 F(t) sin(3t) = A0sin(3t)

+ A1cos(1t) sin(3t)

+ A2cos(2t) sin(3t)

+ A3cos(3t) sin(3t)

+ ...
+ B1sin(1t) sin(3t)

+ B2sin(2t) sin(3t)

+ B3sin(3t) sin(3t)

+ ...

At first it looks like we have created a real mess.  We
have a lot of products like cos(t)sin(3t), sin(t)sin(3t),
sin(3t)sin(3t), etc.  To see what these products look like,
we plotted them using True BASIC™  and obtained
the results shown in Figure (A2) (on the next page).

Notice that in all of the plots involving sin(3t), the
product   sin(3t)sin(3t) = sin2(3t) is special;  it is the
only one that is always positive.  (It has to be since it is
a square.)  A careful investigation shows that, in all the
other non square terms, there is as much negative area
as positive area, as indicated by the two different
shadings in Figure (A3).  If we define the “net area”
under a curve as the positive area minus the negative
area, then only the sin(3t)sin(3t) term on the right side
of the Equation A-2 has a net area.

The mathematical symbol for finding the net area
under a curve (in the interval t = 0 to t = 2π) is:

  Area under
sin(3t)sin(3t)
from t = 0
to t = 2π

= sin(3t)sin(3t)dt
0

2π

(A-3)

(Those who have had calculus say we are taking the
integral of the term sin(3t)sin(3t).)

A basic rule learned in algebra is that if we do the
same thing to both sides of an equation, the sides will
still be equal.  This is also true if we do something as
peculiar as evaluating the net area under the curves
on both sides of an equation.

If we take the net area under the curves on the right side
of Equation A-2, only the  sin2(3t)term survives and
we get:

  
F(t)sin(3t)dt

0

2π
= B3 sin2(3t)dt

0

2π
(A-4)

In Figure (A4), we have replotted the curve  sin2(3t),
and drawn a line at height y = .5.  We see that the peaks
above the y = .5 line could be flipped over to fill in the
valleys below the y = .5 line.  Thus  sin2(3t) in the
interval t = 0 to t = 2π has a net area equal to that of a
rectangle of height .5 and length 2π.  I.e., the net area
is π:

  
sin2(3t)dt

0

2π
= π (A-5)

positive area

negative
area

0–1 2π

sin(1t) sin(3t)
1

0
rectangle area = .5 2π = π

(Crests above .5 just fill
in the troughs below .5.)

0–1 2π

sin(3t) sin(3t)
1

.5

0

Figure A-3
Only the square terms  such as sin(3t)sin(3t)
have a net area. This curve has no net area.

Figure A-4
The area under the curve   sin2(3t)  is equal to
the area of a rectangle .5 high by 2ππ long.

(A-2)
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Figure A-2
Product wave patterns.

0–1 2π

sin(1t) sin(2t)
1

0

0–1 2π

sin(1t) sin(3t)
1

0

0–1 2π

sin(1t) sin(1t)
1

0

0–1 2π

sin(1t) sin(4t)
1

0

0–1 2π

sin(1t) sin(1t)
1

0
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0
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Substituting Equation A-5 in Equation A-4 and solving
for the Fourier coefficient  B3  gives:

  
B3 =

1
π

F(t)sin(3t)dt
0

2π
(A-6)

Similar arguments show that the general formulas for
the Fourier coefficients  An and Bn are:

  
An =

1
π

F(t)cos(nt)dt
0

2π
(A-7)

  
Bn =

1
π

F(t)sin(nt)dt
0

2π
(A-8)

These integrals, which were nearly impossible to do
before computers, are now easily performed even on
small personal computers. Thus the computer has
made Fourier analysis a practical experimental tool.

Amplitude and Phase
Instead of writing the Fourier series as a sum of separate
sine and cosine waves,  it is often more convenient to
use amplitudes and phases.  The basic formula we use
is **

Acos(t) + Bsin(t)  =  Ccos(t – φ ) (A-9)

where

C    =  amplitude

C2  =  A2 + B2

φ   =  phase

tan(φ )  =  B/A

The function cos(t – φ ) is illustrated in Figure (A-5).
We see that  C is the amplitude of the wave, and the
phase angle φ  is the amount the wave has been moved
to the right.  (When t = 0,  cos(t – φ )  =  cos(– φ ).) With
Equation A-9, we can rewrite equation A-1 in the form:

  F(t) = C0 + C1cos( t – φ1)

+ C2cos(2t – φ2)

+ C3cos(3t – φ3)

+ ... (A-10)

The advantage of Equation A-10 is that the coeffi-
cients C represent how much of each wave is present,
and sometimes we do not care about the phase angle
φ .  For example our ears are not particularly sensi-
tive to the phase of the harmonics in a musical note,
thus the tonal quality of a musical instrument is
determined almost entirely by the amplitudes  C  of
the harmonics the instrument produces.

φ
B

C

A

Figure A-5
The function    cos(t– φφ) . When    φφ = 90°°
you get a sine wave.

0–1 2π

cos(t – φ)

when t = φ, 
cos(t – φ) = cos(φ – φ) = cos(0) = 1

1

0

φ

  ** Start with
cos(x–y) = cos(x)×cos(y) + sin(x)×sin(y)

Let x = t, y = φ, and multiply through by C to get
Ccos(t–φ) = {Ccos(φ)}cos(t) + {Csin(φ)}sin(t)

This is Equation A–9 if we set
A = {Ccos(φ)}; B = {Csin(φ)}

Thus tanφ = sinφ/cosφ = B/A
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In the Fourier transform plots we have shown so far, the
graph of the harmonics has been representing the
amplitudes C.  If you wish to see a plot of the phases φ ,
then press the button labeled ø as shown, and you get
the result seen in Figure(A-6).  In that figure we are
looking at the phases of the odd harmonic sine waves
that make up a square wave.  Since

sin(t)   =   cos(t - 90°)

all the sine waves should have a phase shift of 90°.

If for any reason, you need accurate values of the
Fourier coefficients, they become available if you
press the FFT Data button to get the results shown
in Figure (A-7).  When you do this, the Editor
window is filled with a text file containing the A, B
coefficients accurate to 3 or 4 significant figures.

Figure A-6
When you press the ø button, the Fourier
Transform display shifts from amplitudes to
phases.  Since  the square wave is made up of
pure odd harmonic sine waves, each odd
harmonic should have a 90 degree or

   ππ /2 phase shift.

Figure A-7
For greater numerical accuracy, you can press
the FFT Data button. This gives you a text file
with the A, B coefficients given to four places.
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Amplitude and Intensity
An experiment that has become possible with Mac-
Scope, is to have students compare the Fourier
transform of a multiple slit grating with the diffrac-
tion pattern produced by a laser beam passing through
that grating.  For example, in Figure (A-8) we have
taken the transform of a 3-slit grating.  In this case,
the 3-slit “pattern” was made simply by turning a 2
volt power supply on and off.  We are now working
on ways for students to record the slit pattern di-
rectly.

The problem with Figure (A-8) is that the Fourier
transform of the slits gives the amplitude of the
diffraction pattern, while in the lab one measures the
intensity of the diffraction pattern.  The intensity of
a light wave is proportional to the square of its
amplitude.

In order that students can compare a slit Fourier
transform with an experimental diffraction pattern,
we have designed MacScope so that one more press
on the ø button takes us from a display of phases to
intensities.  Explicitly, the ø button cycles from
amplitudes to phases to intensities.  In Figure (A-9)
we have clicked over to intensities, and this pattern
may be directly compared with the intensity of the
3-slit diffraction pattern seen in lab.

(The Fourier transform of the diffraction pattern
amplitude should give the slit pattern.  Unfortu-
nately, if you take the Fourier transform of the
experimental diffraction pattern, you are taking the
transform of the intensity, or square, of the ampli-
tude.  What you get, as Chris Levey of our depart-
ment demonstrated, is the convolution of the slit
pattern with itself.)

Figure A-8
Amplitude.  The Fourier transform of a 3-slit pattern
gives the amplitude of the diffraction pattern that
would be produced by a laser beam passing through
these slits.  (Selecting the data to give wider slits would
correspond to using a different wavelength laser beam.)

Figure A-9
Intensity.  In the lab, you see the intensity of
the diffraction pattern.  MacScope will display
the intensity of the Fourier transform if you
click one more time on the ø button.
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APPENDIX B
INSIDE THE COCHLEA
In Figure (32), our simplified unwound view of the
cochlea, we show only the basilar membrane separated
by two fluid channels (the scala vestibuli which starts
at the oval window, and the scala tympani which ends
at the round window).  That there is much more
structure in the cochlea is seen in the cochlea cross
section of Figure (B-1).  The purpose of this additional
structure is to detect the motion of the basilar mem-
brane in a way that is sensitive to the harmonic content
of the incoming sound wave.

Recall that when the basilar membrane is excited by a
sinusoidal oscillation, the maximum amplitude of the
response of the basilar membrane is located at a posi-
tion that depends upon the frequency of the oscillation.

As seen in Figure (35), the lower the frequency, the
farther down the membrane the maximum amplitude
occurs.  Along the top of the basilar membrane is a
system of hair cells that detects the motion of the
membrane and sends the needed information to the
brain.

Figure (B-2a) is a close up view of the hair cells that sit
atop of the basilar membrane.  (There are about 30,000
hair cells in the human ear.)  Above the hair cells is
another membrane called the tectorial membrane which
is hinged on the left hand side of that figure.  Fine hairs
go from the top of each hair cell up to the tectorial
membrane as shown.  When the basilar membrane is
deflected by an incoming sound wave the hairs are bent
as shown in Figure (B-2b).  It is the bending of the hairs
that triggers an electrical impulse in the hair cell.

Figure (B-3) is a mechanical model of how the bending
of the hairs creates the electrical impulse.  The fluid in
the cochlea duct surrounding the hair cells has a high
concentration of positive potassium ions (  k+).  The

Figure B-1
Cross section of the cochlea. (From Vander,A; Sherman,J;
and Luciano,D. Human Physiology, 4th edition, 1985, P662.
McGraw Hill Publishing Co., NY.)

Figure 32 (repeated)
The cochlea unwound.
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Figure 35 (repeated)
Amplitude of the motion of the basilar
membrane at different frequencies, as
we go down the basilar membrane.
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Figure B-3
Model of the valves at the
base of the hair cells.
(From Shepard,G.M.,
Neurobiology, 3rd Edition,
1994, P316. Oxford Univ.
Press.)

Figure B-2 a,b
When the basilar membrane is deflected by a sound wave, the hair cells are bent. This opens a
valve at the base of the hair call. (Figures 2 & 4 adapted from Kandel, E; Schwartz, J; and Jessell, T;
Principles of Neural Science, 3rd Edition, 1991; pages 486 and 489.)

bending of the hair cell opens small channels allowing
potassium ions to flow into the hair cell.  This flow of
positive charge into the cell changes the electrical
potential of the cell, triggering reactions that will
eventually result in an electrical impulse in the nerve
fiber that is connected to the hair cell.

After the channel at the top of the hair cell closes, the
excess potassium is pumped out of the hair cell, and the
cell returns to its normal resting voltage, ready to fire
again.

There are various ways that a hair cell can transmit
frequency information to the nervous system.  One is
by its location down the basilar membrane.  The lower
the frequency of the sound wave, the farther down the
membrane an oscillation of the membrane takes place.
Thus high frequency waves excite cells at the front of
the basilar membrane, while low frequency oscilla-
tions excite cells at the back end.

Secondly, hair calls in a given area show special
sensitivities to different frequencies. Figure (B-4) shows

the amplitude, in db, of the sound wave required to
excite a nerve fiber connected to that particular region
of hair cells.  You can see that the nerve is most sensitive
to a  2 killocycle (2kHz) frequency.  At 2 kHz, that nerve
fires when excited by a 15 db sound wave. It is not
excited by a 4 kHz wave until the sound intensity rises
to 80 db.

Ultimately the exquisite sensitivity of the human ear to
different frequency components in a sound wave re-
sults from the fact that there are about 30,000 hair cells
continuously monitoring the motion of the basilar
membrane. Effective processing of this vast amount of
information leads to the needed sensitivity.  Much of
this processing of information occurs in the nervous
system in the ear, before the information is sent to the
brain.
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Figure B-4
Frequency dependence.
A much lower amplitude
sound will excite this
nerve fiber at 2kHz than
any other frequency.
Different nerve fibers
connected to the hair
cells have different
frequency dependence.
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CHAPTER 17 ATOMS, MOLECULES AND ATOMIC
PROCESSES

Our knowledge of atoms comes not from looking
through microscopes, but instead from the study of
chemical reactions, the measurement of the physical
properties of substances, and the bombardment of
materials with x-rays and other particles.  This study
essentially began with John Dalton’s construction of
the first periodic table in 1808.  Other milestones were
Thomson’s discovery of the electron in 1895,
Rutherford’s discovery of the atomic nucleus in 1912,
Neils Bohr’s model of the hydrogen atom in 1913, and
the discovery of the rules of quantum mechanics in the
mid 1920s.

To extract the basic laws of mechanics from the variety
and confusion of the world around us required looking
at matters on a large scale, looking out at the moon and
planets whose motion is regular,  periodic, and easier
to understand.  In this and the next two chapters we take
a similarly large leap to the small scale of distance
where simplicity and periodic behavior again allow us
to gain insight into the working of nature.  Here we find
the world of atoms and their constituent particles, a
world in which we observe the basic forces and par-
ticles ultimately responsible for the variety about us.

The jump down to the small scale of atoms is compa-
rable to the jump out  from the study of projectile motion
in the lab to the analysis of satellite orbits.  Imagine, for
example, that we could enlarge the golf balls used in
our strobe labs to the size of the earth.  The same
enlargement of a hydrogen atom would give us an
object about the size of a golf ball.

Only with the development of the new generation of
microscopes in the late 1980s has it become possible to
see and work with individual atoms.  Figure (1) is the
first atomic sized logo consisting of xenon atoms on a
background of nickel, made by scientists at the IBM
Research Laboratories in 1990.  But despite great
improvements in seeing and working with individual
atoms, the images we now get are still fuzzy and we are
restricted to looking at atoms in solid structures, atoms
that do not move around.

Figure 1
Thirty five xenon atoms were dragged across a nickel
surface to form the letters IBM. (D. M. Eigler & E. K.
Schweizer, Nature, 5 April 1990.)

Chapter 17
Atoms, Molecules
and Atomic Processes
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MOLECULES
Atoms attract each other to form molecules, like the
water molecule H

2
0 sketched in Figure (2).  It was from

x-ray studies of ice, the crystalline form of water, that
we know the distance from the center of the oxygen
atom to the center of a hydrogen atom is   .958 × 10– 8 cm
and that the hydrogen atoms are spread out at an angle
of 104.5 degrees as shown.

X-ray studies of large biological molecules began in
the late 1950s.  For example, myoglobin is a substance
found in muscle tissue.  The myoglobin molecule
contains over 2500 atoms, mostly carbon, hydrogen,
oxygen, nitrogen, and one iron atom.  For determining
the precise structure of the myoglobin molecule from
x-rays of crystals of myoglobin, John Kendrew and
Max Peritz received the 1963 Nobel Prize in chemistry.
Their model of the molecule is shown in Figure (3).

Recent advances in computer modeling now provide
detailed views of numerous kinds of molecules. An
example is Figure (4) showing  the cholera toxin B-
subunit.

Figure 4
Computer model of the cholera
toxin B-subunit. (Courtesy of
Argonne National Laboratory.)

Figure 2
The water molecule  H2 O .  We know the precise
location of the centers of the three atoms.

oxygen
atom

hydrogen 
atom

104.5°

0.958 X 10    cm– 8 
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Figure 3
Model of the myoglobin molecule.  (Photograph courtesy of J.C. Kendrew and H.C. Watson.)
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ATOMIC PROCESSES
The myoglobin molecule provides a hint of the com-
plex structures that can be formed from atoms, a
complexity we wish to avoid in this chapter by concen-
trating on basic, simpler atomic processes.  To help
illustrate these processes, we have illustrated in Figures
(5) through (11) a set of sketches drawn on the black-
board by Richard Feynman and copied to his book of
introductory physics lectures.  Such simple sketches,
full of information, were characteristic of Feynman’s
style.

In the first three Figures (5, 6, and 7) we have views of
three forms of matter made from water molecules,
namely ice, water and steam.  In the form of ice, the
water molecules fit into a hexagonal structure with a
hole in the center, as seen in Figures (5a,b).  When
water freezes to form snowflakes, the hexagonal struc-
ture repeats and we get a six sided symmetry seen in all
snowflakes, examples of which is shown in Figure
(5c).

When ice melts to form water, shown in Figure (6), the
rigid structure of ice disappears and the water mol-
ecules can now slide past each other.  In addition the
holes in the hexagonal structure fill in with the result
that water is more dense than ice.  That is why ice floats
in water.

The third form of water is steam, shown in Figure (7).
In the gaseous state the water molecules move freely
about, interacting only when they collide with each
other.  The picture of steam is more or less what we
would see if we could look at the steam emerging from
a teakettle on an atomic scale.  The separation of the
molecules is on the average about 10 times the diameter
of a water molecule.  As a result, the steam is about 1000
times less dense than liquid water.  The transition from
water to steam, either by evaporation or by boiling,
involves a competition between molecular forces and
thermal forces. We will discuss that competition shortly.

Figure 5a
Ball and stick model of an ice crystal.

oxygen hydrogen

Figure 5b
Sketch of the arrangement of the
water molecules in an ice crystal.

Figure 5c
Snowflakes reflect the 6-sided structure
of the ice crystal.



17-5

Some atomic processes are illustrated in Figures (8)
through (10).  Figure (8) is what you might see in a
snapshot of the surface of a glass of water.  On our scale
of distance, such a surface looks quiet, but on an atomic
scale it is an active place with molecules continually
entering and leaving the water.  Evaporation occurs if
more water molecules leave the water than return.  If
you put a cover over the glass, the concentration of
water molecules in the air above the water builds up to
the point where just as many water molecules return as
leave, and the level of the water stops dropping.  We
would then say that the evaporation has ceased.

In Figure (9) we see what happens to a block of carbon
when it is heated in an atmosphere of oxygen.  By
themselves oxygen atoms combine in pairs to form O

2

or oxygen molecules, and carbon atoms attract each

other to form solids like diamond, graphite, soot, or
Buckeyballs (soccerball shaped structures of carbon).
But there is a greater attraction between a carbon and an
oxygen atom than between two carbon or two oxygen
atoms.  If the carbon and oxygen are heated, the various
atoms bounce into each other at high speeds, the old
structures break apart and molecules of carbon monox-
ide  and carbon dioxide  are formed.  Energy
is released in the process in the form of heat and light,
and we say that the carbon is burning.

Figure 7
Steam.

oxygen nitrogenhydrogen

oxygen carbon

Figure 9
Carbon burning in oxygen.

Figure 8
Water evaporating in air.

Figure 6
Water magnified a billion times.
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The process of salt dissolving in water is illustrated in
Figure (10).  Table salt is a stable crystal structure made
from sodium and chlorine atoms.  Strong electric forces
hold these atoms together in the crystal.  But let water
molecules come into contact with the salt crystal, and
the water molecules work their way in between the
sodium and chlorine atoms, allowing these atoms to
move freely and independently throughout the water.

One of our favorite sketches is Figure (11), the odor of
violets.  Many of our common experiences have a
simple origin on an atomic scale.

THERMAL MOTION
What we have not been able to display in the sketches
of atomic processes is the constant juggling of the
atoms and molecules.  This juggling, which we will call
thermal motion, becomes more intense as a substance
becomes warmer and can cause major changes in the
structure of matter.  When ice is warmed to above the
melting point, the juggling or thermal motion breaks up
the rigid structure of the ice crystal, allowing the water
molecules to slide past each other to form liquid water.
With more heating, the thermal motion can increase to
the point that the water molecules fly apart.

Surprisingly this thermal motion can be seen on a
considerably larger scale than the scale of atoms.  In
1827, the botanist Robert Brown observed that tiny
pollen particles in water, when seen through a micro-
scope, moved around in a juggling, random fashion.
Wondering whether these particles were alive and
swimming, Brown studied these and other small par-
ticles in circumstances where nothing should be alive,
and concluded that this random motion, now called
Brownian motion, had nothing to do with life, but was
related to the motion of the molecules.

With a laser, microscope and TV camera, it is easy to
set up a demonstration of the Brownian motion of
cigarette smoke particles in air.  The apparatus, shown
in Figure (12a), consists of a small cavity between two
microscopic slides, into which we inject smoke through
a small tube.

chlorine sodiumFigure 10
Salt dissolving in water.

oxygen

nitrogen

carbon

hydrogen

water

Figure 11
Odor of violets.

Figure 12a
Brownian Motion.  A small cavity, made from
microscope slides is filled with cigarette smoke,  is
illuminated from the side by a laser beam and viewed
from above by a microscope and TV camera.

microscope
slides

smoke-filled
cavity

laser
beam

microscope
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Once inside the cavity the smoke is illuminated from
the side by a laser beam.  Through the microscope,
whose image can be displayed using a TV camera, we
clearly see the illuminated smoke particles moving
around in a relatively slow jagged motion. Figure (12b)
is one minute movie showing the motion of the smoke
particles.

In Figure (12c), a student recorded the motion of a
single smoke particle for 38 TV frames. Although we
may think of smoke particles as being small, they are
huge compared to the air molecules in which they are
immersed.  Smoke particles have a mass many orders
of magnitude larger than that of the air molecules.  Yet
the motion we see is caused by the constant bombard-
ment of these huge particles by the air molecules.

At first you might believe that if a large particle were
constantly bombarded on all sides by billions of tiny
particles the effect of the collisions would cancel out
and the big particle would just sit there.  But it turns out
that if the collisions are random, then fluctuations in the
collisions will cause the large particle to move around
with the jerky motion we see in the Brownian motion
demonstration.  What is more remarkable, the average
kinetic energy of the smoke particles, as they wander
about, is the same as the average kinetic energy of the
air molecules bombarding them.

The air molecules themselves are not all the same; air
is mostly nitrogen and oxygen, some carbon dioxide
and water, and smaller amounts of other gases and
pollutants.  It turns out that each species of molecule in
the air has precisely the same average kinetic energy
due to thermal motion.  As a result, the oxygen mol-
ecules, for example, having a slightly greater mass than
the nitrogen molecules, must have a slightly smaller
average speed in order that the average kinetic energy

 1/2 mv2 be the same.  The smoke particles, with their
huge masses, have a much slower average speed than
the air molecules.  The air molecules move at roughly
the speed of sound in air, while the smoke particles
move slowly enough for us to see and follow them on
the TV screen.

Figure 12c
Brownian motion of a smoke particle. This is the result
of a student project by Lisa Stigler, where the motion of
a smoke particle was recorded by a TV camera using
the apparatus of Figure (12a).  (We cannot use this plot
to estimate the average speed of the smoke particles,
because the smoke particle undergoes many collisions
between TV frames. However this plot does illustrate
the random walk nature of the motion of the particle.
One feature of a random walk, that may be observable
from plots like this, is that the average distance from
the starting point should be proportional to the square
root of the elapsed time.)
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Figure 12b
First frame of a one minute movie showing the
brownian motion of smoke particles. The frames
are 1/15 of a second apart in this movie. (Click
on the image to see the movie. Press the “esc”
button to close the movie. )
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THERMAL EQUILIBRIUM
If you place a hot cup of coffee and a cold glass of milk
on the table and leave the room for several hours, when
you return the coffee and the milk are both at room
temperature.  We say that the coffee, the milk, and the
air in the room are in thermal equilibrium.  A faster way
to reach thermal equilibrium, at least between the
coffee and the milk, is to pour the milk into the coffee
and stir.

On an atomic scale, what does it mean to say that the
molecules of the coffee and those of the milk are in
thermal equilibrium?  We obtain a hint from our
discussion of Brownian motion.  The cigarette smoke
represents a well stirred mixture of smoke particles and
air molecules.  These should therefore be in thermal
equilibrium, just as the well stirred molecules in the
coffee and milk.  In the case of Brownian motion, the
smoke particles and the air molecules had the same
average thermal kinetic energy.  We expect that the
same may be true for the molecules in the mixture of
coffee and milk.

It is an almost general rule that when two objects are in
thermal equilibrium, the molecules that make up these
objects have the same average thermal kinetic energy.
When we first placed a hot cup of coffee and a cold cup
of milk on the table, the molecules in the coffee had a
greater average kinetic energy, and the molecules in the
milk a lesser average kinetic energy, than the mol-
ecules in the air.  But after a few hours, the coffee
molecules slowed down and the milk molecules speeded
up until all three sets of molecules, coffee, milk, and air
attained the same average kinetic energy.

The process of reaching thermal equilibrium is usually
a result of random collisions between molecules.  If a
fast molecule collides with a slow one, chances are that
the slow one will speed up and the fast one will slow
down.  It requires a detailed analysis, which we will not
attempt, to show that if the collisions are random, they
tend to equalize the kinetic energy of the particles.

Exercise 1
If we know the relative masses of the molecules in air,
and know the average speed of one of the species, we
can use the fact that all species of particles  have the
same average kinetic energy, in order to calculate the
average speed of the other particles.  It turns out that if
we have a sample of air at room temperature (27° C), the
average speed of the nitrogen molecule is 483 meters/
sec.  (We will calculate this number shortly.)

Using the mass of a hydrogen atom as a standard mass
of 1, the mass of a nitrogen molecule is 28, and an
oxygen molecule 32.  (These are often called the
molecular weights of the molecules).  In Table 1 we
have listed various constituents of the cigarette smoke,
the relative mass of the particles, and the average
thermal speed of two of the species.  Use the fact that
all the species have the same average kinetic energy to
fill in the table of average speeds.  (We gave you the
speed of helium so that you could check your calcula-
tions.)

Particle Symbol Mass* Speed**
Hydrogen  molecule  H2  2.0 ...
Helium atom He  4.0 1370 m/sec
Water molecule H

2
0 18.0 ...

Nitrogen molecule N
2

28.0 518 m/sec
Oxygen molecule 0

2
32.0 ...

Carbon Dioxide CO
2

44.0 ...
Smoke particle  1010

* Mass relative  to Hydrogen atom
** Average speed at room temperature

Table 1
Particles involved in the Brownian motion
demonstration. Fill in the column for average
speed, using the fact that these particles have
the same average kinetic energy.
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TEMPERATURE
If there is any scientific concept familiar to everybody,
it is the concept of temperature.  All of our lives we have
been poked with thermometers and listened to weather
forecasts about tomorrow’s temperature.  How is that
quantity, measured by various kinds of thermometers,
related to the atomic processes we have been discuss-
ing?

Most thermometers are a black art which depends upon
such properties as the thermal expansion of mercury or
alcohol, the stiffness of a spring, or the color changes
of a material, etc.  There is, however, one kind of a
thermometer whose function can be understood from
a simple molecular picture.  That is the ideal gas
thermometer which we will discuss shortly.  We will
see that for an ideal gas thermometer, the temperature
reading is proportional to the average thermal kinetic
energy of the gas molecules in the thermometer.

When you measure the temperature of an object, you
have to wait until the thermometer and the object are in
thermal equilibrium.  (You wait until the reading on the
thermometer in your mouth stops changing.)  When in
thermal equilibrium, the molecules of the object and
those of the thermometer have the same average ther-
mal kinetic energy.  If we are using an ideal gas
thermometer, the reading is proportional to this aver-
age kinetic energy.  Thus if we use an ideal gas
thermometer as an experimental definition of tempera-
ture, we are effectively defining temperature as being
proportional to the average thermal kinetic energy of
the molecules.

Absolute Zero
An immediate consequence of temperature being re-
lated to thermal kinetic energy, is that there must be a
lowest possible temperature.  When the thermal kinetic
energy is gone, you cannot go any lower in tempera-
ture.  It thus seems reasonable to define an absolute zero
of temperature as the state where the molecules have no
thermal kinetic energy, and choose a temperature scale
that starts at this absolute zero and goes up proportion-
ally to the thermal kinetic energy.

However, as you approach absolute zero, as you try to
remove the last vestiges of thermal kinetic energy,
nature has a surprise in store.  No matter what you do,
there is some unremovable kinetic energy left.  One of
the basic predictions of quantum mechanics is that a
confined particle cannot have zero kinetic energy, and
the closer the confinement the more kinetic energy it
has to have.  A molecule in a liquid or a solid is confined
to the small volume bounded by its neighbors, and
therefore cannot have a kinetic energy less than that
required for that volume.

The unremovable kinetic energy is called zero point
energy.  This energy is so small that for most sub-
stances it is not noticeable unless you carry out spe-
cially designed experiments to detect it.  However, zero
point energy shows up clearly in the case of liquid
helium.  All substances except helium freeze when
cooled to a sufficiently low temperature.  We can
remove enough kinetic energy from the molecules so
that they settle into a solid structure.  But the molecular
force between helium atoms is so weak that the zero
point kinetic energy alone is enough to keep helium a
liquid.  You cannot freeze helium by cooling alone, you
must also subject it to high pressures.

The existence of zero point energy suggests that we will
encounter problems with the definition of temperature
as we approach absolute zero.  Suppose, for example,
we have two substances with different zero point
energies in thermal equilibrium.  If the temperature is
so low that any thermal kinetic energy is much less than
the zero point energies, then we have a situation in
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which molecules with different vibrational kinetic
energies are in thermal equilibrium.  If we insist that
two substances in thermal equilibrium are at the same
temperature, then we can no longer say that tempera-
ture is proportional to the vibrational kinetic energy of
the molecules.

The ideal gas thermometer does not get us out of this
problem because it does not work at very low tempera-
tures.  Before the zero point energies become impor-
tant, any gas we use in an ideal gas thermometer
becomes liquid or solid and we no longer have an ideal
gas as a working substance.

In the next chapter on entropy and the second law of
thermodynamics, we will discuss the consequences of
the basic idea that order does not naturally arise from
disorder.  In that discussion we will describe a method
of defining temperature that applies to all temperature
ranges.  This thermodynamic definition of temperature
is consistent with the ideal gas thermometer over the
range that ideal gas thermometers operate, but also
correctly describes temperatures near absolute zero
where we have to deal with zero point energy.

Temperature Scales
For the rest of this chapter, we will put aside any worries
about zero point energy, and simply assume that the
temperature of an object is proportional to the average
thermal kinetic energy of the molecules in the object,
and that absolute zero is where no thermal kinetic
energy remains.

From this point of view, the simplest way to define a
temperature scale is to equate the temperature with the
average thermal kinetic energy, and measure tempera-
ture in energy units such as ergs as shown in Figure
(13).  But you probably have not heard anyone describe
temperature in ergs, and for good reason.  Telling your
doctor that you are running a fever of   6.4423 × 10– 14,
an increase of   23 × 10– 18 over normal could be a bit
hard to explain when you are sick.   It is much easier to
say that you have a temperature of 100° F or about 38°
C.  Ergs are too awkward a unit for most purposes.

Historically, thermometers were invented and tem-
perature scales established long before the relation
between temperature and the average kinetic energy of
molecules became known.  Throughout the world the
most widely used temperature scale is the Centigrade
scale, where the temperature of melting ice is arbi-
trarily set at 0° C (zero degrees Centigrade), and the

7.72 x 10     ergs

5.65 x 10     ergs

0  ergs absolute zero
helium becomes liquid

nitrogen becomes liquid
(liquid air)

dry ice

ice melts

normal temperature (98.6° F)

water boils

– 14

– 14

average kinetic energy
of gas molecules

ergs absolute
(Kelvin)

Centigrade Fahrenheit

7.72 x
10     ergs– 14

5.65 x
10     ergs– 14

373° K

273° K

100° C

0° C

212° F

32° F

0 ergs 0° K – 273° C – 459° F

boiling point

freezing point

absolute zero

Figure 13b
Comparison of various temperature scales.

Figure 13a
Temperature scale in ergs.
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boiling of water at 100° C.  Commonly, changes in
temperature are measured with a mercury thermom-
eter.  This device registers temperature changes when
the mercury in a thin glass column expands or contacts.
On the Centigrade scale, the distance between 0° C and
100° C is marked into 100 equally spaced smaller
intervals which we call degrees.

A less arbitrary scale is the Kelvin or absolute scale,
which measures temperature in Centigrade size de-
grees beginning at absolute zero.  Using the absolute
scale, we find that helium boils at 4 degrees Kelvin, ice
melts at 273 degrees Kelvin and water boils at 373
degrees Kelvin.  A comparison of various temperature
scales (ergs, degrees Kelvin, degrees Centigrade, and
degrees Fahrenheit) is shown in Figure (13b).

Those who define standard nomenclature for physical
quantities have decided, in their great wisdom, that the
word “degrees” shall be omitted when talking about
temperature in degrees Kelvin.  Thus we should say
that helium boils at 4 kelvins or 4K, ice melts at 273
kelvins or 273K, and the temperature difference be-
tween melting ice and boiling water is 100 kelvins or
100K.  At least this nomenclature is easy to say and
should not be confusing when you get used to it.  We
do not feel the same way about all recent changes in
nomenclature.

The conversion from one temperature scale to another
is a relatively straightforward process.  If you went to
an American school, somewhere along the way you
were taught how to convert from Fahrenheit to Centi-
grade degrees.  You do not need to worry about that
because we will not be using the obsolete Fahrenheit
scale.  But we will often want to convert from the
absolute scale to the energy units, ergs or joules.  The
conversion is written in the somewhat peculiar form

 
average kinetic energy

of gas molecules
in ergs or joules

=
3
2

kT (1)

where T is the temperature in kelvins, and the conver-
sion factor k, known as Boltzman’s constant has the
numerical value

  
Boltzman's
constant k

= 1.38 × 10– 16 ergs
kelvin

(2)

If you are using MKS units, the value of k is
  1.38 × 10– 23 joules/kelvin .

The important feature of Equation 1 is that the average
kinetic energy of the molecules is proportional to the
absolute temperature measured in kelvins.  We have
written the proportionality constant as 3/2 k, putting in
the numerical factor of 3/2 to get rid of a factor 2/3, as
you will see shortly.  Basically, think of Boltzman’s
constant as the conversion factor to go from tempera-
ture units to energy units or vice versa.

Exercise 2
Use Equation 1 to calculate the temperature of melting
ice in ergs.  Compare your answer with the result in
Figure (13).

Exercise 3
What would be the temperature in Kelvins of a gas if the
particles in the gas had an average kinetic energy of 1
erg?

Exercise 4
In Exercise 1 we said that the average speed of nitrogen
molecules at room temperature was 518 meters/sec,
and asked you to use that result to calculate the average
speed of the other molecules and particles in the
cigarette smoke.  Now you are to calculate the speed of
the nitrogen molecules using the fact that their average
kinetic energy is 3/2 kT.

It is traditional to take room temperature as 300K = 27°
C.  Assume that a nitrogen molecule is 28 times as
massive as a hydrogen atom, whose mass is essentially
the same as a proton, or   1.67 × 10– 24 grams.  See if you
get the answer of 518 meters/sec.
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Figure 14
Interaction of two atoms via a Leonard Jones
potential (f).  When the atoms have an equilibrium
separation (d), their potential energy of interaction is
a minimum, and we can visualize one of the atoms as
sitting at the bottom of the potential energy well.  If
the separation either increases or decreases, there is a
force back toward equilibrium.  The repulsion quickly
builds up if you try to shove the atoms together, and
the attraction dies rapidly after the atoms become
separated by about one atomic diameter.

MOLECULAR FORCES
Much of the behavior of matter we see as we look
around us is the result of a competition between mo-
lecular forces holding atoms together and thermal
motion tending to pull them apart.  Molecular forces
can be subtle enough to form objects as complex as the
myoglobin molecule.  Yet knowing just some of the
basic features of molecular forces is enough to provide
an insight into processes like evaporation, osmotic

pressure, elasticity of rubber, and the behavior of an
ideal gas.  At the end of Chapter 19 we will discuss the
so-called Leonard Jones potential as a model for
molecular forces.  That model is far more detailed than
we need for our current discussion.  All we need to
know now is reviewed in Figure (14).

In Figure (14a), where the atoms are about an atomic
diameter apart,  the attractive molecular force between
the two atoms is less than one percent of its maximum
value.  The point is that unless the atoms are very close
together, within an atomic diameter of each other,
molecular forces are negligible.  This is why atoms in
a gas  often act as independent free particles.  In the air
we breath, the average spacing of atoms is about ten
molecular diameters, so that molecular forces play no
role except when molecules collide.

When atoms get closer than an atomic diameter, the
attractive molecular force increases rapidly, reaching a
maximum at a separation at about one tenth of an
atomic diameter as shown in Figure (14c).  Then the
force rapidly drops to zero at the spacing shown in
Figure (14d).  When the force is zero, this is the
equilibrium distance which determines the size of the
atom in a chunk of matter.  Effectively we can say that
when the atoms are at their equilibrium separation, they
are just touching, as we drew them in Figure (14d).

Try to shove the atoms closer together than the equilib-
rium position, and you encounter a repulsive force that
builds very rapidly, much faster than the attractive
force increases as you pull the atoms apart.  This
repulsion makes atoms behave as hard, nearly incom-
pressible spherical objects.  This repulsive force is
often referred to as the repulsive core of the atom.

In Figure (14f) we have sketched the potential energy
corresponding to the molecular force.  As you can see
the potential energy forms a well with the bottom at the
equilibrium position.  When two atoms form a mol-
ecule, like hydrogen (  H2 ), oxygen (  O2 ) or nitrogen
(  N2 ), you can picture one of the atoms as sitting in the
potential well created by the other, and vice versa.  We
only have to think about one of the atoms, for the same
thing is happening to the other.



17-13

The advantage of the potential energy diagram is that
it allows us to think of atomic processes in terms of the
energy involved.  The distance from the zero of poten-
tial energy down to the bottom of the well is the binding
energy of the molecule as indicated in Figure (16).  This
is the energy required to pull a molecule apart, starting
with the atoms in their equilibrium position.

We have seen that the average thermal kinetic energy
of an atom or molecule is 3/2 kT where k is Boltzman’s
constant and T the temperature in Kelvins.  If the
thermal kinetic energy is much less than the binding
energy of the molecule, as we have shown in Figure
(16), then the atom can move back and forth around the
bottom of the potential well but not climb out.

From the depth and shape of the potential well one can
deduce general features of the behavior of matter, such
as why solids and liquids expand when heated.  But
before we look at such fine details, there is much to
understand about atomic processes just from the fact
that there is an attractive molecular force with a repul-
sive core.  We will look at these more general features
first and then return to the details we see in Figure (16).

equilibrium
separation

parabolic energy
well of spring force

bottom of Leonard Jones 
potential energy well

Leonard Jones
potential

parabolic
approximation
of spring force

equilibrium
separation

a)  Comparison of the Leonard Jones potential and the
     parabolic potential of a spring force.

b)  Modeling the molecular force as a spring force. As long
     as the atom stays near the equilibrium position, the 
     Leonard Jones force and the spring force are equivalent.

Figure 15
Physics and chemistry texts often picture molecules
with spring forces between the atoms.  At first this
may seem to be a highly unrealistic picture.  But
when you carefully compare the spring potential
energy and the Leonard Jones potential energy right
near the equilibrium position, the two curves have
the same shape.  Thus the spring force is a good
model as long as the atoms stay near their
equilibrium positions.

potential 
energy of
molecular force

binding 
energy of 
molecule

3/2 kT

Figure 16
Binding energy.  If an atom is in its equilibrium
position, we can think of it as sitting at the bottom
of its potential energy well.  To remove the atom
from the molecule, we have to lift it out of the well.
Thus the binding energy is the depth of the well.  If
the atom has a thermal kinetic energy 3/2 kT, and
this thermal energy is less than the binding energy,
the molecule should stay together.

If the atom is sitting at rest at the bottom of its potential
well, it is at its equilibrium position shown in Figure
(14d).  If the atom moves either way, in or out, it is
subject to a restoring force pushing it back to the
equilibrium position.  If it does not move too far from
its equilibrium position, the restoring force is very
similar to the restoring force of a spring at equilibrium,
as indicated in Figure (15).  That is why one can often
quite accurately picture molecular forces as spring
forces between atoms.



17-14  Atoms, Molecules and Atomic Processes

Evaporation
Simple features of molecular forces lead to a reason-
able understanding of the transition from a liquid to a
gaseous state, the process of evaporation.  We start with
a picture of a liquid as a collection of molecules that all
attract each other, can move around past each other, but
are nearly incompressible because the repulsive core in
the molecular force prevents atoms from being squeezed
into each other.  The incompressibility of water can be
seen from the fact that water in the deepest parts of the
ocean, where the pressures are some 800 times atmo-
spheric pressure, is only about 3% denser than the
water at the surface.

A molecule in a liquid is free to move around because
of its thermal kinetic energy and because there is
essentially no net force on it.  Although attracted to all
of its neighbors, the neighbors surround the molecule
as shown in Figure (17), and the net force is zero.

The situation is different for a molecule on the surface
as shown in Figure (18).  Such a molecule has neigh-
bors only to the sides and below.  If we try to lift such
a molecule out of the surface, there will be a net force
exerted by all of the molecules beneath it, pulling the
molecule back in.  To extract a molecule from the

surface requires that you do work against these attrac-
tive forces.  The amount of work required to extract a
molecule from the surface depends upon the type of
liquid and the temperature of the liquid, but some
energy is required as long as the surface exists.

Example 2
To estimate the amount of energy required to extract a
water molecule from the surface of water, we note that
to boil 1 gram of water requires   2.25 × 1010 ergs of
energy.  Since there are   3.3 × 1022 molecules in 1 gram
of water, this represents an energy of   7 × 10–13 ergs per
molecule.  Some of the energy you supply goes into
displacing the air above the water to make room for the
steam, but most of it goes into supplying the energy
each molecule needs to escape water at 100° C (373K).

Exercise 5
(a) What is the average kinetic energy of a molecule at
a temperature of 373K?

(b) Is this enough energy for an average water molecule
to escape through the surface of the water?

(c) At what temperature does the thermal kinetic energy
equal to the   7 × 10–13 ergs needed to escape?

(b)
Figure 18
A molecule on the surface is attracted to its neighbors
beneath it.  To pull a molecule out of the surface, you
have to overcome these forces.  As a result it takes
energy to remove a molecule from the liquid.  This
surface force is often referred to as surface tension.

Figure 17
A molecule in the interior of a liquid is attracted by
all its neighbors which surround it.  As a result the
net force is zero and the molecule is free to move
about through the liquid.
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If you worked Exercise 6, you realize that the aver-
age molecule, even in boiling water, does not have
nearly enough thermal kinetic energy to escape
through the surface.  Yet even at room temperature
water evaporates; even at these lower temperatures
some molecules escape through the surface.  The
reason is that, while 3/2 kT is the average thermal
kinetic energy of the molecules, some molecules
have more kinetic energy than average, some less.
Some have so much more kinetic energy than aver-
age that they can escape.

The rate of evaporation depends very much on the
distribution of thermal kinetic energies.  At a given
temperature T what fraction of the molecules have a
kinetic energy sufficiently far above average to be
able to escape?  It turns out that for a substance in
thermal equilibrium, there is a precise formula for
the distribution of thermal kinetic energies, a for-
mula known as the Boltzman distribution which we
discuss in Chapter 22.  For now we will not go into
that much detail.  Instead, we will simply recognize
that some molecules are hotter than average, some
colder than average, and that it is the very hottest
ones that have enough energy to escape.

If it is the hot molecules that escape during evapora-
tion, then the cooler ones must be left behind and
evaporation must be a cooling process.  There must,
however, be a net loss of molecules from the surface
for cooling to occur.  As we noted at the beginning
of the chapter, the surface of water is a dynamic
place where water molecules are continually leaving
and returning.  A returning water molecule, even if
relatively cool when in the air above the water, gains
as much kinetic energy when it reenters the water as
the hot molecule lost when escaping.  Thus reenter-
ing molecules become hot when they get back in the
water, and thus the returning or condensation of
water molecules is a warming process.

Whether you get evaporation or condensation de-
pends upon the number of water molecules in the air
above the water.  If you cover a glass of water with
a dish, soon the number of water molecules in the air
in the glass builds up to the point that there is a
balance between molecules leaving and molecules
entering the liquid surface.  When this balance is
achieved, evaporation ceases and we say that the air
above the water is at 100% relative humidity.  In
order to get cooling from evaporation, the relative
humidity of the air must be less than 100%.

The human body uses evaporation for cooling which
is effective on a hot, dry day but not on a humid one.
When the relative humidity approaches 100% there
is no net loss of water molecules and no cooling.
Incidentally, you blow on soup to cool it, not neces-
sarily because your breath is cooler than the soup,
but because you are replacing the moist air over the
soup with drier air so that more evaporation can take
place.
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PRESSURE
When you try to compress a liquid, you are trying to
shove the atoms into each other which is very difficult
to do because of the repulsive core of the molecular
force.  It is also hard to compress a gas—try blowing air
into a soda bottle.  But when you compress air you are
not squeezing air molecules together, you are not trying
to overcome a molecular force at all.  The air that you
breathe is mostly empty space, the separation of air
molecules being about 10 molecular diameters.  There
is a completely different explanation for why it is
difficult to compress a gas, why a gas exerts a pressure
that you must overcome to compress it.

One of the simplest demonstrations of the pressure
exerted by a gas is provided by a rubber balloon.  When
you blow up a balloon, the rubber of the balloon is
trying to compress the gas, force it down to a smaller
volume.  The molecules of the gas exert an outward
force on the rubber, preventing it from collapsing.  This
outward force is caused by the collisions of the gas
molecules with the rubber, as illustrated in Figure (19).
Whenever an air molecule strikes and bounces off of
the rubber, there is a net transfer of outward directed
linear momentum to the rubber.  Since the collisions are
occurring continually, there is a continual transfer of
momentum to the rubber, which, according to Newton’s
second law  F = dp/dt, means that the molecules exert
a force on the rubber.  On the average, the direction of
momentum transfer is outward, perpendicular to the
surface of the rubber.  Thus the force exerted by the gas
molecules is also perpendicular to the surface.

The total force exerted on some part of the balloon
depends upon the area of the balloon we are talking
about.  We can simplify the discussion by talking about
the force on a unit area of the balloon surface, and give
that force the special name pressure.  We know that
force is a vector quantity, but the force that a gas exerts
on a surface is always directed perpendicular to the
surface, no matter what orientation the surface has.

Figure 19b
Balloon placed on liquid nitrogen. If you cool the air
molecules inside the balloon, they do not strike the
rubber as hard, exert less of a force, and the balloon
collapses. In the final picture, there is only a puddle
of liquid air inside.

Figure 19a
The air molecules bouncing off the inside surface of
the balloon, transfer an outward directed momentum to
the rubber. The average momentum per second
transferred by these collisions is the average force the
molecules exert on a section of the balloon surface.
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Thus we can let the word “pressure” stand for the
magnitude of the force on a unit area, and determine the
direction of the force from the orientation of the sur-
face.

 

pressure
of a gas

=
magnitude of the force
exerted by the gas on a
unit area of surface

(3)

In the case of a gas inside a balloon, it is clear that the
behavior of the gas molecules is more or less the same
throughout the balloon.  As a result, the pressure should
be essentially the same on all surface areas of the
balloon.  Instead of using the word “pressure” to merely
describe the force on surfaces of the balloon, we can say
that the pressure is in the gas itself.  Once you know the
pressure of the gas, you can then calculate the force the
gas exerts on some particular surface by multiplying
the pressure times the area of the surface, and noting
that the force is directed perpendicular to the surface.

The pressure of the gas, the force the gas molecules
exert on a surface, depends upon how fast the mol-
ecules are moving when they hit the surface.  The faster
their average speed, the greater the force and pressure.
Since the motion of the molecules is thermal motion,
whose average kinetic energy is 3/2 kT, the average
speed and pressure must increase with temperature.  If
you heat the balloon, the gas pressure increases and the
balloon expands.  If you cool it, it contracts.

An excellent demonstration of the dependence of air
pressure on temperature is to place a balloon in a bucket
of liquid nitrogen, as shown in Figure (19b).  A
common Styrofoam ice bucket makes an excellent
container for liquid nitrogen for this demonstration.
When you place the balloon on the surface of the liquid
nitrogen, the balloon sits there for a while, and then
begins to shrink as the air molecules cool down.  The
shrinking continues until the balloon collapses and all
you have inside is a puddle of liquid air.  Now any
further contraction of the balloon would require squeez-
ing the air molecules themselves together which is
opposed by the repulsive core of the molecular forces.
In a sense, the collapse of the cooling gas in the balloon
was halted by molecular forces.

If you take the balloon out of the liquid nitrogen, the air
inside warms up and the balloon expands again to its
original volume.  Remarkably, a typical balloon can
undergo this cycle a number of times without breaking.

Stellar Evolution
The balloon has features in common with our sun.  The
sun is not the solid object it appears. Abetter model is
that the sun is a  bag of gas, somewhat like a balloon, but
with the constraining force of the rubber replaced by
gravity.  The sun looks like it has a distinct surface, but
that is an illusion created by the fact that the gas
molecules in the sun, which are mostly hydrogen,
become ionized and opaque at temperatures in excess
of 3000 Kelvins.  As you go down into the sun, the
temperature of the gas increases.  The distance at which
it reaches 3000 Kelvins, the gas changes from transpar-
ent to opaque and that is what we see as the surface of
the sun.

For the past five billion years, the sun has gotten energy
from the conversion of hydrogen nuclei to helium
nuclei.  And there is another five billion years worth of
hydrogen left before the sun runs out of fuel.  At that
point the sun will do something spectacular. It will
expand so that the earth will be orbiting near the sun’s
surface.  (We discuss this process in more detail in
Chapter 20.)  But eventually the sun will settle down
and begin to cool off.

As the sun cools, it will contract very much like the
balloon in our demonstration.  And like the balloon, the
collapse will be halted when the atoms are so close
together that the repulsive core of the molecular forces
prevents further contraction.  At that point the sun will
have become what is called a white dwarf, an object
about the size of the earth slowly cooling until it
becomes a dark ember.

If the sun were just a bit bigger, about 1.4 times its
current mass, the gravitational collapse would not be
halted by the molecular forces between atoms.  That is
the mass at which gravity is strong enough to crush the
atoms together, to overcome the atomic repulsive
cores, with the result that you end up with a neutron star.
That is also a topic we discuss in Chapter 20.
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THE IDEAL GAS LAW
We have discussed the picture of how the repeated
collisions of the gas molecules inside a balloon exert an
outward force on the rubber, and how, if we raise the
temperature, the molecules travel faster, strike harder,
and exert a greater force.  We will now, with a fairly
simple derivation, obtain an explicit relation between
the temperature of the molecules and the force they
exert, a relationship known as the ideal gas law.

There are many ways to derive the ideal gas law,
depending upon what assumptions you are willing to
make about averaging over molecular speeds.  The less
you are willing to assume, the harder the derivation is.
But there is one rather surprising feature of all the
derivations.  They all give the same correct answer.
The usual procedure in textbooks is to make the deri-
vation as complex as students will tolerate, apologize
for or hide the approximations, and announce that the
answer is correct.  What we will do is present the
simplest derivation we can find that gives the right
answer.  When an argument looks too simple to be true,
but gives the right answer, that means that you may
have extracted an important basic feature from a com-
plex situation.

The Ideal Piston
While a balloon is a very practical container for gas, the
curved surfaces make it a bit difficult to use for theoreti-
cal analysis.  Instead we will, more or less as a thought
experiment, use an idealized device called the friction-
less piston.  Figure (20) is a diagram of a frictionless
piston in a cylinder of cross-sectional area A.  In the
cylinder is a gas -- like air at room temperature.  The gas
molecules are bouncing around, colliding with the
walls of the cylinder and the face of the piston.  Because
of the collisions, the gas molecules exert a force on the
piston, and because the piston is frictionless, we must
exert an oppositely directed force F, as shown, to keep

the cylinder from expanding.  We are assuming that
there is no gas behind the piston, so that only the force
F keeps the gas from expanding.

We know that the force F exerted by the gas increases
with temperature because the balloon expanded when
we heated it.  We also know that the average thermal
kinetic energy of the gas molecules increases as 3/2 kT
as the temperature rises.  What we wish to do now is
relate these observations to obtain a formula for how
the force F depends upon the temperature T.

To relate F to T we start with the simplest possible
model of the gas in the cylinder, namely a gas consist-
ing of one molecule, bouncing back and forth at a speed
v, as shown in Figure (21).  Each time the molecule
strikes and bounces off the piston, its momentum
changes by 2mv.  Since linear momentum is conserved
during the collision, the piston picks up an outward, x-
directed, linear momentum of magnitude 2mv as a
result of the collision.  (Remember problem 7-5, where
two skaters on frictionless ice were tossing a ball back
and forth.  When one of the skaters caught the ball, she
picked up the ball’s momentum mv.  When she threw
the ball back, she recoiled, picking up an additional mv
of momentum.  As a result she picked up 2mv of
momentum with each catch and toss.)

If we designate by   ∆p  the magnitude of the x-directed
linear momentum that the piston gains from each
collision we have

   momentum
transferred
per collision

∆p = 2mv (4)

The momentum   ∆p = 2mv  is transferred to the pis-
ton each time the molecule comes back and strikes the
piston.  If  ∆ t is the time between collisions, then the
amount of momentum transferred per second is   ∆p/∆t .

area A F

Figure 20
Frictionless cylinder in a piston.  Picture the force that
the gas molecules exert on the piston as being
counterbalanced by an external force F  as shown.

m

v

x

z

y

x

Figure 21
Analysis of a one molecule gas.
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Since, in this approximation, all the molecules have the
same speed v, then the factor  1/2mv2  in Equation 8
must be the average thermal kinetic energy of the
molecules.  Replacing  1/2mv2  by 3/2 kT gives

   F N molecule
gas = 2

3
N × 3

2
kT (9)

Now you see why the factor of 3/2 was inserted into the
formula 3/2 kT for the average thermal kinetic energy.
The 3/2 cancels the 2/3 that appeared in Equation 9, and
we get

  F N molecule
gas = N kT (10)

We are almost finished.  Equation 10, despite our
approximations, is the correct formula for the force
exerted by a gas of N molecules at a temperature T.  The
only problem with Equation 10 is the explicit depen-
dence on the length  of the cylinder.  We can remove
this explicit dependence by expressing the force on the
cylinder in terms of the pressure P of the gas.

In our earlier discussion, we said that the pressure of a
gas inside a balloon was equal to the force per unit area
exerted by the gas on the surface of the balloon (Equa-
tion 3).  If we have a gas at pressure P in a cylinder of
cross-sectional area A, as shown in Figures (20) and
(21), then the force exerted on the piston, whose area is
A, must be

  F = PA pressure
times area (11)

Substituting Equation 11 for F in Equation 10, and
multiplying through by the cylinder length  , gives

 P A = N kT (12)

The final step is to note that  A , the area of the cylinder
times its length, is the volume V of the cylinder.  Thus
we get

  PV = NkT ideal gas law (13)

Equation 13 is known as the ideal gas law.  Despite the
approximations we used to derive it, it is accurate as
long as the particles in the gas are separated enough that
one can neglect the molecular forces between particles.
To express this another way, any gas that obeys Equa-
tion 13 is known as an ideal gas.  To a very high degree
of accuracy, the air around us behaves as an ideal gas.

Using Newton’s second law, in the form  F = dp/dt , we
see that this rate of transfer of linear momentum   ∆p/∆t
is just the average force F that the molecule is exerting
on the piston

   average force
exerted by
molecule
on piston

F = ∆p
∆ t

average rate
of momentum
transferred
to the piston

(5)

To calculate the time ∆ t between collisions, note that
if the distance from the end of the cylinder to the piston
is , and the molecule is traveling at a speed v, it covers
the distance down and back, 2 , in a time

  ∆t = 2 cm
v cm/sec

= 2
v sec (6)

With Equation (4) for   ∆p  and (6) for  ∆t in (5), we get,
for the average force F exerted by this one molecule of
gas

  F =
∆p
∆t

= 2mv
2 /v

= mv2
(7)

Note the appearance of  mv2  in Equation 7.  We are
already beginning to see a connection between the
molecule’s kinetic energy and the force it exerts.

If you could actually set up a one molecule, one
dimensional, gas like that shown in Figure (21), Equa-
tion 7 would accurately describe the average force of
that gas on the piston.  No approximations have been
made yet.  The approximations enter when we go to a
gas of N molecules, moving in three dimensions, at
various speeds.  The simplest, most outrageous ap-
proximation we can make is that all of the molecules
have the same speed v, and that 1/3 of them are
bouncing back and forth in the x-direction, 1/3 in and
out in the y-direction, and 1/3 up and down in the z-
direction.  Such a gas with N/3 molecules bouncing
back and forth, would exert a force N/3 times as great
as our one molecule gas in Figure (21)

   F N molecule
gas = N

3
F 1 molecule

gas

= N
3

mv2

= 2
3

× N × 1
2

mv2 (8)
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Ideal Gas Thermometer
The ideal gas law, PV = NkT, incorporates such laws
as Boyle’s law and Charle’s law which you may have
encountered in an introductory chemistry course.  One
can construct numerous examples and homework prob-
lems applying this law.  What we will do for our first
application is to describe the ideal gas thermometer
which we will use, at least for now, as our experimental
definition of temperature.

An example of an ideal gas thermometer is shown in
Figure (22).  The glass tube and the plug of mercury
come about as close as you can get to a cylinder with a
frictionless piston.  You can make one of these devices
by sealing a glass tube at the bottom, pouring some
mercury in, evacuating most of the air above the
mercury, and sealing the top of the tube.  If the tube is
fairly small, when you turn the tube over, the mercury

plug will slide down until it sits on the remaining air.
There will be a vacuum above the plug.  How high the
plug rides depends upon the length  of the mercury
plug and how much gas you left in the tube before
sealing it.

We can use the ideal gas law to predict how the height
of the plug varies with the temperature of the gas in the
tube.  When we do this, we obtain a messy looking
formula with factors like the density ρ of the mercury,
the number N of air molecules in the tube, the area A of
the tube, the acceleration g due to gravity and Boltzman’s
constant k.  But when we take another look at the result
we see that most of the factors are constants, and the
height h of the air column turns out to be strictly
proportional to the temperature T of the gas in the tube.
Let us see how this all works out.

Rewriting the ideal gas law as an equation for the
temperature T of the gas molecules, we get

 T = PV
N k

= PhA
Nk

(14)

where V = hA is the volume occupied by the air which
is in a column of height h and area A.  The mercury plug
of length  riding on top of the gas, exerts a gravitational
force mg on the gas, where the mass m of the mercury
is equal to the mercury’s density ρ times its volume  A.
Thus

  weight of
mercury
column

= mg = ρ Ag (15)

The force mg is the total force exerted by the mercury
column on the air.  The force per unit area, which must
equal the pressure of the gas if the plug is balanced on
the gas is

   pressure of gas
beneath a plug
of mercury
of length

P =
mg
A =

ρ Ag
A = ρ g (16)

Equation 16 will turn out to be useful in other experi-
ments, for it tells us how to measure the pressure of a gas
in terms of the height  of a mercury plug that the gas
can support.

h

vacuum

mercury
plug

air

glass tube

Figure 22
Ideal gas thermometer.  If we heat the gas beneath
the mercury plug, the gas expands raising the plug.
If we have an ideal gas, then the height of the plug
depends only on the temperature of the gas and not
the kind of gas we used.
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Using Equation 16 in 14, we get the desired result

  
T = PhA

Nk
=

ρ gA
Nk

h = χh (17)

where   χ = ρ gA/Nk  is a collection of constants.  The
basic result is that the gas temperature T is strictly
proportional to the height h of the air column.

To use an ideal gas thermometer, we do not need to
evaluate the constants in the formula for χ .  Instead
immerse the thermometer in ice water and mark the
bottom of the plug 0°C.  Then put the thermometer in
boiling water and mark that 100°C.  Mark off the
distance between 0°C and 100°C in 100 equally spaced
intervals and you have a centigrade thermometer.

The fascinating feature of an ideal gas thermometer is
that you can quickly determine the temperature at
which the gas volume should go to zero, the tempera-
ture we have called absolute zero.  On a sheet of graph
paper, mark off a temperature scale on the bottom that
runs backwards  from 100° C to 0° C and goes on out
quite away into negative temperatures.  On the vertical
axis plot the height h of the air column.  For this plot,

you have only 2 experimental points, the height at 0° C
and at 100° C.  Connect these two points by a straight
line (that is what the formula T =   χh  says you should
do), and you find that h goes to zero at a temperature of
– 273° C.  That is all there is to it!

From our discussion of molecular forces, you can see
that any ideal gas thermometer you actually build
has to fail before you get to absolute zero.  At some
point as you cool the air in the thermometer, you end
up with a puddle of liquid air as we did in the balloon
demonstration.  Even before the air becomes liquid,
the spacing between the air molecules is reduced to
the point where the molecular forces between air
molecules becomes important.  The attractive mo-
lecular forces reduce the pressure of the gas, the gas
no longer obeys the ideal gas law, and we cannot
believe the readings of the thermometer.  This prob-
lem can be put off by using helium gas that remains
a gas down to a temperature of 4 kelvins, but that’s
the limit.  To work at temperatures closer to absolute
zero you need a different experimental definition of
temperature, like the thermodynamic definition we
discuss in Chapter 18.

Height of
air column

Height 
At 0°C

0cm

Temperature

-273°C0°C100°C

100°C

-100°C -200°C

•

•

Figure 23
Absolute zero.  If you plot the height of the air
column in an ideal gas thermometer as a function
of temperature, drawing a straight line between the
two known data points at 100°C (boiling water) and
0°C (melting ice), and continue the line down to
zero height, the intersection is at – 273°C.  This
represents an absolute low value for temperature, as
defined by the ideal gas thermometer.
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The Mercury Barometer
 and Pressure Measurements
Columns of mercury are useful not only for making
thermometers, but also for making devices to measure
pressure.  We will begin with a discussion of the
mercury barometer whose construction is shown in
Figure (24).

As shown in Figure (24a), start with a u shaped glass
tube about a meter long, sealed at one end, and work
mercury into it until the sealed section is nearly full.
Then invert the tube as shown in Figure (24b).  The
mercury in the sealed section will slide down, leaving
a vacuum behind it, until the difference in the heights
of the mercury columns is about 76 cm as shown.

The height difference of the two columns tells us the
pressure of the atmosphere.  To see why, conceptually
break the mercury column up into two parts as shown
in Figure (24c).  The bottom part is the loop of mercury
that goes from point 1 (at the open end of the mercury)
to point 2 (at the equal height in the closed section).  The
upper part, goes from point (2) up to the vacuum, a
section whose height we designate by the letter h. This
column sits over the bottom loop and exerts a down-
ward force equal to the weight mg of a column of
mercury of height h.

The mercury in the bottom section between points (1)
and (2), is completely free to move up one side or the
other.  Since it does not move, the weight mg of the
mercury column pushing down on the left side at point
(2) must be balanced by the force of the atmosphere
pushing down at the open end, point (1).  As indicated

in Figure (25), the molecules of the air are colliding
with the surface of the mercury, exerting a force in the
same way that the air molecules in a balloon push out
on the rubber.  If the air molecules are at a pressure  Pa
(pressure of the atmosphere) and the glass tube has an
area A, the force exerted by the air is the pressure times
the area.

 force exerted
by atmosphere
on air column

= PaA (18)

The weight mg of the mercury column pushing down
at point (2) is

  mg = ρ Ah g (19)

where  ρ  is the density of mercury and Ah is the volume
of mercury in the column of area A and height h.

Figure 25
The weight of the mercury column above
point (2) must be balanced by the force
exerted by the atmosphere at point (1).

mg

weight of
mercury 
column

pressure
of the
atmosphere

P Aa

2 1

Figure 24
Construction of a mercury
barometer.  When you turn the
tube over, going from (a) to (b),
the mercury slides down the
sealed leg, leaving a vacuum
behind.  The difference in
heights h of the two columns (c)
is a measure of atmospheric
pressure.
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What is much easier is to simply express the pressure
in terms of the height of the mercury column that the
atmospheric pressure will support.  “A low pressure
system moved over the area today, and the barometer
reading dropped to 752 millimeters of mercury” sounds
much better than saying that the pressure dropped to

1.0023 x  105 pascals.

The millimeter of mercury, as a unit of pressure, has
been given the name torr, one more name inflicted
upon students by those who decide what the standard
names shall be.  For comparison’s sake, we can express
atmospheric pressure as

  Pa = 1.01 × 106 dynes/cm2

= 1.01 × 105pascals
= 101 kilo pascals
= 76 cm Hg
= 760 mm Hg
= 760 torr

= 14.7 lbs/in2

(22)

At different times you may encounter any of these
units.

When you  are working with vacuum pumps and
vacuum gauges, even the torr, 1 millimeter of mercury,
is too large a unit to be convenient.  Many gauges are
calibrated in microns, which is the pressure exerted by
one micron or one millionth of a meter of mercury.

 1 "micron" = 10– 6 meters Hg

= 10– 4 cm Hg

= 10– 3 mm Hg

= 10– 3 torr

(23)

In the electron gun experiments we discuss in Chapter
28, the glass tube containing the electron beam is
evacuated to a pressure of around one micron.  Current
technology allows you to work with much better
vacuums in the range of  10– 6  to  10– 7  microns.  Such
vacuums are needed to maintain clean surfaces when
studying the atomic structure of surfaces or creating
complex electronic chips.

Equating the forces on the two sides of the mercury in
the bottom section gives

  PaA = mg = ρhAg

  PaA = ρgh
(20)

The result is that the atmospheric pressure is propor-
tional to the height difference h in the two columns of
mercury.  As we have mentioned, the dimensions of
pressure in CGS units is dynes per square centimeter,
while in MKS units it is Newton’s per square meter, a
set of dimensions given the name pascal.  Neither set
of units is particularly convenient.  Using

  ρ = 13.6 gm/cm3 for the density of mercury, and
using the value h = 76 cm for an average value for the
height of the mercury column, we get

  PaA = 13.6
gm
cm3 × 980 cm

sec2 × 76 cm

= 1.01 × 106 gm cm/sec 2

cm2

PaA = 1.01 × 106 dynes /cm2 (21a)

Converting to MKS units, where one newton
equals  105 dynes and  1 m2 = 104 cm2 we have

  
PaA = 1.01 × 106 dynes

cm2 ×
104 cm2 m2cm2 m2

105 dynes/newton

= 1.01 × 105 newtons
m2

= 1.01 × 105 pascals (21b)

Just as it was inconvenient to measure temperature in
ergs, it is rather inconvenient for the weatherman to
announce today’s barometric pressure in either dynes
per square centimeter or pascals.  Numbers in the range
of  106  or  105 do not go over well with the listening
audience.
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Exercise 6
What is the pressure P in dynes/cm2 and pascals,
inside an apparatus where the pressure gauge reads

a) 1 cm Hg

b) 1 micron

c) 1 kilo pascal

d) 1 torr

e) 10–9 torr

f)  50 microns

g) 30 lbs/in2  (U.S. tire pressure gauge)

h) 200 kilo pascals  (European tire pressure gauge)

AVOGADRO’S LAW
Speaking of inconvenient units like measuring tem-
perature in ergs or pressure in dynes per cm2, we have
something particularly inconvenient in the form of the
ideal gas law PV = NkT.  To use this equation , we have
to know the number N of the molecules in the gas.  To
actually count the molecules is essentially an impos-
sible requirement.

Instead of counting individual molecules, we can lump
them in large units, and count the number of units.  The
standard unit for counting molecules is the mole.  If you
have a mole of molecules or any other object, you have

  6 × 1023 of them.

  
1 mole of

objects
= 6 × 1023 objects

(23)
The idea of a mole is that it is a convenient counting
device for handling large numbers.  You might, for
example, hear an astronomer say that there is about a
mole of stars in the visible universe.  By that the
astronomer would mean that he thinks that the visible
universe contains about   6 × 1023 stars.  (That estimate
may not be too many orders of magnitude off.)  As
another example, it would take about a mole of base-
balls to fill the volume of the earth with baseballs.

The number   6 × 1023 (more accurately   6.02 × 1023),
which is known as Avogadro’s number or constant, is
essentially the number of hydrogen atoms in one gram
of hydrogen.  Since hydrogen atoms and protons have
essentially the same mass, a mole of protons also has a
mass of 1 gram.

When you have a bottle of hydrogen gas, the hydrogen
atoms combine in pairs to form hydrogen molecules.
Thus a mole of hydrogen molecules has a mass of 2
grams.  An oxygen atom is 16 times as massive as a
hydrogen atom, thus a  mole of oxygen molecules, with
2 atoms in each molecule, has a mass of

  2 × 16 = 32 grams .  The mass of a mole of a given
kind of molecule is usually called the molecular weight,
but more properly the molecular mass, of that kind of
molecule.

(The integer numbers that appear in the mass of atoms
arises from the fact that protons and neutrons which
make up the atomic nucleus have about the same mass,
and the mass of the electrons is much much smaller.
Most oxygen atoms for example have a nucleus with 8
protons and 8 neutrons, and that is why an oxygen atom
is 16 times as massive as a hydrogen atom.)

We will use the symbol  NA to designate Avogadro's
number

   
NA = 6 × 1023 particles

mole
Avogadro's
number (24)

We can now rewrite the ideal gas law in the form

  PV = NkT = N
NA

× kNA T (25)

We do this because  N/NA is the number of moles of the
substance rather than the number of molecules.  Desig-
nating this by the symbol n, we have

  n ≡ N molecules
NA molecules/mole

= N
NA

moles (26)
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In addition the product of Boltzman’s constant k times
Avogadro’s number  NA is called the gas constant R

  R ≡ kNA gas constant

= 1.38 × 10– 23 joules
kelvin

× 6.02 × 1023

mole

R = 8.31
joules

mole kelvin
MKS units

(27)

In this case the MKS units are much more convenient.
The gas constant R in the CGS system is  10– 7 times
smaller.

Expressing the ideal gas law in terms of the number of
moles n and the gas constant R gives

 PV = nRT (28)

which is the alternate form of the ideal gas law.  If your
perspective is from an atomic point of view, you would
use the form PV = NkT.  But if you were a chemist and
had to actually measure the quantities involved, you
would use the form PV = nRT.

Our first example of the use of Equation 28, will be to
determine the volume of one mole of molecules at 0°
C (273 K) and atmospheric pressure (   1.01 × 105 pas-
cals) .  We have

PV = nRT

  1.01 * 105 newtons
meter2 × V

  = 1 mole × 8.31
joules

mole K
× 273 K

First let us check the dimensions.  The moles and the
kelvins cancel on the right side, and we get

  V ~ joules × m2

newton = kg m2

sec2 × m2

kg m/sec2

= meter3

The numerical value is

  V = 8.31 × 273
1.01 × 105 m3

= 22.4 × 10–3 m3

Noting that  10–3 m3  is one liter, we get

   

V = 22.4 liters

volume of 1 mole
of any gas at 0° C
and atmospheric
pressure

(29)

The important point is that a mole of any kind of gas has
a volume of 22.4 liters at the standard conditions of 0°
C and atmospheric pressure.  (One often uses the
notation STP for this standard temperature and pres-
sure.)  At STP, 22.4 liters of hydrogen have a mass of
2 grams, nitrogen 28 grams, and oxygen 32 grams.

Exercise 7

A helium nucleus contains 2 protons and 2 neutrons.
The mass of 22.4 liters of helium gas at STP is 4 grams.
What does that say about the molecular force between
helium atoms?

The calculation of the volume of a mole of a gas
emphasizes an important point about the behavior of an
ideal gas.  Namely, if we have equal volumes of gas at
the same temperature and pressure, the volumes will
contain the same number of molecules.  This was first
suggested by the Italian scientist Amedeo Avogadro
(1776--1856), and is known as Avogadro’s law.
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HEAT CAPACITY
From our discussion of temperature and other pro-
cesses from an atomic and molecular point of view, it
is obvious that the way to raise the temperature of an
object is to add energy.  At higher temperatures the
average thermal kinetic energy of the molecules in-
creases, and that energy must come from somewhere.
Historically the relationship between heat and energy
was not so clear.  As late as 1798, 71 years after
Newton’s death, there were accepted theories that
treated heat as a substance called caloric that flowed
from hot substances to cooler ones.

It was Benjamin Thomson, later known as Count
Rumford, who proposed that heat was, in fact, a form
of energy.  Rumford was boring cannons for Prince
Maximilian of Bavaria, and was quite aware that when
the drills were dull, the cannons became hot.  Thomson
proposed that the mechanical work he put into turning
the drills was converted to heat energy that raised the
temperature of the cannons.  Forty years later, Joule
accurately measured the amount of work required to
raise the temperature of various substances.

Traditionally heat energy was defined as the amount of
heat required to raise the temperature of one gram of
water one degree centigrade.  This unit of heat is called
the calorie.  In terms of mechanical energy, the conver-
sion factor is

1 calorie  =  4.186 joules (30)

This is the relationship between mechanical work and
heat that Joule studied.

Exercise 8
A 1 kilogram mass is dropped into a bucket containing
1 liter (  103 cm3) of water.  Assume that all of the kinetic
energy of the mass ends up as heat energy, raising the
temperature of the water.

(a) From what height would you have to drop the mass
to raise the temperature one degree centigrade?

(b) (More realistic question.)  How much would the
temperature rise if you dropped the mass from a height
of one meter?

Specific Heat
The amount of heat energy required to raise the tem-
perature of a unit mass of a substance one degree is
called the specific heat capacity or specific heat of the
substance.  For example, since it requires one calorie to
heat one gram of water one degree centigrade, we can
say that the specific heat of water is 1 calorie/gm °C, or
4.186 joules/gm °C.

Molar Heat Capacity
If, instead of measuring the heat capacity of a unit mass,
we measure the heat capacity of a mole of a substance,
we call the result the molar heat capacity.  For example
a water molecule H

2
O with 2 hydrogen and 1 oxygen

atom is 18 times as massive as a hydrogen atom.  Its
molecular weight is 18, and thus a mole of water has a
mass of 18 grams.  As a result it takes 18 calories to raise
the temperature of a mole of water 1 degree centigrade,
and thus the molar heat capacity of water is 18 calories/
mole °C or 18 ×  4.186 = 75.3 joules/mole °C.  For the
units, instead of degrees centigrade, we can use kelvins,
which are the same size.  Thus we can write

 molar specific
heat of water

= 75.3
joules

mole K (31)

as an example of a molar specific heat.

Predicting the specific heat of a substance, even with an
understanding of the atomic and molecular processes
involved, turned out to be a much more difficult subject
than expected.  The first time a failure of Newtonian
mechanics was detected was during the efforts to
predict the specific heats of various gases.  This failure
was due to quantum mechanics being necessary to fully
understand what happened to the added heat energy.

There is one example, however, where the simple
picture of atoms we have been discussing gives the
correct answer.  That is for the specific heat of helium
gas.  We will discuss that example here, and leave all
other discussions of specific heat to Chapter 20, an
entire chapter devoted to the subject.
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Molar Specific Heat of Helium Gas
A gas of helium atoms is about the simplest substance
you can picture.  Since helium does not form mol-
ecules, the gas simply consists of individual atoms
moving around and bouncing off of each other.  If the
temperature of the gas is T, then the average thermal
kinetic energy of the atoms is 3/2 kT.

If you have a mole of helium gas at a temperature T,
then the thermal energy of the atoms should be the
average energy of 1 atom, 3/2 kT, times the number  NA
atoms in a mole.  Thus we easily estimate that the
thermal energy  EHe  of a mole of helium atoms is

  
EHe = NA × 3

2
kT

=
3
2

NAk T

Using the fact that  NAk = R, the gas constant, we get

  
EHe =

3
2

RT
thermal energy
of a mole of
helium atoms

(32)

If we raise the temperature one degree, from T to (T +
1), the thermal energy goes from 3/2 RT to
3/2 R(T + 1), an increase of 3/2 R.  Thus the molar
specific heat, which we will call  CV, is

  CV = 3
2

R = 3
2

× 8.31
joules

mole K

 
CV

(helium)
= 12.5

joules
mole K

= 3
2

R (33)

As we mentioned, we get the right answer. Equation 33
is in agreement with experiment.

The subscript V on the symbol  CV is there to remind us
to measure the specific heat at constant volume.  If you
add heat to a gas, and at the same time allow the gas to
expand, some of the energy goes into the work required
to expand the volume, pushing the surrounding gas
aside.  This is a complication that we will discuss in
Chapter 18.  For now we will leave the subscript V on

 CV to remind us not to  let the volume increase.

Other Gases
It took almost no effort to correctly predict the specific
heat of helium gas.  What complications do we face
when we try to predict the specific heat of other gases?

The problem is that other gases form molecules.  From
one point of view the molecules themselves are the gas
particles, so that their average thermal kinetic energy
must be 3/2 kT just like the helium atoms.  So far so
good, but molecules have an internal structure.  An
oxygen molecule, for example, consists of two oxygen
atoms held together by the molecular force we dis-
cussed back in Figures (14,  15, and 16).  As we saw in
Figure (15), we can fairly accurately picture the mol-
ecule as two atoms held together by a spring force as
shown here in Figure (26).

If an oxygen molecule collides with another molecule
in the gas, one would expect that the molecule would
start to vibrate, and perhaps rotate.  This vibration and
rotation represent forms of internal motion of the
molecule that are quite distinct from the motion of the
molecule as a whole, distinct from what we would call
the center of mass motion.

If the center of mass motion has an average thermal
kinetic energy 3/2 kT just like helium atoms, but the
molecules can have internal motions and internal en-
ergy, you would expect that it would require more
energy to heat a mole of oxygen than a mole of helium.
For with the oxygen you not only have to supply the
kinetic energy of the center of mass motion, but also the
internal energy of the molecules.  And that is correct.
The molar specific heat of oxygen is 20.8
joules/(mole K) , as compared to 12.5 joules/(mole K)
for helium.

However it is when we try to calculate how much the
internal energy of the molecules contribute to the
specific heat, we run into trouble.  As far back as 1858,
James Clerk Maxwell, who was working on these
calculations, repeatedly failed, and suspected that the
failure was due to a problem with Newtonian mechan-
ics.

oxygen oxygen

Figure 26
Model of an oxygen molecule.
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EQUIPARTITION OF ENERGY
The success of our calculation of the specific heat of
helium gas lies in the fact that in our discussion of
thermal processes, the helium atom can be treated as a
rigid, undeformable sphere.  Striking a helium atom is
more analogous to striking a golf ball than hitting
whiffle ball.  When you hit a golf ball, most of the
energy of the impact goes into the kinetic energy of the
ball, and the motion of the ball is quite predictable.  Hit
a whiffle ball and most of the energy goes into mushing
the ball;  predicting where the whiffle ball will go is
difficult.

All gas atoms except helium form molecules.  While
the individual atoms can usually be treated as hard
spheres, for thermal calculations, the molecule as a
whole is generally not rigid.  Strike a molecule and
some of the energy goes into center of mass motion of
the molecule, but some goes into internal motions of
the individual atoms.  It seems that it would be rather
hard to say much about the energy of an object that is
vibrating, rotating, and flying through space.

However, if you have a gas of molecules in thermal
equilibrium, the laws of Newtonian mechanics com-
bined with the mathematical laws of probability, make
a surprisingly simple prediction of where the energy
goes.  This prediction is called the equipartition of
energy theorem which we will now describe.

As a background for the concepts involved in the
equipartition of energy theorem, let us go back to the
normal modes experiment of Chapter 16 where we had
two air carts on an air track, connected by springs as
shown in Figure (16-3).  We found that the air carts had
two distinct kinds of motion.  There was the high
frequency mode of motion where the two air carts
oscillated against each other, moving together and then
apart in a sinusoidal motion.  Then there was the low
frequency sloshing mode where the carts went back
and forth along the track more or less together.

When we started the carts moving in a random way,
recorded the motion, and did a Fourier analysis, we
found that the apparently complex motion was merely
a combination of the two simple sinusoidal modes of

motion, the so-called normal modes.  The carts were
not free to move in an arbitrary way, their motion had
to either be all of the vibrational mode, or all of the
sloshing mode, or some combination of the two.  The
only thing that was arbitrary about the motion of the
carts was how much of each of the two normal modes
was present.

In our earlier discussion of center of mass motion in
Chapter 11, we considered the example of two air carts,
joined to each other by a spring, but free to move down
the track as shown in Figure (11-9).  We saw that when
we gave one of the carts a shove, the center of mass of
the two carts moved at a uniform speed down the track,
while the carts themselves oscillated about the center of
mass.  In this example we again have two normal
modes of motion.  One is the motion of the center of
mass, and the other is the oscillation about the center of
mass.  If we shove the carts just right we can have pure
center of mass motion.  Or we can have the carts
oscillate with no center of mass motion.  Or we can have
some combination of the two kinds of motion.

These examples begin to show a pattern.  If you have
two masses connected by springs, that are constrained
to move on a one dimensional track, the objects will
have precisely two normal modes of motion.  What the
actual modes are depends upon the way the springs are
connected.  When the springs were connected to the
ends of the air track, there was no center of mass
motion, but we had two vibrational modes.  When the
carts were free to move down the track, we had the
mode representing center of mass motion, but only one
vibrational mode.

Another term often used to describe the way these carts
are moving is the expression degrees of freedom .  Two
carts moving in one dimension have 2 degrees of
freedom of motion.  The degrees of freedom are the
center of mass motion and the vibrational mode shown
in Figure (11-9), or the two vibrational modes that we
get from the setup in Figure (16-3).

Figure 11-9
Oscillating carts
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If one connects three air carts with springs and starts
them moving, the resulting motion can be quite com-
plex.  But if you record the motion, select one cycle of
the repeating pattern and do a Fourier analysis, you get
the simple result that there are three normal modes, as
seen in the results from a student project shown in
Figure (16-30).  What is not so easy is to find out what
the individual normal modes are.  And for our discus-
sion now, it is not important to find them.  The
important result is that if you have three carts connected
in some way by springs, and they are constrained to
move in one dimension there will be three normal
modes or degrees of freedom.  (If you have no springs,
you still have 3 degrees of freedom, namely the center
of mass motion of each of the 3 carts.

The counting of normal modes or degrees of freedom
generalizes to more than one dimension.  If you have
one particle moving in three dimensions, it has three
degrees of freedom, one for center of mass motion in
the x direction, one for center of mass motion in the y
direction and one for center of mass motion in the z
direction.

If we have two particles in 3 dimensions, there are 6
degrees of freedom.  If they are independent particles,
then each has three degrees of freedom of motion of the
center of mass.  If they are connected by a spring, which
is a good model of a diatomic molecule, there are still
6 degrees of freedom but we count them in a different
way.  There are the 3 degrees of freedom of the center
of mass motion, and one degree of freedom for the kind
of vibrational motion we saw in Figure (11-9) where
we had two air carts connected by a spring.  That
accounts for 4 degrees of freedom; what are the other
two?

When two connected particles move in three dimen-
sions, what they can do that they could not do in one
dimension is rotate about the center of mass.  One can
envision independent rotations about the x, the y, and
the z axis, but one of these rotations does not count.  In

the picture we are developing, we will view the atoms
themselves as perfectly smooth spheres, so that you
cannot tell whether the atom itself is rotating or not.
From this point of view, if the separation of two atoms
in a diatomic molecule is along the z axis as shown in
Figure (27), then rotation about the z axis cannot be
detected and does not count as one of the degrees of
freedom.  Only rotations about the x and y axis contrib-
ute.  Thus for a diatomic molecule moving in 3 dimen-
sions, the 6 available degrees of freedom are 3 for
center of mass motion, 2 for rotation, and one for
vibration.

a)
rotation 
about x axis

rotation 
about y axis

rotation 
about z axis

b)

c)

z

y

x

Figure 27
The three independent rotations of a molecule. For a
diatomic molecule, the rotation about the z axis does
not count. (Picture the atoms as perfectly smooth
spheres. Then a collision could not start the z axis
rotation, and you could not tell that it was rotating
this way.)
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If we have a system of n small spherical particles
connected by spring-like forces, a reasonable model
for many molecules, there should be 3n degrees of
freedom.  For example, the ammonia molecule with
one nitrogen and three hydrogen atoms shown in
Figure (28) should have 12 degrees of freedom.  Three
are center of mass motion, and now all 3 degrees of
rotation should be counted.  The remaining 6 must be
vibrational normal modes, one for each spring like
force.  If you could kick an ammonia (or, let us say, a
large scale model of one), record the motion of one of
the molecules, and Fourier analyze a repeated pattern
of the motion, you should be able to detect up to 6
normal mode frequencies of vibration.

We are now ready to state the equipartition of energy
theorem that was first derived by James Clark Maxwell
in 1858.  Using Newtonian mechanics and the math-
ematical laws of probability, Maxwell showed that if a
gas of molecules is in thermal equilibrium, then the
average thermal energy of each molecule is 1/2 kT
times the number of degrees of freedom possessed by
the molecule.  The theorem implies that, as you add
thermal energy to a system of molecules, the energy is
shared equally, on the average, between the available
degrees of freedom.

The theorem is particularly easy to understand for the
case of a gas of monatomic particles.  If we have a single
particle moving in 3 dimensions, we can write its
kinetic energy  1/2 mv2  in the form

 1/2 m(vx
2 + vy

2 + vz
2)  where we used the

Pythagorean theorem to express  v2  in terms of its
components.  Thus the kinetic energy breaks up into 3
distinct terms

 kinetic
energy = 1

2mvx
2 + 1

2mvy
2 + 1

2mvz
2

which we can call the kinetic energies of x motion, y
motion, and z motion respectively.

If the particle is in thermal equilibrium, then on the
average  vx

2  should be the same as  vy
2  and  vz

2 .  Thus
the kinetic energies associated with each of the degrees
of freedom of the molecule (x motion, y motion, and z
motion) should be the same, and the sum should be the
total average kinetic energy 3/2 kT.  If 3/2 kT is shared
3 ways, each degree of freedom should get 1/2 kT
kinetic energy on the average, as required by the
equipartition of energy theorem.

Real Molecules
Applying Maxwell's equipartition of energy theorem,
we can make definite predictions about the specific
heat of various kinds of molecules.  We will begin with
a brief review of the calculation of the specific heat of
a monatomic gas like helium.  A monatomic gas atom
has 3 degrees of freedom, thus on the average its kinetic
energy is

  E 1 molecule = 3 × 1
2 kT = 3

2 kT (34)

Since the specific heat  CV  deals with one mole of a
substance, we multiply Equation 34 through by
Avagadro's number  NA  (number of particles in a
mole) to get

 E 1 mole = NA
3
2

kT = 3
2

NAk T

= 3
2

RT (35)

where  NAk = R  is the gas constant.

N

H H

H

Figure 28
The ammonia molecule is a  tetrahedral structure with
one nitrogen atom and three hydrogen atoms. Here we
are modeling the forces between atoms as spring forces.
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Finally  CV  is defined as the change in energy   ∆E  for
a small change in temperature   ∆T .  Differentiating
Equation (35) gives   ∆E = (3 23 2)R∆T, so that

  ∆E
∆T

≡ CV = 3
2 R (36)

where the subscript V reminds us to keep the volume V
of the gas constant so that none of the gas energy goes
into doing the work of expanding the gas.

In the above derivation, we immediately see that the
factor of 3 in the formula  CV = 3/2 R  came from our
assumption that the molecule has 3 degrees of freedom.
If we had a molecule with n degrees of freedom, then
the equipartition of energy theorem predicts that the
specific heat should be

  for a molecule
with n degrees
of freedom

CV = n
2 R

prediction of the
equipartitionof
energy theorem

(37)

To see how good the predictions of the equipartition of
energy theorem are, we have in Table 2 listed the
specific heats of some common gasses, and compared
the results with the predicted values.

FAILURE OF CLASSICAL PHYSICS
If you worked out a complex theory that made detailed
predictions, and when you compared the predictions
with experiment, you got the results shown in Table 1,
you should be disappointed.  The agreement is simply
terrible.  The predictions work only for the monatomic
gases (gases that remain individula atoms and do not
form molecules).  There is an increase in specific heat
when we go to larger molecules, but not the predicted
increase.  In going from carbon dioxide to methane,
where there is a considerable increase in the number of
degrees of freedom, there is actually a decrease in the
specific heat.

Maxwell worked on this problem for a number of
years, carefully checking that he had correctly applied
the mathematical laws of statistics to Newtonian me-
chanics, but he could find no error in his work.  By 1879
he became convinced that Newtonian mechanics was
flawed, and that eventually some new theory would
have to be developed to replace it.  The new theory, of
course, was quantum mechanics, discovered nearly 50
years later.  Maxwell's work in the 1860s and 1870s
provided the first real evidence that Newtonian me-
chanics was not correct in all applications.

Molecule Number of Expected number Expected  CV           Experimental
                 particles degrees of freedom          (joules/mole)      CV

helium  1 3 3/2 R = 12.5    12.5

argon  1 3 3/2 R = 12.5    12.6

nitrogen  N2 2 6 6/2 R = 25    20.7

oxygen  O2 2 6 6/2 R = 25    20.8

carbon dioxide  CO2 3 9 9/2 R = 37.5    29.7

methane  NH4 5 15 15/2R = 62.5    29.0

Table 2
Specific heats of various molecules. Theory and
experiment agree only for the monatomic gases.
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Freezing Out of Degrees of Freedom
While a straight forward application of the equipartition
of energy theorem fails miserably, the ideas involved
are not completely useless.  A look at the specific heat
of hydrogen gas as a function of temperature, Figure
(29) gives us a clue as to what is happening at low
temperatures below 100 K.  The specific heat is 3/2 R,
which is what we would expect for a monatomic gas
with only 3 degrees of freedom.  At these temperatures
none of the thermal energy is going into exciting the
internal motion of the atoms.  At these low tempera-
tures, the hydrogen molecules are acting like incom-
pressible hard spheres.

Up at room temperature, the specific heat of hydrogen
has jumped to 5/2 R.  It appears that two additional
degrees of freedom have appeared, and some of the
thermal energy is now going into internal motions of
the molecule.  At still higher temperatures, just as the
molecules are being torn apart, their specific heat
reaches 7/2 R, indicating 7 degrees of freedom, one
more than we expected.  We can explain the 7 degrees
of freedom by assuming that 1/2 kT of thermal energy
goes, on the average, into the spring potential energy.

Going back down in temperature, we have the follow-
ing picture.  At very high temperature all the degrees of
freedom are active and energy is shared equally among
them as required by the equipartition of energy theo-
rem.  As we go down in temperature some of the

degrees of freedom appear to freeze out.  By room
temperature we have lost two degrees of freedom, and
down at 100 K, only the 3 translational degrees of
freedom are left.  Why the degrees of freedom freeze
out is what is not explained by Newtonian mechanics.
This is purely a quantum mechanical effect.

In Maxwell's time, the idea that matter consisted of
atoms was a hypothesis rather than an experimentally
proved fact.  What atoms consisted of, whether they
were indivisible hard spheres or had an internal struc-
ture was unknown.  By applying Newtonian mechanics
to models of atoms and molecules, he was trying to
learn about the nature of these objects.  The fact that
monatomic gases have a specific heat  CV = 3/2R
was evidence that the atoms were in fact acting like
hard, indivisible objects.  The failure to predict molecu-
lar specific heats turned out to be evidence that
Newtonian mechanics was failing.

We know that atoms themselves consist of many
particles—a nucleus surrounded by electrons.  If we
applied Newtonian mechanics to this structure, we
would assume that each atom should have many de-
grees of freedom and that the nucleus and electrons
should individually pick up thermal energy as the atom
is heated.  This simply does not happen.  Applying the
language we have used above, we can say that tempera-
tures at which we ordinarily study atoms, the internal
degrees of freedom of the atom are frozen out.

20
0

1

2

3

4

7
2

200 200050 500 5000100 1000 10,000

5
2

3
2

translation

temperature (K)

rotation

vibration

C
 /

R
V

Figure 29
Specific heat of the hydrogen
molecule. If each degree of
freedom contributes 1/2R to the
specific heat, then as the
temperature drops, we see that
various degrees of freedom
freeze out. (Diagram adapted
from Halliday and Resnick.)
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THERMAL EXPANSION
When you heat a substance, in most cases the substance
expands.  For example, the mercury (or alcohol) in the
bulb at the bottom of a thermometer expands when
heated, forcing more mercury up the small tube above
the bulb.  If the column is marked off in degrees
centigrade, you have a typical mercury thermometer as
illustrated in Figure (30).  As another example, you are
aware of the cracks left between sections of cement in
sidewalks and cement highways.  These cracks are
there so that on a hot day when the cement expands, the
sidewalk or road will not buckle.

The reason for thermal expansion can be understood at
an atomic level in terms of the shape of the molecular
force potential well.  Figure (31) is a redrawing of the
molecular force potential well of Figure (16), with
some added information.  Let 2r be the separation of the
two atoms as indicated at the top of the diagram.  If the
molecule is at a very low temperature, the atom will
essentially sit at the bottom of the potential well and the
separation will be  2r0  as shown.

If we raise the temperature of the molecule, the atoms
gain thermal kinetic energy whose average value is
3/2 kT.  As a result they will move back and forth at a
higher level in the potential well, a height we have
indicated as level 1 in the diagram.  Due to the shape of

the potential energy well, due to the fact that the
repulsive core rises faster than the attractive side, the
average separation  2rT of the atoms at a temperature T
is greater than the average separation  2r0  at low
temperatures.

Although our discussion of molecular forces focused
on two atom molecules, the general shape of the
molecular force potential well is the same when you
have many atoms forming a liquid or a solid.  Thus
when you heat a liquid or a solid, the atoms gain an
average thermal kinetic energy 3/2 kT, effectively rise
up in the molecular force potential well, and due to the
shape of the well, have a slightly greater average
separation.  The substance expands.

You can see that the amount of expansion depends
upon the detailed shape of the potential well which
varies from one substance to another.  Thus a thermom-
eter based on the expansion properties of mercury does
not have to give precisely the same reading as a
thermometer using alcohol, except at the calibration
points 0° C and 100° C.  And neither of these thermom-
eters has to agree with the ideal gas thermometer.  Since
the ideal gas thermometer is based on the universal
ideal gas law, one should use the ideal gas thermometer
as a standard against which you calibrate mercury,
alcohol, and other thermometers.

Figure 30
The typical mercury thermometer is based on
the thermal expansion of mercury. There is no
guarantee that a mercury thermometer and an
ideal gas thermometer will agree at any
temperatures except 0° C and 100 ° C.

Figure 31
As you raise the temperature of a substance, the
average thermal kinetic energy 3/2 kT rises and the
molecule sits higher in its potential well.  Because the
well is lopsided, the average separation of the atom
becomes greater and the substance expands.
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Assume that some definite fraction, for instance 50%,
of all water molecules that strike the membrane pass
through it.  Initially, more water molecules strike the
membrane from side 2 than from side 1 simply because
there are more water molecules on side 2.  If more water
molecules strike from side 2 than side 1, and if 50% of
all the water molecules striking the membrane pass
through it, there must be a net flow of water from side
2 to side 1.

As the flow continues, the level of the liquid on side 1
rises and the solution becomes diluted.  As the solution
becomes further diluted, the number of water mol-
ecules on side 1 facing each cm2 of the membrane
increases, the more flow back to side 2, so that the net
flow into side 1 decreases.  From this description alone,
however, we would not expect the flow to stop, since
we never get pure water on side 1.

The flow does stop eventually though, because the
level in side 1 rises to such an extent that the pressure
at the bottom of side 1 becomes considerably greater
than the pressure at the bottom of side 2 (a result of the
increased weight of the column of water).  This addi-
tional pressure, known as osmotic pressure, finally
stops the flow of water from side 2 to side 1.  The flow
of the small molecules through the membrane is called
osmosis; thus osmotic pressure is the pressure that
finally stops osmosis.

OSMOTIC PRESSURE
We would like to conclude this chapter, this brief view
of atoms, molecules and thermal processes, with a
discussion of two familiar phenomena that can be
understood qualitatively from a molecular point of
view.  One is the elasticity of rubber, and the other is the
process of osmosis, which is essential for biological
systems.

Osmosis is a rather peculiar but important effect that is
easily explained with an atomic model.  Ordinarily,
when a liquid can flow between two vessels at the same
height, the liquid will tend to seek the same height in
both vessels.  But this does not always happen.  Sup-
pose we have a tank separated by a membrane, as
shown in Figure (32).  On the right side (side 2) of the
membrane we place pure water, indicated by the small
molecules.  On the left (side 1) we place a solution of
water and some other substance consisting of large
molecules.  The membrane has a special characteristic:
the small water molecules can pass through it easily,
whereas the big molecules are prevented from passing
through because the holes in the membrane are too
small.  Initially, the two compartments are filled to the
same level on each side of the membrane.

Figure 32
Osmosis.  The two sides of the container are separated by a membrane that allows the water
(small molecules) but not the large molecules to pass through.  If the liquid levels are the
same initially, as in (a), some of the pure water will flow through the membrane, raising the
level on the side with the large molecules as shown in (b).  This process is called osmosis.

1 2
pure water

2
pure water

mixture 1
mixture

(a)  initially (b)  finally
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Osmosis and osmotic pressure are crucial in biological
processes.  Osmosis is involved in the separation of
nutrients and wastes in our own cells, the flow of fluids
in our bodies, the flow of sap in plant life, and a number
of other important processes.

The function and composition of blood is critically
dependent on osmosis and osmotic pressure.  Blood
consists of red cells, white cells, and a fluid called
plasma.  The red cells are membrane sacs containing
about 60% water and 40% hemoglobin molecules,
molecules closely related to, but about four times as
large as, the giant myoglobin molecule described in at
the beginning of this chapter.  We may think of the red
blood cell as representing side 1 in Figure (32) where
the big molecules are the hemoglobin molecules.  If red
blood cells are removed from blood and placed in pure
water, they absorb so much water by osmosis that they
burst.  The red hemoglobin flows away, leaving an
empty, pale misshapen sac.

The function of the red blood cell and its hemoglobin
is to carry oxygen to the other cells in the body.  The
plasma, which consists of 90% water, 9% protein
molecules, and 1% salts, serves as a fluid in which to
dissolve needed proteins and salts to be carried to the
cells, and to make the blood fluid enough to flow
through the minute capillaries.

The capillary walls through which blood flows are
porous membranes that permit water and salts to pass
freely through, but that restrict the passage of proteins.
Pure water could not be pumped through the blood-
stream because it would leak out through the capillary
walls.  You may wonder how blood plasma, which is
90% water, can be pumped through the porous capillar-
ies.  The reason is that the 9% protein molecules in the
plasma is sufficient to draw just enough water back into
the capillary by osmosis to replace the water molecules
that do leak out.  Just as many water molecules are
drawn back in as leak out, even though the pressure of
the plasma inside the capillary is greater than the
pressure of the fluids outside the leaky walls.  Thus,
side 1 in Figure (32) behaves in the same way as the
capillary with the blood plasma inside it.

ELASTICITY OF RUBBER
A  model for the elasticity of rubber was presented by
Richard Feynman in a lecture to freshmen at Caltech in
1960.  We select this model, not so much for its
accuracy in describing the detailed behavior of mol-
ecules in rubber, but for developing an intuition for
thermal processes.  The mechanisms underlying the
model and the behavior of rubber are fundamentally
the same.  The beauty of the model is that it is so
outrageous that you are forced to think differently
about thermal processes.
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Figure 33
Room with suspended chains and cannonballs.

h

Figure 34
Top view of chains being struck by cannonballs.

A Model of Rubber
Imagine that you enter a large room where there are a
number of heavy chains loosely suspended from one
end of the room to the other, as shown in Figure (33).
These are massive chains, like the anchor chains used
on old sailing ships, but they are hanging loosely, so
that except for their weight, they are not exerting any
force pulling the walls together.

On the floor are hundreds of cannonballs, lying there a
couple of layers deep.  This is our room at “absolute
zero”.

Now turn up the temperature in the room.  The cannon-
balls start to jiggle and vibrate with an average thermal
kinetic energy 3/2 kT.  In this model, nothing melts.
Instead, as we turn up the temperature the jiggling
becomes stronger and stronger.  When the average
thermal kinetic energy 3/2 kT becomes as large as the
gravitational potential energy mgh of a cannonball near
the ceiling, then we will have cannonballs flying all
around the room.  We will have a gas of cannonballs.

As the cannonballs fly around, they strike the chains,
kinking them up as indicated in Figure (34).  The
kinked-up chains are no longer hanging loose, instead
they are taut and pulling the side walls of the room in.

If we raise the temperature of the gas of cannonballs,
the cannonballs strike the chains harder and the chains
pull harder on the walls.

Here is an experiment that stretches the imagination
even more.  Suppose we start with the room with a gas
of cannonballs at a temperature T, and chains kinked by

the colliding cannonballs, and suddenly pull the sides
of the room apart so that the chains are straight and
tight.  When we suddenly straighten out the kinked
chains, the chains will slap against the cannonballs
transforming the work we do pulling the chains straight
into increased thermal kinetic energy of the cannon-
balls.  As a result by suddenly stretching the chains we
raise the temperature of the cannonballs.

If we let the walls go back suddenly, the chains initially
go slack, and it takes some of the thermal kinetic
energy of the cannonballs to kink the chains up again.
As a result of unstretching the chains, the temperature
of the cannonballs drops.

One’s lips are a good detector of small temperature
changes.  Place a loose rubber band between your lips
and suddenly stretch it.  You will notice that the rubber
band becomes distinctly warmer.  Now quickly re-
lease the rubber band by bringing your hands together.
The rubber band becomes distinctly cool.  Rubber
consists of a long chain of molecules that are kinked up
by thermal motion.  When you stretch the rubber band,
you increase the thermal kinetic energy of the mol-
ecules and raise their temperature.  Releasing the band
reduces the thermal motion and drops the temperature.
The elastic restoring force you felt when you stretched
the band is caused by thermal motions kinking the long
chain molecules.
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Entropy

3600 seconds, or 1000× 3600 joules.  Thus at a rate of
10 cents per kilowatt hour, the thermal energy of a mole
of helium gas is worth only .01 cents.

The value .01 cents does not sound like much, but that
was the value of the energy in only one mole of helium.
Most substances have a greater molar heat capacity
than helium due to the fact that energy is stored in
internal motions of the molecule.  Water at room
temperature, for example, has a molar heat capacity
six times greater than that of helium.  Thus we would
expect that the thermal energy in a mole of water
should be of the order of 6 times greater than that of
helium, or worth about .06 cents.

A mole of water is only 18 grams.  A kilogram of water,
1000 grams of it, is 55 moles, thus the thermal energy
in a kilogram or liter of water should have a value in the
neighborhood of .06 cents/mole×55 moles = 3.3 cents.
Now think about the amount of water in a swimming
pool that is 25 meters long, 10 meters wide, and 2
meters deep.  This is 500   m3  or   500×103  liters, their
being 1000 liters/   m3.   Thus the commercial value of
the heat energy in a swimming pool of water at room
temperature is    5× 105 × 3.3cents  or over $16,000.

The point of this discussion is that there is a lot of
thermal energy in the matter around us, energy that
would have enormous value if we could get at it.  The
question is why don’t we use this thermal energy rather
than getting energy by burning oil and polluting the
atmosphere in the process?

CHAPTER 18 ENTROPY

The focus of the last chapter was the thermal energy of
the atoms and molecules around us.  While the thermal
energy of an individual molecule is not large, the
thermal energy in a reasonable collection of mol-
ecules, like a mole, is a noticeable amount.  Suppose,
for example, you could extract all the thermal energy
in a mole of helium atoms at room temperature.  How
much would that energy be worth at a rate of 10 cents
per kilowatt hour?

This is an easy calculation to do.  The atoms in helium
gas at room temperature have an average kinetic
energy of 3/2 kT per molecule, thus the energy of a mole
is  NA 3 23 2KT = 3 23 2RT,  where   NA  is Avagadro’s
number and   R = NAK.   Since ice melts at 273 K and
water boils at 373 K, a reasonable value for room
temperature is 300 K, about one quarter of the way up
from freezing to boiling.  Thus the total thermal energy
in a mole of room temperature helium gas is

  thermal energy
in a mole of
room temperature
helium gas

= 3
2RT

= 3
2 × 8

joules
mole K

× 300K

= 3600 joules

This is enough energy to lift 1 kilogram to a height of
360 feet!

To calculate the monetary value of this energy, we note
that a kilowatt hour is 1000 watts of electric power for

Movie Undive
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INTRODUCTION
A simple lecture demonstration helps provide insight
into why we cannot easily get at, and use, the $16,000
of thermal energy in the swimming pool.  In this
demonstration, illustrated in Figure (1), water is pumped
up through a hose and squirted down onto a flat plate
placed in a small bucket as shown.  If you use a vibrator
pump, then the water comes out as a series of droplets
rather than a continuous stream.

To make the individual water droplets visible, and to
slow down the apparent motion, the water is illumi-
nated by a strobe.  If the time between strobe flashes is
just a bit longer than the time interval which the drops
are ejected, the drops will appear to move very slowly.
This allows you to follow what appears to be an
individual drop as it moves down toward the  flat plate.

For our discussion , we want to focus on what happens
to the drop as it strikes the plate.  As seen in the series
of pictures in Figure (2), when the drop hits it flattens
out, creating a wave that spreads out from where the
drop hits.  The wave then moves down the plate into the
pool of water in the bucket. [In Figure (1) we see several
waves flowing down the plate. Each was produced by
a separate drop.]

Let us look at this process from the point of view of the
energy involved.  Before the drop hits, it has kinetic
energy due to falling.  When it hits, this kinetic energy
goes into the kinetic energy of wave motion.  The
waves then flow into the bucket, eventually dissipate,
and all the kinetic energy becomes thermal energy of
the water molecules in the bucket.  This causes a slight,
almost undetectable, increase in the temperature of the
water in the bucket (if the water drop had the same
temperature as the water in the bucket, and we neglect
cooling from evaporation).

We have selected this demonstration for discussion,
because with a slight twist of the knob on the strobe, we
can make the process appear to run backwards.  If the
time interval between flashes is just a bit shorter than
the pulse interval of the pump, the drops appear to rise
from the plate and go back into the hose.  The situation
looks funny, but it makes a good ending to the demon-
stration.  Everyone knows that what they see couldn’t
possibly happen—or could it?

Does this reverse flow violate any laws of physics?
Once a drop has left the plate it moves like a ball thrown
up in the air.  From the point of view of the laws of
physics, nothing is peculiar about the motion of the
drop from the time it leaves the plate until it enters the
hose.

vibrator
pump

water
droplets

Figure 1
Water droplets are created
by a vibrator pump. If you
illuminate the drops with a
strobe light, you can make
them appear to fall or rise.
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Where the situation looks funny is in the launching of
the drop from the plate.  But it turns out that none of the
laws of physics we have discussed so far is violated
there either.  Let us look at this launching from the point
of view of the energy involved.  Initially the water in the
bucket is a bit warm.  This excess thermal energy
becomes organized into a wave that flows up the plate.
As seen in Figure (3) the wave coalesces into a drop that
is launched up into the air. No violation of the law of
conservation of energy is needed to describe this
process.

While the launching of the drop in this reversed picture
may not violate the laws of physics we have studied, it
still looks funny, and we do not see such things happen
in the real world.  There has to be some reason why we
don’t.  The answer lies in the fact that in the reversed
process we have converted thermal energy, the disor-
ganized kinetic energy of individual molecules, into
the organized energy of the waves, and finally into the
more concentrated kinetic energy of the upward trav-
elling drop.  We have converted a disorganized form of
energy into an organized form in a way that nature does
not seem to allow.

It is not impossible to convert thermal energy into
organized kinetic energy or what we call useful work.
Steam engines do it all the time.  In a modern electric
power plant, steam is heated to a high temperature by
burning some kind of fuel, and the steam is sent through
turbines to produce electricity.  A certain fraction of the
thermal energy obtained from burning the fuel ends up
as electrical energy produced by the electric generators
attached to the turbines.  This electric energy can then
be used to do useful work running motors.

The important point is that power stations cannot
simply suck thermal energy out of a reservoir like the
ocean and turn it into electrical energy.  That would
correspond to our water drop being launched by the
thermal energy of the water in the bucket.

Figure 3
Rising wave launching water drop.

Figure 2
Falling water drop creating wave.
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Even more discouraging is the fact that power plants do
not even use all the energy they get from burning fuel.
A typical high efficiency power plant ends up discard-
ing, into the atmosphere or the ocean, over 2/3 of the
energy it gets from burning fuel.  Less than 1/3 of the
energy from the fuel is converted into useful electrical
energy.  Car engines are even worse.  Less than
1/5 of the energy from the gasoline burned goes into
powering the car; most of the rest comes out the exhaust
pipe.

Why do we tolerate these low efficiency power plants
and even lower efficiency car engines?  The answer lies
in the problem of converting a disorganized form of
energy into an organized one.  Or to state the problem
more generally, of trying to create order from chaos.

The basic idea is that a disorganized situation does not
naturally organize itself—in nature, things go the other
way.  For example, if you have a box of gas, and initially
the atoms are all nicely localized on one side of the box,
a short time later they will be flying around throughout
the whole volume of the box.  On their own, there is
almost no chance that they will all move over to that one
side again.  If you want them over on one side, you have
to do some work, like pushing on a piston, to get them
over there.  It takes work to create order from disorder.

At first, it seems that the concepts of order and disorder,
and the related problems of converting thermal energy
into useful work should be a difficult subject to deal
with.  If you wished to formulate a physical law, how
do you go about even defining the concepts.  What, for
example, should you use as an experimental definition
of disorder?  It turns out, surprisingly, that there is a
precise definition of a quantity called entropy which
represents the amount of disorder contained in a sys-
tem.  Even more surprising, the concept of entropy was
discovered before the true nature of heat was under-
stood.

The basic ideas related to entropy were discovered in
1824 by the engineer Sadi Carnot who was trying to
figure out how to improve the efficiency of steam
engines.  Carnot was aware that heat was wasted in the
operation of a steam engine, and was studying the
problem in an attempt to reduce the waste of heat.  In

his studies Carnot found that there was a theoretically
maximum efficient engine whose efficiency depended
upon the temperature of the boiler relative to the
temperature of the boiler’s surroundings.

To make his analysis, Carnot had to introduce a new
assumption not contained in Newton’s law of mechan-
ics.  Carnot’s assumption is equivalent to the idea that
you cannot convert thermal energy into useful work
in a process involving only one temperature.  This is
why you cannot sell the $16,000 worth of thermal
energy in the swimming pool—you cannot get it out.

This law is known as the Second Law of Thermody-
namics.  (The first law is the law of conservation of
energy itself.)  The second law can also be expressed in
terms of entropy which we now know represents the
disorder of a system.  The second law states that in any
process, the total entropy (disorder) of a system either
stays the same or increases.  Put another way, it states
that in any process, the total order of a system cannot
increase; it can only stay the same, or the system can
become more disordered.

To develop his formulas for the maximum efficiency of
engines, Carnot invented the concept known as a
Carnot engine, based on what is called the Carnot
cycle.  The Carnot engine is not a real engine, no one has
ever built one.  Instead, you should think of it as a
thought experiment, like the ones we used in Chapter
1 to figure out what happened to moving clocks if the
principle of relativity is correct.

The question we wish to answer is, how efficient can
you make an engine or a power plant, if the second law
of thermodynamics is correct?  If you cannot get useful
work from thermal energy at one temperature, how
much work can you get if you have more than one
temperature?  It turns out that there is a surprisingly
simple answer, but we are going to have to do quite a
bit of analysis of Carnot’s thought experiment before
we get the answer.  During the discussion of the Carnot
engine, one should keep in mind that we are making this
effort to answer one basic question—what are the
consequences of the second law of thermodynamics—
what are the consequences of the idea that order does
not naturally arise from disorder.
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WORK DONE BY
AN EXPANDING GAS
The Carnot thought experiment is based on an analysis
of several processes involving the ideal piston and
cylinder we discussed in the last chapter.  We will
discuss each of these processes separately, and then put
them together to complete the thought experiment.

The ideal piston and cylinder is shown in Figure (4).  A
gas, at a pressure p, is contained in the cylinder by a
frictionless piston of cross-sectional area A.  (Since no
one has yet built a piston that can seal the gas inside the
cylinder and still move frictionlessly, we are now
already into the realm of a thought experiment.)  A
force F is applied to the outside of the piston as shown
to keep the piston from moving.  The gas, at a pressure
p, exerts an outward force

   p newtons
meter2

× A meter2 = pA newtons

on the cylinder, thus F must be given by

F  =  pA (1)

to keep the cylinder from moving.

If we decrease the force F just a bit to allow the gas in
the cylinder to expand, the expanding gas will do work
on the piston.  This is because the gas is exerting a force
pA on the cylinder, while the cylinder is moving in the
direction of the force exerted by the gas.  If the piston
moves out a distance   ∆x as shown in Figure (5), the
work   ∆W   done by the gas is the force pA it exerts times
the distance   ∆x

  ∆W = pA ∆x (2)

After this expansion, the volume of the gas has in-
creased by an amount   ∆V = A∆x.  Thus Equation 2
can be written in the form   ∆W = pA∆x or

  ∆W = p∆V (3)

Equation 3 is more general than our derivation indi-
cates.  Any time a gas expands its volume by an amount

  ∆V,  the work done by the gas is    p∆V   no matter what
the shape of the container.  For example, if you heat the
gas in a balloon and the balloon expands a bit, the work
done by the gas is   p∆V where   ∆∆V  is the increase in
the volume of the balloon.

Exercise 1
In our introduction to the concept of pressure, we
dipped a balloon in liquid nitrogen until the air inside
became a puddle of liquid air (see Figure 17-19).  When
we took the balloon out of the liquid nitrogen, the air
slowly expanded until the balloon returned to its original
size.  During the expansion, the rubber of the balloon
was relatively loose, which means that the air inside the
balloon remained at or very near to atmospheric pres-
sure during the entire time the balloon was expanding.

(a)  If the final radius of the balloon is 30 cm, how much
work did the gas inside the balloon do as the balloon
expanded?  (You may neglect the volume of the liquid
air present when the expansion started.) (Answer:

  1.1 × 104 joules.)

(b)  Where did the gas inside the balloon get the energy
required to do this work?

pA

∆x

∆V = A∆x

Figure 5
The work done by an expanding gas is
equal to the force pA it exerts, times
the distance   ∆∆x the piston moves.

gas at a 
pressure p

piston of area A

F

Figure 4
In the ideal piston and cylinder, the piston
confines the gas and moves frictionlessly.
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SPECIFIC HEATS  CV  AND  Cp

In our earlier discussion of specific heat, we dealt
exclusively with the “molar” specific heat at constant
volume  CV.  We always assumed that we kept the gas
at constant volume so that all the energy we added
would go into the internal energy of the gas.  If we had
allowed the gas to expand, then some of the energy
would have gone into the work the gas did to expand its
volume, and we would not have had an accurate
measure of the amount of energy that went into the gas
itself.

Sometimes it is convenient to heat a gas while keeping
the gas pressure, rather than volume, constant.  This is
more or less the case when we heat the gas in a balloon.
The balloon expands, but the pressure does not change
very much if the expansion is small.

Earlier we defined the molar heat capacity  CV as the
amount of energy required to heat one mole of a
substance one kelvin, if the volume of the substance is
kept constant.  Let us now define the molar heat
capacity  Cp as the amount of energy required to heat
one mole of a substance one kelvin if the pressure is
kept constant.  For gases  Cp is always larger than  CV.
This is because, when we heat the gas at constant
pressure, the energy goes both into heating and expand-
ing the gas. When we heat the gas at constant volume,
the energy goes only into heating the gas.  We can write
this out as an equation as follows

  energy required
to heat 1 mole
of a gas 1K at
constant pressure

Cp =
increase in thermal
energy of the gas
when the temperature
increases 1K

+
work done
by the
expanding
gas

(4)

Noting that since  CV is equal to the increase in thermal
energy of the gas, and that the work done is   p∆V, we
get

  Cp = CV + p∆V (5)

In the special case of an ideal gas, we can use the ideal
gas law pV = nRT, setting n = 1 for 1 mole

pV = RT     (1 mole of gas) (6)

If we let the gas expand a bit at constant pressure, we get
differentiating Equation 6, keeping p constant**

  p∆V = R∆T (if p is constant) (7)

 **  By differentiating the equation (pV = RT), we
mean that we wish to equate the change in (pV) to the
change in (RT). To determine the change in (pV), for
example,  we let (p) go to (p +   ∆p)  and (V) go to
(V +   ∆V), so that the product (pV) becomes

  pV → (p + ∆p)(V +∆V)
= pV + (∆p)V + p∆V + (∆p)∆V

If we neglect the second order term   (∆p)∆V then

  pV → pV + (∆p)V + p∆V

Then if we hold the pressure constant   (∆p = 0),we see
that the change in (pV) is simply   (p∆V).Since R is
constant, the change in RT is simply   R∆T.
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If the temperature increase is   ∆T = 1 kelvin, then
Equation 7 becomes

  p∆V = R (1 mole, p constant, ∆T = 1K) (8)

Using Equation 8 in Equation 5 we get the simple result

 Cp = CV + R (9)

The derivation of Equation 9 illustrates the kind of
steps we have to carry out to calculate what happens to
the heat we add to substances.  For example, in going
from Equation 6 to Equation 7, we looked at the change
in volume when the temperature but not the pressure
was varied.  When we make infinitesimal changes of
some quantities in an equation while holding the quan-
tities constant, the process is called partial differentia-
tion.  In this text we will not go into a formal discussion
of the ideas of partial differentiation.  When we encoun-
ter the process, the steps should be fairly obvious as
they were in Equation 7.

(The general subject that deals with changes produced
by adding or removing heat from substances is called
thermodynamics.  The full theory of thermodynamics
relies heavily on the mathematics of partial deriva-
tives.  For our discussion of Carnot’s thought experi-
ments, we need only a small part of thermodynamics
theory.)

Exercise 2
(a)  Back in Table 2 on page 31 of Chapter 17, we listed
the values of the molar specific heats for a number of
gases.  While the experimental values of  did not agree
in most cases with the values predicted by the
equipartition of energy, you can use the experimental
values of  CV  to accurately predict the values of  Cp  for
these gases.  Do that now.

(b)  Later in this chapter, in our discussion of what is
called the adiabatic expansion of a gas (an expansion
that allows no heat to flow in), we will see that the ratio
of  Cp CVCp CV plays an important role in the theory.  It is
common practice to designate this ratio by the Greek
letter γ

   γ ≡ Cp CVCp CV  (10)

(i)  Explain why, for an ideal gas, γ  is always greater than
1.

(ii)   Calculate the value of γ  for the gases, listed in Table
2 of Chapter 17.

Answers:

gas γ

helium 1.66

argon 1.66

nitrogen 1.40

oxygen 1.40

 CO2 1.28

 NH4 1.29
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ISOTHERMAL EXPANSION
AND PV DIAGRAMS
In the introduction, we pointed out that while a swim-
ming pool of water may contain $16,000 of thermal
energy, we could not extract this energy to do useful
work.  To get useful energy, we have to burn fuel to get
heat, and convert the heat to useful work.  What seemed
like an insult is that even the most efficient power plants
turn only about 1/3 of the heat from the fuel into useful
work, the rest being thrown away, expelled either into
the atmosphere or the ocean.

We are now going to discuss a process in which heat is
converted to useful work with 100% efficiency.  This
involves letting the gas in a piston expand at constant
temperature, in a process called an isothermal expan-
sion.  (The prefix “iso” is from the Greek meaning
“equal,” thus, isothermal means equal or constant
temperature.)  This process cannot be used by power
plants to make them 100% efficient, because the pro-
cess is not repetitive.  Some work is required to get the
piston back so that the expansion can be done over
again.

Suppose we start with a gas in a cylinder of volume  V1
and let the gas slowly expand to a volume   V2 as shown
in Figure (6).  We control the expansion by adjusting
the force F exerted on the back side of the piston.

While the gas is expanding, it is doing work on the
piston.  For each   ∆V  by which the volume of the gas
increases, the amount of work done by the gas is   p∆V .
The energy required to do this work must come from
somewhere.  If we did not let any heat into the cylinder,
the energy would have to come from thermal energy,
and the temperature would drop.  (This is one way to get
work out of thermal energy.)

However, we wish to study the process in which the gas
expands at constant temperature.  To keep the tempera-
ture from dropping, we have to let heat flow into the
gas.  Since the temperature of the gas is constant, there
is no change in the thermal energy of the gas. Thus all
the heat that flows in  goes directly into the work done
by the gas.

To calculate the amount of work done , we have to add
up all the   p∆V ’s as the gas goes from a volume  V1 to
a volume  V2.  If we graph pressure as a function of
volume, in what is called a pV diagram, we can easily
visualize these increments of work   p∆V  as shown in
Figure (7).

Suppose the pressure of the gas is initially  p1  when the
volume of the cylinder is  V1.  As the cylinder moves
out and the gas expands, its pressure will drop as shown
in Figure (7), reaching the lower value  p2  when the
cylinder volume reaches  V2.  At each step   ∆Vi, when
the pressure is  pi, the amount of work done by the gas
is   pi∆Vi .  The total work, the sum of all the   pi∆Vi, is
just the total area under the pressure curve, as seen in
Figure (7).

The nice feature of a graph of pressure versus volume
like that shown in Figure (7), is the work done by the
gas is always the area under the pressure curve, no
matter what the conditions of the expansion are.  If we
had allowed the temperature to change, the shape of the
pressure curve would have been different, but the work
done by the gas would still be the area under the
pressure curve.

V F2

V F1

Figure 6
Isothermal expansion of the gas in a cylinder. The
force F  on the cylinder is continually adjusted so
that the gas expands slowly at constant temperature.

Figure 7
The work done by an expanding gas is equal to the sum
of all    p ∆∆V 's , which is the area under the pressure curve.

V2V1

V1p
pressure

area = 

∆V

1 p1

V2p2
p2

pi

pi

i

∆Vi

volume
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Isothermal Compression
If we shoved the piston back in, from a volume  V2 to
a volume  V1 in Figure (7), we would have to do work
on the gas.  If we kept the temperature constant, then the
pressure would increase along the curve shown in
Figure (7) and the work we did would be precisely
equal to the area under the curve.  In this case work is
done on the gas (we could say that during the compres-
sion the gas does negative work).  When work is done
on the gas, the temperature of the gas will rise unless we
let heat flow out of the cylinder.  Thus if we have an
isothermal compression, where there is no increase in
the thermal energy of the gas, then we have the pure
conversion of useful work into the heat expelled by the
piston.  This is the opposite of what we want for a power
plant.

Isothermal Expansion of an Ideal Gas
If we have one mole of an ideal gas in our cylinder, and
keep the temperature constant at a temperature  T1 , then
the gas will obey the ideal gas equation.

 pV = RT1 = constant (11)

Thus the equation for the pressure of an ideal gas during
an isothermal expansion is

 p = constant
V

(11a)

and we see that the pressure decreases as 1/V. This
decrease is shown in the pV diagram of Figure (8).

ADIABATIC EXPANSION
We have seen that we can get useful work from heat
during an isothermal expansion of a gas in a cylinder.
As the gas expands, it does work, getting energy for the
work from heat that flows into the cylinder.  This
represents the conversion of heat energy at one tem-
perature into useful work.  The problem is that there is
a limited amount of work we can get this way.  If we
shove the piston back in so that we can repeat the
process and get more work, it takes just as much work
to shove the piston back as the amount of work we got
out during the expansion.  The end result is that we have
gotten nowhere.  We need something besides isother-
mal expansions and compressions if we are to end up
with a net conversion of heat into work.

Another kind of expansion is to let the cylinder expand
without letting any heat in.  This is called an adiabatic
expansion, where adiabatic is from the Greek (a-not +
dia-through + bainein-to go). If the gas does work
during the expansion, and we let no heat energy in, then
all the work must come from the thermal energy of the
gas.  The result is that the gas will cool during the
expansion.  In an adiabatic expansion, we are convert-
ing the heat energy contained in the gas into useful
work.  If we could keep this expansion going we could
suck all the thermal energy out of the gas and turn it into
useful work.  The problem, of course, getting the piston
back to start the process over again.

Figure 8
In the isothermal expansion of an ideal gas, we have
 pV = constant. Thus the pressure decreases as 1/V.

V2V1

V1p
pressure

area under
curve = work
done by gas

pV = constant
(p = const / V)

1 p1

V2p2
p2

volume

isothermal expansion
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It is instructive to compare an isothermal expansion to
an adiabatic expansion of a gas. In either case the
pressure drops. But in the adiabatic expansion, the
pressure drops faster because the gas cools. In Figure
(9), we compare the isothermal and adiabatic expan-
sion curves for an ideal gas. Because the adiabatic
curve drops faster in the pV diagram, there is less area
under the adiabatic curve, and the gas does less work.
This is not too surprising, because less energy was
available for the adiabatic expansion since no heat
flowed in.

For an ideal gas, the equation for an adiabatic expan-
sion is

  
pVγ = constant; γ =

Cp

CV
(12)

a result we derive in the appendix. (You calculated the
value of γ  for various gases in Exercise 2.) The
important point now is not so much this formula, as the
fact that the adiabatic curve drops faster than the
isothermal curve.

If we compress a gas adiabatically, all the work we do
goes into the thermal energy of the gas, and the
temperature rises.  Thus with an adiabatic expansion
we can lower the temperature of the gas, and with an
adiabatic compression raise it.

Exercise 3
In the next section, we will discuss a way of connecting
adiabatic and isothermal expansions and compres-
sions in such a way that we form a complete cycle (get
back to the starting point), and get a net amount of work
out of the process.  Before reading the next section, it is
a good exercise to see if you can do this on your own.

In order to see whether or not you are getting work out
or putting it in, it is useful to graph the process in a pV
diagram, where the work is simply the area under the
curve.

To get you started in this exercise, suppose you begin
with an ideal gas at a pressure  p1, volume V1, and
temperature T1 , and expand it isothermally to  p2, V2, T1

as shown in Figure (10a).  The work you get out is the
area under the curve.

If you then compressed the gas isothermally back to
 p1, V1, T1 , this would complete the cycle (get you back to

where you started), but it would take just as much work
to compress the gas as you got from the expansion.
Thus there is no net work gained from this cycle.  A more
complex cycle is needed to get work out.

If we add an adiabatic expansion to the isothermal
expansion as shown in Figure (10b) we have the start of
something more complex.  See if you can complete this
cycle, i.e., get back to  p1, V1, T1 , using adiabatic and
isothermal expansions or compressions, and get some
net work in the process.  See if you can get the answer
before we give it to you in the next section.  Also show
graphically, on Figure (10b) how much work you do get
out.

Figure 10a
pV diagram for an isothermal expansion
from volume  V1  to volume  V2 .

V2V1

V1p
pressure

pV = constant

pV = constant (for γ = 1.667)

1
p1

p2

p3

volume

adiabatic expansion

isothermal expansion

γ

V1

pressure

V2
volume

V1T1p1

V2T1p2

isothermal 
expansion

Figure 9
Comparison of isothermal and adiabatic
expansions. In an adiabatic expansion the gas
cools, and thus the pressure drops faster.
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THE CARNOT CYCLE
With the isothermal and adiabatic expansion and com-
pression of an ideal gas in a frictionless cylinder, we
now have the pieces necessary to construct a Carnot
cycle, the key part of our thought experiment to study
the second law of thermodynamics.

The goal is to construct a device that continually
converts heat energy into work.  Such a device is called
an engine.  Both the isothermal and adiabatic expan-
sions of the gas converted heat energy into work, but
the expansions alone could not be used as an engine
because the piston was left expanded.  Carnot’s re-
quirement for an engine was that after a complete cycle
all the working parts had to be back in their original
condition ready for another cycle.  Somehow the gas in
the cylinder has to be compressed again to get the piston
back to its original position.  And the compression
cannot use up all the work we got from the expansion,
in order that we get some net useful work from the
cycle.

The idea for Carnot’s cycle that does give a net amount
of useful work is the following.  Start off with the gas
in the cylinder at a high temperature and let the gas
expand isothermally.  We will get a certain amount of
work from the gas.  Then rather than trying to compress
the hot gas, which would use up all the work we got,
cool the gas to reduce its pressure.  Then isothermally
compress the cool gas.  It should take less work to
compress the low pressure cool gas than the work we
got from the high pressure hot gas.  Then finish the

Figure 10b
pV diagram for an isothermal expansion
followed by an adiabatic expansion.

V1

pressure

V2 V3
volume

V1T1p1

V2T1p2

V3T3p3

adiabatic 
expansion

isothermal 
expansion

cycle by heating the cool gas back up to its original
temperature.  In this way you get back to the original
volume and temperature (and therefore pressure) of the
cylinder; you have a complete cycle, and hopefully you
have gotten some useful work from the cycle.

To cool the gas, and then later heat it up again, Carnot
used an adiabatic expansion and then an adiabatic
compression.  We can follow the steps of the Carnot
cycle on the pV diagram shown in Figure (11).  The gas
starts out at the upper left hand corner at a high
temperature  T1 , volume  V1, pressure  p1.  It then goes
through an isothermal expansion from a volume  V1 to
a volume  V2, remaining at the initial temperature  T1 .
The hot gas is then cooled down to a low temperature

 T3  by an adiabatic expansion to a volume  V3.  The cool,
low pressure gas is then compressed isothermally to a
volume  V4, where it is then heated back to a higher
temperature  T1  by an adiabatic compression.  The
volume  V4 is chosen just so that the adiabatic compres-
sion will bring the temperature back to  T1  when the
volume gets back to  V1.

Figure 11
The Carnot Cycle.  The gas first expands at a high
temperature  T1. It is then cooled to a lower
temperature  T3  by an adiabatic expansion. Then it is
compressed at this lower temperature, and finally
heated back to the original temperature  T1 by an
adiabatic compression.  We get a net amount of
work from the process because it takes less work to
compress the cool low pressure gas than we got
from the expansion of the hot high pressure gas.
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In this set of 4 processes, we get work out of the two
expansions, but put work back in during the two
compressions.  Did we really get some net work out?
We can get the answer immediately from the pV
diagram.  In Figure (12a), we see the amount of work
we got out of the two expansions.  It is the total area
under the expansion curves.  In Figure (12b) we see
how much work went back in during the two compres-
sions.  It is the total area under the two compression
curves.  Since there is more area under the expansion
curves than the compression curves, we got a net
amount of work out.  The net work out is, in fact, just
equal to the 4 sided area between the curves, seen in
Figure (13).

Thermal Efficiency
of the Carnot Cycle
The net effect of the Carnot cycle is the following.
During the isothermal expansion while the cylinder is
at the high temperature  TH, a certain amount of thermal
or heat energy, call it  Q H, flows into the cylinder.   Q H
must be equal to the work the gas is doing during the
isothermal expansion since the gas’ own thermal en-
ergy does not change at the constant temperature.
(Here, all the heat in becomes useful work.)

During the isothermal compression, while the cylinder
is at the lower temperature  TL , (the gas having been
cooled by the adiabatic expansion), an amount of heat

 Q Lis expelled from the cylinder.  Heat must be ex-
pelled because we are doing work on the gas by
compressing it, and none of the energy we supply can
go into the thermal energy of the gas because its
temperature is constant. (Here all the work done be-
comes expelled heat.)

Since no heat enters or leaves the cylinder during the
adiabatic expansion or compression, all flows of heat
have to take place during the isothermal processes.
Thus the net effect of the process is that an amount of
thermal energy or heat  Q H flows into the cylinder at the
high temperature  TH, and an amount of heat  Q L flows
out at the low temperature  TL, and we get a net amount
of useful work W out equal to the 4-sided area seen in
Figure (13).  By the law of conservation of energy, the

V1 1

T1

T3

T

V1 V3

pressure

p1

V2p2

V3p3

volume

Figure 12a
The work we get out of the two expansions is
equal to the area under the expansion curves.

Figure 12b
The work required to compress the gas
back to its original volume is equal to
the area under the compression curves.
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T3

T

V1 V3

pressure

p1

V3p3

volume

T3V4p4

TH H

L

TL

pressure

heat in at high 
temperature T

heat out at low 
temperature T

net work done 
during cycle

volume

Figure 13
The net work we get out of one complete cycle is equal
to the area bounded by the four sided shape that lies
between the expansion and compression curves.
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work W must be equal to the difference between  Q H
in and  Q L out

 W = QH – QL (13)

We see that the Carnot engine suffers from the same
problem experienced by power plants and automobile
engines.  They take in heat  QH at a high temperature
(produced by burning fuel) and do some useful work
W, but they expel heat  QL out into the environment.  To
be 100% efficient, the engine should use all of  QH to
produce work, and not expel any heat  QL.  But the
Carnot cycle does not appear to work that way.

One of the advantages of the Carnot cycle is that we can
calculate  QH and  QL, and see just how efficient the
cycle is.  It takes a couple of pages of calculations,
which we do in the appendix, but we obtain a remark-
ably simple result.  The ratio of the heat in,  QH, to the
heat out,  QL, is simply equal to the ratio of the high
temperature  TH to the low temperature  TL .

  QH

QL
=

TH

TL

for a carnot
cycle based on
an ideal gas

(14)

One suspects that if you do a lot of calculation involv-
ing integration, logarithms, and quantities like the
specific heat ratio, and almost everything cancels to
leave such a simple result as Equation 14, then there
might be a deeper significance to the result than ex-
pected.  Equation 14 was derived for a Carnot cycle
operating with an ideal gas.  It turns out that the result
is far more general and has broad applications.

Exercise 4
A particular Carnot engine has an efficiency of 26.8%.
That means that only 26.8% of  QH comes out as useful
work W and the rest, 73.2% is expelled at the low
temperature TL .  The difference between the high and
low temperature is 100 K  (  TH –TL = 100 K).  What are
the values of TH and TL?  First express your answer in
kelvins, then in degrees centigrade.  (The answer
should be familiar temperatures.)

Exercise 5

If you have a 100% efficient Carnot engine, what can
you say about  TH and  TL?

Reversible Engines
In our discussion of the principle of relativity, it was
immediately clear why we developed the light pulse
clock thought experiment.  You could immediately see
that moving clocks should run slow, and why that was
a consequence of the principle of relativity.

We now have a new thought experiment, the Carnot
engine, which is about as idealized as our light pulse
clock.  We have been able to calculate the efficiency of
a Carnot engine, but it is not yet obvious what that has
to do either with real engines, or more importantly with
the second law of thermodynamics which we are
studying.  It is not obvious because we have not yet
discussed one crucial feature of the Carnot engine.

The Carnot engine is explicitly designed to be revers-
ible.  As shown in Figure (14) , we could start at point
1 and go to point 4 by an adiabatic expansion of the gas.
During this expansion the gas would do work but no
heat is allowed to flow in.  Thus the work energy would
come from thermal energy and the gas would cool from

 TH to  TL .

pressure

volume

expansion

isothermal

adiabatic
expansion

adiabatic compression

isotherm
al com

pression

1

2

T

3

4

H

TL

Figure 14
The Carnot cycle run backward.
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The next step of the reverse Carnot cycle is an isother-
mal expansion from a volume  V4 to a volume  V3.
During this expansion, the gas does an amount of work
equal to the area under the curve as shown in Figure
(15a). Since there is no change in the internal energy of
a gas when the temperature of the gas remains constant,
the heat flowing in equals the work done by the gas.
This is the same amount of heat  QL that flowed out
when the engine ran forward.

In going from point 3 to point 2, we adiabatically
compress the gas to heat it from the lower temperature

 TLto the higher temperature  TH .  Since the compres-
sion is adiabatic, no heat flows in or out.

In the final step from point 2 to point 1, we isothermally
compress the gas back to its original volume  V1.  Since
the gas temperature remains constant at  TH, there is no
change in thermal energy and all the work we do,
shown as the area under the curve in Figure (15b), must
be expelled in the form of heat flowing out of the
cylinder.  The amount of heat expelled is just  QH, the
amount that previously flowed in when the engine was
run forward.

We have gone through the reverse cycle in detail to
emphasize the fact that the engine should run equally
well both ways.  In the forward direction the engine
takes in a larger amount of heat  QH at the high
temperature  TH, expels a smaller amount of heat  QL
at the lower temperature  TL , and produces an amount
of useful work W equal to the difference  QH – QL.

In the reverse process, the engine takes in a smaller
amount of heat  QLat the low temperature  TL, and
expels a larger amount  QH at the higher temperature

 TH.  Since more heat energy is expelled than taken in,
an amount of work  W = QH – QLmust now be sup-
plied to run the engine.  When we have to supply work
to pump out heat, we do not usually call the device an
engine.  The common name is a refrigerator.  In a
refrigerator, the refrigerator motor supplies the work
W, a heat  QLis sucked out of the freezer box, and a total
amount of  energy  QL + W = QH  is expelled into the
higher room temperature of the kitchen.  If we have a
Carnot refrigerator running on an ideal gas, then the
heats  QLand  QH are still given by Equation 14

 QL

QH
=

TL

TH
(14 repeated)

where  TLand  TH are the temperatures on a scale
starting from absolute zero such as in the kelvin scale.

Exercise 6

How much work must a Carnot refrigerator do to remove
1000 joules of energy  from its ice chest at 0° C and expel
the heat into a kitchen at 27° C?

Figure 15
Heat flow when the Carnot cycle runs backward.
Since more heat flows out than in, some work W is
required for the cycle. The net effect is that the work
W pumps heat out of the gas, giving us a refrigerator.
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b) A lot more work is required, and a lot
more heat is expelled when we compress
the hot gas isothermally.

a) During the isothermal expansion, some
heat flows into the gas to supply the energy
needed for the work done by the gas.
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ENERGY FLOW DIAGRAMS
Because of energy conservation, we can view the flow
of energy in much the same way as the flow of some
kind of a fluid.  In particular we can construct flow
diagrams for energy that look much like plumbing
diagrams for water.  Figure (16) is the energy flow
diagram for a Carnot engine running forward.  At the
top and the bottom are what are called thermal reser-
voirs—large sources of heat at constant temperature
(like swimming pools full of water).  At the top is a
thermal reservoir at the high temperature  TH (it could
be kept at the high temperature by burning fuel) and at
the bottom is a thermal reservoir at the low temperature

 TL .  For power plants, the low temperature reservoir is
often the ocean or the cool water in a river.  Or it may
be the cooling towers like the ones pictured in photo-
graphs of the nuclear power plants at Three Mile Island.

In the energy flow diagram for the forward running
Carnot engine, an amount of heat  QH flows out of the
high temperature reservoir, a smaller amount  QLis
expelled into the low temperature reservoir, and the
difference comes out as useful work W.  If the Carnot
engine is run on an ideal gas,  QH and  QLare always
related by  QH/QL = TH/TL .

Figure (17) is the energy flow diagram for a Carnot
refrigerator.  A heat  QLis sucked out of the low
temperature reservoir, an amount of work W is sup-
plied (by some motor), and the total energy

 QH = QL + W  is expelled into the high temperature
reservoir.

Maximally Efficient Engines
We are now ready to relate our discussion of the Carnot
cycles to the second law of thermodynamics.  The
statement of the second law we will use is that you
cannot extract useful work from thermal energy at one
temperature.  (The colloquial statement of the first law
of thermodynamics — conservation of energy—is that
you can’t get something for nothing.  The second law
says that you can’t break even.)

Up until now we have had to point out that our formula
for the efficiency of a Carnot engine was based on the
assumption that we had an ideal gas in the cylinder.  If
we use the second law of thermodynamics, we can
show that it is impossible to construct any engine, by
any means, that is more efficient than the Carnot engine
we have been discussing.  This will be the main result
of our thought experiment.

W
QL

QH

high temperature reservoir

low temperature reservoir

TH

TL

Carnot
refrigerator

Figure 16
Energy flow diagram for a Carnot engine. Since energy
is conserved, we can construct a flow diagram for
energy that resembles a plumbing diagram for water. In
a Carnot cycle,  QH  flows out of a “thermal reservoir”
at a temperature  TH . Some of this energy goes out as
useful work W and the rest,  QL , flows into the low
temperature thermal reservoir at a temperature  TL .

W
QL

QH

high temperature reservoir

low temperature reservoir

TH

TL

Carnot
engine

Figure 17
The Carnot refrigerator is a Carnot engine run
backwards. The work W plus the heat  QL  equals the heat

 QH  pumped up into the high temperature reservoir.
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Let us suppose that you have constructed a Super
engine that takes in more heat  QH

*from the high
temperature reservoir, and does more work  W* , while
rejecting the same amount of heat  QL as a Carnot
engine.  In the comparison of the two engines in Figure
(18) you can immediately see that your Super engine is
more efficient than the Carnot engine because you get
more work out for the same amount of heat lost to the
low temperature reservoir.

Now let us run the Carnot engine backwards as a
refrigerator as shown in Figure (19).  The Carnot
refrigerator requires an amount of work W to suck the
heat  QL out of the low temperature reservoir and expel
the total energy  QH = W + QL  into the high tempera-
ture reservoir.

You do not have to look at Figure (19) too long before
you see that you can use some of the work  W*  that your
Super engine produces to run the Carnot refrigerator.
Since your engine is more efficient than the Carnot
cycle,  W* > W  and you have some work left over.

The next thing you notice is that you do not need the low
temperature reservoir.  All the heat expelled by your
Super engine is taken in by the Carnot refrigerator.  The
low temperature reservoir can be replaced by a pipe and
the new plumbing diagram for the combined Super
engine and Carnot refrigerator is shown in Figure (20).
The overall result of combining the super engine and
Carnot refrigerator is that a net amount of work

 Wnet = W*–W is extracted from the high temperature
reservoir.  The net effect of this combination is to
produce useful work from thermal energy at a single
temperature, which is a violation of the second law of
thermodynamics.

Exercise 7

Suppose you build a Super engine that takes the same
amount of heat from the high temperature reservoir as
a Carnot engine, but rejects less heat  QL

*< QL  than a
Carnot engine into the low temperature.  Using energy
flow diagrams show what would happen if this Super
engine were connected to a Carnot refrigerator.  (You
would still be getting useful work from thermal energy at
some temperature.  From what temperature reservoir
would you be getting this work?)

W

QL

QL

high temperature reservoir TH
Carnot refrigeratorSuper engine

QL

QH
net

Figure 19
Now run the Carnot engine
backward as a refrigerator.

high temperature reservoir

low temperature reservoir

TH

TL

Carnot refrigeratorSuper engine

W
QL

QHW
QL
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* *

Figure 18
Comparison of the Super engine
with the Carnot engine.
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high temperature reservoir

low temperature reservoir

TH

TL

Carnot engineSuper engine
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Figure 20
If you connect the Super engine to the Carnot
refrigerator, you can eliminate the low temperature
reservoir and still get some work  Wnet  out. This
machine extracts work from a single temperature, in
violation of the second law of thermodynamics.
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Reversibility
We have just derived the rather sweeping result that if
the second law of thermodynamics is correct, you
cannot construct an engine that is more efficient than a
Carnot engine based on an ideal gas.  You may wonder
why the cycles based on an ideal gas are so special.  It
turns out that they are not special.  What was special
about the Carnot engine is that it was reversible, that it
could be run backwards as a refrigerator.  You can use
precisely the same kind of arguments we just used to
show that all reversible engines must have precisely
the same efficiency as a Carnot engine.  It is a
requirement of the second law of thermodynamics.

There were two reasons we went through the detailed
steps of constructing a Carnot engine using an ideal gas
in a frictionless piston.  The first was to provide one
example of how an engine can be constructed.  It is not
a very practical example, commercial engines are
based on different kinds of cycles.  But the Carnot
engine illustrates the basic features of all engines.  In all
engines the process must be repetitive, at least two
temperatures must be involved, and only some of the
heat extracted from the high temperature reservoir can
be converted to useful work.  Some heat must be
expelled at a lower temperature.

While all reversible engines have the same efficiency,
we have to work out at least one example to find out
what that efficiency is.  You might as well choose the
simplest possible example, and the Carnot cycle using
an ideal gas is about as simple as they get.  Because of
the second law of thermodynamics, you know that
even though you are working out a very special ex-
ample, the answer  QH/QL = TH/TL applies to all re-
versible engines operating between two temperature
reservoirs.  This is quite a powerful result from the few
pages of calculations in the appendix.

APPLICATIONS OF
THE SECOND LAW
During the oil embargo in the middle 1970s, there was
a sudden appreciation of the consequences of the
second law of thermodynamics, for it finally became
clear that we had to use energy efficiently.  Since that
time there has been a growing awareness that there is
a cost to producing energy that considerably exceeds
what we pay for it.  Burning oil and coal depletes
natural limited resources and adds carbon dioxide to
the atmosphere which may contribute to global climate
changes.  Nuclear reactors, which were so promising in
the 1950s, pose unexpected safety problems, both now
as in the example of Chernobyl, and in the very distant
future when we try to deal with the storage of spent
reactor parts.  Hydroelectric power floods land that
may have other important uses, and can damage the
agricultural resources of an area as in the case of the
Aswan Dam on the Nile River.  More efficient use of
energy from the sun is a promising idea, but technology
has not evolved to the point where solar energy can
supply much of our needs.  What we have learned is
that, for now, the first step is to use energy as efficiently
as possible, and in doing this, the second law of
thermodynamics has to be our guide.

During the 1950s and 60s, one of the buzz words for
modern living was the all electric house.  These houses
were heated electrically, electric heaters being easy and
inexpensive to install and convenient to use.  And it also
represents one of the most stupid ways possible to use
energy.  In terms of a heat cycle, it represents the 100%
conversion of work energy into thermal energy, what
we would have called in the last section, a 0% efficient
engine.  There are better ways of using electric power
than converting it all into heat.

You can see where the waste of energy comes in when
you think of the processes involved in producing
electric power.  In an electric power plant, the first step
is to heat some liquid or gas to a high temperature by
burning fuel.  In a common type of coal or oil fired
power plant, mercury vapor is heated to temperatures
of 600 to 700 degrees centigrade.  The mercury vapor
is then used to run a mercury vapor turbine which cools
the mercury vapor to around 200° C.  This cooler
mercury vapor then heats steam which goes through a
steam turbine to a steam condenser at temperatures
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around 100° C.  In a nuclear reactor, the first step is
often to heat liquid sodium by having it flow through
pipes that pass through the reactor.  The hot sodium can
then be used to heat mercury vapor which runs turbines
similar to those in a coal fired plant.  The turbines are
attached to generators which produce the electric power.

Even though there are many stages, and dangerous and
exotic materials used in power stations, we can esti-
mate the maximum possible efficiency of a power plant
simply by knowing the highest temperature  TH of the
boiler, and the lowest temperature  TLof the condenser.
If the power plant were a reversible cycle running
between these two temperatures, it would take in an
amount of heat  QH  at the high temperature and reject
an amount of heat  QL at the low temperature, where

 QH  and  QL are related by  QH/QL = TH/TL  (Eq. 14).
The work we got out would be

  
W = QH – QL

amount of work from
a reversible cycle (15)

We would naturally define the efficiency of the cycle
as the ratio of the work out to the heat energy in

 
efficiency = W

QH
=

QH – QL

QH
(16)

If we solve Equation 14 for  QL

 QL = QH
TL

TH

and use this in Equation 16, we get

 
efficiency =

QH – QL

QH
=

QH 1 – TL/TH

QH

  
efficiency =

TH – TL

TH

efficiency of a
reversiblecycle

(17)

Since by the second law of thermodynamics no process
can be more efficient than a reversible cycle, Equation
17 represents the maximum possible efficiency of a
power plant.

The important thing to remember about Equation 17 is
that the temperatures  TH and  TL  start from absolute
zero.  The only way we could get a completely efficient
engine or power plant would be to have the low

temperature at absolute zero, which is not only impos-
sible to achieve but even difficult to approach.  You can
see from this equation why many power plants are
located on the shore of an ocean or on the bank of a large
river.  These bodies are capable of soaking up large
quantities of heat at relatively low temperatures.  If an
ocean or river is not available, the power plant will have
large cooling towers to condense steam.  Condensing
steam at atmospheric pressure provides a low tempera-
ture of   TL = 100° C or 373 K.

Equation 15 also tells you why power plants run their
boilers as hot as possible, using exotic substances like
mercury vapor or liquid sodium.  Here one of the
limiting factors is how high a temperature turbine
blades can handle without weakening.  Temperatures
as high as 450° C or around 720 K are about the limit
of current technology.  Thus we can estimate the
maximum efficiency of power plants simply by know-
ing how high a temperature turbine blades can with-
stand, and that the plant uses water for cooling.  You do
not have to know the details  of what kind of fuel is used,
what kind of exotic materials are involved, or how
turbines and electric generators work, as long as they
are efficient.  Using the numbers  TH = 720 k ,

 TL = 373 k we find that the maximum efficiency is
about

 maximum
efficiency

=
TH – TL

TH
=

720 – 373

720

= .48
(18)

Thus about 50% represents a theoretical upper limit to
the efficiency of power plants using current technol-
ogy.  In practice, well designed power plants reach only
about 33% efficiency due to small inefficiencies in the
many steps involved.

You can now see why the all electric house was such a
bad idea.  An electric power plant consumes three times
as much fuel energy as it produces electric energy.
Then the electric heater in the all electric house turns
this electric energy back into thermal energy.  If the
house had a modern oil furnace, somewhere in the
order of 85% of the full energy can go into heating the
house and hot water.  This is far better than the 33%
efficiency from heating directly by electricity.
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Electric Cars
One of the hot items in the news these days is the
electric car.  It is often touted as the pollution free
solution to our transportation problems.  There are
advantages to electric cars, but not as great an advan-
tage as some new stories indicate.

When you plug in your electric car to charge batteries,
you are not eliminating the pollution associated with
producing useful energy.   You are just moving the
pollution from the car to the power plant, which may,
however, be a good thing to do.  A gasoline car may
produce more harmful pollutants than a power station,
and car pollutants tend to concentrate in places where
people live creating smog in most major cities on the
earth.  (Some power plants also create obnoxious
smog, like the coal fired plants near the Grand Canyon
that are harming some of the most beautiful scenery in
the country.)

In addition to moving and perhaps improving the
nature of pollution, power plants have an additional
advantage over car engines—they are more efficient.
Car engines cannot handle as high a temperature as a
power plant, and the temperature of the exhaust from a
car is not as low as condensing steam or ocean water.
Car engines seldom have an efficiency as high as 20%;
in general, they are less than half as efficient as a power
plant.  Thus there will be a gain in efficiency in the use
of fuel when electric cars come into more common use.

(One way electric cars have for increasing their effi-
ciency is to replace brakes with generators.  When
going down a hill, instead of breaking and dissipating
energy by heating the brake shoes, the gravitational
potential energy being released is turned into electric
energy by the generators attached to the wheels. This
energy is then stored as chemical energy in the batteries
as the batteries are recharged.)

The Heat Pump
There is an intelligent way to heat a house electrically,
and that is by using a heat pump.  The idea is to use the
electric energy to pump heat from the colder outside
temperature to the warmer inside temperature.  Pump-
ing heat from a cooler temperature to a warmer tem-
perature is precisely what a refrigerator does, while
taking heat from the freezer chest and exhausting it into
the kitchen.  The heat pump takes heat from the cooler
outside and exhausts it into the house.

As we saw in our discussion, it takes work to pump heat
from a cooler to a higher temperature.  The ratio of the
heat  QL taken in at the low temperature, to the heat  QH
expelled at the higher temperature, is  QH/QL = TH/TL
for a maximally efficient refrigerator.  The amount of
work W required is  W = QH – QL.  The efficiency of
this process is the ratio of the amount of heat delivered
to the work required.

 efficiency of
heat pump

=
QH

W
=

QH

QH – QL

=
TH

TH – TL

(19)

where the last step in Equation 19 used  QL = QHTL/TH.

Exercise 8

Derive the last formula in Equation 19.

When the temperature difference  TH – TL is small, we
can get very high efficiencies,  i.e.,  we can pump a lot
of heat using little work. In the worst case, where

 TL = 0 and we are trying to suck heat from absolute
zero, the efficiency of a heat pump is 1—heat delivered
equals the work put in—and the heat pump is acting
like a resistance heater.
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To illustrate the use of a heat pump let us assume that
it is freezing outside (   TL = 0° C = 273K ) and you
want the inside temperature to be   27°C = 300K .  Then
a heat pump could have an efficiency of

  efficiency of heat
pump running from
0°C to 27°C

=
TH

TH – TL

=
300 k

300 k – 273 k

= 11.1

In other words, as far as the second law of thermody-
namics is concerned, we should be able to pump eleven
times as much heat into a house, when it is just freezing
outside, as the amount of electrical energy required to
pump the heat.  Even if the electrical energy is produced
at only 30% efficiency, we should still get

  .30 × 11.1 = 3.3  times as much heat into the house as
by burning the fuel in the house at 100% conversion of
fuel energy into heat.

Exercise 9
This so-called “heat of fusion” of water is 333kJ/kg.
What that means is that when a kilogram (1 liter) of water
freezes (going from 0° C water to 0° ice), 333 kilojoules
of heat are released.  Thus to freeze a liter of 0° C water
in your refrigerator, the refrigerator motor has to pump

  333 × 103   joules of heat energy out of the refrigerator
into the kitchen.  The point of the problem is to estimate
how powerful a refrigerator motor is required if you want
to be able to freeze a liter of water in 10 minutes.

Assume that the heat is being removed at a temperature
of 0°C and being expelled into a kitchen whose tem-
perature is 30°C, and that the refrigerator equipment is
100% efficient.  (We will account for a lack of efficiency
at the end of this problem.)

In the United Sates, the power of motors is generally
given in “horsepower”, a familiar but archaic unit.  The
conversion factor is 1 horsepower = 746 watts, and a
power of 1 watt is 1 joule per second.

Calculate the horsepower required, then double the
answer to account for lack of efficiency.  (Answer:
0.16 horsepower.)

Exercise 10

Here is a problem that should give you some practice
with the concepts of efficiency.  You have the choice of
buying a furnace that converts heat energy of oil into
heat in the house with 85% efficiency.  I.e., 85% of the
heat energy of the oil goes into the house, and 15% goes
up the chimney.  Or you can buy a heat pump which is
half as efficient as a Carnot refrigerator.  (This is a more
realistic estimate of the current technology of refrigera-
tion equipment.)  At very low temperatures outside, heat
pumps are not as efficient, and burning oil in your own
furnace is more efficient.  But if it does not get too cold
outside, heat pumps are more efficient.  At what outside
temperature will the heat pump and the oil furnace have
the same efficiency?  Assume that the electric energy
you use is produced by a power plant that is 30%
efficient.  (Answer:  - 26° C.)
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While the piston goes back down, the valves are set so
that a mixture of air and fuel are sucked into the piston.
When the cylinder is at the bottom of the piston, we
have a cool, low pressure fuel air mixture filling the full
volume  V4.  We are now at the position labeled (4) in
Figure (21).  It took two strokes (up and down) of the
piston to go from position 3 to position 4.

In the final stroke, the valves are shut and the rising
piston adiabatically compresses the gas back to the
starting point  p1 ,  V1,  T1 . While the increase in tem-
perature during this compression is what is needed to
ignite the diesel fuel, you do not want the temperature
to rise enough to ignite the air gasoline mixture in a
gasoline engine.  This can sometimes happen in a
gasoline engine, causing a knock in the engine, or
sometimes allowing the engine to run for a while after
you have shut off the ignition key and stopped the spark
plug from functioning.

The Internal Combustion Engine
We finish this section on practical applications with a
brief discussion of the internal combustion engine.  The
main point is to give an example of an engine that runs
on a cycle that is different from a Carnot cycle.  It is
more difficult to apply the second law of thermody-
namics to an internal combustion engine because it
does not take heat in or expel heat at constant tempera-
tures like the Carnot engine, but we can still analyze the
work we get out using a pV diagram.

The pV diagram for an internal combustion engine is
shown in Figure (21).  At position 1, a fuel and air
mixture have been compressed to a small volume  V1
by the piston which is at the top of the cylinder.  If it is
a gasoline engine, the fuel air mixture is ignited by a
spark from a sparkplug.  If it is a diesel engine, the
mixture of diesel fuel and air have been heated to the
point of combustion by the adiabatic compression from
point 4 to point 1 that has just taken place.  One of the
advantages of a diesel engine is that an electrical
system to produce the spark is not needed.  This is
particularly important for boat engines where electric
systems give all sorts of problems.  (We said this was
a section on practical applications.)

After ignition, the pressure and temperature of the gas
rise rapidly to  p2 ,  T2 before the piston has had a chance
to move.  Thus the volume remains at  V1 and the pV
curve goes straight up to point 2.  The heated gas then
expands adiabatically, and cools some, driving the
piston down to the bottom of the cylinder.  This is the
stroke from which we get work from the engine.

We now have a cylinder full of hot burned exhaust
gases.  In a 4 cycle engine, a valve at the top of the
cylinder is opened, and a piston is allowed to rise,
pushing the hot exhaust gases out into the exhaust
pipes.  Not much work is required to do this.  This is the
part of the cycle where (relatively) low temperature
thermal energy is exhausted to the environment.

V4V1

V1

1

2

3

4

pressure

spark

exhaust

compression

power stroke

volume

adiabatic

adiabatic

V4

Figure 21
PV diagram for an internal combustion
engine. When the piston is all the way up in
the cylinder the volume is  V1 . When it is all
the way down, the volume has increased to  V2 .
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We see that the inefficient engine expelled more Q/T
than it took in.  The inefficient, non reversible, engine
creates Q/T while reversible engines do not.

As we have done throughout the course, whenever we
encounter a quantity that is conserved, or sometimes
conserved, we give it a name.  We did this for linear
momentum, angular momentum, and energy.  Now we
have a quantity Q/T that is unchanged by reversible
engines, but created or increased by irreversible ineffi-
cient ones.  We are on the verge of defining the quantity
physicists call entropy.  We say on the verge of defining
entropy, because Q/T is not entropy itself; it represents
the change in entropy.  We can say that when the gas
expanded, the entropy of the gas increased by  QH/TH .
And when the gas was compressed, the entropy de-
creased by  QL/TL.

For a reversible engine there is no net change in entropy
as we go around the cycle.  But for an irreversible,
inefficient engine, more entropy comes out than goes in
during each cycle.  The net effect of an inefficient
engine is to create entropy.

What is this thing called entropy that is created by
inefficient irreversible engine?  Consider the most
inefficient process we can imagine—the electric heater
which converts useful work in the form of electrical
energy into heat.  From one point of view, the device
does nothing but create entropy.  If the heater is at a
temperature T, and the electric power into the heater is
W watts, all this energy is converted to heat and entropy
is produced at a rate of W/T in units of entropy per
second.  (Surprisingly, there is no standard name for a
unit of entropy.  The units of Q/T are of course joules/
kelvin, the same as Boltzman’s constant.)

The process of converting energy in the form of useful
work into the random thermal energy of molecules can
be viewed as the process of turning order into disorder.
Creating entropy seems to be related to creating disor-
der.  But the surprising thing is that we have an explicit
formula Q/T for changes in entropy.  How could it be
possible to measure disorder, to have an explicit for-
mula for changes in disorder?  This question baffled
physicists for many generations.

ENTROPY
The second law of thermodynamics provided us with
the remarkable result that the efficiency of all revers-
ible engines is the same.  Detailed calculation of this
efficiency using a Carnot engine based on an ideal gas
gave us a surprisingly simple formula for this effi-
ciency, namely  QH/QL = TH/TL .  Our preceding ex-
amples involving car engines, power plants, refrigera-
tors and heat pumps illustrate how important this
simple relationship is to mankind.

When you do a calculation and a lot of stuff cancels out,
it suggests that your result may have a simpler interpre-
tation than you originally expected.  This turns out to be
true for our calculations of the heat flow in a Carnot
engine.  To get a new perspective on our equation for
heat flow, let us write the equation in the form

 QH

TH
=

QL

TL
(20)

In this form the equation for heat flow is beginning to
look like a conservation law for the quantity Q/T.
During the isothermal expansion, an amount  QH/TH
of this quantity flowed into the piston.  During the
isothermal compression,  QL/TL  flowed out.  We find
that if the engine is reversible, the amount of Q/T that
flowed in is equal to the amount of Q/T that flowed out.
The net effect is that there was no change in Q/T during
the cycle.

To get a better insight into what this quantity Q/T may
be, consider a nonreversible engine operating between

 TH and  TL , an engine that would be less efficient than
the Carnot engine.  Assume that the less efficient
engine and the Carnot engine both take in the same
amount of heat  QH at the high temperature  TH. Then
the less efficient engine must do less work and expel
more heat at the low temperature  TL.  Thus  QL for the
less efficient engine is bigger than  QL for the Carnot
engine.  Since  QL/TL = QH/TH  for the Carnot engine,

 QL/TL  must be greater than  QH/TH  for the less effi-
cient engine

  QL

TL
>

QH

TH

for an engine that
is less efficient than
a Carnot engine

(21)
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Ludwig Boltzman proposed that entropy was related to
the number of ways that a system could be arranged.
Suppose, for example, you go into a woodworking
shop and there are a lot of nails on the wall with tools
hanging on them.  In one particular woodworking shop
you find that the carpenter has drawn an outline of the
tool on the wall behind the nail.  You enter her shop you
find that the tool hanging from each nail exactly
matches the outline behind it.  Here we have perfect
order, every tool is in its place and there is  one and only
one way the tools can be arranged.  We would say that,
as far as locating tools is concerned the shop is in perfect
order, it has no disorder or entropy.

On closer inspection, we find that the carpenter has two
saws with identical outlines, a crosscut saw and a rip
saw.  We also see that the nails are numbered, and see
the cross cut saw on nail 23 and the rip saw on nail 24.
A week later when we come back, the cross cut is on
nail 24 and the rip saw on 23.  Thus we find that her
system is not completely orderly, for there are two
different ways the saws can be placed.  This way of
organizing tools has some entropy.

A month later we come back to the shop and find that
another carpenter has taken over and painted the walls.
We find that there are still 25 nails and 25 tools, but now
there is no way to tell which tool belongs on which nail.
Now there are many, many ways to hang up the tools
and the system is quite disordered.  We have the feeling
that this organization, or lack of organization, of the
tools has quite high entropy.

To put a numerical value on how disorganized the
carpenter shop is, we go to a mathematician who tells
us that there are N! ways to hang N tools on N nails.
Thus there are 25! =   1.55 × 1025 different ways the 25
tools can be hung on the 25 nails.  We could use this
number as a measure of the disorder of the system, but
the number is very large and increases very rapidly with
the number of tools.  If, for example, there were 50 tools
hung on 50 nails, there would be   3.04 × 1064 different
ways of hanging them.  Such large numbers are not
convenient to work with.

When working with large numbers, it is easier to deal
with the logarithm of the number than the number
itself.  There are approximately  1051  protons in the
earth.  The log to the base 10 of this number is 51 and
the natural logarithm,  ln 1051 , is 2.3 times bigger or
117.  In discussing the number of protons in the earth,
the number 117 is easier to work with than  1051 ,
particularly if you have to write out all the zeros.

If we describe the disorder of our tool hanging system
in terms of the logarithm of the number of ways the
tools can be hung, we get a much more reasonable set
of numbers, as shown in Table 1.

Setup Number of ways Logarithm of the
to arrange tools number of ways

all tools have
unique positions 1 0

two saws can
be interchanged 2 .7

25 tools on
unmarked nails   1.5 × 1025 58

50 tools on
unmarked nails   3.0 × 1065 148

TABLE 1

The table starts off well.  If there is a unique arrange-
ment of the tools, only one way to arrange them, the
logarithm of the number of ways is 0.  This is consistent
with our idea that there is no disorder.  As the number
of tools on unmarked nails increases, the number of
ways they can be arranged increases at an enormous
pace, but the logarithm increases at a reasonable rate,
approximately as fast as the number of tools and nails.
This logarithm provides a reasonable measure of the
disorder of the system.
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We could define the entropy of the tool hanging system
as the logarithm of the number of ways the tools could
be hung.  One problem, however, is that this definition
of entropy would have different dimensions than the
definition introduced earlier in our discussions of en-
gines.  There changes in entropy, for example  QH/TH ,
had dimensions of joules/kelvin, while our logarithm is
dimensionless.  However, this problem could be fixed
by multiplying our dimensionless logarithm by some
fundamental constant that has the dimensions of joules/
kelvin.  That constant, of course, is Boltzman’s con-
stant k, where   k = 1.38 × 10–23joules/kelvin.  We
could therefore take as the formula for the entropy (call
it S) of our tool hanging system as

  
S = k ln n entropy of our tool

hanging system (22)

where n is the number of ways the tools can be hung.
Multiplying our logarithm by k gives us the correct
dimensions, but very small values when applied to as
few items as 25 or 50 tools.

Equation 22 appears on Boltzman’s tombstone as a
memorial to his main accomplishment in life.  Boltzman
believed that Equation 22 should be true in general.
That, for example, it should apply to the atoms of the
gas inside the cylinder of our heat engine.  When heat
flows into the cylinder and the entropy increases by an
amount  QH/TH , the number of ways that the atoms
could be arranged should also increase, by an amount
we can easily calculate using Equation 22.  Explicitly,
if before the heat flowed in there were  nold ways the
atoms could be arranged, and after the heat flowed in

 nnew ways, then Equation 22 gives

 change in
entropy = k ln nnew – k ln nold =

QH

TH

Since  ln nnew – ln nold = ln nnew/nold , we get

 
ln

nnew

nold
=

QH

kTH
(23)

Taking the exponent of both sides of Equation 16, using
the fact that  eln x = x , we get

 nnew
nold

= eQH/kTH (24)

Thus Boltzman’s equation gives us an explicit formula
for the fractional increase in the number of ways the
atoms in the gas atoms in the cylinder can be arranged.

Boltzman committed suicide in 1906, despondent over
the lack of acceptance of his work on the statistical
theory of matter, of which Equation 22 is the corner-
stone.  And in 1906 it is not too surprising that physi-
cists would have difficulty dealing with Boltzman’s
equation.  What is the meaning of the number of ways
you can arrange gas atoms in a cylinder?  From a
Newtonian perspective, there are an infinite number of
ways to place just one atom in a cylinder.  You can
count them by moving the atoms an infinitesimal
distance in any direction.  So how could it be that  1024

atoms in a cylinder have only a finite way in which they
can be arranged?

This question could not be satisfactorily answered in
1906, the answer did not come until 1925 with the
discovery of quantum mechanics.  In a quantum pic-
ture, an atom in a cylinder has only certain energy
levels, an idea we will discuss later in Chapter 35.  Even
when you have  1024  atoms in the cylinder, the whole
system has only certain allowed energy levels.  At low
temperatures the gas does not have enough thermal
energy to occupy very many of the levels.  As a result
the number of ways the atoms can be arranged is
limited and the entropy is low.  As the temperature is
increased, the gas atoms can occupy more levels, can
be arranged in a greater number of ways, and therefore
have a greater entropy.

The concept of entropy provides a new definition of
absolute zero.  A system of particles is at absolute zero
when it has zero entropy, when it has one uniquely
defined state.  We mentioned earlier that quantum
mechanics requires that a confined particle has some
kinetic energy.  All the kinetic energy cannot be
removed by cooling.  This gives rise to the so-called
zero point energy that keeps helium a liquid even at
absolute zero.  However, a bucket of liquid helium can
be at absolute zero as long as it is in a single unique
quantum state, even though the atoms have zero point
kinetic energy.
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For a while there was a debate among physicists as to
whether the second law of thermodynamics was the
only law in nature that could be used to distinguish
between time running forward and time running back-
ward.

When you study processes like the decay of one kind of
elementary particle into another, the situation is so
simple that the concepts of entropy and the second law
of thermodynamics do not enter into the analysis.  In
these cases you can truly study whether nature is
symmetric with the respect to the reversal of time.  If
you take a moving picture of a particle decay, and run
the movie backwards, will you see a process that can
actually happen?  For example if a muon decays into an
electron and a neutrino, as happened in our muon
lifetime experiment, running that moving picture back-
ward would have neutrinos coming in, colliding with
an electron, creating a muon.  Thus,  if the basic laws of
physics are truly symmetric to the reversal of time, it
should be possible for a neutrino and an electron to
collide and create a muon.  This process is observed.

In 1964 Val Fitch and James Cronin discovered an
elementary particle process which indicated that nature
was not symmetric in time.  Fitch found a violation of
this symmetry in the decay of a particle called the
neutral k meson.  For this discovery, Fitch was awarded
the Nobel prize in 1980.  Since the so-called “weak
interaction” is responsible for the decay of k mesons,
the weak interaction is not fully symmetric to the
reversal of time.  The second law of thermodynamics
is not the only law of physics that knows which way
time goes.

In our discussion of temperature in the last chapter, we
used the ideal gas thermometer for our experimental
definition of temperature.  We pointed out, however,
that this definition would begin to fail as we ap-
proached very low temperatures near absolute zero.  At
these temperatures we need a new definition which
agrees with the ideal gas thermometer definition at
higher temperatures.  The new definition which is used
by the physics community, is based on the efficiency of
a reversible engine or heat cycle.  You can measure the
ratio of two temperatures  TH and  TC, by measuring the
heats  QH and  QC  that enter and leave the cycle, and use
the formula  TH/TC = QH/QC  .  Since this formula is
based on the idea that a reversible cycle creates no
entropy (  QH/TH = QC/TC ), we can see that the con-
cept of entropy forms the basis for the definition of
temperature.

The Direction of Time
We began the chapter with a discussion of a demonstra-
tion that looked funny.  We set the strobe so that the
water drops appeared to rise from the plate in the bucket
and enter the hose.  Before our discussion of the second
law of thermodynamics, we could not find any law of
physics that this backward process appeared to violate.
Now we can see that the launching of the drops from the
plate is a direct contradiction of the second law.  In that
process, heat energy in the bucket converts itself at one
temperature into pure useful work that launches the
drop.

When you run a moving picture of some action back-
wards, effectively reversing the direction of time, in
most cases the only law of physics that is violated is the
second law of thermodynamics.  The only thing that
appears to go wrong is that disordered systems appear
to organize themselves on their own.  Scrambled eggs
turn into an egg with a whole yoke just by the flick of
a fork.  Divers pop out of swimming pools propelled,
like the drops in our demonstration, by the heat energy
in the pool (see movie).  All these funny looking things
require remarkable coincidences which in real life do
not happen.

Movie
Time reversed motion picture of dive
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APPENDIX:  CALCULATION OF THE
EFFICIENCY OF A CARNOT CYCLE
The second law of thermodynamics tells us that the
efficiency of all reversible heat engines is the same.
Thus if we can calculate the efficiency of any one
engine, we have the results for all.  Since we have based
so much of our discussion on the Carnot engine running
on an ideal gas, we will calculate the efficiency of that
engine.

To calculate the efficiency of the ideal gas Carnot
engine, we need to calculate the amount of work we get
out of (or put into) isothermal and adiabatic expan-
sions.  With these results, we can then calculate the net
amount of work we get out of one cycle and then the
efficiency of the engine.  To simplify the formulas, we
will assume that our engine is running on one mole of
an ideal gas.

Isothermal Expansion
Suppose we have a gas at an initial volume  V1, pressure

 p1 , temperature T, and expand it isothermally to a
volume  V2, pressure  p2 , and of course the same
temperature T.

The P-V diagram for the process is shown in Figure
 (A-1).  The curve is determined by the ideal gas law,
which for 1 mole of an ideal gas is

pV = RT (A-1)

The work we get out of the expansion is the shaded area
under the curve, which is the integral of the pressure
curve from  V1 to  V2.

Using Equation 1, we get

 
W = pdV

V1

V2

= RT
V dV

V1

V2

= RT dV
V

V1

V2

= RTlnV
V1

V2

= RT ln V2 – ln V1

= RT ln
V2
V1

(A-2)

Thus the work we get out is RT times the logarithm of
the ratio of the volumes.

Adiabatic Expansion
It is a bit trickier to calculate the amount of work we get
out of an adiabatic expansion.  If we start with a mole
of ideal gas at a volume  V1, pressure  p1 , and tempera-
ture  TH, the gas will cool as it expands because the gas
does work and we are not letting any heat in.  Thus
when the gas gets to the volume  V2, at a pressure  p2 ,
its temperature  TC will be cooler than its initial tem-
perature  TH.

The pV diagram for the adiabatic expansion is shown
in Figure (A-2).  To get an equation for the adiabatic
expansion curve shown, let us assume that we change
the volume of the gas by an infinitesimal amount    ∆V .
With this volume change, there will be an infinitesimal
pressure drop   ∆p , and an infinitesimal temperature

Figure A-1
Isothermal expansion.

Figure A-2
Adiabatic expansion.
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drop   ∆T.  We can find the relationship between these
small changes by differentiating the ideal gas equa-
tions.  Starting with

pv = RT

and differentiating we get

  p∆V + ∆p V = R∆T (A-3)

We now have to introduce the idea that the expansion
is taking place adiabatically, i.e., that no heat is enter-
ing.  That means that the work   p∆V  done by the gas
during the infinitesimal expansion   ∆V  must all have
come from thermal energy.  But the decrease in thermal
energy is   CV∆T.  Thus we have from conservation of
energy

  p∆V + CV∆T = 0

or

  ∆T =
– p∆V

CV
(A-4)

The – (minus) sign tells us that the temperature drops
as work energy is removed.

Using Equation A-4 for   ∆T in Equation A-3 gives

  
p∆V + ∆pV = R

– p∆V
CV

Combining the   p∆V  terms gives

  p∆V 1 + R
CV

+ ∆pV = 0

  
p∆V

CV + R
CV

+ ∆pV = 0 (A-5)

Earlier in the chapter, in Equation 9, we found that for
an ideal gas,  CV and  Cp were related by  Cp = CV + R.
Thus Equation A-5 simplifies to

  
p∆V

Cp

CV
+ ∆pV = 0 (A-6)

It is standard notation to define the ratio of specific
heats by the constant γ

  Cp

CV
≡ γ (A-7)

thus Equation A-6 can be written in the more compact
form

  γp∆V + ∆pV = 0 (A-8)

The next few steps will look like they were extracted
from a calculus text.  They may or may not be too
familiar, but you should be able to follow them step-by-
step.

First we will replace   ∆V and   ∆p by dV and dp to
indicate that we are working with calculus differen-
tials.  Then dividing through by the product pV gives

  γ dV
V +

dp
p = 0 (A-9)

Doing an indefinite integration of this equation gives

  γ ln V + ln p = const (A-10)

The γ  can be taken inside the logarithm to give

  ln Vγ + ln p = const (A-11)

Next exponentiate both sides of Equation A-11 to get

  eln Vγ + ln p = econst = another const (A-12)

where  econst is itself a constant.  Now use the fact that
 ea + b = eaeb  to get

  eln Vγ
eln p = const (A-13)

Finally use  eln(x) = x  to get the final result

   
pVγ = const

adiabatic
expansion

(A-14)
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Equation A-14 is the formula for the adiabatic curve
seen in Figure (A-2).  During an isothermal expansion,
we have pV= RT where T is a constant.  Thus if we
compare the formulas for isothermal and adiabatic
expansions, we have for any ideal gas

   pV = const isothermal expansion

pVγ = const adiabatic expansion

γ = Cp /CV ratio of specific heats

Cp = CV + R

(A-15)

The Carnot Cycle
We now have the pieces in place to calculate the
efficiency of a Carnot cycle running on one mole of an
ideal gas.  The cycle is shown in Figure (11) repeated
here as Figure (A-3).

During the isothermal expansion from point 1 to 2, the
amount of heat  that flows into our mole of gas is equal
to the work  one by the gas.  By Equation A-2, this work
is

 W12 = QH = RTH ln V2/V1 (A-16)

The heat  QL expelled at the low temperature  TL  is
equal to the work we do compressing the gas isother-
mally in going from point 3 to  4.  This work is

 W34 = QL = RTC ln V4/V3 (A-17)

Taking the ratio of Equations A-16 to A-17 we get

 QH

QL
=

THln V2/V1

TCln V4/V3

(A-18)

The next step is to calculate the ratio of the logarithms
of the volumes using the adiabatic expansion formula

  pVγ = constant .

In going adiabatically from 2 to 3 we have

  p2V2
γ = p3V3

γ (A-19)

and in going from 4 to 1 adiabatically we have

  p4V4
γ = p1V1

γ (A-20)

Finally, use the ideal gas law pV = RT to express the
pressure p in terms of volume and temperature in
Equations A-19 and A-20.  Explicitly use

 p1 = RTH / V1 ; p2 = RTH / V2

p3 = RTH / V3 ; p4 = RTH / V4

(A-21)

to get for Equation (19)

  RTH

V2
V2

γ =
RTC

V3
V3

γ

or

  THV2
γ – 1 = TCV3

γ – 1 (A-22)

and similarly for Equation (20)

  THV1
γ – 1 = TCV4

γ – 1 (A-23)

as you can check for yourself.

V1T1

T1

T3

T3

V1 V4 V2 V3

pressure

p1

V2p2

V3p3

V4p4

volume

compression

isothermal

adiabatic
com

pression

adiabatic expansion

isotherm
al expansion

p3

p4

p2

p1

Figure A-3
The Carnot cycle.
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If we divide Equation A-22 by A-23 the temperatures
 TH and  TC cancel, and we get

  V2
γ – 1

V1
γ – 1 =

V3
γ – 1

V4
γ – 1

or

  V2
V1

γ – 1

=
V3
V4

γ – 1

(A-24)

Taking the  (   γ – 1)th root of both sides of Equation A-
24 gives simply

 V2
V1

=
V3
V4

(A-25)

Since  V2 /V1 = V3 /V4 , the logarithms in Equation A-
18 cancel, and we are left with the surprisingly simple
result

 QH
QL

=
TH
TL

(14 repeated)

which is our Equation 14 for the efficiency of a Carnot
cycle.  As we mentioned, when you are doing a
calculation and a lot of stuff cancels to give a simple
result, there is a chance that your result is more general,
or has more significance than you expected.  In this
case, Equation 14 is the formula for the efficiency of
any reversible engine, no matter how it is constructed.
We happened to get at this formula by calculating the
efficiency of a Carnot engine running on one mole of
an ideal gas.



CHAPTER 19 THE ELECTRIC IN-
TERACTION

Chapter 19
The Electric Interaction
Atomic & Molecular Forces

THE FOUR BASIC INTERACTIONS
The world around us is a complex place with enor-
mous variety of a myriad of interactions.  But if you
look in the right places, from the right point of view,
you may find great simplicity.  Planetary motion is
one example.  If you look at the sun and planets alone,
ignoring things on a larger scale like other stars and
galaxies, and on a smaller scale like the makeup of
the planets and the atmosphere of the sun, you have
a system of 10 objects whose behavior is accurately
determined by a single force law.  The system is
simple enough that mankind learned about physics
by studying it.

In this and the next chapter we take a first look at
several of the basic patterns and laws of physics.
Perhaps the most important discovery in the twenti-
eth century, actually more of a gradual realization
made during the first half of the twentieth century,
was that all of the phenomena of nature, everything
we see around us, can be explained in terms of four
basic forces or interactions.  In some circumstances,
as in the case of planetary motion, a single force
dominates and the structures it creates are obvious.
In most cases however, the structures are complex
and it is no easy task to uncover the underlying
forces.

What we will do in these two chapters is to describe
the four basic interactions, focusing our attention on
examples where the action of the force is most clearly
seen.  For the gravitational force, a planetary system
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provides the most clear and detailed example of a
structure created by gravity.  Using this example as
a guide we can see that larger structures like globu-
lar clusters and galaxies are an extension of the
gravitational interaction to more complex situa-
tions.  Although we do not attempt to calculate in
detail the motion of the millions or billions of stars
in such objects, we gain an intuitive feeling for the
kind of structures the gravitational interaction cre-
ates.

The electric interaction, the second of the four basic
interactions to be discovered, is most clearly seen at
an atomic level.  To introduce the electric interac-
tion, we will take the simple point of view that atoms
consist of a tiny nucleus made from protons and
neutrons, surrounded by electrons held to the nucleus
by the electric force.  The model should be familiar,
it is essentially a scaled down version of the solar
system, with an electric force replacing the gravita-
tional force.  After a brief discussion of the kinds of
nuclei that can be made from protons and neutrons,
we will look at the properties of the electric interac-
tion that give rise to complete atoms.  This involves
the concept of electric charge, the fact that electric-
ity, like gravity, is a  1 r21 r2  force law, and the fact that,
on an atomic scale, the electric force is much, much
stronger than gravity.

When you bring complete atoms close to each other,
there are weak residual electric forces which result
from small distortions of the atomic structure.  These
weak residual forces are the molecular forces that
hold atoms together to form molecules, crystals and
most of the variety we see in the world about us.  In
this chapter we will consider only the simplest
example of a molecular force to see how such
residual forces arise when atoms interact.

In the next chapter we leave the scale of atoms and
molecules and look down inside the atomic nucleus,
where we find two more forces at work.  There is an
attractive force, called the nuclear interaction, that is
even stronger than electricity.  It holds the nucleus
together against the electric repulsion between the
proton in the nucleus.  There is also another force,
called the weak interaction, which allows neutrons to
decay into protons and protons into neutrons (the β
decay reaction discussed in Chapter 6).  The nature of
nuclear reactions, the stability of atomic nuclei, and the
abundance of the elements depend upon a delicate
interplay of the nuclear, the weak, and the electric
interactions.

In the past 30 years we have been able to sharpen
our view of nuclear and subnuclear matter.  We have
been able to look inside the proton and neutron and
discover that they are not elementary particles, but
instead, composite objects made from quarks.  We
have also found that the basic nuclear force is the
one between quarks.  The force that holds protons
together in the nucleus is a residual of the quark
force, just as molecular forces that hold atoms
together are a residual of the electric force.  Because
of a mathematical analogy to the theory of color, the
force between quarks is called the color force.  The
color force now replaces the residual nuclear force
as one of the four basic interactions.

Once we see how nature can be explained in terms
of just four basic forces, we cannot help wondering
why the number is four.  Are there more basic forces,
some of them yet undetected?  Or are there fewer
than four basic forces, some of the four being equiva-
lent on a more fundamental level?

Jupiter

sun

planetary
system

hydrogen
atom

electron

proton

Figure 0
The classical model of the hydrogen atom
closely resembles a planetary system
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Einstein spent the latter half of his life trying to find a
unified way of viewing the gravitational and electric
interactions.  He tried to find a single more fundamen-
tal theory from which both electricity and gravity
emerged.  He did not succeed, and no one else has yet
done so either.  However from the knowledge gained by
looking inside the proton and neutron, the knowledge
that led to the discovery of quarks, Steven Weinberg
and Sheldon Glashow were able to construct a theory
that unified the electric and weak interactions.  These
two forces which appeared so different in their effects
on matter, turn out to be two components of a more
fundamental interaction.  Thus we are now down to
three basic interactions.  Why three?  Can these be
unified?  We do not know yet.

We end this discussion with another look at the
gravitational interaction.  On an atomic scale, grav-
ity is so weak compared to electricity that only
recently has it been experimentally determined that
electrons fall down rather than up in the earth’s
gravitational field.  The only reason we human
beings personally know about gravity is the fact that
we are standing on a huge chunk of matter, the earth.
It takes a lot of matter to create a big enough
gravitational force for us to notice.

But there is a lot of matter in the universe.  Some-
times, as in the case of a neutron star, so much
matter is packed in such a small space that the
gravitational force becomes stronger than the elec-
tric force.  In a neutron star, gravity has forced the
electrons back into the nucleus, to form pure nuclear
matter.  If the neutron star gets too big, if gravity gets
a bit stronger, it can overwhelm the nuclear force
and crush the star to form a black hole.  Gravity, a
force so weak that we could barely detect it using the
Cavandish experiment, can become the strongest of
all forces.

ATOMIC STRUCTURE
To set the stage for our discussion of the electric
interaction, we will first construct a brief overview
of atomic and nuclear structure.  The components of
atoms and nuclei that are of interest are the proton
and neutron found in the nucleus, and the electron
which orbits outside.  Protons and neutrons are each
about 1836 times as massive as the electron, thus
most of the mass of an atom is located in the nucleus.

The simplest of all atoms is hydrogen with one proton
for a nucleus and one electron outside.  The electron is
attracted to the proton by a  1/r2  electric force, just as
the earth is attracted to the sun by the  1/r2  gravitational
force.  And because the proton is much more massive
than the electron, the proton sits nearly at rest at the
center of the atom while the electron orbits outside,
much as the earth orbits the sun.

Also like the solar system, the atom is mostly empty
space.  A proton has a diameter of about  10–13 cm,
while a hydrogen atom is one hundred thousand
times bigger.  If the hydrogen atom were enlarged to
the point where the proton nucleus were the size of
the sun, the electron would be orbiting out at a
distance over 10 times the radius of the pluto’s orbit.
In this sense there is more empty space in an atom
than in the solar system.

In Newton’s law of gravity, the gravitational force
on an object is proportional to an object’s mass.  The
fact that all gravitational forces are attractive can be
viewed as a consequence of the fact that there is only
positive mass.  In the electric interaction, there are
both attractive and repulsive electric forces.  We will
see that for the electric interaction, the concept of
electric charge plays a role similar to that of mass for
the gravitational interaction.  The existence of both
attractive and repulsive electric forces leads to hav-
ing both positive and negative charge.
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One new feature of having both attractive and repul-
sive electric forces is that the net electric force
between two objects can be zero, due to the cancel-
lation of attractive and repulsive components.  This
cancellation of electric force can be represented by
a cancellation of electric charge, giving us an object
which we say is electrically neutral.  Because there
are no repulsive gravitational forces and no negative
mass, there is no such thing as a gravitationally
neutral object.

When an atom has the same number of electrons in
orbit as the number of protons in its nucleus, the
atom is electrically neutral.  If you have two electri-
cally neutral atoms separated by a reasonable dis-
tance, like the atoms in a gas, the electric forces
between the atoms cancel.  Thus neutral atoms in a
gas move by each other with almost no interaction.
There is an interaction only when the atoms get too
close in a collision and the electric forces no longer
cancel.

Atoms are classified by the number of protons in the
nucleus.  If the nucleus has one proton, the atom
belongs to the element hydrogen.  If there are 2
protons in the nucleus, it is a helium atom.  Three
protons gives us lithium, on up through the periodic
table.  The largest naturally occurring atom, on the
earth at least, is uranium with 92 protons.  Atoms
with over 100 protons in the nucleus have been
created artificially.

The periodic table, and the classification of the
elements, were developed by chemists studying the
chemical properties of matter.  However chemical
reactions, with the possible exception of cold fusion,
have virtually no effect on the atomic nucleus.  If you
have a lead nucleus with its 82 protons, there is no set
of chemical reactions that can change it to a gold
nucleus with 79 protons.  This is what doomed the
alchemists of the middle ages to failure.

The chemistry of an atom depends upon the behav-
ior of the electrons in an atom, and the electron
behavior depends significantly on the number of
electrons.  Since an electrically neutral atom has the
same number of electrons as protons, different ele-
ments with different numbers of protons have differ-
ent numbers of electrons and thus different chemical
properties.  For example, hydrogen with one elec-
tron is an excellent fuel, helium with 2 electrons is
chemically inert, and lithium with 3 electrons is a
highly reactive alkali metal.

The periodic table is not merely a list of atoms
according to the number of protons in the nucleus.
The table exhibits many striking patterns or regu-
larities in the chemical behavior of the elements.  For
example, helium with 2 electrons, neon with 10,
argon with 18, krypton with 36, xenon with 54 and
radon with 86 electrons are all chemically inert
gases.  These so-called noble gases enter into few if
any chemical reactions.  Now add one electron to
each of these atoms (and one proton to the nucleus),
and you get lithium (3 electrons), sodium (11 elec-
trons), potassium (19 electrons), etc., all reactive
alkali metals.

The patterns in the chemical properties of the ele-
ments exhibited by the periodic table are a conse-
quence of the electric interaction, but they cannot be
explained using Newtonian mechanics.  Scientists
had to wait until the discovery of quantum mechan-
ics before a detailed explanation of the periodic table
unfolded.  After we have discussed some of the basic
ideas of quantum mechanics in later chapters, we
will see that there are fairly simple explanations for
the main features of the periodic table, like the
difference between noble gasses and alkali metals
mentioned above.  For now, however, where we
have only developed a background of Newtonian
mechanics, we will go no further than treating the
periodic table as a list of the elements according to
the number of protons in the nucleus.
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Element Chemical No. of No. of
symbol protons neutrons

Hydrogen H 1 0
Helium He 2 2
Lithium Li 3 4
Beryllium Be 4 5
Boron B 5 6
Carbon C 6 6
Nitrogen N 7 7
Oxygen O 8 8
Fluorine F 9 10
Neon Ne 10 10
Sodium Na 11 12
Magnesium Mg 12 12
Aluminum Al 13 14
Silicon Si 14 14
Phosphorus P 15 16
Sulfur S 16 16
Chlorine Cl 17 18
Argon A 18 22
Potassium K 19 20
Calcium Ca 20 20
Scandium Sc 21 24
Titanium Ti 22 26
Vanadium V 23 28
Chromium Cr 24 28
Manganese Mn 25 30
Iron Fe 26 30
Cobalt Co 27 32
Nickel Ni 28 30
Copper Cu 29 34
Zinc Zn 30 34
Gallium Ga 31 38
Germanium Ge 32 42
Arsenic As 33 42
Selenium Se 34 46
Bromide Br 35 44
Krypton Kr 36 48
Rubidium Rb 37 48
Strontium Sr 38 50
Yttrium Y 39 50
Zirconium Zr 40 50
Niobium Nb 41 52
Molybdenum Mo 42 56
Technetium Tc 43 54 (> 100 yr)
Ruthenium Ru 44 58
Rhodium Rh 45 58
Palladium Pd 46 60
Silver Ag 47 60
Cadmium Cd 48 66
Indium In 49 66
Tin Sn 50 70
Antimony Sb 51 70
Tellurium Te 52 78

Element Chemical No. of No. of
symbol protons neutrons

Table 1
The most commonly found (most abundant in nature) isotope of each element is listed.  In
cases where an element has no stable isotopes, the isotope with the longest lifetime is listed.

Iodine I 53 74
Xenon Xe 54 78
Cesium Cs 55 78
Barium Ba 56 82
Lanthanum La 57 82
Cerium Ce 58 82
Praseodymium Pr 59 82
Neodymium Nd 60 82
Promethium Pm 61 86
Samarium Sm 62 90
Europium Eu 63 90
Gadolinium Gd 64 94
Terbium Tb 65 94
Dysprosium Dy 66 98
Holmium Ho 67 98
Erbium Er 68 98
Thulium Tm 69 100
Ytterbium Yb 70 104
Lutetium Lu 71 104
Hafnium Hf 72 108
Tantalum Ta 73 108
Tungsten W 74 110
Rhenium Re 75 112
Osmium Os 76 116
Iridium Ir 77 116
Platinum Pt 78 117
Gold Au 79 122
Mercury Hg 80 122
Thallium Tl 81 124
Lead Pb 82 126
Bismuth Bi 83 126
Polonium Po 84 124 (3 yr)
Astatine At 85 125 (8 hr)
Radon Rn 86 136 (3 days)
Francium Fr 87 136 (21 min)
Radium Ra 88 138 (1622 yr)
Actinium Ac 89 138 (22 hr)
Thorium Th 90 140 (80,000 yr)
Protactinium Pa 91 140 (34,000 yr)
Uranium U 92 146 (4.5 billion yr)
Neptunium Np 93 144 (2.2 million yr)
Plutonium Pu 94 145 (24,000 yr)
Americium Am 95 144 (490 yr)
Curium Cm 96 146 (150 day)
Berkelium Bk 97 150 (1000 yr)
Californium Cf 98 153 (800 yr)
Einsteinium Es 99 155 (480 days)
Fermium Fm 100 153 (23 hr)
Mendelevium Md 101 155 (1.5 hr)
Nobelium No 102 152 (3 sec)
Lawrencium Lw 103 154 (8 sec)
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nuclei, which have 2 protons usually also have 2
neutrons, but can be found with only one neutron.
Generally the light elements have roughly equal
numbers of protons and neutrons while the heavy
elements like uranium have a considerable excess of
neutrons.

Atoms of the same element with different numbers
of neutrons in the nucleus are called different iso-
topes of the element.  We distinguish different
isotopes of an element by appending to the name of
the element a number equal to the total number of
protons and neutrons in the nucleus.  The hydrogen
atom with just a single proton for a nucleus is
hydrogen-1.  If there is one neutron in addition to the
proton, the atom is called hydrogen-2, and with 2
neutrons and one proton, we have hydrogen-3.  These
isotopes and the isotopes of helium are indicated
schematically in Figure (2).

The naturally occurring isotope of uranium, an un-
stable element, but one with such a long half life (4.5
billion years) that it has survived since the formation
of the earth, is uranium-238 or U-238.  Since ura-
nium has 92 protons, the number of neutrons in U–
238 must be 238 - 92 = 144.  Another uranium
isotope, U–235 with 3 fewer neutrons, is a more
highly radioactive material from which atomic bombs
can be constructed.  (U–238 is so long–lived, so
stable that it is quite safe to handle.  There was some
discussion of using U–238 for the keels of America’s

Isotopes
The atomic nucleus contains not only the protons we
have been discussing, but also neutrons.  The nuclear
force, unlike the electric force, is the same between
protons and neutrons, and ignores electrons.  The
nuclear force between nucleons (protons or neu-
trons), is attractive if the nucleons are close but not
too close, and repulsive if you try to shove nucleons
into each other.  As a result, due to the nuclear force,
protons and neutrons in a nucleus stick to each other
forming a ball of nuclear matter as indicated in
Figure (1).  The nuclear force is strong enough to
hold the nucleus together despite the electrical re-
pulsion between the protons.  In the nucleus of a
given element, there is no precisely fixed number of
neutrons.  The hydrogen nucleus which has one
proton, can have zero, one, or two neutrons.  Helium

Figure 1a
Picture the nucleus
as a spherical ball
of protons and
neutrons.

Figure 2
Isotopes of hydrogen and helium.
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Model of the uranium nucleus constructed from
styrofoam balls. The dark balls represent protons.
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cup yachts because of its very high density, but this
was disallowed as being too high tech.)  A list of the
most common or longest lived isotopes for each
element is given in Table 1.

For historical reasons, the isotopes of hydrogen are
given special names.  Hydrogen-2, with one proton
and one neutron, is known as deuterium.  Just over
one in ten thousand hydrogen atoms in naturally
occurring hydrogen are the deuterium isotope.  Water
molecules (H

2
0), in which one of the hydrogen

atoms is the deuterium isotope, are called heavy
water.  Heavy water played an important role in the
unsuccessful German effort to build a nuclear bomb
during World War II.  Hydrogen–3, with one proton
and 2 neutrons, is called tritium.  Tritium is unstable
with a half life of 12.5 years.  Along with deuterium,
tritium plays an important role in mankind’s attempt
to build a nuclear fusion reactor.

Why are some isotopes stable while others are not?
Why are there roughly equal numbers of neutrons as
protons in the small stable isotopes and an excess of
neutrons in the large ones?  Why are some elements
more abundant than others—for example, why does
the earth have an iron core?  These are questions
whose answers depend upon an interplay inside the
nucleus between the nuclear, the electric, and the
weak interaction.  We reserve a discussion of these
questions for the next chapter where we discuss the
nuclear and weak interactions in more detail.

THE ELECTRIC FORCE LAW
Since electrons, protons, and neutrons make up
almost everything we see around us (except for
photons or light itself), a description of the electric
force between these three particles provides a fairly
complete picture of the electric interaction, insofar
as it affects our lives.  For electrons, protons, and
neutrons at rest, this interaction is completely sum-
marized in Figure (3).

As we see, protons repel each other, electrons repel
each other, and a proton and an electron attract each
other.  There is no electric force on a neutron.  The
strength of the electric force between these particles
drops off as  1/r2  and has a magnitude shown in
Equation 1.  We know, to extremely high precision,
that the attractive force between an electron and
proton has the same strength as the repulsive force
between two protons or two electrons, when the
particles have the same separation r.

It is surprising how complete a summary of the
electric interaction Figure (3) represents.  We have
only shown the forces between the particles at rest.
But if you combine these results with the special
theory of relativity, you can deduce the existence of
magnetism and derive the formulas for magnetic
forces.  We will do this in Chapter 28.

r

p p

Fe Fe
proton–proton

force

Fe Fe

ee
electron–electron

force

p e
proton–electron

force

Fe Fe

Figure 3
The electric interaction between protons and electrons
at rest.  There is no electric force on a neutron.

  
Fe (dynes) = 2.3×10–19

r2(cm2)
(CGS units)  (1)
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Strength of the Electric Interaction
If two electrons or two protons are separated by a
distance of one centimeter, then according to Equa-
tion 1 there is a repulsive force between them—
whose strength is   2.3×10–19  dynes.  Since a dyne is
the weight of one milligram of mass,   2.3×10–19

dynes is a very small force.  But, of course, protons
and electrons are very small particles.

To get a better idea of how strong the electric force is,
let us compare it with the gravitational force.  If we have
2 protons any distance r apart, then the ratio of the
electric repulsion to the gravitational attraction is

 electric repulsion
gravitational attraction

=
Fe

Fg

= 2.3 * 10– 19/r2

Gmpmp/r2

(2)

Since both electricity and gravity are  1/r2  forces, the
 r2 cancel out in Equation 2 and we are left with

  Fe

Fg

= 2.3 × 10– 19

Gmp
2

= 2.3 × 10– 19

6.67 × 10– 8 × 1.67 × 10– 24 2

= 1240000000000000000000000000000000000

(3)

The electrical force is some  1036 times stronger than
gravity.  This is true no matter how far apart the protons
are.  The only reason that electric forces do not com-
pletely swamp gravitational forces is that there are both
attractive and repulsive electric forces which tend to
cancel on a large scale, when many electrons and
protons are involved.

ELECTRIC CHARGE
From a historical perspective, the electric interac-
tion was carefully studied and the electric force law
well known long before the discovery of electrons
and nuclei, even before there was much evidence for
the existence of atoms.  The simple summary of the
electric force law given by Equation 1 could only be
written after the 1930s, when we finally began to
understand what was going on inside an atom.  Prior
to that, the electric force law was expressed in terms
of electric charge, a concept invented by Benjamin
Franklin.  What we want to do in this section is to
show how the concept of electric charge evolves
from the forces pictured in Figure (3), and why
electric charge is such a useful concept.

To convert Equation 1 into the more standard form of
the electric force law, we will begin by writing
the numerical constant   2.3×10–19 dyne cm2, or

  2.3×10–20 newton meter2 , in the form   Ke2  to give

  
Fe electron = Ke2

r2

electric force
between two
electrons

(4)

where e is called the charge on an electron and k is
a numerical constant whose size depends on the
system of units we are using.

The form of Equation 4 is chosen to make the electric
force law look like the gravitational force law.  To see
this explicitly, compare the formulas for the magnitude
of the electric and the gravitational forces between two
electrons

 Fgravitational =
Gmeme

r2

Felectric = Kee
r2 (5)
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however, to be far more convenient when working
with practical or engineering applications of electri-
cal theory.  As a result we will use the MKS system
throughout the chapters on electric fields and their
application, and restrict our use of the CGS system
to discussions of atomic phenomena.

You will notice that the dimensions of e, displayed in
Equation 4 are fairly messy.  To avoid writing

 dynes cm2  all the time, this set of units is given the
name esu which stands for electric charge as measured
in the electrostatic system of units.  Thus we can
rewrite Equation 7 as

  e = 4.8 × 10– 10 esu (7a)

as the formula for the amount of charge on an
electron.  (In the MKS system, electric charge is
measured in coulombs rather than esu.  The differ-
ence between a coulomb and an esu arises not only
from the different set of units (newtons vs dynes) but
also from the different choice of K in the MKS
system.  Any further discussion of the MKS system
will be reserved for later chapters.

Exercise 1

What would be the value of the electric force constant
K in a system of units where distance was measured
in centimeters and the charge e on the electron was
set equal to 1?

In words, we said that the gravitational force be-
tween two electrons was proportional to the product
of the masses  me, and inversely proportional to the
square of the separation  1/r2.   Now we say that the
electric force is proportional to the product of the
charges (e), and inversely proportional to the square
of the distance  1/r2.   By introducing the constant  (e)
as the charge on the electron, we have electric
charge playing nearly the same role for the electric
force law as mass does for the gravitational force
law.

To get the numerical value for the charge (e) on an
electron, we note that in the CGS system of units it is
traditional to set the proportionality constant (K) equal
to one, giving

  

Fe CGS = e2

r2

electric force
law in CGS
units (K = 1)

(6)

Comparing Equations 1 and 6 we get

   e2 = 2.3×10– 19 dynes cm2

e = 4.8×10– 10 dynes cm2
charge on
electron in
CGS units

(7)
In the MKS system, the proportionality constant K
is not 1, therefore Equation 6 does not apply to that
system.  Calculations involving electric forces on an
atomic scale are simpler in the CGS system because
of the choice K = 1.  The MKS system turns out,
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Positive and Negative Charge
It was Ben Franklin who introduced the concept of
two kinds of electric charge.  Franklin noticed that
you get opposite electrical effects when you rub a
glass rod with silk, or rub a rubber rod with cat fur.
He decided to call the charge left on the glass rod
positive charge, and the charge left on the rubber rod
negative charge.  What we will see in this section is
how this choice of positive and negative charge
leads to the electron having a negative charge – e,
and a proton a positive charge + e.

charge on an electron  =  – e (8a)

charge on a proton       =  + e (8b)

Despite the fact that the electron’s charge turns out
to be negative, e is still called the charge on an
electron.

The basis for saying we have two kinds of charge is
the fact that with the electric interaction we have
both attractive and repulsive forces.  With the choice
that electrons are negative and protons are positive,
then the rules shown in Figure 3  can be summarized
as follows: like charges (2 protons or 2 electrons)
repel, opposite charges (proton and electron) at-
tract.  We can explain the lack of any force on the
neutron by saying that the neutron has no charge—
that it is neutral.

Choosing one charge as positive and one as negative
automatically gives us a reversal in the direction of
the force when we switch from like to opposite
charges

 
Fe proton proton =

+ e + e

r2 = e2

r2

Fe electronelectron =
– e – e

r2 = e2

r2

Fe electronproton =
– e + e

r2 = – e2

r2

(9)

Addition of Charge
The concept of charge is particularly useful when we
have to deal with complex structures involving
many particles.  To see why, let us start with the
simplest electrical structure, the hydrogen atom, and
gradually add more particles.  We will quickly see
that the electric force law, in the form  Fe = e2/r2

becomes difficult to use.

In Figure (4) we have a model of the hydrogen atom
consisting of a proton at the center and an electron
orbiting about it.  The proton sits nearly at rest at the
center because it is 1836 times as massive as the
electron, much as our sun sits at the center of our
solar system because it is so much more massive
than the planets.

The proton and electron attract each other with a
force of magnitude (in CGS units) of  Fe = e2/r2.
Since this is similar in form to the gravitational force
between the earth and the moon, we expect the
electron to travel in elliptical orbits around the
proton obeying Kepler’s laws.  This would be ex-
actly true if Newton’s laws worked on the small
scale of the hydrogen atom as they do on the larger
scale of the earth-moon system.

Figure 4
The hydrogen atom consists of a proton at the center with
an electron moving about it.  The particles are held
together by the attractive electric force between them.

e

p
Fe

Fe
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If the separation r of the atoms is large compared to
the diameter of each hydrogen atom, then all these
eight forces have essentially the same magnitude

 e2/r2. Since half are attractive and half are repulsive,
they cancel and we are left with no net force between
the atoms.

Exercise 3

A complete carbon atom has a nucleus with 6 pro-
tons, surrounded by 6 orbiting electrons.  If you have
two complete separate carbon atoms, how many
forces are there between the particles in the two
different atoms?

With just two simple hydrogen atoms we have to
deal with 8 forces in order to calculate the total force
between the atoms.  If we have to deal with some-
thing as complex as calculating the force between
two carbon atoms, we have, as you found by doing
Exercise 3, to deal with 72 forces.  Yet the answer is
still zero net force.  There must be an easier way to
get this simple result.

The easier way is to use the concept of net charge Q
which is the sum of the charges in the object.  A
hydrogen atom has a net charge

 Q hydrogen = + e proton + – e electron

= 0 (10)

The net force between two objects with net charges
 Q1 and  Q2 is simply

  

Fnet =
KQ1Q2

r2
Coulomb's law, where
K = 1 for CGS units

(11)

Equation 1, which looks very much like Newton’s
law of gravity, except that charge replaces mass, is
known as Coulomb’s law.  The proportionality
constant K is 1 for CGS units.

Exercise 2 (Do this now)

Hydrogen atoms are approximately  10–8  cm in diam-
eter.  Assume that the electron in the hydrogen atom
in Figure (4) is traveling in a circular orbit about the
proton.  Use Newton’s law  F = ma and your knowl-
edge about the acceleration a  of a particle moving in
a circular orbit to predict the speed, in cm/sec, of the
electron in its orbit.  How does the electron’s speed
compare with the speed of light?  (It had better be
less.)

An analysis of the hydrogen atom is easy and straight
forward using the force law  Fe = e2/r2.  But the
analysis gets more difficult as the complexity of the
problem increases.  Suppose, for example, we have
two hydrogen atoms separated by a distance r.  Let
r   be quite a bit larger than the diameter of a hydrogen
atom, as shown in Figure (5a).

Even though r is much larger than the size of the
individual hydrogen atoms, there are still electric
forces between the protons and electrons in the two
atoms.  The two protons repel each other with a force

 Fpp, the electrons repel each other with a force  Fee,
the proton in the left atom attracts the electron in the
right atom with a force  Fep.  Sa you can see, eight
separate forces are involved, as shown in Figure
(5b).

Figure 5
When we have two hydrogen atoms fairly far apart,
then there is essentially no net force between the atoms.
The reason is that the repulsive forces between like
particles in the two atoms are cancelled by the
attractive force between oppositely charged particles.

r

H atom H atom

(a)  Two hydrogen atoms separated by a distance r 

p

e
Fee Fee

pp   F pe F

pe F

p

e

pp   Fpe F

pe F

(b)  Forces between the particles in the two atoms

pp   F Fee pe F= = = e  /r2 2
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Applying Coulomb’s law to the force between two
complete carbon atoms, we see immediately that the
complete atoms have zero net charge, and therefore
by Coulomb’s law there is no net force between
them.  The cancellation of individual forces seen in
Figure (4) is accounted for by the cancellation of
charge in Coulomb’s law.

To see that the addition of charge and Coulomb’s
law work in situations where charge does not cancel,
suppose we had two helium nuclei separated by a
distance r.  (A bare helium nucleus, which is a
helium atom missing both its electrons, would be
called a doubly ionized helium atom.)  In Figure (6)
we have sketched the forces between the two pro-
tons in each nucleus.  Both protons in nucleus
number 1 are repelled by both protons in nucleus
number 2, giving rise to a net repulsive force four
times as strong as the force between individual
protons, or a force of magnitude  4e2/r2.

Applying Coulomb’s law to these two nuclei, we see
that the charge on each nucleus is 2e, giving for the
charges  Q1  and  Q2

 Q1  = 2e = total charge on nucleus #1

 Q2  = 2e = total charge on nucleus #2

Thus Coulomb’s law gives (with K = 1 for CGS
units)

 Fe =
Q1Q2

r2 =
2e 2e

r2 = 4e2

r2 (12)

which is in agreement with Figure (6).

Exercise 4
This exercise is designed to give you a more intuitive
feeling for the enormous magnitude of the electric
force, and how complete the cancellation between
attractive and repulsive forces is in ordinary matter.

Imagine that you could strip all the electrons from two
garden peas, leaving behind two small balls of pure
positive charge.  Assume that there is about one mole
(6 x 1023) protons in each ball.

(a) What is the total charge Q on each of these two
balls of positive charge?  Give the answer in esu.

(b) The two positively charged peas are placed one
meter (100 cm) apart as shown.  Use Coulomb’s law

to calculate the magnitude of the repulsive force
between them.  Give your answer in dynes and in
metric tons.  (1 metric ton = 109 dynes ≈ 1 english ton.)

If you worked Exercise 4 correctly, you found that
two garden peas, stripped of all electrons and placed
one meter apart, would repel each other with a force
of nearly  1016  tons!  Yet when you actually place
two garden peas a meter apart, or only a centimeter
apart, there is no observable force between them.
The  1016  ton repulsive forces are so precisely can-
celled by  1016  ton attractive forces between elec-
trons and protons that not even a dyne force remains.

Exercise 5

What would be the repulsive force between the peas
if only one in a billion (one in 109) electrons were
removed from each pea, and the peas were placed
one meter apart?

1 2

tot   F = 4 e   2

r2(     )

r

p

p

p

p

Figure 6
We see that the repulsive force between 2 helium
nuclei is 4 times as great as the repulsion   e2/ r2

between 2 protons.  Using Coulomb’s law
  F = Q1 Q2/ r2  with   Q1 = Q2 = 2 e for the helium

nuclei gives the same result.

r = 1 meter

Fe Fe
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CONSERVATION OF CHARGE
Up to this point, we have used the concept of electric
charge to simplify the calculation of the electric force
between two objects containing many electrons and
protons.  But the fact that electrons and protons have
precisely opposite charges suggests that in nature elec-
tric charge has a deeper significance.  That deeper
significance is the conservation of electric charge.  Like
the conservation of energy, linear momentum, and
angular momentum, the conservation of electric charge
appears to be a basic law with no known exceptions.

When we look beyond the familiar electrons and
protons, into the world of subnuclear particles, we find
a bewildering array of hundreds of different kinds of
particles.  In the chaos of such an array of particles, two
features stand out.  Almost all of the particles are
unstable, and when the unstable particles decay, elec-
tric charge is conserved.  In looking at the particle
decays, it becomes clear that there really is something
we call electric charge that is passed from one particle
to another, and not lost when a particle decays.

We will illustrate this with a few examples.  We have
already discussed several unstable particles, the muon
introduced in the muon lifetime experiment, the π
mesons, created for cancer research, and the neutron
which, by itself outside a nucleus, has a half life of nine
minutes.  The muon decays into an electron and a
neutrino, and the neutron decays into a proton, electron
and an antineutrino (the antiparticle of the neutrino).
There are three separate π mesons.  The negative
charged one decays into an electron and an antineutrino,
the positive one into a positron (antielectron) and
neutrino, and the neutral one into two photons.

We can shorten our description of these decays by
introducing shorthand notation for the particles and
their properties.  We will use the Greek letter µ  (mu)
for the muon, π for the π mesons, ν  (nu) for the neutrino
and γ  (gamma) for protons.  We designate the charge
of the particle by the superscript + for a positive charge,
– for a negative, and 0 for uncharged.  Thus the three π
mesons are designated  π+,  π0, and  π– for the positive,
neutral and negative ones respectively.  In later discus-
sions, it will be useful to know whether we are dealing

with a particle or an antiparticle.  We denote antipar-
ticles by putting a bar over the symbol, thus ν represents
a neutrino, and ν an antineutrino.  Since a particle and
an antiparticle can annihilate each other, a particle and
an antiparticle must have opposite electric charges if
they carry charge at all, so that charge will not be lost
in the annihilation.  As a result the antiparticle of the
electron  e– is the positively charged positron which we
designate  e+.

Using these conventions, we have the following nota-
tion for the particles under discussion (photons and
neutrinos are uncharged):

Notation Particle Particle
 p+ proton  ν0 antineutrino
 n0 neutron  µ– muon
 e– electron  π+ pi plus
 e+ positron  π0 pi naught
 γ0 photon  π– pi minus
 ν0 neutrino

The particle decays we just described can now be
written as the following reactions.

  µ– → e– + ν0 muon decay (a)

  n → p+ + e– + ν0   neutron decay (b)

  π– → e+ + ν0 pi minus decay (c)

  π0 → γ0 + γ0 pi naught decay (d)

  π– → e– + ν0 pi minus decay (e) (14)

Note that in all of these decays, the particles change
but the charge does not.  If we start with a negative
charge, like the negative muon, we end up with a
negative particle, the electron.  If we start with a
neutral particle like the  π0, we end up with no net
charge, in this case two photons.

Among the hundreds of elementary particle decays
that have been studied, no one has found an example
where the total charge changed during the process.
It is rather impressive that the concept of positive
and negative charge, introduced by Ben Franklin to
explain experiments involving rubber rods and cat
fur, would gain even deeper significance at the
subnuclear level.
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Stability of Matter
The conservation of electric charge may be related to
the stability of matter.  The decay of elementary
particles is not an exceptional occurrence, it is the
general rule.  Of the hundreds of particles that have
been observed, only four are stable, the proton, the
electron, the photon and the neutrino.  (Neutrons are
also stable if buried inside a nucleus, for reasons we will
discuss in the next chapter.)  All the other particles
eventually, and often very quickly, decay into these
four.

The question we should ask is not why particles decay,
but instead why these four particles do not.  We know
the answer in the case of two of them.  Photons, and
perhaps, neutrinos, have zero rest mass.  As a result they
travel at the speed of light, and time does not pass for
them.  If a photon had a half life, that half life would
become infinite due to time dilation.

Why is the electron stable?  It appears that the stability
of the electron is due to the conservation of energy and
electric charge.  The electron is the least massive
charged particle.  There is nothing for it to decay into
and still conserve charge and energy.

That leaves the proton.  Why is it stable?  We do not
know for sure.  There are a couple of possibilities which
are currently under study.  One is that perhaps the
proton has some property beyond electric charge that is
conserved, and that the proton is the least massive
particle with this property.  This was the firm belief
back in the 1950s.

In the 1960s, with the discovery of quarks and the
combining of the electric and weak interaction theo-
ries, it was no longer obvious that the proton was stable.
Several theories were proposed, theories that attempted
to unify the electric, weak, and nuclear force.  These so–
called Grand Unified Theories or GUT for short,
predicted that protons should eventually decay, with a
half life of about  1031 years.  Since the universe is only

 1010 years old, that is an incredibly long time.

It is not impossible to measure a half life of  1031 years.
You do not have to wait that long. Instead you look at

 1031 or  1032  particles, and see if a few decay in one
year.  Since a mole of particles is   6×1023 particles, you
need about a billion moles of protons for such an

experiment.  A mole of protons (hydrogen) weighs one
gram, a billion moles is a million kilograms or a
thousand metric tons.  You get that much mass in a cube
of water 10 meters on a side, or in a large swimming
pool.  For this reason, experiments designed to detect
the decay of the proton had to be able to distinguish a
few proton decays per year in a swimming pool sized
container of water.

So far none of these detectors has yet succeeded in
detecting a proton decay (but they did detect the
neutrinos from the 1987 supernova explosion).  We
now know that the proton half-life is in excess of  1032

years, and as a result the Grand Unified Theories are in
trouble.  We still do not know whether the proton is
stable, or just very long lived.

Quantization of Electric Charge
Every elementary particle that has been detected indi-
vidually by particle detectors has an electric charge that
is an integer multiple of the charge on the electron.
Almost all of the particles have a charge
+ e or – e, but since the 1960s, a few particles with
charge 2e  have been observed.  Until the early 1960s
it was firmly believed that this quantization of charge
in units of + e or – e was a basic property of electric
charge.

In 1961, Murray Gell-Mann, who for many years had
been trying to understand the bewildering array of
elementary particles, discovered a symmetry in the
masses of many of the particles.  This symmetry, based
on the rather abstract mathematical group called SU2,
predicted that particles with certain properties, could
be grouped into categories of 8 or 10 particles.  This
grouping was not unlike Mendeleev’s earlier grouping
of the elements in the periodic table.

When the periodic table was first constructed, there
were gaps that indicated missing, as yet undiscovered
elements.  In Gell-Mann’s SU3 symmetry there were
also gaps, indicating missing or as yet undetected
elementary particles.  In one particular case, Gell-
Mann accurately predicted the existence and the prop-
erties of a particle that was later discovered and named
the   ω– (omega minus).  The discovery of the   ω– verified
the importance of Gell-Mann’s symmetry scheme.
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In 1964 Gell-Mann, and independently George Zweig
also from Caltech, found an exceedingly simple
model that would explain the SU3 symmetry.  They
found that if there existed three different kinds of
particles which Gell-Mann called quarks, then you
could make up all the known heavy elementary
particles out of these three quarks, and the particles
you make up would have just the right SU3 symme-
try properties.  It was an enormous simplification to
explain hundreds of “elementary particles” in terms
of 3 kinds of quarks.

Our discussion of quarks will be mainly reserved for
the next chapter.  But there is one property of quarks
that fits into our current discussion of electric charge.
The charge on a quark or anti quark can be + 1/3 e,
– 1/3 e, + 2/3 e or – 2/3 e.  The charge e on the electron
turns out not to be the fundamental unit of charge.

An even stranger property of quarks  is the fact that
they exist only inside elementary particles.  For
example, a proton or neutron is made up of three
quarks and a π meson of two.  All particles made
from quarks have just the right number of quarks, in
just the right combination, so that the total charge of
the particle is an integer multiple of the electron
charge e.  Although the quarks themselves have a
fractional charge ± 1/3 e or ± 2/3 e, they are always
found in combinations that have an integer net
charge.

You might ask, why not just tear a proton apart and
look at the individual quarks?  Then you would see
a particle with a fractional charge.  It now appears
that, due to an unusual property of the so-called
color force between quarks, you cannot simply pull
quarks out of a proton.  The reason is that the color
force, unlike gravity and electricity, becomes stron-
ger, not weaker, as the separation of the particles
increases.  We will see later how this bizarre feature
of the color force makes it impossible to extract an
individual quark from a proton.

MOLECULAR FORCES
A naïve application of Coulomb’s law would say
that complete atoms do not interact.  A complete
atom has as many electrons outside as protons in the
nucleus, and thus zero total charge.  Thus by
Coulomb’s law, which says that the electric force
between two objects is proportional to the product of
the charges on them, one would predict that there is
no electric force between two complete atoms.  Tell
that to the two hydrogen atoms that bind to form
hydrogen molecules, oxygen atoms that bind to
form to  O2  molecules we breathe, or the hydrogen
and oxygen atoms that combine to form the water
molecules we drink.  These are all complete atoms
that have combined together through electric forces
to form molecular structures.

The reason that neutral atoms attract electrically to
form molecules is the fact that the negative charge in
an atom is contained in the electrons which are
moving about the nucleus, and their motion can be
affected by the presence of other atoms.

When trying to understand molecular forces, the
planetary picture of an atom, with electrons in orbits
like the planets moving around the sun, is not a
particularly useful or accurate model.  A more useful
picture, which has its origin both in quantum me-
chanics and Newtonian mechanics is to picture the
electrons as forming a cloud of negative charge
surrounding the nucleus.  You can imagine the
electrons as moving around so fast that, as far as
neighboring atoms are concerned, the electrons in an
atom simply fill up a region around the nucleus with
negative electric charge.  When doing accurate cal-
culations with quantum mechanics, one finds that
the electron clouds have definite shapes, shapes
which the chemists call orbitals.

One does not need quantum mechanics in order to
get a rough understanding of the origin of molecular
forces.  Simple arguments about the behavior of the
electron clouds gives a fairly good picture of what
the chemists call covalent bonding.  We will illus-
trate this with a discussion of the hydrogen mol-
ecule.
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Hydrogen Molecule
To construct a hydrogen molecule, imagine that we
start with a single proton and a complete hydrogen
atom as indicated in Figure (7a).  Here we are
representing the hydrogen atom by a proton with the
electron moving around to more or less fill a spheri-
cal region around the proton.  In this case the
external proton is attracted to the sphere of negative
charge by a force that is as strong as the repulsion
from the hydrogen nucleus.  As a result there is very
little force between the external proton and the
neutral atom.  Here, Coulomb’s law works.

Now bring the external proton closer to the hydro-
gen atom, as shown in Figure (7b).  Picture the
hydrogen nucleus as fixed, nailed down, and look at
what happens to the hydrogen electron cloud.  The
electron is now beginning to feel the attraction of the
external proton as well as its own proton.  The result
is that the electron cloud is distorted, sucked over a
bit toward the external proton.  Now the center of the
electron cloud is a bit closer to the external proton
than the hydrogen nucleus, and the attractive force
between the electron cloud and the proton is slightly
stronger than the repulsive force between the pro-
tons.  The external proton now feels a net attractive
force to the neutral hydrogen atom because of the
distortion of the electron cloud.  A naïve application
of Coulomb’s law ignores the distortion of the
electron cloud and therefore fails to predict this
attractive force.

Since the external proton in Figure (7b) is attracted
to the hydrogen atom, if we let go of the proton, it
will be sucked into the hydrogen atom.  Soon the
electron will start orbiting about both protons, and
the external proton will be sucked in until the repul-
sion between the protons just balances the electrical
attraction.

Figure 7c
If the protons get too close, they repel each other.  As
a result there must be some separation where there is
neither attraction or repulsion.  This equilibrium
separation for the protons in a hydrogen molecule ion
is 1.07 Angstroms.  (1 Angstrom =   10– 8  cm.)

Figure 7b
When the proton gets close, it distorts the hydrogen
electron cloud.  Since the distorted cloud is closer to
the external proton, there is a net attractive force
between the proton and the distorted hydrogen atom.

Figure 7a
Formation of a hydrogen molecule ion.  To visualize
how a hydrogen molecule ion can be formed,
imagine that you bring a proton up to a neutral
hydrogen.

protron

electron

hydrogen atom

(a)  A proton far from a complete hydrogen atom.

(c)  Electron orbits both protons Hydrogen molecule ion

electron cloud formed
by one electron

protron

Fe Fe

hydrogen atom(b)  The external proton is brought closer 
       distorting the electron cloud

Since the two protons are identical, the electron will
have no reason to prefer one proton over the other,
and will form a symmetric electron cloud about both
protons as shown in Figure (7c).  The result is a
complete and stable object called a hydrogen mol-
ecule ion.
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The final step in forming a hydrogen molecule is to
note that the hydrogen molecule ion of Figure (7c)
has a net charge +e, and therefore will attract another
electron.  If we drop in another electron, the two
electrons form a new symmetric cloud about both
protons and we end up with a stable  H2  molecule,
shown in Figure (8).

Although the discussion related to Figures (7, 8) is
qualitative in nature, it is sufficient to give a good
picture of the difference in character between atomic

and molecular forces.  Atomic forces, the pure  e2/r2

Coulomb force that binds electrons to the nucleus, is
very strong and fairly simple to understand.  Mo-
lecular forces, which are also electrical in origin but
which depend on subtle distortion of the electron
clouds, are weaker and more complex.  Molecular
forces are so subtle that you can make very complex
objects from them, for example, objects that can
read and understand this page.  The sciences of
chemistry and biology are devoted primarily to
understanding this complexity.

Figure 8
The hydrogen molecule ion of Figure (7c) has a net
positive charge +e, and therefore can attract and hold
one more electron.  In that case both electrons orbit both
protons and we have a complete hydrogen molecule.
The equilibrium separation expands to 1.48 Angstroms.

 Hydrogen molecule

2 electrons moving
about both protons
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Molecular Forces—A More
Quantitative Look
It is commonly believed that quantum mechanics,
which can be used to predict the detailed shape of
electron clouds, is needed for any quantitative un-
derstanding of molecular forces.  This is only partly
true.  We can get a fair understanding of molecular
forces from Newtonian mechanics, as was demon-
strated by the student Bob Piela in a project for an
introductory physics course.  This section will closely
follow the approach presented in Piela’s project.

In this section we will discuss only the simplest of all
molecules, the hydrogen molecule ion consisting of
two protons and one electron and depicted in Figure
(7c).  We will use Newtonian mechanics to get a
better picture of how the electron holds the molecule
together, and to see why the lower, the more nega-
tive the energy of the electron, the more tightly the
protons are bound together.

If you do a straightforward Newtonian mechanics
calculation of the hydrogen molecule ion, letting all
three particles move under the influence of the
Coulomb forces between them, the system eventu-
ally flies apart.  As a number of student projects
using computer calculations have shown, eventu-
ally the electron gets captured by one of the protons
and the other proton gets kicked out of the system.
With Newtonian mechanics we cannot explain the
stability of the hydrogen molecule ion, quantum
mechanics is required for that.

Piela avoided the stability problem by assuming that
the two protons were fixed at their experimentally
known separation of   1.07 × 10– 8 cm (1.07 ang-
stroms) as shown in Figure (9a), and let the com-
puter calculate the orbit of the electron about the two
fixed protons, as seen in Figure (9b).  By letting the
calculation run for a long time and plotting the
position of the electron at equal intervals of time, as
in a strobe photograph of the electron’s motion, one
obtains the dot pattern seen in Figure (9c).  This dot
pattern can be thought of as the classical electron
cloud pattern for the electron.

Figure 9
Orbit of an electron about two fixed protons.

F1

F2

electron

protons
a)  Electric force acting on the electron.

c)  Dots showing the position of the
electron at equal time intervals
(effectively a strobe photograph).

b)  Line drawing plot of the orbit of
the electron about the two protons
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The Bonding Region
Of the dots we have drawn in Figure (9c) some are
more effective than others in holding the molecule
together.  When the electron is between the protons,
it pulls in on both protons providing a net bonding
force.  But when the electron is outside to the left or
right, it tends to pull the protons apart.  We can call
the region where the electron gives rise to a net
attractive force the bonding region, while the rest of
space, where the electron tends to pull the protons
apart, can be called the anti-bonding region.

To see how we can distinguish the bonding from the
anti-bonding region, consider Figure (10) where we
show the forces the electron exerts on the protons for
several positions of the electron.  In (10a), the
electron is between but above the protons, giving
rise to the forces  F1  and  F2  shown.  We also show
the  x  components which are  F1x  and  F2x . These
components are of more interest to us than  F1  and

 F2  because the electron, while in orbit, will spend an

equal time above and below the protons.  Thus on the
average the y components cancel, and the net effect
of the electron is described by the x components  F1x
and  F2x  alone.  We can see from Figure (10a) that

 F1x  and  F2x  are pulling the protons together.  This
electron is clearly in the bonding region.

It is a little bit harder to see the anti-bonding forces.
In Figure (10b), we show the electron first to the left
of the protons, then to the right.  Again we concen-
trate on the x components  F1x  and  F2x  because the y
components will, on the average, cancel.  However,
for orbits like that shown in Figure (9b), the electron
spends the same amount of time on the left as the
right, and thus we should average  F1x  and  F2x  for
these two cases.  When we do this, we see that the
average  F1x  points left, the average  F2x  points right,
and these two average forces are pulling the protons
apart.

anti-
bonding 
region

F1

F1x

F2

F2x

electron

b)  When the electron is in the anti-bonding region, the average 
     x component of its electric forces pulls the protons apart. 
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a)  When the electron is in the bonding region, 
     the x component of its electric forces pulls
     the protons together. (The y components
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Figure 10
Bonding and anti bonding regions. When the electron is in the bonding region,
the electric force exerted by the electron on the protons pulls the protons together.
When in the anti-bonding region, the electric force pulls the protons apart.
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If you are calculating an orbit and want to test
whether the electron is in the bonding or anti-
bonding region, simply compare  F1x  and  F2x .  If  the
electron is to the right of the protons and  F1x  is
bigger than  F2x , the protons are being pulled apart.
If you are to the left of the protons, and  F2x  is bigger
than  F1x , then again the protons are being pulled
apart.  Otherwise the protons are being pulled to-
gether and the electron is in the bonding region.

In Figure (11), we replotted the electron dot pattern
of Figure (9c), but before plotting each point, checked
whether the electron was in the bonding or anti-
bonding region.  If it were in the bonding region, we
plotted a dot, and if it were in the anti-bonding region
we drew a cross.  After the program ran for a while,
it became very clear where to draw the lines separat-
ing the bonding from the anti-bonding regions.

Electron Binding Energy
One of the features of Figure (12) is that there are
many dots out in the anti-bonding region.  It looks as
if there are more dots out there pulling the protons
apart than inside holding them together.  In this case
is the electron actually helping to hold the molecule
together?

One way to tell whether or not a system will stay
together or fall apart is to look at the total energy of
the system.  If it costs energy to pull a system apart,
it will stay together.  But if energy is released when
a system comes apart, it will fall apart.

In our earlier discussion in Chapter 8 of the motion
of a satellite around the earth, we saw that if the total
energy of the satellite were negative, the satellite
would be bound to the earth and could not escape.
On the other hand, if the total energy of the satellite
were positive, the satellite would eventually escape
no matter what direction it was heading (assuming it
did not crash).  These predictions about total energy
applied if we did not include rest energy, and as-
sumed that the gravitational potential energy was
zero when the satellite and earth were infinitely far
apart.  This gave us as the formula for gravitational
potential energy

  
Etot

planet
and

satellite
= 1

2
msv

2 –
Gms Me

r (8-29)

where  ms  and  Me  are the masses of the satellite and
earth, and v the speed of the satellite.

In describing the motion of an electron in an atom or
molecule, we can use the convention that the
electron's electric potential energy is zero when it is
infinitely far away from the protons.  With this
convention, the formula for the electric potential
energy between an electron and a proton a distance
r  apart is  – Ke2 / r , which is analogous to the
gravitational potential energy  – GmsMe/ r .  (Sim-
ply replace  GmsMe  by K  e2  to go from a discussion
of gravitational forces in satellite motion to electric
forces in atoms.)

bonding 
region

anti-
bonding 
region

anti-
bonding 
region

b) The area of dots in a) show us where the 
    bonding region is.

a) Electron cloud for a –10eV electron. Points in 
    the bonding region are plotted as dots, outside
    in the anti-bonding region as crosses.

Figure 12
Determining the bonding region from the computer plot.
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Thus the formula for the total energy of an electron
in orbit about a single stationary proton should be (in
analogy to Equation 8-29)

  
Etot

electron
and

proton
= 1

2
mev2 – Ke2

r (15)

where  me  is the mass of the electron, v its speed, and
r the separation between the electron and proton.

Just as in the case of satellite motion, the total energy
tells you whether the electron is bound or will
eventually escape.  If the total energy is negative, the
electron cannot escape, while if the total energy is
positive, it must escape.

Another way of describing the electron's behavior is
to say that if the electron's total energy is negative,
it is down in some kind of a well and needs outside
help, outside energy, in order to escape.  The more
negative the electron's total energy, the deeper it is
in the well, and the more tightly bound it is.  We can
call the amount by which the electron's total energy
is negative the binding energy of the electron.  The
binding energy is the amount of energy that must be
supplied to free the electron.

Electron Volt as a Unit of Energy
In discussing the motion of an electron in an atom,
quantities like meters and kilograms and joules are
awkwardly large.  There is, however, a unit of
energy that is particularly convenient for discussing
many applications, including the motion of elec-
trons in atoms.  This unit of energy, called the
electron volt (abbreviated eV), is the amount of
energy an electron would gain if it hopped from the
negative to the positive terminal of a 1 volt battery.
The numerical value is

  1 electron volt eV = 1.6 × 10– 19joules

= 1.6 × 10– 12ergs (16)

As an example, an electron in a cold (unexcited)
hydrogen atom has a total energy of –13.6 eV.  The
fact that the electron's energy is negative means that
the electron is bound to the proton–cannot escape.

The value –13.6 eV means that, in order to pull the
electron out of the hydrogen atom, we would have to
supply 13.6 eV of energy.  In other words, the
binding energy of the electron in a cold hydrogen
atom is 13.6 eV.  The number is 13.6 eV is much
easier to discuss and remember than

  2.16 × 10 – 18joules .

Another unit that is convenient for discussing atoms
is the angstrom (abbreviated   A° ) which is  10– 8cm
or  10– 10  meters.

  1 Angstrom A° = 10– 8cm

= 10– 10m (17)

A hydrogen atom has a diameter of 1   A° and all
atoms are approximately the same size.  Even the
largest atom, Uranium, has a diameter of only a few
angstroms.  In the hydrogen molecule ion, the sepa-
ration of the protons is 1.07   A° .

Electron Energy
in the Hydrogen Molecule Ion
We have seen that the strength of the binding of an
electron in an atom is related to the total energy of
the electron.  The more negative the energy of the
electron, the more tightly it is bound.

Let us now return to our discussion of the hydrogen
molecule ion to see if the total energy of the electron
in its orbit about the two protons is in any way related
to the effectiveness which the electron binds the
proton together.

When the electron is orbiting about two protons,
there are two electric potential energy terms, one for
each proton.  Thus the formula for the electron's total
energy is

  
Etot

electron
in H2

+

molecule
= 1

2
mev2 – Ke2

r1
– Ke2

r2
(18)

which is the same as Equation 15 except for the
additional potential energy term.  In this equation, r1
is the distance from the electron to proton #1, and r2
to proton #2.
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When we wrote computer programs for satellite
motion, we found that it was much easier to work in
a system of units where the earth mass, earth radius
and hour were set to 1.  In these units the gravita-
tional constant G was simply 20, and we never had
to work with awkwardly large numbers.

Similarly, we can simplify electron orbit calcula-
tions by choosing a set of units that are convenient
for these calculations.  In what we will call atomic
units, we will set the mass  me  of the electron, the
electric charge e, the angstrom, and the electron volt
all to 1.  When we do this, the electric force constant
K has the simple value of 14.40.  These choices are
summarized in Table 2.

Using atomic units, the formula for the total energy
of the electron in the hydrogen molecule ion (Equa-
tion 18) reduces to

 Etot H2
+ = v2

2
– 14.40

r1
– 14.40

r2
(18a)

since  me = e = 1 .  The real advantage of this for-
mula is that it directly gives the electron's total
energy in electron volts, no conversion is required.
Because energy is conserved, because the electron's
total energy does not change as the electron goes

around in its orbit, we can name the orbit by  Etot .
For example, the orbit shown back in Figures (9) and
(11), had a total energy of –10 eV.  We can say that
this was a "–10 eV orbit".

When Bob Piela did his project on the hydrogen
molecule ion, his main contribution was to show
how the energy of the electron in orbit was related to
the bonding force exerted by the electron on the
protons.  Piela's results are easily seen in Figure (13).
In (13a), we show the –10 eV orbit superimposed
upon a sketch of the bonding region.  In (13b), the
same orbit is shown as a strobe photograph. As we
mentioned earlier, there appear to be a lot more dots
outside the bonding region than inside, and it does
not look like a –10 eV electron does a very good job
of binding the protons in the  H2

+  molecule.

In Figure (13c) we have plotted a –20 eV orbit.  The
striking feature is that as the electron energy is
reduced, made more negative, the electron spends
more time in the bonding region doing a better job of
holding the molecule together.  In Figure (13d) the
electron energy is dropped to –30 eV and the major-
ity of the electron cloud is now in the bonding
region.  It is easy to see that at –30 eV the electron
does a good job of binding the protons.  With Piela's
diagrams it is easy to see how the electron bonds
more strongly when its energy is lowered.

Table 2

ATOMIC UNITS

Constant Symbol Atomic Units MKS Units

electron volt eV 1   1.6 × 10– 19joules

angstrom   A° 1  10– 10m

electron mass  me 1   9.1 × 10– 31kg

electric charge e 1   1.6 × 10– 19coulombs

electric force constant K 14.40   9 × 109m/ farad

Bohr radius  rb .51   A°

separation of protons in  H2
+ 1.07   A°
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Figure 13
As we decrease the electron’s total energy, the electron spends more time in the bonding region, with the result that
the protons are more tightly bound. Thus we see that the lower the electron energy, the stronger the binding.

a) Orbit of a -10eV electron superimposed 
     on the bonding region

c) Electron cloud for a –20eV electron. More 
    of the dots are inside the bonding region,
    with the result the protons are more 
    tightly bound.

b) Electron cloud for a –10eV electron. d) Electron cloud for a –30eV electron. You
    can see that the lower the electron energy,
    the stronger the bonding.
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!           HYDROGEN MOLECULE ION

! --------- Plotting window
!           (x axis = 1.5 times y axis)
   SET WINDOW -3,6,-3,3

! --------- Experimental constants in Atomic Units
   LET K  = 14.40        !Electric force constant
   LET Kr = K/3          !Ficticious repulsive force
   LET Qe = 1            !Charge on electron (magnitude)
   LET Qp = 1            !Charge on Proton
   LET Me = 1            !Electron mass
   LET Mp = 1836.1       !Proton mass
   LET Rbohr = .5292     !Bohr radius
   LET Dion = 1.07       !Proton separation

! --------- Position of proton #2
   LET Zx = Dion
   LET Zy = 0
   LET Z  = SQR(Zx*Zx + Zy*Zy)

! --------- Plot crosses at protons
   LET Rx = 0
   LET Ry = 0
   CALL BigCROSS
   LET Rx = Zx
   LET Ry = Zy
   CALL BigCROSS

! --------- Initial conditions
   LET Rx = 1.5
   LET Ry = 1.6
   LET R  = SQR(Rx*Rx + Ry*Ry)

   LET Sx = Rx - Zx        !Vector equation (S = R - Z)
   LET Sy = Ry - Zy
   LET S  = SQR(Sx*Sx + Sy*Sy)

   LET Vx = -1
   LET Vy = 0
   LET V  = SQR(Vx*Vx + Vy*Vy)

   LET T  = 0
   LET i  = 0

! --------- Print total energy
   CALL ENERGY

! --------- Computer time step
   LET dt = .001

! --------- Calculational loop
   DO
      LET Rx = Rx + Vx*dt
      LET RY = Ry + Vy*dt
      LET R  = SQR(Rx*Rx + Ry*Ry)

      LET Sx = Rx - Zx
      LET Sy = Ry - Zy
      LET S  = SQR(Sx*Sx + Sy*Sy)

     !Calculate force
      LET F1 = K*Qp*Qe/R^2 - Kr*Qe*Qp/R^3    !Force by proton 1
      LET F2 = K*Qp*Qe/S^2 - Kr*Qe*Qp/S^3    !Force by proton 2

      LET F1x = -(Rx/R)*F1    !points in -R direction
      LET F1y = -(Ry/R)*F1

      LET F2x = -(Sx/S)*F2    !points in -S direction
      LET F2y = -(Sy/S)*F2

      LET Fx = F1x + F2x      !Vector sum of forces
      LET Fy = F1y + F2y

     !Newton's Second law
      LET Ax = Fx/Me
      LET Ay = Fy/Me

      LET Vold = SQR(Vx*Vx + Vy*Vy)
      LET Vx = Vx + Ax*dt
      LET VY = Vy + Ay*dt
      LET Vnew = SQR(Vx*Vx + Vy*Vy)
      LET V  = (Vold + Vnew)/2

      LET T  = T + dt
      LET i  = i + 1

      IF MOD(i,50) = 0 THEN

          PLOT Rx,Ry

          IF Rx > Zx THEN
             IF -F2x > -F1x THEN CALL CROSS
          END IF

          IF Rx < 0 THEN
             IF -F1x < -F2x THEN CALL CROSS
          END IF

      END IF

   LOOP UNTIL T > 100

   ! --------- Subroutine ENERGY prints out total energy.
   SUB ENERGY
      LET Etot = Me*V*V/2 - K*Qe*Qp/R - K*Qe*Qp/S
      !Add potential energy of repulsive core
      LET Etot = Etot + (1/2)*Kr*Qe*Qp/R^2 +  (1/2)*Kr*Qe*Qp/S^2
      PRINT T,Etot
   END SUB

   ! --------- Subroutine CROSS draws a cross at Rx,Ry.
   SUB CROSS
      PLOT LINES: Rx-.01,Ry; Rx+.01,Ry
      PLOT LINES: Rx,Ry-.01; Rx,Ry+.01
   END SUB

   ! --------- Subroutine BigCROSS draws a cross at Rx,Ry.
   SUB BigCROSS
      PLOT LINES: Rx-.04,Ry; Rx+.04,Ry
      PLOT LINES: Rx,Ry-.04; Rx,Ry+.04
   END SUB

END

Figure 14
Computer program for the hydrogen molecule ion.
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CHAPTER 20 NUCLEAR MATTER

Chapter 20
Nuclear Matter

In the last chapter our focus was on what one might call
electronic matter—the structures that result from the
interaction of the electrons in atoms.  Now we look at
nuclear matter,  found both in the nuclei of atoms and
in neutron stars.  The structures we see result from an
interplay of the basic forces of nature.  In the atomic
nucleus, the nuclear, electric, and weak interactions
are involved.  In  neutron stars and black holes, gravity
also plays a major role.
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NUCLEAR FORCE
In 1912 Ernest Rutherford discovered that all the
positive charge of an atom was located in a tiny dense
object at the center of the atom.  By the 1930s, it was
known that this object was a ball of positively charged
protons and electrically neutral neutrons packed closely
together as illustrated in Figure (19-1) reproduced here.
Protons and neutrons are each about   1.4 × 10– 13 cm
in diameter, and the size of a nucleus is essentially the
size of a ball of these particles.  For example, iron 56,
with its 26 protons and 30 neutrons, has a diameter of
about 4 proton diameters. Uranium 235 is just over 6
proton diameters across.  (One can check, for example,
that a bag containing 235 similar marbles is about six
marble diameters across.)

That the nucleus exists means that there is some force
other than electricity or gravity which holds it together.
The protons are all repelling each other electrically, the
neutrons are electrically neutral, and the attractive
gravitational force between protons is some  10– 38

times weaker than the electric repulsive force.  The
force that holds the nucleus together must be attractive
and even stronger than the electric repulsion.  This
attractive force is called the nuclear force.

The nuclear force treats protons and neutrons equally.
In a real sense, the nuclear force cannot tell the differ-
ence between a proton and a neutron.  For this reason,

we can use the word nucleon to describe either a proton
or neutron, and talk about the nuclear force between
nucleons.  Another feature of the nuclear force is that it
ignores electrons.  We could say that electrons have no
nuclear charge.

The properties of the nuclear force can be deduced
from the properties of the structures it creates—namely
atomic nuclei.  The fact that protons and neutrons
maintain their size while inside a nucleus means that
the nuclear force is both attractive and repulsive.  Try
to pull two nucleons apart and the attractive nuclear
force holds them together, next to each other.  But try
to squeeze two nucleons into each other and you
encounter a very strong repulsion, giving the nucleons
essentially a solid core.

We have seen this kind of behavior before in the case
of molecular forces.  Molecular forces are attractive,
holding atoms together to form molecules, liquids and
crystals.  But if you try to push atoms into each other,
try to compress solid matter, the molecular force be-
comes repulsive.  It is the repulsive part of the molecu-
lar force that makes solid matter hard to compress, and
the repulsive part of the nuclear force that makes
nuclear matter nearly incompressible.

Figure 19-1a
Sketch of an atomic nucleus, showing
it as a ball of protons and neutrons.

Figure 19-1b
Styrofoam model of a Uranium nucleus.
(The dark balls represent protons.)
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Range of the Nuclear Force
While the attractive nuclear force must be stronger than
the electric force to hold the protons together in the
nucleus, it is not a long range  1/r2  force like electricity
and gravity.  It drops off much more rapidly than  1/r2 ,
with the result that if two protons are separated by more
than a few proton diameters, the electric repulsion
becomes stronger than the nuclear attraction.  The
separation  R0 at which the electric repulsion becomes
stronger than the nuclear attraction, is about 4 proton
diameters.  This distance  R0, which we will call the
range of the nuclear force, can be determined by
looking at the stability of atomic nuclei.

If we start with a small nucleus, and keep adding
nucleons, for a while the nucleus becomes more stable
if you add the right mix of protons and neutrons.  By
more stable, we mean more tightly bound.  To be
explicit, the more stable, the more tightly bound a
nucleus, the more energy that is required, per nucleon,
to pull the nucleus apart.  This stability, this tight
binding, is caused by the attractive nuclear force be-
tween nucleons.

Iron 56 is the most stable nucleus.  It takes more energy
per nucleon to take an Iron 56 nucleus apart than any
other nucleus.  If the nucleus gets bigger than Iron 56,
it becomes less stable, less tightly bound.  If a nucleus
gets too big, bigger than a Lead 208 or Bismuth 209
nucleus, it becomes unstable and decays by itself.

The stability of Iron 56 results from the fact that an Iron
56 nucleus has a diameter about equal to the range of the
nuclear force.  In an Iron 56 nucleus every nucleon is
attracting every other nucleon.  If we go to a nucleus
larger than Iron 56, then neighboring nucleons still
attract each other, but protons on opposite sides of the
nucleus now repel each other.  This repulsion between
distant protons leads to less binding energy per particle,
and instability.

NUCLEAR FISSION
One way the instability of large nu-
clei shows up is in the process of
nuclear fission, a process that is ex-
plained by the liquid drop model of
the nucleus developed by Neils Bohr
and John Wheeler in 1939.

In this model, we picture nuclear
matter as being essentially an incom-
pressible liquid.  The nucleons can-
not be pressed into each other, or
pulled apart, but they are free to slide
around each other like the water mol-
ecules in a drop of water.  As a result
of the liquid nature of nuclear matter,
we can learn something about the
behavior of nuclei by studying the
behavior of drops of water.

In our discussion of entropy at the
beginning of Chapter 18, we dis-
cussed a demonstration in which a
stream of water is broken into a series
of droplets by vibrating the hose lead-
ing to the stream.  If you put a strobe
light on the stream, you can stop the
apparent motion of the individual
droplets.  The result is a strobe pho-
tograph of the projectile motion of
the droplets.

If you use a closely focused televi-
sion camera, you can follow the mo-
tion of individual drops.  Adjust the
strobe so that the drop appears to fall
slowly, and you can watch an indi-
vidual drop oscillate as it falls.  As
shown in Figure (1), the oscillation
is from a rounded pancake shape
(images 3 & 4) to a vertical jelly bean
shape (images 6 & 7) .   Bohr and
Wheeler proposed that similar oscil-
lations should take place in a large
nucleus like Uranium, particularly if
the nucleus were
struck by some out-
side particle, like an
errant neutron.

Figure 1
Oscillations of
a liquid drop.
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Suppose we have an oscillating Uranium nucleus, and
at the present time it has the dumbbell shape shown in
Figure (2a,b).  In this shape we have two nascent
spheres (shown by the dotted circles) connected by a
neck of nuclear matter.  The nascent spheres are far
enough apart that they are beyond the range  R0 of the
nuclear force, so that the electrical repulsion is stronger
than the nuclear attraction.  The only thing that holds
this nucleus together is the neck of nuclear matter
between the spheres.

If the Uranium nucleus is struck too vigorously, if the
neck is stretched too far, the electric force will cause the
two ends to fly apart, releasing a huge quantity of
electrical potential energy.  This process, shown in
Figure (3) is called nuclear fission.

In the fission of Uranium 235, the large Uranium
nucleus breaks up into two moderate sized nuclei, for
example, Cesium 140 and Zirconium 94.  Because
larger nuclei have a higher percentage of neutrons than
smaller ones, when Uranium breaks up into smaller,

less neutron rich nuclei, some free neutrons are also
emitted as indicated in Figure (3).  These free neutrons
may go out and strike other Uranium nuclei, causing
further fission reactions.

If you have a small block of Uranium, and one of the
Uranium nuclei fissions spontaneously (it happens
once in a while), the extra free neutrons are likely to
pass out through the edges of the block and nothing
happens.  If, however, the block is big enough, (if it
exceeds a critical mass of about 13 pounds for a
sphere), then neutrons from one fissioning nucleus are
more likely to strike other Uranium nuclei than to
escape.  The result is that several other nuclei fission,
and each of these cause several others to fission.
Quickly you have a large number of fissioning nuclei
in a process called a chain reaction.  This is the process
that occurs in an uncontrolled way in an atomic bomb
and in a controlled way in a nuclear reactor.

The energy we get from nuclear fission, the energy
from all commercial nuclear reactors, is electrical
potential energy released when the two nuclear frag-
ments fly apart.  The fragments shown in Figure (3) are
at that point well beyond the range  R0 of the attractive
nuclear force, and essentially feel only the repulsive
electric force between the protons.  These two balls of
positive charge have a large positive electric potential
energy which is converted to kinetic energy as the
fragments fly apart.
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Figure 2a
Uranium nucleus in a dumbbell shape.

Figure 3
When the nucleus flies apart, an
enormous amount of electric
potential energy is released.

Figure 2b
Styrofoam model of a Uranium
nucleus in a dumbbell shape.
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To get a feeling for the amount of energy released in a
fission reaction, let us calculate the electric potential
energy of two fragments, say a Cesium and a Zirco-
nium nucleus when separated by a distance 2  R0, twice
the range of the nuclear force.

In CGS units, the formula for the electric potential
energy of 2 particles with charges  Q1 and  Q2 sepa-
rated by a distance R is

  electric
potential
energy

Uelectric =
Q1Q2

r CGS units (1)

For our problem, let  Q1 be the charge on a Cesium
nucleus (55 protons) and  Q2 the charge on a Zirconium
nucleus (40 protons).

 QCesium = 55e
QZirconium = 40e

r = 2R0

and we get

  
Uelectric =

55 e × 40 e
2R0

= 1.1 × 103 e2

R0
(2)

We would like to compare the energy released in
nuclear fission reactions with the energies typically
involved in chemical reactions.  It takes a fairly violent
chemical reaction to rip the electron completely out of
a hydrogen atom.  The amount of energy to do that, to
ionize a hydrogen atom is  e2/rb where rb is the Bohr
radius of   5 × 10– 9 cm .

 energyto ionize
a hydrogenatom = e2

rb
= 13.6 eV (3)

We evaluated the number   e2/rb  earlier and found it to
have a numerical value of 13.6 electron volts.  This is
a large amount of energy for a chemical reaction, more
typical chemical reactions, arising from molecular
forces, have involved  energies in the 1 to 2 electron volt
range.

To compare the strength of nuclear fission reactions to
chemical reactions, we can compare the electric poten-
tial energies in Equations 2 and 3.  If we take the range

 R0 of the nuclear force to be 4 proton diameters then

  R0 = 4 × 1.4 × 10– 13 cm = 5.6 × 10– 13 cm

Since the Bohr radius is   5 × 10– 9 cm , we see that  R0
is essentially  10– 4 Rb  or ten thousand times smaller
than the Bohr radius.

 R0 = 10– 4 rb (4)

Substituting Equation 4 into 2 gives

  
Uelectric = 1.1 × 103 e2

R0

= 1.1 × 103 e2

10– 4rb

=1.1 × 107 e2

rb

Using the fact that  e2/rb  has a magnitude of 13.6
electron volts, we get

  Uelectric = 1.1 × 107 × 13.6 eV

= 150 × 106 eV

= 150 MeV

(5)

where 1MeV is one million electron volts. From Equa-
tion 5, we see that, per particle, some ten million times
more electric potential energy is released in a nuclear
fission reaction than in a violent chemical reaction.
Many millions of electron volts are involved in nuclear
reactions as compared to the few electron volts in
chemical reactions.  You can also see that a major
reason for the huge amounts of energy in a nuclear
reaction is the small size of the nucleus (the fact that

 R0 << rb ).
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NEUTRONS AND
THE WEAK INTERACTION
The stability of the iron nucleus and the instability of
nuclei larger than Uranium results primarily from the
fact that the attractive part of the nuclear force has a
short range  R0 over which it dominates the repulsive
electric force between protons.  The range  R0 is about
4 proton diameters, the diameter of an iron nucleus.  In
larger nuclei, not all nucleons attract each other, and
this leads to the kind of instability we see in a fissioning
Uranium nucleus.

The range of the nuclear force is not the only important
factor in determining the stability of nuclei.  There is no
electric repulsion between neutrons, neutrons are at-
tracted equally to neutrons and protons.  Adding neu-
trons to a nucleus increases the attractive nuclear force
without enhancing the electric repulsion.  This is why
the most stable large nuclei have an excess of neutrons
over protons.  The neutron excess acts as a nuclear glue,
diluting the repulsion of the protons.

If adding a few extra neutrons increases the stability of
a nucleus, why doesn’t adding more neutrons give even
more stable nuclei?  Why is it that nuclei with too many
excess neutrons are in fact unstable?  Why can’t we
make nuclei out of pure neutrons and avoid the proton
repulsion altogether?

The answer lies in the fact that, because of the weak
interaction, and because of a small excess mass of a
neutron, a neutron can decay into a proton and release
energy.  This is the beta decay reaction we discussed
earlier, and is described by the equation

  n0 → p+ + e– + ν0 (5)

The neutral neutron (  n0) decays into a positive proton
(  p+ ), a negative electron (  e– ), and a neutral
antineutrino (  ν0), thus electric charge is conserved in
the process.  It is called a beta   β  decay reaction
because the electrons that come out were originally
called beta rays before their identity as electrons was
determined.

If you have an isolated free neutron, the   β  decay of
Equation 5 occurs with a half life of 15 minutes.  Such
a reaction can occur only if energy can be conserved in
the process. But the neutron is sufficiently massive to
decay into a proton and an electron and still have some
energy left over.  Expressing rest mass or rest energy in
units of millions of electron volts (MeV), we have for
the particles in the neutron decay reaction (5),

  neutron rest mass mn = 939.6 MeV

proton rest mass mp = 938.3 MeV

electron rest mass me = 0.511 MeV

neutrino rest mass mν = 0

(6)

where

  1 MeV = 106 eV = 1.6 × 10– 6 ergs

You can see  that the neutron rest mass is 1.3 MeV
greater than that of a proton, and .8 MeV greater than
the combined rest masses of the proton, electron and
neutrino.  Thus when a neutron   β  decays, there is an
excess of .8 MeV of energy that is released in the form
of kinetic energy of the reaction products.

As we have mentioned, when the β decay process was
first studied in the 1920s, the neutrino was unknown.
What was observed was that in β decays, the proton and
the electron carried out different amounts of energy,
sometimes all of the available energy, but usually just
part of it.  To explain the missing energy, Wolfgang
Pauli proposed the existence of an almost undetectable,
uncharged, zero rest mass particle which Fermi named
the little neutral one or neutrino.  As bizarre as Pauli’s
hypothesis seemed at the time, it turned out to be
correct.  When a neutron decays, it decays into 3
particles, and the .8 MeV available for kinetic energy
can be shared in various ways among the 3 particles.
Because the neutrino has no rest mass, it is possible for
the proton and electron to get all .8 MeV of kinetic
energy.  At other times the neutrino gets much of the
kinetic energy, so that if you did not know about the
neutrino, you would think energy was lost.
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Our simple calculation shows that for the neutron to
decay into a proton in deuterium, the neutron would
have to create nearly as much electrical potential
energy (.72MeV) as the available .8 MeV neutron mass
energy. A more complete analysis shows that the
available .8 Mev is not adequate for the neutron   β
decay, with the result the neutron in deuterium is stable.

We can now see the competing processes involved in
the formation of nuclei.  To construct stable nuclei you
want to add neutrons to give more attractive nuclear
forces and dilute the repulsive electric forces between
protons.  However, the rest mass of a neutron is greater
than the rest mass of a proton and an electron, and the
weak interaction allows the neutron to decay into these
particles.  Thus neutrons can shed mass, and therefore
energy, by decaying.

But when a neutron inside of a nucleus decays into a
proton, it increases the electric potential energy of the
nucleus.  If the increase in the electric potential energy
is greater than the mass energy released, as we nearly
saw in the case of deuterium, then the neutron cannot
decay.

The weak interaction is democratic, it allows a proton
to decay into a neutron as well as a neutron to decay into
a proton.  The proton decay process is

   p+ → n0 + e+ + ν0 inverse β decay (10)

where  e+ is the positively charged antielectron
(positron).  This inverse ββ  decay, as it is sometimes
called, does not occur for a free proton because energy
is not conserved.  The proton rest mass is less than that
of a neutron, let alone that of a neutron and a positron
combined.

However, if you construct a nucleus with too many
protons, with too much electric potential energy, then
the nucleus can get rid of some of its electric potential
energy by converting a proton into a neutron.  This may
happen if enough electric potential energy is released to
supply the extra rest mass of the neutron as well as the
.5 MeV rest mass of the positron.

NUCLEAR STRUCTURE
Free neutrons decay in fifteen minutes, but neutrons
inside a nucleus seem to live forever.  Why don’t they
decay?  The answer to this question is an energy
balance.  Like a rock dropped into a well, an atomic
nucleus will fall down to the lowest energy state
available.  The neutron will decay if the result is a lower
energy, less massive nucleus.  Otherwise the neutron
will be stable.

We have seen that an isolated neutron can decay into
the less massive proton and release energy.  Now
consider a neutron in a nucleus.  Take the simplest
nucleus with a neutron in it, namely Deuterium .  If that
neutron decayed we would end up with a helium
nucleus consisting  of two protons only, plus an elec-
tron and a neutrino.  We can write this reaction as

   
H2 → H2 e + e– + ν deuterium decay

whichdoes not happen (7)

ppn p
e ν−+ + −

If the neutron in deuterium turns into a proton, the
neutron sheds rest mass, but the resulting two proton
nucleus has positive electric potential energy.  We can
estimate the amount of electric potential energy  Upp
created by using the formula

  electric potential
energy of a 2
proton nucleus

Upp =
e2

2rp
CGS units (8)

where rp is the proton radius and 2rp =   2 × 10– 13  is the
separation of the proton centers. The protons each have
a charge + e.  Putting numbers into Equation 8 gives

  
Up p =

e2

2rp

=
4.8 × 10– 10

2

2 × 10– 13
ergs

= 1.15 × 10– 6 ergs

= .72 MeV

(9)
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αα  (Alpha) Particles
In 1898 Ernest Rutherford, a young research student in
Cambridge University, England, discovered that ra-
dioactive substances emitted two different kinds of
rays which he named αα  rays and ββ  rays after the first
two letters of the Greek alphabet.  The negatively
charged β  rays turned out to be beams of electrons, and
the positive α rays were found to be beams of Helium
4 nuclei. Helium 4 nuclei, consisting of 2 protons and
2 neutrons, are thus also called αα  particles.  (Later
Rutherford observed a third kind of radiation he called
γγ rays, which turned out to be high energy photons.)
We have seen that β  rays or electrons are emitted when
a neutron sheds mass by decaying into a proton in a β
decay reaction.  But where do the α particles come
from?

A nucleus with an excess of electric potential energy
can lose energy by converting one of its protons into a
neutron in an inverse β  decay reaction.  This, however,
is a relatively rare event.  More commonly, the number
of protons is reduced by ejecting an α particle.  Why the
nucleus emits an entire α particle or Helium 4 nucleus,
instead of simply kicking out a single proton, is a
consequence of an anomaly in the nuclear force.  It
turns out that a Helium 4 nucleus, with 2 neutrons and
2 protons, is an exceptionally stable, tightly bound
object.  If protons are to be ejected, they come out in
pairs in this stable configuration rather than
individually.

We can now see the competing processes in an  atomic
nucleus.  The weak interaction allows neutrons to turn
into protons or protons into neutrons.  But these β
decay processes will occur only if energy can be
released. Nuclei with too many neutrons have too
much neutron mass energy, and can get rid of some of
the mass energy by turning a neutron into a proton.
Nuclei with too many protons have too much electrical
potential energy, and can get rid of some of the electri-
cal potential energy by turning a proton into a neutron.
A stable nucleus is one that has neither an excess of
mass energy nor electrical potential energy, a nucleus
that cannot release energy either by turning protons
into neutrons or vice versa.

To predict precisely which nuclei are stable and which
are not requires a more detailed knowledge of the
nuclear force than we have discussed here.  But from
what we have said, you can understand the general
trend.  For the light nuclei, the most stable are the ones
with roughly equal numbers of protons and neutrons,
nuclei with neither too much neutron mass energy or
too much proton electrical potential energy.  However,
when nuclei become larger than the range of the
attractive nuclear force, electric potential energy be-
comes more important . Excess neutrons, with the
additional attractive nuclear binding force they pro-
vide, are needed to make the nucleus stable.
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NUCLEAR BINDING ENERGIES
The best way to see the competition between the
attractive nuclear force and the electric repulsive force
inside atomic nuclei is to look at nuclear binding
energies.  Explicitly, we will look at the binding energy
per nucleon for the most stable nuclei of each element.
The binding energy per nucleon (proton or neutron)
represents how much energy we would have to supply
to pull the nucleus apart into separate free nucleons.
The nuclear force tries to hold the nucleus together—
make it more tightly bound—and therefore increases
the binding energy.  The electric force, which pushes
the protons apart, decreases the binding energy.

You calculate the binding energy of a nucleus by
subtracting the rest energy of the nucleus from the sum
of the rest energies of the protons and neutrons that
make up the nucleus.  If you then divide by the number
of nucleons, you get the binding energy per nucleon.
We will go through an example of this calculation, and
give you an opportunity to work out some yourself.
Then we will look at a plot of these binding energies to
see what the plot tells us.

Example 1
Given that a proton, a neutron, and a deuterium  nucleus
have the following rest energies, what is the binding
energy per particle for the deuterium nucleus?

 mpc2 = 938.3 MeV proton rest energy

mnc2 = 939.6 MeV neutron rest energy
mdc2 = 1875.1 MeV deuterium nucleus

rest energy

(20)

Solution
Separately the proton and neutron in a deuterium
nucleus have a total rest energy of

 rest energy
a separate
proton and
neutron

= 938.3 MeV + 939.6 MeV

= 1877.9 MeV

(21)

Thus the total binding energy of the deuterium nucleus,
the energy required to pull the particles apart is

 total binding
energy of the
deuterium
nucleus

= 1877.9 MeV
separate
particles

– 1875.1 MeV
deuterium
nucleus

= 2.8 MeV
(22)

Finally the binding energy per nucleon, there being 2
nucleons, is

 binding energy
per nucleon

= 2.8 MeV
2 nucleons

= 1.4 MeV
nucleon (23)

Exercise 1
Given that the masses of the Helium 4 (2 protons, 2
neutrons), the Iron 56 (26 protons, 30 neutrons), and the
Uranium 238 (92 protons, 146 neutrons) nuclei are

 MHelium 4c2 = 3725.95MeV

MIron 56c2 = 52068.77MeV

MUranium 238 c2 = 221596.94MeV

(24)

find in each case, the binding energy per nucleon.  Your
results should be

 
bindingenergy
pernucleon

=

7.46 MeV (Helium4))

9.20 MeV (Iron56)

8.02 MeV (Uranium238)
(25)
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Figure (4) is a plot of the binding energy, per nucleon,
of the most stable nuclei for each element. We have
plotted increasing binding energy downward so that
the plot would look like a well. The deeper down in the
well a nucleus is, the more energy per particle that is
required to pull the nucleus out of the well—to pull it
apart. The deepest part of the well is at the Iron 56
nucleus, no other nucleus is more tightly bound.
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Figure 4
The nuclear energy well. The graph shows the
amount of energy, per nucleon, required to pull the
nucleus apart into separate neutrons and protons.

Moving down into the well represents a release of
nuclear energy. There are two ways to do this. We can
start with light nuclei and put them together (in a
process called nuclear fusion), to form heavier nuclei,
moving in and down from the left side in Figure (4). Or
we can split apart heavy nuclei (In the process of
nuclear fission), moving in and down from the right
side. Fusion represents the release of nuclear force
potential energy, while fission  represents the release of
electric force potential energy. When we get to the
bottom, at Iron 56, there is no energy to be released
either by fusion or fission.
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The importance of knowing the nuclear binding energy
per nucleon is that it tells us whether energy will be
released in a particular nuclear reaction.  If the some-
what weakly bound uranium nucleus (7.41 MeV/
nucleon) splits into two more tightly bound nuclei like
cesium (8.16 MeV/nucleon) and zirconium (8.41 MeV/
nucleon), energy is released.  At the other end of the
graph, if we combine two weakly bound deuterium
nuclei (2.8 MeV/nucleon) to form a more tightly bound
Helium 4 nucleus (7.1 MeV/nucleon), energy is also
released.  Any reaction that moves us toward the Iron
56 nucleus releases energy.  On the small nucleus side
we get a release of energy by combining small nuclei
to form bigger nuclei.  But once past Iron 56, we get a
release of energy by splitting nuclei apart for form
smaller ones.

The reason Iron 56 is at the bottom of the well is because
the diameter of an iron nucleus is about equal to the
range of the nuclear force.  As you build up to Iron 56,
adding more nucleons increases the number of attrac-
tive forces between particles, and  therefore increases
the strength of the binding.  At Iron 56, you have the
largest nucleus in which every particle attracts every
other particle.  The diameter of the Iron 56 nucleus is the
distance over which the attractive nuclear force is
stronger than the repulsive electric force.

When you build nuclei larger than Iron 56, the protons
on opposite sides of the nucleus are far enough apart
that the electric force is stronger and the particles repel.
Now, adding more particles reduces the binding energy
per particle and produces less stable nuclei.  When a
nucleus become as large as uranium, the impact of a
single neutron can cause the nucleus to split apart into
two smaller, more stable nuclei in the nuclear fission
process.

There are some bumps in the graph of nuclear binding
energies, bumps representing details in the structure of
the nuclear force.  The most striking anomaly is the
Helium 4 nucleus which is far more tightly bound than
neighboring nuclei.  This tight binding of Helium 4 is
the reason, as we mentioned, that α particles (Helium
4 nuclei) rather than individual protons are emitted in
radioactive decays.  But overlooking the bumps, we
have the general feature that nuclear binding energies
increase up to Iron 56 and then decrease thereafter.
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NUCLEAR FUSION
The process of combining small nuclei to form larger
ones is called nuclear fusion.  From our graph of
nuclear binding energies in Figure (4), we see that
nuclear fusion releases energy if the resulting nucleus
is smaller than Iron 56, but costs energy if the resulting
nucleus is larger.  This fact has enormous significance
in the life of stars and the formation of the elements.

Most stars are created from a gas cloud rich in hydrogen
gas.  When the cloud condenses, gravitational potential
energy is released and the gas heats up.  If the condens-
ing cloud is massive enough, if the temperature be-
comes hot enough, the hydrogen nuclei begin to fuse.
After several reactions they produce Helium 4 nuclei,
releasing energy in each reaction.  The fusion of
hydrogen to form helium becomes the source of energy
for the star for many years to come.

Unlike fission, fusion requires high temperatures in
order to take place.  Consider the reaction in which two
hydrogen nuclei (protons) fuse to produce a deuterium
nucleus plus a positron and a neutrino.  (When the two
protons fuse, the resulting nucleus immediately gets rid
of its electrical potential energy by having one proton
turn into a neutron in an inverse β decay process.)

The fusion of the two protons will take place if the
protons get closer together than the range of the nuclear
force about—4 proton diameters.  Before they get that
close they repel electrically.  Only if the protons were
initially moving fast enough, were hot enough, can they
get close enough to get past the electrical repulsion in
order to feel the nuclear attraction.

A good way to picture the situation is to think of
yourself as sitting on one of the protons, and draw a
graph of the potential energy of the approaching pro-
ton, as shown in Figure (5).  When the proton separa-
tion r is greater than the range  R0 of the nuclear force,
the protons repel and the incoming proton has to climb
a potential energy hill.  At  R = R0, the net force turns
attractive and the potential energy begins to decrease,
forming a deep well when the particles are near to

touching.  Energy is released when the incoming
proton falls into the well, but the incoming proton must
have enough kinetic energy to get over the electrical
potential energy barrier before the fusion can take
place.

Using our formula  Q1Q2/r for electric potential en-
ergy, we can make a rough estimate of the kinetic
energy and the temperature required for fusion.  Con-
sider the fusion of two protons where  Q1 = Q2 = e .
For the protons to get within a distance  R0, the incom-
ing proton must climb a barrier of height

  electric potential
energyof 2 protons
a distance R0 apart

= e2

R0

=
4.8 × 10– 10 2

4 × 1.4 × 10– 13

= 4.1 × 10– 7 ergs

(26)

This number,   e2/R0 = 4.1 × 10– 7 ergs , is the amount
of kinetic energy an incoming proton must originally
have in order to get within a distance of approximately

 R0 of another proton.  Only when it gets within this
distance can the nuclear force take over and fusion take
place.

Ro
proton separation r

potential energy of
approaching proton

approaching proton
meets electric 
potential energy 
barrier

nuclear potential 
energy well

fixed
proton

Figure 5
When you shove two protons together, you
first have to overcome the electric repulsion
before the nuclear attraction dominates.
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In our earlier discussion of temperature, we saw that the
average kinetic energy of a particle in a gas of tempera-
ture T was 3/2 kT.  If we had a gas of hydrogen so hot
that the average proton could enter into a fusion reac-
tion, the average kinetic energy of the protons would
have to be   4.1 × 10– 7 ergs.  The temperature Tf at
which this would happen is found by equating

  4.1 × 10– 7 ergs to 3/2 kT to give

   3
2

kT = 4.1×10–7ergs

T = 2
3

4.1×10–7ergs

1.38×10–16 ergs
kelvin

T = 2×109kelvin 2 billion
degrees

(27)

This temperature, two billion degrees kelvin, is a huge
overestimate.  At this temperature, the average proton
in the gas would enter into a fusion reaction.  If we
heated a container of hydrogen to this temperature, the
entire collection of protons would fuse after only a few
collisions, and the fusion energy would be released
almost instantaneously.  We would have what is known
as a hydrogen bomb.

In a star, the fusion of hydrogen takes place at the much
lower temperatures of about 20 million degrees.  At 20
million degrees, only a small fraction of the protons
have enough kinetic energy to enter into a fusion
reaction.  At these temperatures the hydrogen is con-
sumed at a slow steady rate in what is known as a
controlled fusion reaction.

STELLAR EVOLUTION
The story of the evolution of stars provides an ideal
setting to illustrate the interplay of the four basic
interactions.  In this chapter so far we have been
focusing on the basic consequences of the interplay of
the nuclear, electric, and weak interactions at the level
of atomic nucleus.  Add gravity and you have the story
of stellar evolution.

A star is born from a cloud of gas, typically rich in
hydrogen, that begins to collapse gravitationally.  As
the cloud collapses, gravitational potential energy is
released which heats the gas.  If the temperature does
not get hot enough to start the fusion of the hydrogen
nuclei, that’s more or less the end of the story and you
have a proto star, something around the size of the
planet Jupiter or smaller.

If there is more mass in the collapsing gas cloud, more
gravitational potential energy will be released, and the
temperature will rise enough to start the fusion of
hydrogen.  How hot the center of the star becomes
depends on the mass of the star.  In a star, like our sun
for example, there is a balance between the gravita-
tional attraction and the thermal pressure.  The greater
the mass, the greater the gravitational attraction, and
the stronger the thermal pressure must be.

In our discussion of pressure in chapter 17, we saw that
when a balloon was cooled by liquid nitrogen, remov-
ing the thermal energy and pressure of the air molecules
inside, the balloon collapsed. ( Figures 17-19.) Similar
processes occur in a star, except that the confining force
of the rubber is replaced by the confining force of
gravity.  The sun is a ball of hot gas.  Gravity is trying
to squeeze the gas inward, and the thermal pressure of
the gas prevents it from doing so.  There is a precise
balance between the thermal pressure and gravity.

Figure 17-19
Balloon collapsing
in liquid nitrogen.
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From the earth the sun looks more like a solid object
than a ball of gas.  The sun has a definite edge, an
obvious surface with spots and speckles on it.  The
appearance of a sharp surface is the result of the change
in temperature of the gas with height.  The hottest part
of the sun or any star is the center.  Here the gas is so hot,
the thermal collisions are so violent, that the electrons
are knocked out of the hydrogen atoms and all the
hydrogen is ionized.  The gas is what is called a plasma.
An ionized gas or plasma is opaque, light is absorbed
by the separate charged particles.

As you go out from the center of the star, the tempera-
ture drops.  When you go out far enough, when the
temperature drops to about 3000 kelvins, the electrons
recombine with the nuclei, you get neutral atoms, and
the gas becomes transparent.  This transition from an
opaque to transparent gas occurs rather abruptly, giv-
ing us what we think of as the surface of the sun.

Returning to the balance of gravitational attraction and
thermal pressure, you can see that the more mass in the
star the stronger gravity is, and the greater the thermal
pressure required to balance gravity.  To increase the
thermal pressure, you have to increase the temperature.
Thus the more massive a star, the hotter it has to be.

The proton fusion reaction we have discussed is well
suited for supplying any required temperature.  We
have seen that the rate at which fusion takes place
depends very much on the temperature.  At 20 million
degrees, only a small fraction of the protons have
enough thermal kinetic energy to fuse.  At 2 billion
degrees, the average proton has enough energy to fuse,
and any hydrogen at this temperature would burn
immediately.

There is a range of burning rates between these two
extremes.  As a result, with increasing temperature the
fusion reaction goes faster, supplies energy at a greater
rate, and maintains the higher temperature.  Thus when
a new star forms it collapses until there is a balance
between the gravitational force and thermal pressure.
Whatever thermal pressure is required is supplied by
the heat generated by the fusion reaction.  The more
thermal pressure needed, the higher the temperature
required and the faster the hydrogen burns.

One often refers to the region near the center of the star
where the fusion reaction is taking place as the core of
the star.  Our sun, with a temperature in the core of 20
million degrees, is burning hydrogen at such a rate that
the hydrogen supply will last 10 billion years.  Since the
sun is 5 billion years old, about half the available
hydrogen in the core is used up.

A more massive star, like the star that blew up to give
us the 1987 supernova event, burns its hydrogen at a
much shorter time.  That star was about 18 times as
massive as the sun, about 40,000 times as bright, and
burned its hydrogen in its core so fast that the hydrogen
lasted only about 10 million years.

The difference between different mass stars shows up
most dramatically after the hydrogen fuel is used up.
What will happen to our sun is relatively calm.  When
our sun uses up the hydrogen, the core will start to cool
and collapse.  But the collapse releases large amounts
of gravitational potential energy that heats the core to
higher temperatures than before.  This hotter core
becomes very bright, so bright that the light from the
core, when it works its way out to the surface, exerts a
strong radiation pressure on the gas at the surface.  This
radiation pressure will cause the surface of the sun to
expand until the diameter of the sun is about equal to the
diameter of the earth’s orbit.  At this point the sun will
have become what is called a red giant star, with the
earth orbiting slightly inside.  It is not a very pleasant
picture for the earth, but it will not happen for another
five billion years.
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In successively shorter times at successively higher
temperatures the more massive elements were created
and burned.  After neon, there was carbon, then oxygen
at 2.1 billion degrees, and finally silicon and sulfur at
3.4 billion degrees.  The neon burned in about 12 years,
the oxygen in 4 years, and the silicon in just a week.

One of the reasons for the accelerated pace of burning
at the end is that, at temperatures over half a billion
degrees, the star has a more efficient way of getting rid
of energy than emitting light.  At these temperatures
some of the photons are energetic enough to create
electron-positron pairs which usually annihilated back
into photons but sometimes into neutrinos.  Whereas
photons take thousands of years to carry energy from
the core of a star to the surface, neutrinos escape
immediately.  Thus when the star reached half a billion
degrees, it sprung a neutrino heat leak, and the collapse
and burning went much faster.

The successive stages of burning took place in smaller
and smaller cores, leaving shells of unburned elements.
Unburned hydrogen filled the outer volume of the star.
Inside was a shell of unburned helium and inside that
successive shells of unburned carbon, oxygen, then a
mixture of neon, silicon and sulfur, and a shell of silicon
and sulfur.

In the center was iron.  Iron was what resulted when the
silicon and sulfur burned.  And iron is the end of the
road.  As we have seen in Figure (4) iron is the most
stable atomic nucleus.  Energy is released when you
fuse nuclei to form a nucleus smaller than iron, but it
costs energy to create nuclei larger than iron.  The iron
core of the star was  dead ash not a fuel.

Once the sun, as a red giant star, radiates the energy it
got from the gravitational collapse, it will gradually
cool and collapse until the atoms push against each
other.  It will be the electric force between the atomic
electrons that will halt the gravitational collapse of the
sun.  At that point the sun will become a ball of highly
compressed atomic matter about the size of the earth.
Initially it will be quite bright, an object called a white
dwarf star, but eventually it will cool and darken.

The story was very different for the star that gave rise
to the supernova explosion.  That star, with its mass of
about 18 times that of the sun, burned its hydrogen in
10 million years.  At that point the star had a core, about
30 per cent of the star, consisting mostly of Helium 4,
the tightly bound nucleus that is the end result of
hydrogen fusion.  Computer simulations tell us that for
the next tens of thousands of years, the helium core was
compressed from a density of 6  to 1,100 grams per
cubic centimeter, and the temperature rose from 40
million to 190 million degrees kelvin.

The temperature of 190 million degrees is high enough
to cause helium nuclei to fuse, forming carbon and
oxygen.  Higher temperatures are required to fuse
helium nuclei, because each helium nucleus has two
protons and a charge + 2e.  Thus the electric potential
barrier  Q1Q2/R0  is four times as high as it is for proton
fusion, and the helium nuclei need four times as much
kinetic energy to fuse.

At these higher temperatures the core radiated more
light, causing the outer layers of the star, mostly
unburned hydrogen, to expand to about twice the size
of the earth’s orbit.  It had become a red supergiant.

The helium in the core lasted less than a million years,
leaving behind a collapsing core of carbon and oxygen.
The temperature rose to about 740 million degrees
where the carbon ignited to form neon, magnesium and
sodium.  When the carbon was used up in about 12,000
years, further collapse raised the temperature to 1.6
billion degrees where neon ignited.
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By the time the star had an iron core, it was rapidly
radiating energy in the form of neutrinos, but had run
out of fuel.  At this point the iron core, which had a mass
of about 1.4 times the mass of the sun, began to collapse
due to the lack of support by thermal pressure.  When
the sun runs out of energy, its collapse will be halted by
the electric repulsion between atomic electrons.  In the
1987 supernova star, the gravitational forces were so
great that the electrons were essentially crammed back
into the nuclei, the protons converted to neutrons, and
the core collapsed into a ball of neutrons about 100
miles in diameter.

This collapse took a few tenths of a second, and created
a shock wave that rapidly spread to the outer layers of
the star.  Vast quantities of neutrinos were created in the
collapse, and escaped over the next 10 or so seconds.
The shock wave reached the surface of the star 3 hours
later, blowing off the surface of the star and starting a
burst of light 3 hours behind the burst of neutrinos.  The
light and neutrinos raced each other for 180,000 years,
and the neutrinos were still at least 2 hours ahead when
they got to the earth.

When a supernova explodes, the outer shells of hydro-
gen, helium, carbon, neon, magnesium, sodium, sili-
con, sulfur and iron are blown out to form a new dust
cloud.  Such a dust cloud—the Crab Nebula, produced
by the 1054 supernova explosion—is shown in Figure
(6).  From this cloud new stars and planets will form,
stars and planets rich in the heavier elements created in
the star and recycled into space by the supernova
explosion.

Elements heavier than iron are also in the supernova
remnants.  So much energy is released in the collapsing
core of the supernova that elements heavier than iron
are created by fusion, even though this fusion costs
energy.  All the silver and gold in your watchband and
ring, the iodine in your medicine cabinet, the mercury
in your  thermometer, and lead in your fishing sinker,
all of these elements which lie beyond iron, were
created in the flash of a supernova explosion.  Without
supernova explosions, the only raw materials for the
formation of stars and planets would be hydrogen,
some deuterium, and a trace of other light elements left
over from the Big Bang that created the universe.

How elements are formed in stars has been a fascinat-
ing detective story carried out over the past 40 years.
The pioneering work, carried out by William Fowler,
Fred Hoyle, and others, involved a careful study of
nuclear reactions in the laboratory and then a modeling
of how stars should evolve based on the known reac-
tions.  On one occasion a nuclear reaction was pre-
dicted to exist because it had to be there for stars to
evolve.  The reaction was then found in the laboratory,
exactly as predicted.

The modeling of stellar evolution, using experimental
data on nuclear reactions, and large computer pro-
grams, has quite successfully predicted the relative
abundance of the various elements , as well as many
features of stellar evolution such as the expansion of a
star into a red giant when the hydrogen fuel in its core
is used up.  The success of these models leads us to
believe that the details we described about what hap-
pened in the very core of a star about to explode,
actually happened as described.  An exciting conse-
quence of the 1987 supernova explosion was that we
got a glimpse into the core of the exploding star, a
glimpse provided by the neutrinos that took 10 sec-
onds, as predicted, to escape from the core.  The
neutrinos also arrived three hours before the photons,
as predicted by the computer models.

Figure 6a
The Crab Nebula. The arrow points to the pulsar that
created the nebula. (Above photo Hale Observatories. 6b:
1950 Photograph by Walter Baade, 1964 by Güigo Munch,
composite by Munch and Virginia Trimble.)
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NEUTRON STARS
One of the great predictions of astronomy based on the
physical properties of matter was made by a young
physicist/astronomer S. Chandrasekhar in the 1930s.
With some relatively straightforward calculations,
Chandrasekhar predicted that if a cooling, collapsing
star had a mass greater than 1.4 times the mass of the
sun, the force of gravity would be strong enough to
cram the atomic electrons down into the nuclei, con-
verting the protons to neutrons, leaving behind a ball of
neutrons about 10 miles in diameter.

Chandrasekhar talked about this idea with his sponsor
Sir Arthur Eddington, who was, at the time, one of the
most famous astronomers in the world.  In private,
Eddington agreed with Chandrasekhar’s calculations,
but when asked about them in the 1932 meeting of the
Royal Astronomical Society, Eddington replied that he
did not believe that such a process could possibly occur.
Chandrasekhar’s ideas were dismissed by the astro-
nomical community, and a discouraged Chandrasekhar
left astronomy and went into the field of hydrodynam-
ics and plasma physics where he made significant
contributions.

In 1967, the graduate student Jocelyn Bell, using
equipment devised by Antony Hewish, observed an
object emitting extremely sharp radio pulses that were
1.337 seconds apart.  By the end of the year, up to ten
such pulsing objects were detected, one with pulses
only 89 milliseconds apart. After eliminating the pos-
sibility that the radio pulse was communication from an
advanced civilization, it was determined that the sig-
nals were most likely from an objects rotating at high
speeds.  A star cannot rotate that fast unless it is very
compact, less than 100 miles in diameter.  The only
candidate for such an object was Chandresekhar’s
neutron star.

Many other pulsing stars—pulsars—have been dis-
covered.  The closest sits at the center of the explosion
that created the Crab Nebula seen in Figure (6a).  A
superposition of photographs taken in 1950 and 1964,
Figure (6b), shows that the gas in the Crab Nebula is
expanding away from the star marked with an arrow.
Taking a high speed moving picture of this star, some-
thing that one does not usually do when photographing
stars, shows that this star turns on and off 33 times a
second as seen in Figure (7).  This is the neutron star left
behind when the supernova exploded.

Figure 7
Neutron star in Crab Nebula, turns on and off 33
times/sec. (Exposure from the Lick Observatory.)

pulsar

Figure 6b
Expansion of the Crab Nebula. Two photographs, taken
14 years apart, the first printed in white, the second
dark, show the expansion centered on the pulsar.
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We have now been able to study many pulsars, and
know that the typical neutron star is a ball of neutrons
about 10 miles in diameter, rotating at rates up to nearly
1000 revolutions per second!  We can detect neutron
stars because they have a bright spot that emits a beam
of radiation.  We see the pulses of radiation when the
beam sweeps over us much as the captain of a ship sees
the bright flash from a lighthouse when the beam
sweeps past.

Computer models suggest that the bright spot is created
by the magnetic field of the star, a field that was tied to
the material in the core of the star and was strengthened
as the core collapsed.  Charged particles in the ‘atmo-
sphere’ of the neutron star spiral around the magnetic
field lines striking the star at the magnetic poles.  On the
earth, charged particles spiraling around the earth’s
magnetic field lines strike the earth’s atmosphere at the
magnetic poles, creating the aurora borealis and aurora
australis, the northern and southern lights that light up
extreme northern and southern night skies.  On a
neutron star, the aurora is much brighter, also the
atmosphere much thinner, only a few centimeters
thick.  (In Chapter 28 on Magnetism, we will talk about
the motion of charged particles in a magnetic field.)

NEUTRON STARS
AND BLACK HOLES
As predicted by Chandrasekhar, when a cooling star is
more than 1.4 times as massive as the sun, the gravita-
tional attraction becomes strong enough to overcome
the electronic structure of matter, shoving the electrons
into the nuclei and leaving behind a ball of neutrons.  A
neutron star is essentially a gigantic nucleus in which
the attractive gravitational force which holds the ball
together, is balanced by the repulsive component of the
nuclear force which keeps the neutrons from squeezing
into each other.

In our discussion of atomic nuclei, it was the attractive
component of the nuclear force that was of the most
interest.  It was the attractive part that overcame the
electric repulsion between protons.  Now in the neutron
star, gravity is doing the attracting and the nuclear force
is doing the repelling.

Einstein’s special theory of relativity sets a limit on
how strong the repulsive part of the nuclear force can
be.  We can see why with the following qualitative
arguments.

The harder it is to shove two nucleons into each other,
the stronger the repulsive part of the nuclear force, the
more incompressible nuclear matter is.  Now in our
beginning discussions of the principle of relativity in
Chapter 1, we saw that the speed of a sound wave
depended upon the compressibility of the material
through which the sound was moving.  We used a
stretched Slinky for our initial demonstrations of wave
motion because a stretched Slinky is very easy to
compress, with the result that Slinky waves move very
slowly, about 1 foot per second.

Air is much more incompressible than a Slinky (try
blowing air into a Coke bottle), with the result that
sound waves in air travel about 1000 times faster than
slinky waves.  Water is more incompressible yet, and
sound travels through water 5 times faster than in air.
Because steel is even more incompressible than water,
sound travels even faster in steel, about 4 times faster
than in water.
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The most incompressible substance known is nuclear
matter.  It is so incompressible, the repulsive force
between nucleons is so great that the calculated speed
of sound in nuclear matter approaches the speed of
light.  And that’s the limit.  Nothing can be so rigid or
incompressible that the speed of sound in the substance
exceeds the speed of light.  This fact alone tells us that
there is a limit to how rigid matter can be, how strong
repulsive forces can become.  The repulsive part of the
nuclear force approaches that limit.

There is, however, no limit to the strength of attractive
forces.  The attractive gravitational force in a neutron
star simply depends upon the amount of mass in the
star.  The more mass, the stronger the force.

From this we can conclude that we are in serious
trouble if the neutron star gets too big.  It is estimated
that in a neutron star with a mass 4 to 6 times the mass
of the sun, the attractive gravitational force will exceed
the repulsive component of the nuclear force, and the
neutrons will begin to collapse into each other.

As the star starts to collapse, gravity gets still stronger.
But gravity has just crushed the strongest known
repulsive force.  At some point during the collapse,
gravity will become strong enough to crush any pos-
sible repulsive force.  According to the laws of physics,
as we know them, nothing can stop the further collapse
of the star, perhaps down to a mathematical point, or at
least down to a size so small that new laws of physics
take over.

The problem with finding black holes is that, as their
name suggests, they do not emit light.  The only way we
have of detecting black holes is by their gravitational
effect on other objects.

It turns out that a good fraction of the stars in the
universe come in binary pairs.  Having a pair of stars
form is an effective way of taking up the angular
momentum of a collapsing gas cloud that was initially
rotating.  If Jupiter had been just a bit bigger, igniting
its own nuclear reactions, then the earth would have
been located in a binary star system.

If one of a pair of binary stars is a black hole, two
detectable effects can occur.  If the stars are in close
orbit, the black hole will suck off the outer layers of gas
from the visible companion, as indicated in the artist’s
conception, Figure (12).  According to computer mod-
els, the gas that is drawn off from the companion star
goes into orbit around the black hole, forming what is
called an accretion disk around the black hole.  The gas
in the accretion disk is moving very rapidly, at speeds
approaching the speed of light.  As a result of the high
speeds, and turbulence in the flow, the particles in the
accretion disk emit vast quantities of X rays as they
spiral down toward the black hole.  Strong X ray
emission is thus a signature that an object may be a
binary star system with one of the stars being a black
hole.

Figure 8
Painting of the gas from a blue giant star being
sucked into a black hole. (From the May, 1974
National Geographic,  Artist Victor J. Kelley.)
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Since X rays can be emitted in other ways, a further
check is needed to be sure that a black hole is involved.
By studying the orbit of the visible companion, one can
determine the mass of the invisible one (essentially
using Kepler’s third law, in a slightly modified form).
The test of whether the invisible companion is a black
hole is whether its mass is over 6 solar masses.  If it is,
then no dark object could withstand the gravitational
forces involved.  The first candidate for an object fitting
this description is the X ray source in the constellation
of Cygnus, an object known as Cygnus X1.

Rather than being scarce, hard–to–find objects, black
holes may play a significant role in the structure of the
universe.  There is good evidence, from the study of the
motions of stars, that a gigantic black hole, with a mass
of millions of solar masses, may lie at the heart of our
galaxy and other galaxies as well.  And recent studies
have indicated that there may be a black hole at the
center of globular clusters.  Wherever black holes may
be, whatever their role in our universe, one fact stands
out—gravity, a force too weak even to be detected on
an atomic scale, can under the right circumstances
become the strongest force of all, strong enough to
crush matter out of existence.
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CHAPTER 23 FLUID DYNAMICS

Since the earth is covered by two fluids, air and water,
much of our life is spent dealing with the dynamic
behavior of fluids.  This is particularly true of the
atmosphere where the weather patterns are governed
by the interaction of large and small vortex systems,
that sometime strengthen into fierce systems like torna-
dos and hurricanes.  On a smaller scale our knowledge
of some basic principles of fluid dynamics allows us to
build airplanes that fly and sailboats that sail into the
wind.

In this chapter we will discuss only a few of the basic
concepts of fluid dynamics, the concept of the velocity
field, of streamlines, Bernoulli’s equation, and the
basic structure of a well-formed vortex.  While these
topics are interesting in their own right, the subject is
being discussed here to lay the foundation for many of
the concepts that we will use in our discussion of
electric and magnetic phenomena.  This chapter is
fairly easy reading, but it contains essential material
for our later work.  It is not optional.

Chapter 23
Fluid Dynamics

The Current State of Fluid Dynamics
The ideas that we will discuss here were discovered
well over a century ago.  They are simple ideas that
provide very good predictions in certain restricted
circumstances.  In general, fluid flows can become very
complicated with the appearance of turbulent motion.
Only in the twentieth century have we begun to gain
confidence that we have the correct equations to ex-
plain fluid motion.  Solving these equations is another
matter and one of the most active research topics in
modern science.  Fluid theory has been the test bed of
the capability of modern super computers as well as the
focus of attention of many theorists.  Only a few years
ago, from the work of Lorenz it was discovered that it
was not possible, even in principle, to make accurate
long-range forecasts of the behavior of fluid systems,
that when you try to predict too far into the future, the
chaotic behavior of the system destroys the accuracy of
the prediction.

Relative to the current work on fluid behavior, we will
just barely touch the edges of the theory.  But even there
we find important basic concepts such as a vector field,
streamlines, and voltage, that will be important through-
out the remainder of the course.  We are introducing
these concepts in the context of fluid motion because it
is much easier to visualize the behavior of a fluid than
some of the more exotic fields we will discuss later.
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THE VELOCITY FIELD
Imagine that you are standing on a bridge over a river
looking down at the water flowing underneath you.  If
it is a shallow stream the flow may be around boulders
and logs, and be marked by the motion of fallen leaves
and specks of foam.  In a deep, wide river, the flow
could be quite smooth, marked only by the eddies that
trail off from the bridge abutments or the whipping
back and forth of small buoys.

Although the motion of the fluid is often hard to see
directly, the moving leaves and eddies tell you that the
motion is there, and you know that if you stepped into
the river, you would be carried along with the water.

Our first step in constructing a theory of fluid motion is
to describe the motion.  At every point in the fluid, we
can think of a small “particle” of fluid moving with a
velocity  v .  We have to be a bit careful here.  If we
picture too small a “particle of fluid”, we begin to see
individual atoms and the random motion between
atoms.  This is too small.  On the other hand, if we think
of too big a “particle”, it may have small fluid eddies
inside it and we can’t decide which way this little piece
of fluid is moving.  Here we introduce a not completely
justified assumption, namely that there is a scale of
distance, a size of our particle of fluid, where atomic
motions are too small to be seen and any eddies in the
fluid are big enough to carry the entire particle with it.
With this idealization, we will say that the velocity v of
the fluid at some point is equal to the velocity of the
particle of fluid that is located at that point.

We have just introduced a new concept which we will
call the “velocity field”.  At every point in a fluid we
define a vector v which is the velocity vector of the fluid
particle at that point.  To formalize the notation a bit,
consider the point labeled by the coordinates (x, y, z).
Then the velocity of the fluid at that point is given by
the vector  v (x, y, z), where v (x, y, z) changes as we
go from one point to another, from one fluid particle to
another.

As an example of what we will call a velocity field,
consider the bathtub vortex shown in Figure (1a).  From
the top view the water is going in a nearly circular
motion around the vortex core as it spirals down the
funnel.  We have chosen Points A, B, C and D, and at
each of the points drawn a velocity vector to represent
the velocity of the fluid particle at that point.  The
velocity vectors are tangent to the circular path of the
fluid and vary in size depending on the speed of the
fluid.  In a typical vortex the fluid near the core of the
vortex moves faster than the fluid out near the edge.
This is represented in Figure (1b) by the fact that the
vector at Point D, in near the core, is much longer than
the one at Point A, out near the edge.

Figure 1b
Looking down from the top, we see the water moving
around in a circular path, with the water near the core
moving faster.  The velocity vectors, drawn at four
different points, get longer as we approach the core.

hollow
vortex
core

A

B
C

D

vortex with
hollow core

funnel

Figure 1a
The "bathtub" vortex is easily seen by filling
a glass funnel with water, stirring the water,
and letting the water flow out of the bottom.
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The Vector Field
The velocity field, illustrated in Figure (1) is our first
example of a more general concept called a vector field.
The idea of a vector field is simply that at every point
in space there is a vector with an explicit direction and
magnitude.  In the case of the velocity field, the vector
is the velocity vector of the fluid particle at that point.
The vector v (x, y, z) points in the direction of motion
of the fluid, and has a magnitude equal to the speed of
the fluid.

It is not hard to construct other examples of vector
fields.  Suppose you took a 1 kg mass hung on the end
of a spring, and carried it around to different parts of the
earth.  At every point on the surface where you stopped
and measured the gravitational force  F = mg = g  (for
m = 1) you would obtain a force vector that points
nearly toward the center of the earth, and has a magni-
tude of about 9.8 m/sec2 as illustrated in Figure (2).  If
you were ambitious and went down into tunnels, or up
on very tall buildings, the vectors would still point
toward the center of the earth, but the magnitude would

vary a bit depending how far down or up you went.
(Theoretically the magnitude of  g would drop to zero
at the center of the earth, and drop off as 1/r2 as we went
out away from the earth).  This quantity g has a
magnitude and direction at every point, and therefore
qualifies as a vector field.  This particular vector field
is called the gravitational field of the earth.

It is easy to describe how to construct the gravitational
field g at every point.  Just measure the magnitude and
direction of the gravitational force on a non-accelerated
1 kg mass at every point.  What is not so easy is to
picture the result.  One problem is drawing all these
vectors.  In Figure (2) we drew only about five g
vectors.  What would we do if we had several million
measurements?

The gravitational field is a fairly abstract concept—the
result of a series of specific measurements.  You have
never seen a gravitational field, and at this point you
have very little intuition about how gravitational fields
behave (do they “behave”? do they do things?).  Later
we will see that they do.

In contrast you have seen fluid motion all your life, and
you have already acquired an extensive intuition about
the behavior of the velocity field of a fluid.  We wish to
build on this intuition and develop some of the math-
ematical tools that are effective in describing fluid
motion.  Once you see how these mathematical tools
apply to an easily visualized vector field like the
velocity field of a fluid, we will apply these tools to
more abstract concepts like the gravitational field we
just mentioned, or more importantly to the electric
field, which is the subject of the next nine chapters.

Figure 2
We can begin to draw a picture of the earth's
gravitational field by carrying a one kilogram
mass around to various points on the surface of
the earth and drawing the vector g  representing
the force on that unit mass (m = 1) object.

Earth

g

g
g

gg

gravitational
force on a
one kilogram
mass
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Streamlines
We have already mentioned one problem with vector
fields—how do you draw or represent so many vec-
tors?  A partial answer is through the concept of
streamlines illustrated in Figure (3).  In that figure we
have two plates of glass separated by a narrow gap with
water flowing down through the gap.  In order to see the
path taken by the flowing water, there are two fluid
reservoirs at the top, one containing ink and the other
clear water.  The ink and water are fed into the gap in
alternate bands producing the streaks that we see.
Inside the gap are a plastic cut-out of both a cylinder and
a  cross section of an airplane wing, so that we can
visualize how the fluid flows past these obstacles.

The lines drawn by the alternate bands of clear and dark
water are called streamlines.  Each band forms a
separate stream, the clear water staying in clear streams
and the inky water in dark streams.  What these streams
or streamlines tell us is the direction of motion of the
fluid.  Because the streams do not cross and because the
dark fluid does not mix with the light fluid, we know
that the fluid is moving along the streamlines, not
perpendicular to them.  In Figure (4) we have sketched
a pair of  streamlines and drawn the velocity vectors v

1
,

v
2
, v

3
 and v

4
 at four points along one of the streams.

What is obvious is that the velocity vector at some point
must be parallel to the streamline at that point, for that
is the way the fluid is flowing.  The streamlines give us
a map of the directions of the fluid flow at the various
points in the fluid.

object
between
glass
sheets

glass
sheets

water ink

narrow gap
between sheets
of glass

(a) Edge-view of the so called Hele-Shaw cell

(b) Flow around a circular object.

(c) Flow around airplane wing shapes.

Figure 3
In a  Hele-Shaw cell, bands of water and ink flow
down through a narrow gap between sheets of
glass.  With this you can observe the flow around
different shaped objects placed in the gap.  The
alternate black and clear bands of water and ink
mark the streamlines of the flow.

v1

2v

3v

4v

Streamlines

Figure 4
Velocity vectors in a
streamline.  Since
the fluid is flowing
along the stream, the
velocity vectors are
parallel to the
streamlines.  Where
the streamlines are
close together and
the stream becomes
narrow, the fluid
must flow faster and
the velocity vectors
are longer.
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Continuity Equation
When we have a set of streamlines such as that in Figure
(4), we have a good idea of the directions of flow.  We
can draw the direction of the velocity vector at any
point by constructing a vector parallel to the streamline
passing through that point.  If the streamline we have
drawn or photographed does not pass exactly through
that point, then we can do a fairly good job of estimating
the direction from the neighboring streamlines.

But what about the speed of the fluid?  Every vector has
both a magnitude and a direction.  So far, the stream-
lines have told us only the directions of the velocity
vectors.  Can we determine or estimate the fluid speed
at each point so that we can complete our description of
the velocity field?

When there is construction on an interstate highway
and the road is narrowed from two lanes to one, the
traffic tends to go slowly through the construction.
This makes sense for traffic safety, but it is just the
wrong way to handle an efficient fluid flow.  The traffic
should go faster through the construction to make up
for the reduced width of the road.  (Can you imagine the
person with an orange vest holding a sign that says
“Fast”?)  Water, when it flows down a tube with a
constriction, travels faster through the constriction than

in the wide sections. This way, the same volume of
water per second gets past the constriction as passes per
second past a wide section of the channel.  Applying
this idea to Figure (4), we see why the velocity vectors
are longer, the fluid speed higher, in the narrow sec-
tions of the streamline channels than in the wide
sections.

It is not too hard to go from the qualitative idea that fluid
must flow faster in the narrow sections of a channel, to
a quantitative result that allows us to calculate how
much faster.  In Figure (5), we are considering a section
of streamline or flow tube which has an entrance area
A

1
, and exit area  A

2
 as shown.  In a short time  ∆t, the

fluid at the entrance travels a distance   ∆x1 =   v1∆t , while
at the exit the fluid goes a distance   ∆x2 =   v2∆t.

The volume of water that entered the stream during the
time ∆t is the shaded volume at the left side of the
diagram, and is equal to the area  A

1
 times the distance

  ∆x1 that the fluid has moved

 Volume of water
entering in ∆t

= A1∆x1 = A1v1∆t (1)

The volume of water leaving the same amount of time
is

 Volume of water
leaving during ∆t

= A2∆x2 = A2v2∆t (2)

If the water does not get squeezed up or compressed
inside the stream between A1 and A2, if we have an
incompressible fluid, which is quite true for water and
in many cases even true for air, then the volume of fluid
entering and the volume of the fluid leaving during the
time ∆t must be equal.  Equating Equations (1) and (2)
and cancelling the  ∆t gives

 A1v1 = A2v2        continuity equation (3)

Equation (3) is known as the continuity equation for
incompressible fluids.  It is a statement that we do not
squeeze up or lose any fluid in the stream.  It also tells
us that the velocity of the fluid is inversely proportional

v2

1v

A2

A1

x2

x2 v2 t=

x1 v1 t=

streamline

x1

Figure 5
During the time   ∆∆ t , water entering the small section
of pipe travels a distance    v1∆∆ t , while water leaving
the large section goes a distance    v2 ∆∆ t .  Since the
same amount of water must enter as leave, the
entrance volume    A1∆∆x1  must equal the exit volume

   A2 ∆∆x2.  This gives    A1v1∆∆t = A2v2∆∆t , or the result
  A1v1 = A2v2 which is one form of the continuity

equation.
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to the cross sectional area of the stream at that point.   If
the cross sectional area in a constriction has been cut in
half, then the speed of the water must double in order
to get the fluid through the constriction.

If we have a map of the streamlines, and know the
entrance speed v1 of the fluid, then we can determine
the magnitude and direction of the fluid velocity v2 at
any point downstream.  The direction of v2 is parallel
to the streamline at Point (2), and the magnitude is
given by  v2  = v1 (A1/A2).  Thus a careful map of the
fluid streamlines, combined with the continuity equa-
tion, give us almost a complete picture of the fluid
motion.  The only additional information we need is the
entrance speed.

Velocity Field of a Point Source
This is an artificial example that shows us how to apply
the continuity equation in a somewhat unexpected
way, and leads to some ideas that will be very important
in our later discussion of electric fields.

For this example, imagine a small magic sphere that
creates water molecules inside and lets the water
molecules flow out through the surface of the sphere.
(Or there may be an unseen hose that supplies the water
that flows out through the surface of the sphere.)

Let the small sphere have a radius r
1
, area   4π r1

2  and
assume that the water is emerging radially out through
the small sphere at a speed v

1 
as shown in Figure (6).

Also let us picture that the small sphere is at the center
of a huge swimming pool full of water, that the sides of
the pool are so far away that the water continues to flow
radially outward at least for several meters.  Now
conceptually construct a second sphere of radius
r2 

 > r1  
 centered on the small sphere as in Figure (6).

During one second, the volume of water flowing out of
the small sphere is  v1A1, corresponding to  ∆t = 1 sec in
Equation (1).  By the continuity equation, the volume
of water flowing out through the second sphere in one
second,  v2A2, must be the same in order that no water
piles up between the spheres.  Using the fact that

  A1 = 4π r1
2and   A2 = 4π r2

2,  we get

  v1A1 = v2A2
continuity
equation

  v14π r1
2 = v24π r2

2

 v2 = 1
r2

2 v1r1
2 (4a)

Equation 4a tells us that as we go out from the "magic
sphere", as the distance r2 increases, the velocity  v2
drops off as the inverse square of r2, as  1 r2

21 r2
2 . We can

write this relationship in the form

   
v2 ∝

1

r2
2

Thesymbol
∝ means
"proportional to"

(4b)

A small spherical source like that shown in Figure (6)
is often called a  point source.  We see that a point
source of water produces a  1 r21 r2 velocity field.

r1

r2

v1

2v

2v
2v

2v

2v

v1

v1
v1

v1

point source
of water

Figure 6
Point source of water.  Imagine that water
molecules are created inside the small sphere
and flow radially out through its surface at a
speed  v1 .  The same molecules will eventually
flow out through the larger sphere at a lesser
speed  v2.  If no water molecules are created or
destroyed outside the small sphere, then the
continuity equation   A1v1 = A2v2  requires
that    4ππ r1

2 v1 = 4ππ r 2
2 v2 .
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Velocity Field of a Line Source
One more example which we will often use later is the
line source.  This is much easier to construct than the
point source where we had to create water molecules.
Good models for a line source of water are the sprin-
kling hoses used to water gardens.  These hoses have a
series of small holes that let the water flow radially
outward.

For this example, imagine that we have a long sprinkler
hose running down the center of an immense swim-
ming pool.  In Figure (7) we are looking at a cross
section of the hose and see a radial flow that looks very
much like Figure (6).  The side view, however, is
different.  Here we see that we are dealing with a line
rather than a point source of water.

Consider a section of the hose and fluid of length  L.
The volume of water flowing in one second out through
this section of hose is  v1A1  where  A1 = L  times (the
circumference of the hose) =   L(2πr1).

  Volume of
water / sec
from a section
L of hose

= v1A1 = v1L2π r1

If the swimming pool is big enough so that this water
continues to flow radially out through a cylindrical area

 A2  
concentric with and surrounding the hose, then the

volume of water per second (we will call this the “flux”
of water) out through  A2  is

  Volume of
water / sec out
through A2

= v2A2 = v2 2πr2L

Using the continuity equation to equate these volumes
of water per second gives

  v1A1 = v2A2

v1L2π r1 = v2L2π r2 ; v1r1 = v2r2

  

v2 =
v1r1

r2
∝

1
r2 (5)

We see that the velocity field of a line source drops off
as 1/r  rather than 1/r2 which we got from a point source.

Figure 7
Line source of water.  In a line source, the
water flows radially outward through a
cylindrical area whose length we choose as
L and whose circumference is    2ππ r  .

r1

r2

2v

v1

v1

2v

r2

L

line source
of water

r1

a) End view of line source

b) Side view of line source

v1

2v

2v

2v
2v

v1 v1

v1 v1

v1 v1 v1 v1

2v 2v 2v 2v

v1 v1 v1 v1

2v 2v 2v 2v

2v
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FLUX
Sometimes simply changing the name of a quantity
leads us to new ways of thinking about it.  In this case
we are going to use the word flux to describe the
amount of water flowing per second out of some
volume.  From the examples we have considered, the
flux of water out through volumes V

1 
and V

2 
are given

by the formulas

  Flux of
water
out of V1

≡
Volumeof
water flowing
per second
out of V1

= v1A1

Flux of
water
out of V2

= v2A2

The continuity equation can be restated by saying that
the flux of water out of V1 must equal the flux out of V2
if the water does not get lost or compressed as it flows
from the inner to the outer surface.

So far we have chosen simple surfaces, a sphere and a
cylinder, and for these surfaces the flux of water is
simply the fluid speed v times the area out through
which it is flowing.  Note that for our cylindrical surface
shown in Figure (8), no water is flowing out through the
ends of the cylinder, thus only the outside area (   2πrL)
counted in our calculation of flux.  A more general way
of stating how we calculate flux is to say that it is the
fluid speed v times the perpendicular area   A⊥ through
which the fluid is flowing.  For the cylinder, the
perpendicular area   A⊥ is the outside area (   2πrL); the
ends of the cylinder are parallel to the flow and there-
fore do not count.

The concept of flux can be generalized to irregular
flows and irregularly shaped surfaces.  To handle that
case, break the flow up into a bunch of small flow tubes
separated by streamlines, construct a perpendicular
area for each flow tube as shown in Figure (9), and then
calculate the total flux by adding up the fluxes from
each flow tube.

  Total Flux = v1A1 + v2A2 + v2A2 +...

= viA⊥
iΣ

i

(6)

In the really messy cases, the sum over flow tubes
becomes an integral as we take the limit of a large
number of infinitesimal flow tubes.

For this text, we have gone too far.  We will not work
with very complicated flows.  We can learn all we want
from the simple ones like the flow out of a sphere or a
cylinder.  In those cases the perpendicular area is
obvious and the flux easy to calculate.   For the spherical
flow of Figure (6), we see that the velocity field
dropped off as 1/r2 as we went out from the center of the
sphere.  For the cylinder in Figure (7) the velocity field
dropped off less rapidly, as 1/r.

A1

2A

3A

4A

v1

2v

3v

4v
Figure 9
To calculate the flux of water in an arbitrarily
shaped flow break up the flow into many small flux
tubes where the fluid velocity is essentially uniform
across the small tube as shown.  The flux through
the i-th tube is simply   viA i , and the total flux is the
sum of the fluxes    ΣΣi viA i  through each tube.

L

v v v v

v v v v

no water
flows out
through
the end

r

Figure 8
With a line source, all the water flows through the
cylindrical surface surrounding the source and none
through the ends.  Thus    A⊥⊥,  the perpendicular area
through which the water flows is    2ππ r ×× L .



23-9

BERNOULLI’S EQUATION
Our discussion of flux was fairly lengthy, not so much
for the results we got, but to establish concepts that we
will use extensively later on in our discussion of electric
fields.  Another topic, Bernoulli’s law, has a much
more direct application to the understanding of fluid
flows.  It also has some rather surprising consequences
which help explain why airplanes can fly and how a
sailboat can sail up into the wind.

Bernoulli’s law involves an energy relationship be-
tween the pressure, the height, and the velocity of a
fluid.  The theorem assumes that we have a constant
density fluid moving with a steady flow, and that
viscous effects are negligible, as they often are for
fluids such as air and water.

Consider a small tube of flow bounded by streamlines
as shown in Figure (10).  In a short time  ∆t a small
volume of fluid enters on the left and an equal volume
exits on the right.  If the exiting volume has more
energy than the entering volume, the extra energy had
to come from the work done by pressure forces acting
on the fluid in the flow tube.  Equating the work done
by the pressure forces to the increase in energy gives us
Bernoulli's equation.

To help visualize the situation, imagine that the stream-
line boundaries of the flow tube are replaced by fric-
tionless, rigid walls.  This would have no effect on the
flow of the fluid, but focuses our attention on the ends
of the tube where the fluid is flowing in on the left, at
what we will call Point (1), and out on the right at Point
(2).

A1

A2

x1 v1

flow tube
bounded by
streamlines

h1F1

F2

P2 2A=F2

P1 1A=F1 volume of
water entering
during time

t

t

= t

x2= v t2

volume of
water exiting
during time 

h2

1

2

Figure 10
Derivation of Bernoulli's equation.  Select a flow tube bounded by streamlines.  For the steady
flow of an incompressible fluid, during a time  ∆∆t  the same volume of fluid must enter on the
left as leave on the right.  If the exiting fluid has more energy than the entering fluid, the
increase must be a result of the net work done by the pressure forces acting on the fluid.
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As a further aid to visualization, imagine that a small
frictionless cylinder is temporarily inserted into the
entrance of the tube as shown in Figure (11a), and at the
exit as shown in Figure (11b).  Such cylinders have no
effect on the flow but help us picture the pressure
forces.

At the entrance, if the fluid pressure is  P1 and the area
of the cylinder is  A 1, then the external fluid exerts a net
force of magnitude

 F1 = P1A1 (7a)

directed perpendicular to the surface of the cylinder as
shown.  We can think of this force  F1 as the pressure
force that the outside fluid exerts on the fluid inside the
flow tube.  At the exit, the external fluid exerts a
pressure force  F2  of magnitude

 F2 = P2A2 (7b)

directed perpendicular to the piston, i.e., back toward
the fluid inside the tube.

Thus the fluid inside the flow tube is subject to external
pressure forces,  F1 in from the left and  F2  in from the
right.  During a time  ∆t, the fluid at the entrance moves
a distance   ∆x1 = v1∆t as shown in Figure (10).  While
moving this distance, the entering fluid is subject to the
pressure force  F1, thus the work   ∆W1  done by the
pressure force at the entrance is

  ∆W1 = F1⋅∆x1 = P1A1 v1∆t (8a)

At the exit, the fluid moves out a distance   ∆x2 = v2∆t,
while the external force pushes back in with a pressure
force  F2.  Thus the pressure forces do negative work on
the inside fluid, with the result

  ∆W2 = F2⋅∆x2 = – P2A2 v2∆t (8b)

The net work   ∆W done during a time  ∆t by external
pressure forces on fluid inside the flow tube is therefore

  ∆W = ∆W1 + ∆W2

= P1 A1v1∆t – P2 A2v2∆t
(9)

Equation (9) can be simplified by noting that
  A 1v1∆t = A 1∆x1 is the volume   ∆V1 of the entering

fluid.  Likewise   A 2v2∆t = A 2∆x2 is the volume   ∆V2
of the exiting fluid.  But during  ∆t, the same volume

  ∆V of fluid enters and leaves, thus   ∆V1 = ∆V2 = ∆V
and we can write Equation (9) as

  work done
by external
pressure
forces
on fluid
inside flow
tube

∆W = ∆V P1 – P2 (10)

The next step is to calculate the change in energy of the
entering and exiting volumes of fluid.  The energy   ∆E1
of the entering fluid is its kinetic energy   1 21 2 ∆m v1

2

plus its gravitational potential energy   ∆m gh1, where
  ∆m is the mass of the entering fluid.  If the fluid has a

density ρ, then   ∆m = ρ∆V and we get

P1
A1

F1

exit from
flow tube

entrance to
flow tube

internal fluida)

b) internal fluid F2

P2

A2

Figure 11
The flow would be unchanged if we temporarily
inserted frictionless pistons at the entrance and exit.
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  ∆E1 = 1
2

ρ∆V v1
2 + ρ∆V gh1

= ∆V 1
2

ρv1
2 + ρgh1

(11a)

At the exit, the same mass and volume of fluid leave in
time   ∆t, and the energy of the exiting fluid is

  ∆E2 = ∆V 1
2

ρv2
2 + ρgh2 (11b)

The change   ∆E in the energy in going from the
entrance to the exit is therefore

  ∆E = ∆E2 – ∆E1

= ∆V 1
2ρv2

2 + ρgh2 – 1
2ρv1

2 – ρgh1 (12)

Equating the work done, Equation (10) to the change in
energy, Equation (12) gives

  ∆V P1 – P2

= ∆V 1
2ρv2

2 + ρgh2 – 1
2ρv1

2 – ρgh1 (13)

Not only can we cancel the   ∆Vs  in Equation (13), but
we can rearrange the terms to make the result easier to
remember.  We get

  
P1 + 1

2ρv1
2 + ρgh1 = P2 + 1

2ρv2
2 + ρgh2 (14)

In this form, an interpretation of Bernoulli’s equation
begins to emerge.  We see that the quantity

  P + ρgh + 1
2 ρv2  has the same numerical value at the

entrance, Point (1), as at the exit, Point (2).  Since we
can move the starting and ending points anywhere
along the flow tube, we have the more general result

  

P + ρgh + 1
2

ρv2 =
constant anywhere
along a flow tube
or streamline

(15)

Equation (15) is our final statement of Bernoulli’s
equation.  In words it says that for the steady flow of an
incompressible, non viscous, fluid, the quantity

  P + ρgh + 1 21 2ρv2  has a constant value along a
streamline.

The restriction that   P + ρgh + 1 21 2ρv2   is constant
along a streamline has to be taken seriously.  Our
derivation applied energy conservation to a plug mov-
ing along a small flow tube whose boundaries are
streamlines.  We did not consider plugs of fluid moving
in different flow tubes, i.e., along different streamlines.
For some special flows, the quantity

  P + ρgh + 1 21 2ρv2  has the same value throughout
the entire fluid.  But for most flows,

  P + ρgh + 1 21 2ρv2  has different values on different
streamlines.  Since we haven’t told you what the special
flows are, play it safe and assume that the numerical
value of   P + ρgh + 1 21 2ρv2   can change when you
hop from one streamline to another.
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APPLICATIONS OF
BERNOULLI’S EQUATION
Bernoulli’s equation is a rather remarkable result that
some quantity   P + ρgh + 1 21 2ρv2  has a value that
doesn’t change as you go along a streamline.  The terms
inside, except for the P term, look like the energy of a
unit volume of fluid.  The P term came from the work
part of the energy conservation theorem, and cannot
strictly be interpreted as some kind of pressure energy.
As tempting as it is to try to give an interpretation to the
terms in Bernoulli’s equation, we will put that off for a
while until we have worked out some practical applica-
tions of the formula.  Once you see how much the
equation can do, you will have a greater incentive to
develop an interpretation.

Hydrostatics
Let us start with the simplest application of Bernoulli’s
equation, namely the case where the fluid is at rest.  In
a sense, all the fluid is on the same streamline, and we
have

  
P + ρgh =

constant
throughout
the fluid

(16)

Suppose we have a tank of water shown in Figure (12).
Let the pressure be atmospheric pressure at the surface,
and set h = 0 at the surface.  Therefore at the surface

  Pat + ρg 0 = constant

and the constant is Pat.  For any depth y = –h, we have

  P – ρgy = constant = Pat

  
P = Pat + ρgy (17)

We see that the increase in pressure at a depth y is   ρgy,
a well-known result from hydrostatics.

Exercise 1
The density of water is   ρ = 103Kg/m3 and atmospheric
pressure is    Pat = 1.0 ×105N/ m2 . At what depth does a
scuba diver breath air at a pressure of 2 atmospheres?
(At what depth does    ρgy = Pat  ?)  (Your answer should
be 10.2m or 33 ft.)

Exercise 2

What is the pressure, in atmospheres, at the deepest
part of the ocean? (At a depth of 8 kilometers.)

Leaky Tank
For a slightly more challenging example, suppose we
have a tank filled with water as shown in Figure (13).
A distance h below the surface of the tank we drill a hole
and the water runs out of the hole at a speed v.  Use
Bernoulli’s equation to determine the speed v of the
exiting water.

water

h = 0

h = –y

y

P

Pat

(2)

2V
h2

h1

h

streamline

water

Pat (1)

Pat

Figure 13
Water squirting out through a hole in a leaky tank.  A
streamline connects the leak at Point (2) with some
Point (1) on the surface. Bernoulli's equation tells us
that the water squirts out at the same speed it would
have if it had fallen a height h.

Figure 12
Hydrostatic pressure at a depth y is
atmospheric pressure plus ρρ gy.
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Solution:  Somewhere there will be a streamline
connecting the free surface of the water (1)  to a Point
(2) in the exiting stream.  Applying Bernoulli's equa-
tion to Points (1) and (2) gives

  P1 + ρgh 1 + 1
2 ρv1

2 = P2 + ρgh 2 + 1
2 ρv2

2

Now P1 = P2 = Pat , so the Ps cancel.  The water level
in the tank is dropping very slowly, so that we can set
v1 = 0.  Finally h1 – h2  = h, and we get

  1
2

ρv2
2 = ρg h1 – h2 = ρgh (18)

The result is that the water coming out of the hole is
moving just as fast as it would if it had fallen freely from
the top surface to the hole we drilled.

Airplane Wing
In the example of a leaky tank, Bernoulli’s equation
gives a reasonable, not too exciting result.  You might
have guessed the answer by saying energy should be
conserved.  Now we will consider some examples that
are more surprising than intuitive.  The first explains
how an airplane can stay up in the air.

Figure (14) shows the cross section of a typical airplane
wing and some streamlines for a typical flow of fluid
around the wing.  (We copied the streamlines from our
demonstration in Figure 3).

The wing is purposely designed so that the fluid has to
flow farther to get over the top of the wing than it does
to flow across the bottom.  To travel this greater
distance, the fluid has to move faster on the top of the
wing (at Point 1), than at the bottom (at Point 2).

Arguing that the fluid at Point (1) on the top and Point
(2) on the bottom started out on essentially the same
streamline (Point 0),  we can apply Bernoulli’s equa-
tion to Points (1) and (2) with the result

  P1 + 1
2

ρv1
2 + ρgh1 = P2 + 1

2
ρv2

2 + ρgh2

We have crossed out the   ρgh terms because the differ-
ence in hydrostatic pressure   ρgh across the wing is
negligible for a light fluid like air.

Here is the important observation.  Since the fluid speed
v

1
 at the top of the wing is higher than the speed v

2 
at the

bottom, the pressure P2 at the bottom must be greater
than P1 at the top in order that the sum of the two terms

  P + 1 21 2ρv2   be the same.  The extra pressure on the
bottom of the wing is what provides the lift that keeps
the airplane up in the air.

There are two obvious criticisms of the above explana-
tion of how airplanes get lift.  What about stunt pilots
who fly upside down?  And how do balsa wood gliders
with flat wings fly?  The answer lies in the fact that the
shape of the wing cross-section is only one of several
important factors determining the flow pattern around
a wing.

Figure (15) is a sketch of the flow pattern around a flat
wing flying with a small angle of attack θ. By having
an angle of attack, the wing creates a flow pattern where
the streamlines around the top of the wing are longer
than those under the bottom.  The result is that the fluid
flows faster over the top, therefore the pressure must be
lower at the top (higher at the bottom) and we still get
lift.  The stunt pilot flying upside down must fly with a
great enough angle of attack to overcome any down-
ward lift designed into the wing.

Figure 15
A balsa wood model plane gets lift by having the wing
move forward with an upward tilt, or angle of attack.
The flow pattern around the tilted wing gives rise to a
faster flow and therefore reduced pressure over the top.

θ

(1)

airplane wing

(2)
(0)

Figure 14
Streamline flow around an airplane wing.  The wing is
shaped so that the fluid flows faster over the top of the
wing, Point (1) than underneath, Point (2).  As a result
the pressure is higher beneath Point (2) than above
Point (1).



23-14  Fluid Dynamics

Sailboats
Sailboats rely on Bernoulli’s principle not only to
supply the “lift” force that allows the boat to sail into the
wind, but also to create the “wing” itself.  Figure (16)
is a sketch of a sailboat heading at an angle θ  off from
the wind.  If the sail has the shape shown, it looks like
the airplane wing of Figure (14), the air will be moving
faster over the outside curve of the sail (Position 1) than
the inside (Position 2), and we get a higher pressure on
the inside of the sail. This higher pressure on the inside
both pushes the sail cloth out to give the sail an airplane
wing shape, and creates the lift force  shown in the
diagram.  This lift force has two components. One pulls
the boat forward.  The other component , however,
tends to drag the boat sideways.  To prevent the boat
from slipping sideways, sailboats are equipped with a
centerboard or a keel.

The operation of a sailboat is easily demonstrated using
an air cart, glider and fan.  Mount a small sail on top of
the air cart glider (the light plastic shopping bags make
excellent sail material) and elevate one end of the cart
as shown in Figure (17) so that the cart rests at the low
end.  Then mount a fan so that the wind blows down and
across as shown.  With a little adjustment of the angle
of the fan and the tilt of the air cart, you can observe the
cart sail up the track, into the wind.

If you get the opportunity to sail a boat, remember that
it is the Bernoulli effect that both shapes the sail and
propels the boat.  Try to adjust the sail so that it has a
good airplane wing shape, and remember that the
higher speed wind on the outside of the sail creates a
low pressure that sucks the sailboat forward.  You’ll go
faster if you keep these principles in mind.

air cart

light plastic
sail

tilted air track

post

sail

string

fan

Figure 17
Sailboat demonstration.  It is easy to rig a mast on an
air cart, and use a small piece of a light plastic bag for
a sail.  Place the cart on a tilted air track so that the
cart will naturally fall backward.  Then turn on a fan
as shown, and the cart sails up the track into the wind.

Figure 16
A properly designed sail takes on the shape of an
airplane wing with the wind traveling faster,
creating a lower pressure on the outside of the
sail (Point 1).  This low pressure on the outside
both sucks the canvas out to maintain the shape
of the sail and provides the lift force.  The
forward component of the lift force moves the
boat forward and the sideways component is
offset by the water acting on the keel.

lift force
forward
component
of liftsail(2) (1)

(0)

θ



23-15

The Venturi Meter
Another example, often advertised as a simple applica-
tion of Bernoulli’s equation, is the Venturi meter
shown in Figure (18).  We have a tube with a constric-
tion, so that its cross-sectional area A

1
 at the entrance

and the exit, is reduced to A
2
 at the constriction.  By the

continuity equation (3), we have
 

v1A1 = v2A2; v2 =
v1A1

A2
As expected, the fluid travels faster through the con-
striction since  A1 > A2.

Now apply Bernoulli’s equation to Points (1) and (2).
Since these points are at the same height,  the   ρgh  terms
cancel and Bernoulli’s equation becomes

  P1 + 1
2 ρv1

2 = P2 + 1
2 ρv2

2

Since v
2
 > v

1
, the pressure P

2 
in the constriction must be

less than the pressure P
1 
in the main part of the tube.

Using  v2 = v1A1/A2 , we get

  Pressure
drop in
constriction

= P1 – P2

= 1
2

ρ v2
2 – v1

2

= 1
2

ρ v1
2A1

2 A2
2A1

2 A2
2 – v1

2

= 1
2

ρv1
2 A1

2 A2
2A1

2 A2
2 – 1

(19)

To observe the pressure drop, we can mount small
tubes (A) and (B) as shown in Figure (18), to act as
barometers.  The lower pressure in the constriction will

cause the fluid level in barometer (B) to be lower than
in the barometer over the slowly moving, high pressure
stream.  The height difference h means that there is a
pressure difference

  Pressure
difference

= P1 – P2 = ρgh (20)

If we combine Equations (19) and (20), ρ  cancels and
we can solve for the speed v

1
 of the fluid in the tube in

terms of the quantities g, h, A1 and A2.  The result is

 
v1 =

2gh

A1
2 A2

2A1
2 A2

2 – 1
(21)

Because we can determine the speed v1 of the main
flow by measuring the height difference h of the two
columns of fluid, the setup in Figure (18) forms the
basis of an often used meter to measure fluid flows.  A
meter based on this principle is called a Venturi meter.

Exercise 3
Show that all the terms in Bernoulli's equation have the
same dimensions. (Use MKS units.)

Exercise 4

In a classroom demonstration of a venturi meter shown
in Figure (18a), the inlet and outlet pipes had diameters
of 2 cm and the constriction a diameter of 1 cm. For a
certain flow, we noted that the height difference h in the
barometer tubes was 7 cm. How fast, in meters/sec,
was the fluid flowing in the inlet pipe?

(A) (B)

h(3)

(4)

(1) (2)
v2v1

A1

A2

Figure 18
Venturi meter.  Since the water flows faster through
the constriction, the pressure is lower there.  By using
vertical tubes to measure the pressure drop, and using
Bernoulli's equation and the continuity equation, you
can determine the flow speeds  v1 and  v2.

Figure 18a
Venturi demonstration. We see about a 7cm drop in
the height of the barometer tubes at the constriction.
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The Aspirator
In Figure (18), the faster we move the fluid through the
constriction (the greater v1 and therefore v2), the greater
the height difference h in the two barometer columns.
If we turn v1  up high enough, the fluid is moving so fast
through section 2 that the pressure becomes negative
and we get suction in barometer 2.  For even higher
speed flows, the suction at the constriction becomes
quite strong and we have effectively created a crude
vacuum pump called an aspirator.  Typically aspira-
tors like that shown in Figure (19) are mounted on cold
water faucets in chemistry labs and are used for sucking
up various kinds of fluids.

Care in Applying Bernoulli’s Equation
Although the Venturi meter and aspirator are often
used as simple examples of Bernoulli’s equation, con-
siderable care must be used in applying Bernoulli’s
equation in these examples.  To illustrate the trouble
you can get into, suppose you tried to apply Bernoulli’s
equation to Points (3) and (4) of Figure (20).  You
would write

  P3 + ρgh 3 + 1
2 ρv3

2 = P4 + ρgh 4 + 1
2 ρv4

2

(22)

Now  P3 = P4 = Patmosphere  because Points (3) and (4)
are at the liquid surface.  In addition the fluid is at rest
in tubes (3) and (4), therefore v

3 
= v

4  
= 0.  Therefore

Bernoulli’s equation predicts that

  ρgh 3 = ρgh 4

or that h3 = h4 and there should be no height difference!

What went wrong?  The mistake results from the fact
that no streamlines go from position (3) to position (4),
and therefore Bernoulli’s equation does not have to
apply.  As shown in Figure (21) the streamlines flow
across the bottom of the barometer tubes but do not go
up into them.  It turns out that we cannot apply
Bernoulli’s equation across this break in the stream-
lines.  It requires some experience or a more advanced
knowledge of hydrodynamic theory to know that you
can treat the little tubes as barometers and get the

suction

negative
pressure

v2v1

suction

aspirator

water
faucet
spigot

(3)

(4)

v2v1

Figure 20
If you try to apply Bernoulli's equation to Points (3)
and (4), you predict, incorrectly, that Points (3) and
(4) should be at the same height.  The error is that
Points (3) and (4) do not lie on the same streamline,
and therefore you cannot apply Bernoulli's equation
to them.

Figure 19b
If the constriction is placed on the end of a water faucet
as shown, you have a device called an aspirator that is
often used in chemistry labs for sucking up fluids.

Figure 19a
If the water flows through the constriction
fast enough, you get a negative pressure
and suction in the attached tube.
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correct answer.  Most texts ignore this complication,
but there are always some students who are clever
enough to try to apply Bernoulli’s equation across the
break in the flow at the bottom of the small tubes and
then wonder why they do not get reasonable answers.

There is a remarkable fluid called superfluid helium
which under certain circumstances will not have a
break in the flow at the base of the barometer tubes.
(Superfluid helium is liquefied helium gas cooled to a
temperature below 2.17 ° K).  As shown in Figure (22)
the streamlines actually go up into the barometer tubes,
Points (3) and (4) are connected by a streamline,
Bernoulli’s equation should apply and we should get
no height difference.  This experiment was performed
in 1965 by Robert Meservey  and the heights in the two
barometer tubes were just the same!

Hydrodynamic Voltage
When we studied the motion of a projectile, we found
that the quantity (1/2 mv2 + mgh) did not change as the
ball moved along its parabolic trajectory.  When physi-
cists discover a quantity like (1/2 mv2 + mgh) that does
not change, they give that quantity a name, in this case
“the ball’s total energy”, and then say that they have
discovered a new law, namely “the ball’s total energy
is conserved as the ball moves along its trajectory”.

With Bernoulli’s equation we have a quantity
  P + ρgh + 1 21 2ρv2  which is constant along a stream-

line when we have the steady flow of an incompress-
ible, non viscous fluid.  Here we have a quantity

  P + ρgh + 1 21 2ρv2  that is conserved under special
circumstances; perhaps we should give this quantity a
name also.

The term   ρgh is the gravitational potential energy of a
unit volume of the fluid, and   1 21 2ρv2 is the same
volume’s kinetic energy.  Thus our Bernoulli term has
the dimensions and characteristics of the energy of a
unit volume of fluid.  But the pressure term, which
came from the work part of the derivation of Bernoulli’s
equation,  is not a real energy term.  There is no pressure
energy P stored in an incompressible fluid, and
Bernoulli’s equation is not truly a statement of energy
conservation for a unit volume of fluid.

However, as we have seen, the Bernoulli term is a
useful concept, and deserves a name.  Once we name
it, we can say that “ ” is conserved along a streamline
under the right circumstances.  Surprisingly there is not
an extensive tradition for giving the Bernoulli term a
name so that we have to concoct a name here.  At this
point our choice of name will seem a bit peculiar, but
it is chosen with later discussions in mind.  We will call
the Bernoulli term hydrodynamic voltage

  Hydrodynamic
Voltage

≡ P + ρgh + 1
2

ρv2 (23)

and Bernoulli’s equation states that the hydrodynamic
voltage of an incompressible, non viscous fluid is
constant along a streamline when the flow is steady.

(3)

barometer tube

streamlines

fluid at rest

moving fluid

Figure 21
The water flows past the bottom of the barometer tube,
not up into the tube.  Thus Point (3) is not connected to
any of the streamlines in the flow.  The vertical tube
acts essentially as a barometer, measuring the pressure
of the fluid flowing beneath it.

Figure 22
In superfluid helium, the streamlines actually go
up into the barometer tubes and Bernoulli's
equation can be applied to Points (3) and (4).
The result is that the heights of the fluid are the
same as predicted. (Experiment by R. Meservey,
see Physics Of Fluids, July 1965.)

(3) (4)

superfluid helium

streamlines
go up
into tubes
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We obviously did not invent the word voltage; the
name is commonly used in discussing electrical de-
vices like high voltage wires and low voltage batteries.
It turns out that there is a precise analogy between the
concept of voltage used in electricity theory, and the
Bernoulli term we have been discussing.  To empha-
size the analogy, we are naming the Bernoulli term
hydrodynamic voltage.  The word “hydrodynamic” is
included to remind us that we are missing some of the
electrical terms in a more general definition of voltage.
We are discussing hydrodynamic voltage before elec-
trical voltage because hydrodynamic voltage involves
fluid concepts that are more familiar, easier to visualize
and study, than the corresponding electrical concepts.

Town Water Supply
One of the familiar sights in towns where there are no
nearby hills is the water tank somewhat crudely illus-
trated in Figure (23).  Water is pumped from the
reservoir  into the tank to fill the tank up to a height h
as shown.

For now let us assume that all the pipes attached to the
tanks are relatively large and frictionless so that we can
neglect viscous effects and apply Bernoulli’s equation
to the water at the various points along the water
system.  At Point (1), the pressure is simply atmo-
spheric pressure  Pat, the water is essentially not flow-
ing, and the hydrodynamic voltage consists mainly of

 Pat plus the gravitational term  gh1

 Hydrodynamic
Voltage 1

= Pat + gh1

By placing the tank high up in the air, the gh1 term can
be made quite large.  We can say that the tank gives us
“high voltage” water.

Figure 23
The pressure in the town water supply may be
maintained by pumping water into a water tank as
shown.  If the pipes are big enough we can neglect the
viscous effect and apply Bernoulli's equation
throughout the system, including the break in the water
pipe at Point (3), and the top of the fountain, Point (4).

water tank
(1)

(2) (5)(3)

(4)

h1

hole in pipe

water 
spraying 
up
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Bernoulli’s equation tells us that the hydrodynamic
voltage of the water is the same at all the points along
the water system.  The purpose of the water tank is to
ensure that we have high voltage water throughout the
town.  For example, at Point (2) at one of the closed
faucets in the second house, there is no height left

 (h2 = 0)  and the water is not flowing.  Thus all the
voltage shows up as high pressure at the faucet.

 Hydrodynamic
Voltage 2

= P2

At Point (3) we have a break in the pipe and water is
squirting up.  Just above the break the pressure has
dropped to atmospheric pressure and there is still no
height.  At this point the voltage appears mainly in the
form of kinetic energy.

  Hydrodynamic
Voltage 3

= Pat + 1
2

ρv2

Finally at Point (4) the water from the break reaches its
maximum height and comes to rest before falling down
again.  Here it has no kinetic energy, the pressure is still
atmospheric, and the hydrodynamic voltage is back in
the form of gravitational potential energy.  If no voltage
has been lost, if Bernoulli’s equation still holds, then
the water at Point (4) must rise to the same height as the
water at the surface in the town water tank.

In some sense, the town water tank serves as a huge
“battery” to supply the hydrodynamic voltage for the
town water system.

Figure 24
If we have a fairly fast flow in a fairly small tube,
viscosity causes a pressure drop, or as we are
calling it, a "hydrodynamic voltage" drop down the
tube.  This voltage drop is seen in the decreasing
heights  of the water in the barometer tubes.
(In our Venturi demonstration of Figure (18a), the
heights are lower on the exit side than the entrance
side due to viscosity acting in the constriction.)

Heights in barometer tubes 
dropping due to viscosity

v

Viscous Effects
We said that the hydrodynamic analogy of voltage
involves familiar concepts.  Sometimes the concepts
are too familiar.   Has your shower suddenly turned cold
when someone in the kitchen drew hot water for
washing dishes; or turned hot when the toilet was
flushed?  Or been reduced to a trickle when the laundry
was being washed?  In all of these cases there was a
pressure drop at the shower head  of either the hot water,
the cold water, or both.  A pressure drop means that you
are getting lower voltage water at the shower head than
was supplied by the town water tank (or by your home
pressure tank).

The hydrodynamic voltage drop results from the fact
that you are trying to draw too much water through
small pipes, viscous forces become important, and
Bernoulli’s equation no longer applies.  Viscous forces
always cause a drop in the hydrodynamic voltage.  This
voltage drop can be seen in a classroom demonstration,
Figure (24), where we have inserted a series of small
barometer tubes in a relatively small flow tube.  If we
run a relatively high speed stream of water through the
flow tube,  viscous effects become observable and the
pressure drops as the water flows down the tube.  The
pressure drop is made clear by the decreasing heights
of the water in the barometer tubes as we go down-
stream.

Figure 18a repeated
Venturi demonstration.
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VORTICES
The flows we have been considering, water in a pipe,
air past a sailboat sail, are tame compared to a striking
phenomena seen naturally in the form of hurricanes
and tornados.  These are examples of a fluid motion
called a vortex.  They are an extension, to an atmo-
spheric scale, of the common bathtub vortex like the
one we created in the funnel seen in Figure (25).

Vortices have a fairly well-defined structure which is
seen most dramatically in the case of the tornado (see
Figures 29 and 30).  At the center of the vortex is the
core.  The core of a bathtub vortex is the hollow tube of
air that goes down the drain.  In a tornado or water
spout, the core is the rapidly rotating air.  For a
hurricane it is the eye, seen in Figures (27) and (28),
which can be amazingly calm and serene considering
the vicious winds and rain just outside the eye.

Outside the core, the fluid goes around in a circular
pattern, the speed decreasing as the distance from the
center increases.  It turns out that viscous effects are
minimized if the fluid speed drops off as 1/r where r is
the radial distance from the center of the core as shown
in Figure (26).    At some distance from the center, the
speed drops to below the speed of other local distur-
bances and we no longer see the organized motion.

The tendency of a fluid to try to maintain a 1/r velocity
field explains why vortices have to have a core.  You
cannot maintain a 1/r velocity field down to r = 0, for
then you would have infinite velocities at the center.  To
avoid this problem, the vortex either throws the fluid
out of the core, as in the case of the hollow bathtub
vortex, or has the fluid in the core move as a solid
rotating object (vθ

   =  r ω) in the case of a tornado, or
has a calm fluid when the core is large (i.e., viscous
effects of the land are important) as in the case of a
hurricane.

While the tornado is a very well organized example of
a vortex, it has been difficult to do precise measure-
ments of the wind speeds in a tornado.  One of the best
measurements verifying the 1/r velocity field was
when a tornado hit a lumber yard, and a television
station using a helicopter recorded the motion of sheets
of 4' by 8' plywood that were scattered by the tornado.
(Using doppler radar, a wind speed of 318 miles per
hour was recorded in a tornado that struck Oklahoma
city on May 3, 1999--a world wind speed record!)

core

Figure 26
Vortices tend to have a circular velocity field about
the core, a velocity field vθθ  whose strength tends to
drop off as 1/r as you go out from the core.

Figure 27
Eye of hurricane Allen viewed from a satellite.
(Photograph courtesy of A. F. Haasler.)

Figure 25
Bathtub vortex in a funnel. We stirred
the water before letting it drain out.

  vθ ∝ 1
r
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Figure 29
Tornado in Kansas.

Figure 30
A tornado over water is called a water spout.

Figure 28
Hurricane
approaching
the east
coast of
the U.S.
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Quantized Vortices in Superfluids
For precision, nothing beats the “quantized” vortex in
superfluid helium.  We have already mentioned that
superfluid helium flows up and down the little barom-
eter tubes in a Venturi meter, giving no height differ-
ence and nullifying the effectiveness of the device as a
velocity meter.  This happened because superfluid
helium has NO viscosity (absolutely none as far as we
can tell) and can therefore flow into tiny places where
other fluids cannot move.

More surprising yet is the structure of a vortex in
superfluid helium.  The vortex has a core that is about
one atomic diameter across (you can’t get much smaller
than that), and a precise 1/r velocity field outside the
core.  Even more peculiar is the fact that the velocity
field outside the core is given by the formula

  vθ = κ
2πr

  ;    
  

κ =
h

mHe
(24)

where κ , called the “circulation of the vortex”, has the
precisely known value  h mHeh mHe , where  mHe is the mass
of a helium atom, and h is an atomic constant known as
Planck’s constant.  The remarkable point is that the
strength of a helium vortex has a precise value deter-
mined by atomic scale constants.  (This is why we say
that vortices in superfluid helium are quantized.)  When
we get to the study of atoms, and particularly the Bohr
theory of hydrogen, we can begin to explain why
helium vortices have precisely the strength   κ = h mHeh mHe.
For now, we are mentioning vortices in superfluid
helium as examples of an ideal vortex with a well-
defined core and a precise 1/r velocity field outside.

Quantized vortices of a more complicated structure
also occur in superconductors and play an important
role in the practical behavior of a superconducting
material.  The superconductors that carry the greatest
currents, and are the most useful in practical applica-
tions, have quantized vortices that are pinned down and
cannot move around.  One of the problems in develop-
ing practical applications for the new high temperature
superconductors is that the quantized vortices tend to
move and cause energy losses.  Pinning these vortices
down is one of the main goals of current engineering
research.

Exercise 5
This was an experiment, performed in the 1970s to
study how platelets form plaque in arteries.  The idea
was that platelets deposit out of the blood if the flow of
blood is too slow.  The purpose of the experiment was
to design a flow where one could easily see where the
plaque began to form and also know what the velocity
of the flow was there.

The apparatus is shown in Figure (31).  Blood flows
down through a small tube and then through a hole in a
circular plate that is suspended a small distance d
above a glass plate.  When the blood gets to the glass
it  flows radially outward as indicated in Figure (31c).  As
the blood flowed radially outward, its velocity decreases.
At a certain radius, call it rp, platelets began to deposit
on the glass.  The flow was photographed by a video
camera looking up through the glass.

For this problem, assume that the tube radius was
 rt = .4mm,  and that the separation d between the circular

plate and the glass was  d = .5 mm.  If blood were flowing
down the inlet tube at a rate of half a cubic centimeter
per second, what is the average speed of the blood

a) inside the inlet tube?

b) at a radius  rp = 2cm out from the hole in the circular
plate?

(By average speed, we mean neglect fluid friction at
walls, and assume that the flow is uniform across the
radius of the inlet pipe and across the gap as indicated
in Figure (31d).

Exercise 6
A good review of both the continuity equation and
Bernoulli’s equation, is to derive on your own, without
looking back at the text, the formula

 v1 = 2gh
A1

2/A2
2 – 1

(21)

for the flow speed in a venturi meter.  The various
quantities v1 , h,  A1  and  A2  are defined in Figure (18)
reproduced on the opposite page.  (If you have trouble
with the derivation, review it in the text, and then a day
or so later, try the derivation again on your own.
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blood flow

radius at which 
platelets form

blood flowing
radially outward

blood flowing
in through tube

glass plate

gap thickness d

rp
rtube

tube

circular metal plate

tube of inner 
radius r

a)

b) 

c)

Figure 31 a,b,c
Experiment to measure the blood flow velocity at which platelets stick
to a glass plate. This is an application of the continuity equation.

blood flow

Figure 31d
Neglect fluid friction at walls, and assume
that the flow is uniform across the radius
of the inlet pipe and across the gap

(A) (B)

h(3)

(4)

(1) (2)
v2v1

A1

A2

Figure 18
Venturi meter.  Since the water flows faster through
the constriction, the pressure is lower there.  By using
vertical tubes to measure the pressure drop, and using
Bernoulli's equation and the continuity equation, you
can determine the flow speeds  v1 and  v2.
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CHAPTER 24 COULOMB'S LAW
AND GAUSS' LAW

In our discussion of the four basic interactions we saw
that the electric and gravitational interaction had very
similar  1 r21 r2 force laws, but produced very different
kinds of structures.  The gravitationally bound struc-
tures include planets, solar systems, star clusters,
galaxies, and clusters of galaxies.  Typical electrically
bound structures are atoms, molecules, people, and
redwood trees.  Although the force laws are similar in
form, the differences in the structures they create result
from two important differences in the forces.  Gravity
is weaker, far weaker, than electricity.  On an atomic
scale gravity is so weak that its effects have not been
seen.  But electricity has both attractive and repulsive
forces.  On a large scale, the electric forces cancel so
completely that the weak but non-cancelling gravity
dominates astronomical structures.

COULOMB'S LAW
In Chapter 18 we briefly discussed Coulomb’s electric
force law, primarily to compare it with gravitational
force law.  We wrote Coulomb’s law in the form

  
F =

KQ1Q2

r2
Coulomb,s
Law (1)

where  Q1 and  Q2 are two charges separated by a
distance r as shown in Figure (1).  If the charges  Q1 and

 Q2 are of the same sign, the force is repulsive, if they are
of the opposite sign it is attractive.  The strength of the
electric force decreases as  1 r21 r2 just like the gravita-
tional force between two masses.

Q1 Q2

r
Figure 1

Two particles of charge  Q1  and  Q2,
separated by a distance r.
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Although we work with the familiar quantities volts,
amps and watts using MKS units, there is a price we
have to pay for this convenience.  In MKS units the
constant K in Coulomb’s law is written in a rather
peculiar way, namely

  K = 1
4πε0

ε0 = 8.85 × 10–12 farads/meter
(3)

and Coulomb’s law is written as

  Fe =
Q1Q2

4πε0r2       
Q1 Q2

r
(4)

where  Q1 and  Q2 are the charges measured in cou-
lombs, and r is the separation measured in meters, and
the force Fe  is in newtons.

Before we can use Equation (4), we have to know how
big a unit of charge a coulomb is, and we would
probably like to know why there is a  4π in the formula,
and why the proportionality constant ε0 (“epsilon
naught ”) is in the denominator.

As we saw in Chapter 18, nature has a basic unit of
charge (e) which we call the charge on the electron.  A
coulomb of charge is   6.25 × 1018  times larger.  Just as
a liter of water is a large convenient collection of water
molecules,   3.34 × 1025 of them, the coulomb can be
thought of as a large collection of electron charges,

  6.25 × 1018  of them.

In practice, the coulomb is defined experimentally, not
by counting electrons, and not by the use of Coulomb’s
law, but, as we said, by a magnetic force measurement
to be described later.  For now, just think of the coulomb
as a convenient unit made up of   6.25 × 1018  electron
charges.

Once the size of the unit charge is chosen, the propor-
tionality constant  in Equation (4) can be determined by
experiment.  If we insist on putting the proportionality
constant in the denominator and including a  4π, then ε0
has the value of   8.85 × 10–12, which we will often
approximate as   9 × 10–12.

CGS Units
In the CGS system of units, the constant K in Equation
(1) is taken to have the numerical value 1, so that
Coulomb’s law becomes

 Fe =
Q1Q2

r2 (2)

Equation (2) can be used as an experimental definition
of charge.  Let  Q1 be some accepted standard charge.
Then any other charge  Q2 

can be determined in terms
of the standard  Q1 by measuring the force on  Q2 when
the separation is r.  In our discussion in Chapter 18, we
took the standard  Q1 as the charge on an electron.

This process of defining a standard charge  Q1 and using
Equation (1) to determine other charges, is easy in
principle but almost impossible in practice.  These so-
called electrostatic measurements are subject to all
sorts of experimental problems such as charge leaking
away due to a humid atmosphere, redistribution of
charge, static charge on the experimenter, etc.  Charles
Coulomb worked hard just to show that the electric
force between two charges did indeed drop as  1 r21 r2.  As
a practical matter, Equation (2) is not used to define
electric charge.  As we will see, the more easily
controlled magnetic forces are used instead.

MKS Units
When you buy a 100 watt bulb at the store for use in
your home, you will see that it is rated for use at 110–
120 volts if you live in the United States or Canada, or
220–240 volts most elsewhere.  The circuit breakers in
your house may allow each circuit to carry up to 15 or
20 amperes of current in each circuit.  The familiar
quantities volts, amperes, watts are all MKS units.  The
corresponding quantities in CGS units are the totally
unfamiliar statvolts, statamps, and ergs per second.
Some scientific disciplines, particularly plasma and
solid state physics, are conventionally done in CGS
units but the rest of the world uses MKS units for
describing electrical phenomena.



24-3

Why is the proportionality constant ε0 placed in the
denominator?  The kindest answer is to say that this is
a historical choice that we still have with us.  And why
include the  4π?  There is a better answer to this
question.  By putting the  4π now, we get rid of it in
another law that we will discuss shortly, called Gauss’
law.  If you work with Gauss’ law, it is convenient to
have the  4π  buried in Coulomb’s law.  But if you work
with Coulomb’s law, you will find the  4π to be a
nuisance.

Checking Units in MKS Calculations
If we write out the units in Equation (4), we get

  F(newtons) =
Q1(coul)Q2(coul)

4πε0r2(meter)2 (4a)

In order for the units in Equation (3a) to balance, the
proportionality constant ε0 

must have the dimensions

  ε0
coulombs2

meter2newton
(5)

In earlier work with projectiles, etc.,  it was often useful
to keep track of your units during a calculation as a
check for errors.  In MKS electrical calculations, it is
almost impossible to do so.  Units like

  coul2 meter2newtoncoul2 meter2newton  are bad enough as they are.  But
if you look up ε0 in a textbook, you will find its units are
listed as  farads/meter.  In other words the combination

  coul2 newton metercoul2 newton meter  was given the name farad.  With
naming like this, you do not stand a chance of keeping
units straight during a calculation.  You have to do the
best you can to avoid mistakes without having the
reassurance that your units check.

Summary
The situation with Coulomb’s law is not really that bad.
We have a  1 r21 r2 force law like gravity, charge is mea-
sured in coulombs, which is no worse than measuring
mass in kilograms, and the proportionality constant just
happens, for historical reasons, to be written as   1 4πε01 4πε0.

The units are incomprehensible, so do not worry too
much about keeping track of units.  After a bit of
practice, Coulomb’s law will become quite natural.

Example 1   Two Charges
 Two positive charges, each 1 coulomb in size, are
placed 1 meter apart.  What is the electric force  between
them?

Fe
Q1

1 meter

= 1 Q2
= 1

Fe

Solution: The force will be repulsive, and have a
magnitude

  Fe =
Q1Q2

4πε0r2 = 1
4πε0

= 1
4π×9 × 10–12 = 1010 newtons

From the answer, 1010 newtons, we see that a coulomb
is a huge amount of charge.  We would not be able to
assemble two 1 coulomb charges and put them in the
same room.  They would tear the room apart.
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Example 2   Hydrogen Atom
In a classical model of a hydrogen atom, we have a
proton at the center of the atom and an electron travel-
ing in a circular orbit around the proton.  If the radius
of the electron’s orbit is   r = .5 × 10–10  meters, how
long does it take the electron to go around the proton
once?

                   proton
 (+e)

electron
(-e)

Fe = e2

4πε r2
0

r

Solution: This problem is more conveniently handled
in CGS units, but there is nothing wrong with using
MKS units.  The charge on the proton is  (+e), on the
electron (–e), thus the electrical force  is attractive and
has a magnitude

  Fe =
(e)(e)

4πε0r2 = e2

4πε0r2

With   e = 1.6 × 10–19 coulombs and   r = .5 × 10–10m
we get

  

Fe =
1.6 × 10–19

2

4π × 9 × 10–12 × .5 × 10–10 2

= 9 × 10–8 newtons

Since the electron is in a circular orbit, its acceleration
is  v2/r  pointing toward the center of the circle, and we
get

 
a =

v2

r
=

F
m

=
Fe
m

With the electron mass m equal to   9.11×10–31 kg , we
have

  
v2 =

rFe
m =

.5×10–10 × 9×10–8

9.11×10–31 kg

= 4.9×1012 m2

s2

v = 2.2×106 m
s

To go around a circle of radius r at a speed v takes a time

  
T = 2π r

v = 2π × .5×10–10

2.2×106

= 1.4×10–16seconds

In this calculation, we had to deal with a lot of very
small or large numbers, and there was not much of an
extra burden putting the 1/4πε0 

 in Coulomb's law.
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Exercise 1

        m
M

Q
Q FeFe Fg Fgearth

(a) Equal numbers of electrons are added to both the
earth and the moon until the repulsive electric force
exactly balances the attractive gravitational force.  How
many electrons are added to the earth and what is their
total charge in coulombs?

(b) What is the mass, in kilograms of the electrons
added to the earth in part (a)?

Exercise 2

Calculate the ratio of the electric to the gravitational
force between two electrons.  Why does your answer
not depend upon how far apart the electrons are?

Exercise 3

       
Q

FeFe

protons Qprotons

garden peas
stripped of
electrons

Imagine that we could strip all the electrons out of two
garden peas, and then placed the peas one meter
apart.  What would be the repulsive force between
them?  Express your answer in newtons, and metric
tons.  (One metric ton is the weight of 1000 kilograms.)
(Assume the peas each have about one Avogadro's
number, or gram, of protons.)

Exercise 4

           

m

θ

m

Q Q
FeFe

Two styrofoam balls covered by aluminum foil are
suspended by equal length threads from a common
point as shown.  They are both charged negatively by
touching them with a rubber rod that has been rubbed
by cat fur.  They spread apart by an angle 2θ  as shown.
Assuming that an equal amount of charge Q has been
placed on each ball, calculate Q if the thread length is

 = 40 cm, the mass m of the balls is m=10 gm, and the
angle is   θ = 5°. Use Coulomb's law in the form

   Fe = Q1Q2/4π ε0r2 , and remember that you must use
MKS units for this form of the force law.
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FORCE PRODUCED BY A LINE
CHARGE
In our discussion of gravitational forces, we dealt only
with point masses because most practical problems
deal with spherical objects like moons, planets and
stars which can be treated as point masses, or spacecraft
which are essentially points.

The kind of problem we did not consider is the follow-
ing.  Suppose an advanced civilization constructed a
rod shaped planet shown in Figure (2) that was 200,000
kilometers long and had a radius of 10,000 km.  A
satellite is launched in a circular orbit of radius 20,000
km, what is the period of the satellite’s orbit?

We did not have problems like this because no one has
thought of a good reason for constructing a rod shaped
planet.  Our spherical planets, which can be treated as
a point mass, serve well enough.

In studying electrical phenomena, we are not restricted
to spherical or point charges.  It is easy to spread an
electric charge along a rod, and one might want to know
what force this charged rod exerted on a nearby point
charge.  In electricity theory we have to deal with
various distributions of electric charge, not just the
simple point concentrations we saw in gravitational
calculations.

We will see that there is a powerful theorem, discov-
ered by Frederick Gauss, that considerably simplifies
the calculation of electric forces produced by extended
distribution of charges.  But Gauss’s law involves
several new concepts that we will have to develop.  To
appreciate this effort, to see why we want to use
Gauss’s law, we will now do a brute force calculation,
using standard calculus steps to calculate the force
between a point charge and a line of charge.  It will be
hard work.  Later we will use Gauss’s law to do the
same calculation and you will see how much easier it
is.

The setup for our calculation is shown in Figure (3).
We have a negative charge

 
 QT  

located a distance r from
a long charged rod as shown.  The rod has a positive
charge density λ coulombs per meter spread along it.
We wish to calculate the total force  F  exerted by the
rod upon our negative test particle

  
 QT.  For simplicity

we may assume that the ends of the rod are infinitely far
away (at least several feet away on the scale of the
drawing).

To calculate the electric force exerted by the rod, we
will conceptually break the rod into many short seg-
ments of length dx, each containing an amount of
charge   dq = λdx.  To preserve the left/right symmetry,
we will calculate the force between  QT 

 and pairs of dq,
one on the left and one on the right as shown.  The left
directional force dF1 and the right directed force dF2
add up to produce an upward directional force dF.
Thus, when we add up the forces from pairs of dq, the
dF's are all upward directed and add numerically.

The force dF1 
 
between  QT 

 and the piece of charge d  q1
is given by Coulomb’s law as

  dF1 =
KQT dq1

R2 =
KQT dq1

x2 + r2

=
KλQTdx
x2 + r2

(6)

where, for now, we will use K for 1/4πε0 
to simplify the

formula.  The separation R between  QT and d  q1 is
given by the Pythagorean theorem as  R2 = x2 + r2.

Figure 2
Imagine that an advanced civilization creates
a rod-shaped planet.  The problem, which we
have not encountered earlier, is to calculate
the period of a satellite orbiting the planet.

satellite in orbit
about the rod
shaped planet

rod shaped 
planet
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The component of dF1 
in the upward direction is

  dF1cos θ , so that dF has a magnitude

  dF = 2dF1cos θ

= 2
KλQT dx
x2 + r2

r
x2 + r2

(7)

The factor of 2 comes from the fact that we get equal
components from both  dF1 

and  dF2 .

To get the total force on  QT, we add up the forces
produced by all pairs of dq starting from x = 0 and going
out to x =  ∞.  The result is the definite integral

  

FQT
=

2KλQT r

x2 + r2 3 23 2
dx

o

∞

= 2KλQT r dx

x2 + r2 3 23 2
o

∞
(8)

where r, the distance from the charge to the rod, is a
constant that can be taken outside the integral.

The remaining integral  dx/ x2 + r2 3/2  is not a com-
mon integral whose result you are likely to have
memorized, nor is it particularly easy to work out.

Instead we look it up in a table of integrals with the
result

 
dx

x2 + r2
3
20

A

=
2 2x

4r2 r2 + x2 0

A

= A
r2 r2 + A2

– 0 (9)

For A >> r  (very long rod), we can set  
  
r2 + A2 ≈ A

and we get the results

 
dx

x2 + r2
3
20

A>>r

= A
r2A

= 1
r2

(10)

Using Equation (10) in Equation (8) we get

  FQT
= 2KλQT

r
r2

FQT
=

2KλQT
r

(11)

The important point of the calculation is that the force
between a point charge and a line charge drops off as

  1 r1 r  rather than   1 r21 r2 , as long as  QT 
 stays close enough

to the rod that the ends appear to be very far away.

Figure 3
Geometry for calculating the electric force between a point charge

 QT a distance r from a line of charge with λλ coulombs per meter.

x dq

dq  = λdx
λ coulombs per meter

QT

dF1

dF

θ
cos θ = 2x  + r 2

r 

R = 
2x  + r 2

dx

dF2

r

dF1
θ dF = dF cosθ 1

2

dF

1
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One of the rules of thumb in doing physics is that if you
have a simple result, there is probably an intuitive
derivation or explanation.  In deriving the answer in
Equation (11), we did too much busy work to see
anything intuitive.  We had to deal with an integral of

 x2 + r2 –3/2, yet we got the simple answer that the
force dropped off as 1/r rather than the  1 r21 r2 .  We will
see, when we repeat this derivation using Gauss’s law,
that the change from  1 r21 r2 to a 1/r force results from the
change from a three to a two dimensional problem.
This basic connection with geometry is not obvious in
our brute force derivation.

Exercise 5
Back to science fiction.  A rod shaped planet has a mass
density λ kilograms per unit length as shown in Figure
(4).  A satellite of mass m is located a distance r from the
rod as shown.  Find the magnitude of the gravitational
force Fg exerted on the satellite by the rod shaped
planet. Then find a formula for the period of the satellite
in a circular orbit.

λ kilograms/meter

very long
rod shaped
planet

r

m F  = ?g

Figure 4
Rod shaped planet and satellite.
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Short Rod
Our brute force calculation does have one advantage,
however.  If we change the problem and say that our
charge  is located a distance  r  from the center of a finite
rod of length 2L as shown in Figure (5), then Equation
(8) of our earlier derivation becomes

  
FQT

= 2KλQT r dx

x2 + r2
3
20

L

(12)

The only difference is that the integral stops at L rather
than going out to infinity.

From Equation (9) we have

 
dx

x2 + r2
3
20

L

= L
r2 r2 + L2

(13)

And the formula for the force on  QT becomes

  

FQ =
K 2Lλ QT

r r2 + L2
(14)

Figure 5
A harder problem is to calculate the force F
exerted on   QT  by a rod of finite length 2 L.

Equation (14) has the advantage that it can handle both
limiting cases of a long rod (L >> r), a short rod or point
charge (L << r), or anything in between.

For example, if we are far away from a short rod, so that
L << r, then    r2 + L2 ≈ r . Using the fact that    2Lλ = QR
is the total charge on the rod, Equation (14) becomes

 FQT
=

KQRQT

r2 L << r (15b)

which is just Coulomb’s law for  point charges.  The
more general result, Equation (14), which we obtained
by the brute force calculation, cannot be obtained with
simple arguments using Gauss’s law.  This formula
was worth the effort.

Exercise 6

Show that if we are very close to the rod, i.e. r << L, then
Equation (14) becomes the formula for the force exerted
by a line charge.

F

QT

L L

λ coulombs/meter
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THE ELECTRIC FIELD
Our example of the force between a point charge and a
line of charge demonstrates that even for simple distri-
butions of charge, the calculation of electric forces can
become complex.  We now begin the introduction of
several new concepts that will allow us to simplify
many of these calculations.  The first of these is the
electric field, a concept which allows us to rely more on
maps, pictures and intuition, than upon formal
calculations.

To introduce the idea of an electric field, let us start with
the simple distribution of charge shown in Figure (6).
A positive charge of magnitude  QA is located at Point
A, and a negative charge of magnitude –  QB  is located
at Point B.  We will assume that these charges  QA and

 QB are fixed, nailed down.  They are our fixed charge
distribution.

We also have a positive test charge of magnitude  QT
that we can move around in the space surrounding the
fixed charges.   QT  will be used to test the strength of
the electric force at various points, thus the name “test
charge”.

In Figure (6), we see that the test charge is subject to the
repulsive force  FA  and attractive force  FB to give a net
force  F = FA + FB.  The individual forces  FA and  FB
are given by Coulomb’s law as

 
FA =

KQTQA

rA2

FB =
KQTQB

rB2

(16)

where rA is the distance from  QT to  QA and rB is the
distance from  QT 

to  QB.  For now we are writing
1/4πε0  =  K to keep the formulas from looking too
messy.

In Figure (7), we have the same distribution of fixed
charge as in Figure (6), namely 

 
 QA and   QB, but we are

using a smaller test charge   Q′T .  For this sketch,   Q′T
is about half as big as  QT 

of Figure (6), and the resulting
force vectors point in the same directions but are about
half as long;

  
F′A =

KQ′TQA

rA2

F′B =
KQ′TQB

rB2

(17)

The only difference between Equations (16) and (17) is
that  QT 

has been replaced by   Q′T in the formulas.  You
can see that Equations (17) can be obtained from
Equations (16) by multiplying the forces by   Q′T QTQ′T QT.
Thus if we used a standard size test charge  QT 

to
calculate the forces, i.e. do all the vector additions, etc.,
then we can find the force on a different sized test
charge   Q′T by  multiplying the net force by the ratio

  Q′T QTQ′T QT.

QT

QB

–

BF
F

FA

QA

+

Figure 7
If we replace the test charge   QT by a smaller
test charge   QT

′ , everything is the same except
that the force vectors become shorter.

Figure 6
Forces exerted by two fixed charges

  QA  and   QB  on the test particle   QT .

QT

QB

–

BF
F

FA

QA

+
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forces it exerts do not disturb anything, but mathemati-
cally treat the test charge as having a magnitude of 1
coulomb.  In addition, we will always use a positive
unit test charge.  If we want to know the force on a
negative test charge, simply reverse the direction of the
force vectors.

Figure (8) is the same as our Figures (6) and (7), except
that we are now using a unit test particle equal to 1
coulomb, to observe the electric forces surrounding our
fixed charge distribution of QA and QB.  The forces
acting on QT  = 1 coulomb are

  
FA =

KQA × 1 coulomb

rA
2

FB =
KQB × 1 coulomb

rB
2

(18)

 To emphasize that these forces are acting on a unit test
charge, we will use the letter E  rather than F, and write

 
EA =

KQA

rA
2

EB =
KQB

rB
2

(19)

If you wished to know the force F on some charge Q
located where our test particle is, you would write

 
FA =

KQAQ

rA
2

= EA Q (21a)

 
FB =

KQBQ

rB
2

= EB Q (21b)

 F = QEA+QEB = Q EA+EB

F = QE (22)

where  E = EA+EB.  Equation (22) is an important
result.  It says that the force on any charge Q is Q times
the force  E  on a unit test particle.

Unit Test Charge
The next step is to decide what size our standard test
charge  QT 

 
should be.  Physically  QT 

 should be small
so that it does not disturb the fixed distribution of
charge.  After all, Newton’s third law requires that  QT
pull on the fixed charges with forces equal and opposite
to the forces shown acting on  QT 

.

On the other hand a simple mathematical choice is
 QT = 1 coulomb, what we will call a “unit test charge”.

If  QT  
= 1, then the force on another charge   Q′T is just

  Q′T times larger  (   F = FQ′T QTQ′T QT = FQ′T 1Q′T 1= FQ′T ).
The problem is that in practice, a coulomb of charge is
enormous.  Two point charges, each of strength +1
coulomb, located one meter apart, repel each other with
a force of magnitude

  
F =

K × 1 coulomb × 1 coulomb

12m2

= K =
1

4πε0
= 9 × 109 newtons (17)

a result we saw in Example 1. A force of nearly 10
billion newtons is strong enough to destroy any experi-
mental structure you are ever likely to see.  In practice
the coulomb is much too big a charge to serve as a
realistic test particle.

The mathematical simplicity of using a unit test charge
is too great to ignore.  Our compromise is the following.
We use a unit test charge, but think of it as a “small unit
test charge”.  Conceptually think of using a charge
about the size of the charge of an electron, so that the

Figure 8
When we use a unit test charge   QT  = 1 coulomb,
then the forces on it are called "electric field"
vectors,  EA ,  EB  and E  as shown.

QT

QB

–

BE
E

EA

QA

+

= 1 coulomb
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ELECTRIC FIELD LINES
The force E  on a unit test particle plays such a central
role in the theory of electricity that we give it a special
name – the electric field E.

  
electric
field E

≡
force on a
unit test
particle

(23)

Once we know the electric field E at some point, then
the force FQ on a charge Q located at that point is

 
F = QE

(24)

If Q is negative, then F points in the direction opposite
to E .

From Equation (24), we see that the electric field   E has
the dimensions of newtons/coulomb, so that QE  comes
out in newtons.

E

E

E

E

E

E

E E E
(1)

(2)

(3)

+ –

Figure 10
If we draw the electric field vectors E  at various
points around our charge distribution, a picture
or map of the electric field begins to emerge.

Figure 9
Once we know the electric field E  at some
point, we find the force F  acting on a charge Q
at that point by the simple formula   F = QE .

Q
F = QE

E

Mapping the Electric Field
In Figure (10), we started with a simple charge distri-
bution  +Q and -Q as shown, placed our unit test particle
at various points in the region surrounding the fixed
charges, and drew the resulting force vectors E  at each
point.  If we do the diagram carefully, as in Figure (10),
a picture of the electric field begins to emerge.  Once we
have a complete picture of the electric field E, once we
know E  at every point in space, then we can find the
force on any charge q by using FQ = QE .  The problem
we wish to solve, therefore, is how to construct a
complete map or picture of the electric field E  .

Exercise 7
In Figure (10), we have labeled 3 points (1), (2), and (3).
Sketch the force vectors  FQ on :

(a) a charge Q =   1 coulomb at Point (1)

(b) a charge Q = –1 coulomb at Point (2)

(c) a charge Q =   2 coulombs at Point (3)
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In part (c) of Exercise (7), we asked you to sketch the
force on a charge Q = 2 coulombs located at Point (3).
The answer is  F3 = QE3 = 2E3 , but the problem is that
we have not yet calculated the electric field E3 at Point
(3).  On the other hand we have calculated E at some
nearby locations.  From the shape of the map that is
emerging from the E vectors we have drawn, we can
make a fairly accurate guess as to the magnitude and
direction of E at Point (3) without doing the calculation.
With a map we can build intuition and make reasonably
accurate estimates without calculating E at every point.

In Figure (10) we were quite careful about choosing
where to draw the  vectors in order to construct the
picture.  We placed the points one after another to see
the flow of the field from the positive to the negative
charge.  In Figure (11), we have constructed a similar
picture for the electric field surrounding a single posi-
tive charge.

The difficulty in drawing maps or pictures of the
electric field is that we have to show both the magnitude
and direction at every point.  To do this by drawing a
large number of separate vectors quickly becomes
cumbersome and time consuming.  We need a better
way to draw these maps, and in so doing will adopt
many of the conventions developed by map makers.

Field Lines
As a first step in simplifying the mapping process, let
us concentrate on showing the direction of the electric
force in the space surrounding our charge distribution.
This can be done by connecting the arrows in Figures
(10) and (11) to produce the line drawings of Figures
(12a) and (12b) respectively.  The lines in these draw-
ings are called field lines.

In our earlier discussion of fluid flow we saw diagrams
that looked very much like the Figures (12a and 12b).
There we were drawing stream lines for various flow
patterns.  Now we are drawing electric field lines.  As
illustrated in Figure (13), a streamline and an electric
field line are similar concepts.  At every point on a
streamline, the velocity field v is parallel to the stream-
line, while at every point on an electric field line, the
electric field E is parallel to the electric field line.

Figure 12b
Here we connected the arrows in Figure 11
to draw the field lines for a point charge.

Figure 12a
We connected the arrows of Figure 10 to
create a set of field lines for 2 point charges.

E

E

E E E

Figure 11
Electric field of a point charge.
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Continuity Equation for Electric Fields
Figure (14) is our old diagram (23-6) for the velocity
field of a point source of fluid (a small sphere that
created water molecules).  We applied the continuity
equation to the flow outside the source and saw that the
velocity field of a point source of fluid drops off as  1/r2.

Figure (15) is more or less a repeat of Figure (12b) for
the electric field of a point charge.  By Coulomb’s law,
the strength of the electric field drops off as  1/r2 as we
go out from the point charge.  We have the same field
structure for a point source of an incompressible fluid
and the electric field of a point charge.  Is this pure
coincidence, or is there something we can learn from
the similarity of these two fields?

The crucial feature of the velocity field that gave us a
 1/r2 flow was the continuity equation.  Basically the

idea is that all of the water that is created in the small
sphere must eventually flow out through any larger
sphere surrounding the source.  Since the area of a
sphere, 4πr2, increases as r2, the speed of the water has
to decrease as  1/r2 so that the same volume of water per
second flows through a big sphere as through a small
one.

If we think of the electric field as some kind of an
incompressible fluid, and think of a point charge as a
source of this fluid, then the continuity equation ap-
plied to this electric field gives us the correct  1/r2

dependence of the field.  In a sense we can replace
Coulomb’s law by a continuity equation.  Explicitly,
we will use streamlines or field lines to map the
direction of the field, and use the continuity equation to
calculate the magnitude of the field.  This is our general
plan for constructing electric field maps; we now have
to fill in the details.

v1

E2

E3

E4

v2

v3

v4

E1

streamline for
velocity field

field line for
electric fieldFigure 13

Comparison of the streamline for the velocity field
and the field line for an electric field.  Both are
constructed in the same way by connecting successive
vectors.  The streamline is easier to visualize because
it is the actual path followed by particles in the fluid.

v1

v2

A2

1A

Figure 14
This is our old Figure 23-6 for the velocity field
of a point source of water.  The continuity
equation   v1A1 = v2A2 ,  requires that the velocity
field v  drops off as   1/r2  because the area
through which the water flows increases as    ππr2 .

A2

1A

E1

E2

Q

Figure 15
From Coulomb's law,   E = KQ/r2 , we see that the
electric field of a point source drops off in exactly the
same way as the  velocity field of a point source.  Thus
the electric field must obey the same continuity
equation   E1A1 = E2A2  as does the velocity field.
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Flux
To see how the continuity equation can be applied to
electric fields, let us review the calculation of the  1/r2

velocity field of a point source of fluid, and follow the
same steps to calculate the electric field of a point
charge.

In Figure (16) we have a small sphere of area  A 1 in
which the water is created.  The volume of water
created each second, which we called the flux of the
water and will now designate by the greek letter  Φ , is
given by

  
volume of water
created per second
in the small sphere

≡ Φ1 = v1A1 (25)

The flux of water out through a larger sphere of area  A2
is

  
volume of water
flowing per second
out through a
larger sphere

≡ Φ2 = v2A2 (26)

v1

v2

r2

r1

A2

1A

Figure 16
The total flux   Φ1  of water out of the small sphere is

   Φ1 = v1A1⊥⊥ , where    A1⊥⊥  is the perpendicular area
through which the water flows.  The flux through
the larger sphere is    Φ2 = v2A2⊥⊥ .  Noting that no water
is lost as it flows from the inner to outer sphere, i.e.,
equating   Φ1  and   Φ2  , gives us the result that the
velocity field drops off as  1/r2  because the
perpendicular area increases as  r2 .

The continuity equation  v1A1  =  v2A2 requires these
fluxes be equal

   Φ1 = Φ2 ≡ Φ continuity
equation (27)

Using Equations (26) and (27), we can express the
velocity field  v2  out at the larger sphere in terms of the
flux of water  Φ  created inside the small sphere

  
v2 = Φ

A2
= Φ

4πr2
2 (28)

Let us now follow precisely the same steps for the
electric field of a point charge.  Construct a small sphere
of area A

1
 and a large sphere A

2
 concentrically sur-

rounding the point charge as shown in Figure (17).  At
the small sphere the electric field has a strength E

1
,

which has dropped to a strength E
2
 out at A

2
.

Let us define  E1A 1 as the flux of our electric fluid
flowing out of the smaller sphere, and  E2A 2 as the flux
flowing out through the larger sphere

  Φ1 = E1A1 (29)

  Φ2 = E2A2 (30)

r2

r1

A2

1AE1

E2

Q

Figure 17
The total flux   Φ1  of the electric field out of the
small sphere is    Φ1 = E1A1⊥⊥ , where    A1⊥⊥  is the
perpendicular area through which the electric
field flows.  The flux through the larger sphere is

   Φ2 = E2A2⊥⊥ .  Noting that no flux is lost as it flows
from the inner to outer sphere, i.e., equating   Φ1
and   Φ2  , gives us the result that the electric field
drops off as  1/r2  because the perpendicular area
increases as  r2 .
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E

Q–

Figure 19
The electric field of a negative charge flows
into the charge.  Just as positive charge
creates flux, negative charge destroys it.

Applying the continuity equation  E1A 1 = E2A 2 to
this electric fluid, we get

  Φ1 = Φ2 = Φ (31)

Again we can express the field at  A 2 in terms of the flux

  E2 = Φ
A2

= Φ
4πr2

2 (32)

Since  A 2 can be any sphere outside, but centered on the
point charge, we can drop the subscript 2 and write

  
E(r) = Φ

4πr2 (33)

In Equation (33), we got the correct  1/r2 dependence
for the electric field, but what is the appropriate value
for  Φ ?  How much electric flux  Φ  flows out of a point
charge?

To find out, start with a fixed charge Q as shown in
Figure (18), place our unit test charge a distance r away,
and use Coulomb's law to calculate the electric force E
on our unit test charge.  The result is

r

A

E

Q

Q  = 1T

    = 
Q

4πε r ( )2
0

 4πr2

  = Q
ε0

Φ = EA 

Figure 18
Using Coulomb's law for the electric field of
a point charge Q, we calculate that the total
flux out through any centered sphere
surrounding the point charge is    Φ = Q/ εε0 .

 
   

E =
Q

4πε0r2
Coulomb's
Law (34)

where now we are explicitly putting in   1/4πεo for the
proportionality constant K.

Comparing Equations (33) and (34), we see that if we
choose

  
Φ =

Q
εo

Flux emerging
from a charge Q (35)

then the continuity equation (33) and Coulomb's law
(34) give the same answer.  Equation (35) is the key that
allows us to apply the continuity equation to the electric
field.  If we say that a point charge Q creates an electric
flux   Φ = Q/εo , then applying the continuity equation
gives the same results as Coulomb's law.  (You can now
see that by putting the  4π into Coulomb's law, there is
no  4π in our formula (35) for flux.)

Negative Charge
If we have a negative charge –Q, then our unit test
particle  QT  will be attracted to it as shown in Figure
(19).  From a hydrodynamic point of view, the electric
fluid is flowing into the charge –Q and being destroyed
there.  Therefore a generalization of our rule about
electric flux is that a positive charge creates a positive,
outward flux of magnitude   Q/εo, while a negative
charge destroys the electric flux, it has a negative flux

  – Q/εo that flows into the charge and disappears.
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Flux Tubes
In our first pictures of fluid flows like Figure (23-5)
reproduced here, we saw that the streamlines were little
tubes of flow.  The continuity equation, applied to a
streamline was   Φ = v1A1 = v2A2 . This is simply the
statement that the flux of a fluid along a streamline is
constant.  We can think of the streamlines as small
tubes of flux.  By analogy we will think of our electric
field lines as small tubes of electric flux.

Conserved Field Lines
When we think of the field line as a small flux tube, the
continuity equation gives us a very powerful result,
namely the flux tubes must be continuous, must main-
tain their strength in any region where the fluid is
neither being created nor destroyed.  For the electric
fluid, the flux tubes or field lines are created by, start at,
positive charge.  And they are destroyed by, or stop at,
negative charge.  But in between the electric fluid is
conserved and the field lines are continuous.  We will
see that this continuity of the electric field lines is a very
powerful tool for mapping electric fields.

A Mapping Convention
If an electric field line represents a small flux tube, the
question remains as to how much flux is in the tube?
Just as we standardized on a unit test charge  QT =  1
coulomb for the definition of the electric field E, we will
standardize on a unit flux tube as the amount of flux
represented by one electric field line.  With this conven-
tion, we should therefore draw    Φ = Q/ε0   field lines
or unit flux tubes coming out of a positive charge +Q,
or stopping on a negative charge –Q.  Let us try a few
examples to see what a powerful mapping convention
this is.

In Figure (20) we have a positive charge   Q/ε0 =  +5, and
a negative charge   Q/ε0  =  –3,  located as shown.  By
our new mapping convention we should draw 5 unit
flux tubes or field lines out of the positive charge, and
we should show 3 of them stopping on the negative
charge.  Close to the positive charge, the negative
charge is too far away to have any effect and the field
lines must go radially out as shown.  Close to the
negative charge, the lines must go radially in because
the positive charge is too far away.

v2

1v

A2

A1

x2

x2 v2 t=

x1 v1 t=

streamline

x1 Q/ε  = –3ο Q/ε  = 5ο

Figure 23-5
Flux tube in the flow of water.

Figure 20
We begin a sketch of the electric field by
drawing the field lines in close to the charges,
where the lines go either straight in or straight
out.  Here we have drawn 3 lines into the
charge   –3εε0  and 5 lines out of the charge

  + 5εε0 .  To make a symmetric looking picture,
we oriented the lines so that one will go straight
across from the positive to the negative charge.
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Now we get to the interesting part; what happens to the
field lines out from the charges?  The basic rule is that
the lines can start on positive charge, stop on negative
charge, but must be continuous in between.  A good
guess is that 3 of the lines starting on the positive charge
go over to the negative charge in roughly the way we
have drawn by dotted lines in Figure (21).  There is no
more room on the minus charge for the other two lines,
so that all these two lines can do is to continue on out
to infinity.

Let us take Figure (21), but step far back, so that the +
and the  – charge look close together as shown in Figure
(22).  Between the charges we still have the same heart-
shaped pattern, but we now get a better view of the two
lines that had nowhere to go in Figure (21).  To get a
better understanding for Figure (22) draw a sphere
around the charges as shown.  The net charge inside this
sphere is

  Qnet
εo insidesphere

= + 5 – 3 = 2

Thus by our mapping convention, two field lines
should emerge from this sphere, and they  do.  Far away

where we cannot see the space between the point
charges, it looks like we have a single positive charge
of magnitude   Q/ε0  

=  2.

Summary
When we started this chapter with the brute force
calculus calculation of the electric field of a line charge,
you may have thought that the important point of this
chapter was how to do messy calculations.  Actually,
exactly the opposite is true!  We want to learn how to
avoid doing messy calculations.  The sketches shown
in Figures (21) and (22) are an important step in this
process.  From what we are trying to get out of this
chapter, it is far more important that you learn how to
do sketches like Figures (21) and (22), than calcula-
tions illustrated by Figure (1).

With a little experience, most students get quite good at
sketching field patterns.  The basic constraints are that

  Q/εo  lines start on positive charges, or stop on negative
charges.  Between charges the lines are unbroken and
should be smooth, and any lines left over must either go
to or come from infinity as they did in Figure (22).

– 3ε ο + 5ε ο

Figure 22
Distant view of our charge distribution.  If we step
way back from the charge distribution of Figure (21),
we see a small object whose net charge is

   –3εε0+5εε0 = +2 εε0.  Thus 2 lines must finally emerge
from this distribution as shown.

Q/ε  = –3ο
Q/ε  = 5ο

Figure 21
Once the in close field lines have been drawn, we
can sketch in the connecting part of the lines as
shown above.  Three of the lines starting from the
positive charge must end on the negative one.
The other must go out to infinity.  Using
symmetry and a bit of artistic skill, you will
become quite good at drawing these sketches.
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A Computer Plot
Figure (23) is a computer plot of the electric field lines
for the +5, -3 charge distribution of Figures (21) and
(22).  The first thing we noted is that the computer drew
a lot more lines than we did.  Did it violate our mapping
convention that the lines represent unit flux tubes, with

  Q/εo lines starting or stopping on a charge Q?  Yes.  The
computer drew a whole bunch of lines so that we could
get a better feeling for the shape of the electric field.
Notice, however, that the ratio of the number of lines

starting from the positive charge to the number ending
on the negative charge is still 5/3.  One of the standard
tricks in map making is to change your scale to make
the map look as good as possible.  Here the computer
drew 10 lines per unit flux tube rather than 1.  We will
see that the only time we really have to be careful with
the number of lines we draw is when we are using a
count of the number of lines to estimate the strength of
the electric field.

–3 +5

Figure 23
Computer plot of the field lines of a –3 and +5 charge distribution.  Rather than drawing

  Q/εεo out of a positive charge or into a negative charge, the computer is programmed to
draw enough lines to make the shape of the electric field as clear as possible.
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In Figure (25), we have a point charge Q, and have
drawn a spherical Gaussian surface around the charge.
The flux produced by the point charge is

   
Φtot =

Q
εo

flux produced
by the point
charge

(37)

At the Gaussian surface there is an electric field E
(which we wish to calculate), and the surface has an
area  A  =  4πr2.  Therefore the electric flux flowing
out through the sphere is

   Φout = EA

= E×4πr2
flux flowing
out through
the sphere

(38)

Equating the flux created inside (Equation 37) to the
flux flowing out (Equation 38) gives

   E × 4πr2 =
Q
εo

E =
Q

4πεor2

old result
obtained
new way

(39)

Figure 25
Calculating the electric field of a point charge by
equating the flux    Q/ εε0  created by the point charge to
the flux    Φ = EA⊥⊥  flowing through the Gaussian
surface.  This gives

      
   Q/ εε0 = E × 4ππr2

E = Q/ 4ππεε0r2

as we expect.

Gaussian
surface

Q

r

E

A  = 4πr2

GAUSS’ LAW
The idea of using the continuity equation to map field
lines was invented by Frederick Gauss and is known as
Gauss’ law.  A basic statement of the law is as follows.
Conceptually construct a closed surface (often called a
Gaussian surface) around a group of sources or sinks,
as shown in Figure (24).  In that figure we have drawn
the Gaussian surface around three sources and one
sink.  Then calculate the total flux   Φtot   coming from
these sources.  For Figure (24), we have

  Φtot = Φ1 + Φ2 + Φ3 + Φ4 (36)

where   Φ2  happens to be negative.  Then if the fluid is
incompressible, or we have an electric field, the total
flux flowing out through the Gaussian surface must be
equal to the amount of flux   Φtot  being created inside.

Gauss' law applies to any closed surface surrounding
our sources and sinks.  But the law is useful for
calculations when the Gaussian surface is simple enough
in shape that we can easily write the formula for the flux
flowing through the surface.  To illustrate the way we
use Gauss' law, let us, one more time, calculate the
electric field of a point charge.

Figure 24
If these were sources and sinks in a fluid, it would be
obvious that the total flux of fluid out through the closed
surface is equal to the net amount of fluid created inside.
The same concept applies to electric flux.  The net flux

   Φ tot  out through the Gaussian surface is the sum of the
fluxes    Φ1 + Φ 2 + Φ3 + Φ 4 created inside.

closed surface
surrounding several
sources or sinks
(this is called a 
Gaussian surface)

Φ1

Φ2

Φ3

Φ4

source

sink
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Electric Field of a Line Charge
As a real test of Gauss’ law, let us calculate the electric
field of a line charge and compare the result with our
brute force calculus calculation.  In the calculus deriva-
tion, we found that the force on a test charge  QT  a
distance r from our line charge was (from Equation
(11))

  
F =

2KλQT
r =

2λQT
4πεor

where λ  is the charge density on the rod as shown in
Figure (26).  Setting  QT   = 1 coulomb,  F becomes the
force E on a unit test charge:

   

E = λ
2πεor

calculusderived
formula for the
electric field of
a linecharge

 (40)

To apply Gauss’ law we first construct a cylindrical
Gaussian surface that surrounds a length L of the
charge as shown in Figure (27).  Since the charge
density is λ , the total charge 

 
 Qin , inside our Gaussian

surface is

  Qin = λL

This amount of charge creates an amount of flux
  Φinside =

Qin
εo

= λL
εo (41)

Now we can see from Figure (27) that because the
electric field lines go radially outward from the line
charge, they only flow out through the curved outer
surface of our Gaussian cylinder and not through the
flat ends.  This cylindrical surface has an area
A  =  (2πr)L  (circumference ×  length), and the elec-
tric field out at a distance r is E(r).  Thus the flux out
through the Gaussian cylinder is

  Φout = E r 2π r L (42)

Equating the flux created inside (Equation 41) to the
flux flowing out through the cylindrical surface (Equa-
tion 42) gives

  E r 2πrL = λL
εo

The L's cancel and we get

  
E r = λ

2πεor
(43)

Voilà!  We get the same result.  Compare the calculus
derivation with its integral of  x2 + r2 3 / 2

,  to the
simple steps of Equations (41) and (42).  We noted that
in physics, a simple answer, like the 1/r dependence of
the electric field of a line charge, should have an easy
derivation.  The easy derivation is Gauss’ law.  The
simple idea is that for a line charge the flux is flowing
out through a cylindrical rather than a spherical surface.
The area of a cylindrical surface increases as r, rather
than as  r2 for a sphere, therefore the electric field drops
off as 1/r rather than as 1/r2 as it did for a point charge.

+ + + + + + +

r

E

Q   = 1 coulomb
T

λ coulombs per meter

Figure 26
The force E  on a unit test charge near a line charge.

Figure 27
Using Gauss' law to calculate the electric field of
a line charge.  Draw the Gaussian surface
around a section  of the rod.  The flux all flows
out through the cylindrical surface.

+ + + + + + +

E

λ coulombs 
per meterr

L

A  = 2πrL

r

end 
view

side 
view
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Flux Calculations
In our calculations of the flux through a Gaussian
surface, Equation (38) for a spherical surface and
Equation (42) for a cylindrical surface, we multiplied
the strength  of the electric field times the area A
through which the field was flowing.  In both cases we
were careful to construct the area perpendicular to the
field lines, for flux is equal to the strength of the field
times cross sectional or perpendicular area through
which it is flowing.  It would be more accurate to write
the formula for flux as

  Φ = E A⊥ (44)

where the ⊥ sign reminds us that A⊥ is the perpendicular
area.

Area as a Vector
A more formal way to present the formula for flux is to
turn the area A into a vector.  To illustrate the procedure,
consider the small flow tube shown in Figure (28).  We
have sliced the tube with a plane, and the intersection
of the tube and the plane gives us an area A as shown.
We turn A into the vector A by drawing an arrow
perpendicular to the plane, and of length A.

To show why we bothered turning A into a vector, in
Figure (29) we have constructed a cross-sectional area

  A⊥ as well as the area A of Figure (28).  The cross-
sectional area is the smallest area we can construct

across the tube.  The other areas are bigger by a factor
  1/cos θ  where θ is the angle between  A and   A⊥.  I.e.,

  A⊥ = A cos θ (45)

Now the flux in the flow tube is the fluid speed v times
the cross-sectional area   A⊥

  Φ = vA⊥ (46)

Using Equation (45) for   A ⊥ in Equation (46) gives

  Φ = vA⊥ = vAcos θ

But   vAcos θ  is just the vector dot product of the
velocity vector v (which points in the direction   A⊥) and

 A, thus we have the more general formula

  Φ = vA⊥ = v⋅A (47a)

By analogy, the electric flux through an area A is

  Φ = EA⊥ = E⋅A (47b)

In extreme cases where the Gaussian surface is not
smooth, you may have to break up the surface into
small pieces, calculate the flux   dΦi = E⋅dAi  for each
piece  dAi and then add up all the contributions from
each piece to get the total flux   Φout .  The result is called
a surface integral which we will discuss later.  For now
we will make sure that our Gaussian surfaces are
smooth and perpendicular to the field, so that we can
use the simple form of Equation (47).

Figure 28
Definition of the area as a vector.  Slice a flow
tube by a plane.  The area A is the area of the
region in the plane bounded by the flow tube.
We define the direction of  A  as pointing
perpendicular to the plane as shown.

plane slicing 
the flow tube

area A

flow tube

A

flow tube

A

A

v

θ

Figure 29
The cross-sectional area, which we have been calling

   A ⊥⊥, is the smallest area that crosses the entire tube.
The tilted area is larger than    A ⊥⊥  by a factor of

  1/ cos θθ , where θθ  is the angle between  A  and    A ⊥⊥ .
As a result we can write

   A⊥⊥ = A cos θ
   Φ = vA ⊥⊥ = vAcos θ = v ⋅⋅ A
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GAUSS' LAW FOR THE
GRAVITATIONAL FIELD
In our earliest work with gravitational force problems,
such as calculating the motion of the moon or artificial
earth satellites, we got the correct answer by replacing
the extended spherical earth by a point mass  Me located
at the center of the earth.  It is surprising that the
gravitational force exerted on you by every rock,
mountain, body of water, the earth's iron core, etc. all
adds up to be equivalent to the force that would be
exerted by a point mass  Me located 6,000 km beneath
you.  A simplified version of history is that Isaac
Newton delayed his publication of the theory of gravity
20 years, and invented calculus, in order to show that
the gravitational force of the entire earth was equivalent
to the force exerted by a point mass located at the center.

One can do a brute force calculus derivation to prove
the above result, or one can get the result almost
immediately from Gauss' law.  With Gauss' law, we can
also find out, almost by inspection, how the gravita-
tional force decreases as we go down inside the earth.

Since gravity and electricity are both  1/r2 forces,
Gauss' law also applies to gravity, and we can get the
formulas for the gravitational version by comparing the
constants that appear in the force laws.  Defining the
gravitational field g as the force on a unit mass (note that
this is also the acceleration due to gravity), we have for
a point charge and a point mass

     electric
field E =

Q
4πεor2     Q E (48)

 
  gravitational

field g = GM
r2           M g (49)

Aside from the fact that gravitational forces are always
attractive (therefore the field lines always go into a
mass m) the only other difference is that   1/4πεo is
replaced by G

  G ⇔ 1
4πεo

(50)

For the electric forces, a point charge Q produces an
amount of flux

  ΦE =
Q
εo

= 1
4π εo

× 4π Q (51)

Replacing   1 4π εo1 4π εo by G and Q by M, we expect that
a mass M destroys (rather than creates) an amount of
flux   ΦG  given by

  ΦG = G(4πM) = 4πGM (52)

Gravitational Field of a Point Mass
Let us check if we have the correct flux formula by first
calculating the gravitational field of a point mass.  In
Figure (30) we have a point mass M surrounded by a
Gaussian spherical surface of radius r.  The flux flow-
ing into the point mass is given by Equation (52) as
4πGM.  The flux flowing in through the Gaussian
surface is

   

ΦG

flux in
through
Gaussian
surface

= g ⋅ A = gA⊥ = g 4πr2

(53)

where the area of the sphere is 4πr2.  Equating the flux
in through the sphere (53) to the flux into M (52) gives

  g 4πr2 = 4πGM

 g =
GM

r2
(54)

which is the gravitational force exerted on a unit mass.

M

r

mapping 
surface

g(r)

Figure 30
Calculating the gravitational field g
of a point mass using Gauss' law.
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Gravitational Field
of a Spherical Mass
Now let us model the earth as a uniform sphere of mass
as shown in Figure (31).  By symmetry the gravitational
field lines must flow radially inward toward the center
of the sphere.  If we draw a Gaussian surface of radius
r outside the earth, we have a total flux flowing in
through the sphere given by

  Φin = g ⋅ A = gA⊥
= g4π r2 (55)

Now the total amount of mass inside the sphere is  Me ,
so that the total amount of flux that must stop some-
where inside the Gaussian surface is

  ΦG = 4πGMe (56)

Since Equations (56) and (55) are identical to Equa-
tions (52) and (53) for a point mass, we must get the
same answer.  Therefore the gravitational field outside
a spherically symmetric mass  Me is the same as the
field of a point mass  Me located at the center of the
sphere.

Gravitational Field Inside the Earth
The gravitational field outside a spherical mass is so
easy to calculate using Gauss’ law, that you might
suspect that we really haven’t done anything.  The
calculation becomes more interesting when we go
down inside the earth and the field is no longer that of
a point mass  Me. By determining how the field de-
creases as we go inside the earth, we can gain some
confidence in the calculational capabilities of Gauss’
law.

In Figure (32), we are representing the earth by a
uniform sphere of matter of mass  Me and radius Re.
Inside the earth we have drawn a Gaussian surface of
radius r, and assume that the gravitational field has a
strength g(r) at this radius.  Thus the total flux in
through the Gaussian surface   Φin  is given by

  Φin = g r ⋅ A = g r A⊥

= g r 4π r2
(57)

Now the amount of mass inside our Gaussian surface
is no longer  Me, but only the fraction of  Me lying below
the radius r.  That amount is equal to  Me times the ratio

r

Re

Me

g(r)

mapping
surfacer

mapping 
surface

g(r)
Me

Figure 31
Since    4π GMe  lines of flux go in through
the mapping surface in both Figures 30 and
31, the field at the mapping surface must be
the same for both.  This is why, when we are
above the surface of the earth, we can treat
the earth as a point mass located at the
center of the earth.

Figure 32
To calculate the gravitational field inside the earth,
we draw a mapping surface inside, at a radius r less
than the earth radius   Re.   The amount of mass  Min
inside the mapping surface is equal to the earth mass

 Me  times the ratio of the volume of the mapping
sphere to the volume of the earth.
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of the volume of a sphere of radius r to the volume of
the entire earth.

   Mr
mass

belowr = Me
4 34 3πr3

4 34 3πRe
3

= Me
r3

Re
3

(58)

The amount of flux that the mass   Mr  absorbs is given
by Equation (52) as

  ΦG = 4πGMr = 4πGMe
r3

Re
3 (59)

Equating the flux flowing in through the Gaussian
surface (Equation (57) to the flux absorbed by  Mr
(Equation 59) gives

  g r 4π r2 = 4πGMe
r3

Re
3

or

 g r = GMe
r

R3
Gravitationalfield
inside the earth (60)

This result, which can be obtained by a much more
difficult calculus calculation, shows the earth’s gravi-
tational field dropping linearly (proportional to r),
going to zero as r goes to 0 at the center of the earth.

Figure (32) gives an even more general picture of how
the earth’s gravitational field changes as we go down
inside.  The flux  going in past our Gaussian surface is
determined entirely by the mass inside the surface.  The
mass in the spherical shell outside the Gaussian
surface has no effect at all!  If we are down inside the
earth, a distance  Ri from the center, we can accurately
determine the gravitational force on us by assuming
that all the mass below us (r <  Ri) is located at a point
at the center of the earth, and all the mass above (r >  Ri)
does not exist.

Exercise 8
As shown in Figure (33) a plastic ball of radius R has a
total charge Q uniformly distributed throughout it. Use
Gauss’ law to:

a)  Calculate the electric field  E(r)  outside the sphere
(r > R).  How does this compare with the electric field of
a point charge?

b)      Calculate the electric field inside the plastic sphere
(r < R).

(Try to do this now. The solution is on the next page as
an example.)

          

R

charge Q uniformly 
spread throughout 
the sphere

Figure 33
Diagram for exercises 8&10. A plastic sphere of radius
R has a charge Q spread uniformly throughout.  The
problem is to calculate the electric field inside and
outside.
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Solving Gauss' Law Problems
Using Gauss' law to solve for electric fields can be
handled in a relatively straightforward way using the
following steps:

1) Carefully sketch the problem.

2) Draw a mapping surface that passes through the
point where you want to solve for the field.  Con-
struct the surface so that any field lines going
through the surface are perpendicular to the surface.
This way you can immediately spot the perpendicu-
lar area   A⊥.

3) Identify  Qin , the amount of electric charge inside
your mapping surface.

4) Solve for E using the Equation   Φ = EA⊥ = Qin/εo.

5) Check that your answer is reasonable.

As an example, let us follow these steps to solve part (b)
of Exercise 8, i.e., find the electric field E inside a
uniform ball of charge.

1)  Sketch the problem.  The sphere has a radius R, and
total charge +Q.  By symmetry the electric field
must go radially outward for a positive charge (or
radially inward for a negative charge).

                       r

R

E

mapping
surface

2)  Since we want the field inside the charged sphere,
we will use a spherical mapping surface of radius
r < R.  Because the electric field is everywhere
perpendicular to the mapping surface, the area of the
mapping surface is   A⊥ = 4πr2.

3)  The simplest way to calculate the amount of charge
 Qin  inside our mapping surface is to note that since the

charge is uniformly spread throughout the sphere,  Qin
is equal to the total charge Q times the ratio of the
volume inside the mapping surface to the total volume
of the charged sphere; i.e.,

  
  

Qin = Q ×
4 34 3 πr3

4 34 3 πR3 =
Qr3

R3

4)  Now use Gauss' law to calculate E:

  
  Φ = EA⊥ =

Qin
εo

  
  

E × 4πr2 =
Qr3

εoR3

  
  

E =
Qr

4πεoR3

5)  Check to see if the answer is reasonable.  At  r = 0,
we get  E = 0.  That is good, because at the center of
the sphere, there is no unique direction for  E  to
point.  At r = R, our formula for E reduces to

  E = Q/(4πεoR
2) , which is the field of a point charge

Q when we are a distance R away.  This agrees with
the idea that once we are outside a spherical charge,
the electric field is the same as if all the charge were
at a point at the center of the sphere.
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Exercise 9
As shown in Figure (34), the inside of the plastic sphere
has been hollowed out.  The total charge on the sphere
is Q. Use Gauss’ law to

a) Determine the strength of the electric field inside the
hollow cavity.

b) Calculate the strength of the electric field inside the
plastic.

c) Calculate the strength of the electric field outside
the plastic.

       

charge Q spread 
throughout the 
spherical shell

Ri
R

Figure 34
Diagram for Exercises 9 & 11. The charge is now
spread throughout a spherical shell.

Exercise 10
Repeat Exercise 8, assuming that Figure (33) repre-
sents the end view of a very long charged plastic rod
with a charge of λ coulombs per meter. (A section of
length L will thus have a charge Q = λ L.)

Exercise 11

Repeat Exercise 9, assuming that Figure (34) repre-
sents the end view of a charged hollow plastic rod  with
a charge of λ coulombs per meter.

Exercise 12
A hydrogen atom ( H atom) consists of a proton with an
electron moving about it.  The classical picture is that the
electron orbits about the proton much like the earth
orbits the sun.  A model that has its origins in quantum
mechanics and is more useful to chemists, is to picture
the electron as being smeared out, forming a ball of
negative charge surrounding the proton.  This ball of
negative charge is called an "electron cloud ".

For this problem, assume that the electron cloud is a
uniform sphere of negative charge, a sphere of radius
R centered on the proton as shown in Figure (35).  The
total negative charge (–e) in the electron cloud just
balances the positive charge (+e) on the proton, so that
the net charge on the H atom is zero.

a)   Sketch the electric field for this model of the H atom.
Show the electric field both inside and outside the
electron cloud.

b)   Calculate the magnitude of the electric field for both
r < R (inside the cloud) and r > R (outside the cloud).

R

Electron
cloud

Proton

Figure 35
Picture a hydrogen atom as a proton (of charge +e),
surrounded by an electron cloud.  Think of the cloud as
a uniform ball of negative charge, with a net charge -e.
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Exercise 13

A butterfly net with a circular opening of radius R, is in
a uniform electric field of magnitude E as shown in
Figure (36). The opening is perpendicular to the field.
Calculate the net flux of the electric field through the net
itself. (The amount of flux through each hole in the net is

  E ⋅ dA  where  dA is the area of the hole.) (This is one of
our favorite problems from Halliday and Resnick.)

R E

Figure 36
Butterfly net in a uniform electric field. With
Gauss' law, you can easily calculate the flux of
the electric field through the net itself.

Exercise 14
Electric fields exist in the earth's atmosphere. (You get
lightning if they get too strong.)

On a particular day, it is observed that at an altitude of
300 meters, there is a downward directed electric field
of magnitude

 E 300 m = 70 newton
coulomb

Down at an altitude of 200 meters, the electric field still
points down, but the magnitude has increased to

 E 200 m = 100 newton
coulomb

How much electric charge is contained in a cube 100
meters on a side in this region of the atmosphere?

Figure 37
Electric field at two different altitudes.

altitude
300 m

altitude
200 m

E

E
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PROBLEM SOLVING
One can devise a number of Gauss’ law problems
where one plugs various numerical values into the
formulas we have derived.  But that is not the point of
this chapter.  Here we are interested, not so much in the
answers, as in the concepts and techniques used to
derive them.

In this chapter we have introduced two new concepts.
One is electric flux   Φ = EA⊥ , and the other is that the
total flux out through a closed surface is equal to

  Qinside/ε0 .  These two concepts allow us to easily solve
for the electric field in certain special cases.  Those
cases are where   A⊥  is a sphere, a cylinder, or a plane.

What you need to get from this discussion is the
beginning of an intuitive picture of electric flux, how it
is related to the flow of an incompressible fluid, and
how this concept can be used to handle the few but
important examples where   A⊥  is either a sphere,
cylinder, or plane.  Numerical applications can come
later, now is the time to develop intuition.

Most students have some difficulty handling Gauss’s
law problems the first time they see them because the
concepts involved are new and unfamiliar.  Then when
the problems are solved in a homework session, a
common reaction is, “Oh, those are not so hard after
all”.  One gets the feeling that by just watching the
problem solved, and seeing that it is fairly easy after all,
they understand it.  The rude shock comes at an exam
where suddenly the problem that looked so easy, has
become unsolvable again.

There is a way to study to avoid this rude shock.  Pick
one of the problems you could not solve on your own,
a problem you saw solved in class or on an answer
sheet.  A problem that looked so easy after you saw it
solved.

Wait a day or two after you saw the solution, clean off
your desk, take out a blank sheet of paper, and try
solving the problem.

Something awful may happen.  That problem that
looked so easy in the homework review session is now
impossible again.  You can’t see how to do it, and it
looked so easy two days ago.  You feel really bad—but
don’t, it happens to everyone.

Instead, if you cannot get it, just peek at the solution to
see what point you missed, then put the solution away
and solve it on your own.  You may have to peek a
couple of times, but that is OK.

If you had to peek at the solution, then wait another day
or so, clean off your desk, and try again.  Soon you will
get the solution without looking, and you will not forget
how to solve that problem.  You will get more out of this
technique than solving 15 numerical examples.

When you are studying a new topic with new, unfamil-
iar concepts, the best way to learn the subject is to
thoroughly learn a few, well chosen worked out ex-
amples.  By learn, we mean problems you can work on
a blank sheet of paper without looking at a solution.

Pick examples that are relatively simple but clearly
illustrate the concepts involved.  For this chapter, one
could pick the example of calculating the electric field
inside and outside a uniform ball of charge.  If you can
do that problem on a clean desk, you can probably do
most of the other problems in this chapter without too
much difficulty.

Why learn a sample problem for each new topic?  The
reason is that if you know one worked example you will
find it easy to remember the entire topic.  That worked
example reminds you immediately how that concept
works, how it functions.

In this text, Chapters 24-32 on electric and magnetic
fields involve many new concepts.  Concepts you will
not have seen unless you have already taken the course.
As we go along, we will suggest sample problems,
what we call “clean desk problems”, which serve as a
good example of the way the new concept is used.  You
may wish to choose different sample problems, but the
best way to learn this topic is to develop a repertory of
selected sample problems you understand cold.

At this point, go back to some of the problems in this
chapter, particularly Exercises 9 through 14 and see if
you can solve them on a clean desk.  If you can, you are
ready for the next chapter.



Chapter 25
Field Plots and
Electric Potential

THE CONTOUR MAP
Figure (1) is a contour map of a small island.  The
contour lines, labeled 0, 10, 20, 30 and 40 are lines of
equal height.  Anywhere along the line marked 10 the
land is 10 meters above sea level.  (You have to look at
some note on the map that tells you that height is
measured in meters, rather than feet or yards.)

You can get a reasonable understanding of the terrain
just by looking at the contour lines.  On the south side
of the island where the contour lines are far apart, the
land slopes gradually upward.  This is probably where
the beach is located.  On the north side where the
contour lines are close together, the land drops off
sharply.  We would expect to see a cliff on this side of
the island.

Figure 1
Contour map of a small island with a beach on the
south shore, two hills, and a cliff on the northwest
side.  The slope of the island is gradual where the
lines are far apart, and steep where the lines are
close together.  If you were standing at the point
labeled (A) and the surface were slippery, you
would start to slide in the direction of the arrow.

sea level
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20

0

30 30

N

A

40 40

CHAPTER 25 FIELD PLOTS AND ELEC-
TRIC POTENTIAL

Calculating the electric field of any but the simplest
distribution of charges can be a challenging task.
Gauss’ law works well where there is considerable
symmetry, as in the case of spheres or infinite lines of
charge.  At the beginning of Chapter (24), we were able
to use a brute force calculus calculation to determine
the electric field of a short charged rod.  But to handle
more complex charge distributions we will find it
helpful to apply the techniques developed by map
makers to describe complex terrains on a flat map.  This
is the technique of the contour map which works
equally well for mapping electric fields and mountain
ranges.  Using the contour map ideas, we will be lead
to the concept of a potential and equipotential lines or
surfaces, which is the main topic of this chapter.
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Although we would rather picture this island as being
in the south seas, imagine that it is in the North Atlantic
and a storm has just covered it with a sheet of ice.  You
are standing at the point labeled A in Figure (1), and
start to slip.  If the surface is smooth, which way would
you start to slip?

A contour line runs through Point A which we have
shown in an enlargement in Figure (2).  You would not
start to slide along the contour line because all the
points along the contour line are at the same height.
Instead, you would start to slide in the steepest  down-
hill direction, which is perpendicular to the contour line
as shown by the arrow.

If you do not believe that the direction of steepest
descent is perpendicular to the contour line, choose any
smooth surface like the top of a rock, mark a horizontal
line (an equal height line) for a contour line, and
carefully look for the directions that are most steeply
sloped down.  You will see that all along the contour
line the steepest slope is, in fact, perpendicular to the
contour line.

Skiers are familiar with this concept.  When you want
to stop and rest and the slope is icy, you plant your skis
along a contour line so that they will not slide either
forward or backward.  The direction of steepest descent
is now perpendicular to your skis, in a direction that ski
instructors call the fall line.  The fall line is the direction
you will start to slide if the edges of your skis fail to
hold.

In Figure (3), we have redrawn our contour map of the
island, but have added a set of perpendicular lines to
show the directions of steepest descent, the direction of
the net force on you if you were sitting on a slippery
surface.  These lines of steepest descent, are also called
lines of force.  They can be sketched by hand, using the
rule that the lines of force must always be perpendicular
to the contour lines.

A

Figure 3
You can sketch in the lines of steepest descent
by drawing a set of lines that are always
perpendicular to the contour lines.  These
lines indicate the direction a ball would start
to roll if placed at a point on the line.

A
contour lines

direction of steepest
descent

Figure 2
Along a contour line the land is level.  The
direction of steepest slope or descent is
perpendicular to the contour line.
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In Figure (4) we have the same island, but except for the
zero height contour outlining the island, we show only
the lines of force.  The exercise here, which you should
do now, is sketch in the contour lines.  Just use the rule
that the contour lines must be drawn perpendicular to
the lines of force.  The point is that you can go either
way.  Given the contour lines you can sketch the lines
of force, or given the lines of force you can sketch the
contour lines.  This turns out to be a powerful technique
in the mapping of any complex physical or mathemati-
cal terrain.

EQUIPOTENTIAL LINES
On a contour map of an island, the contour lines are
lines of equal height.  If you walk along a contour line,
your height h, and therefore your gravitational poten-
tial energy mgh, remains constant.  As a result, we can
call these the lines of constant or equal potential energy,
equipotential energy lines for short.

Let us apply these mapping concepts to the simpler
situation of a spherical mass M shown in Figure (5).  As
in Chapter 24, we have drawn the gravitational field
lines, which point radially inward toward the center of
M.  We determined these field lines by placing a test
particle of mass m in the vicinity of M as shown in
Figure (6).  The potential energy of this test mass m is
given by our old formula (see Equation 10-50a)

 
PE = –

GMm
r

attractiveforces
have negative
potentialenergy

(1)

In our discussion of electric and gravitational fields, we
defined the fields as the force on a unit test particle.
Setting m = 1 for a unit test mass, we get as the formula
for the potential energy of our unit test mass

 Potential energy of
a unit test mass

= –
GM

r
(2)

Figure 5
The gravitational field lines for a spherical mass
point radially inward.  The lines of constant
potential energy are circles of equal height above
the mass.  The equipotential lines are everywhere
perpendicular to the field lines, just as, in the map
of the island, the contour lines were everywhere
perpendicular to the lines of steepest descent.

M

r

equipotential
lines

gravitational
field lines

Figure 4
Here we have removed the contour lines leaving
only the lines of steepest descent and the outline
of the island.  By drawing a set of lines
perpendicular to the lines of steepest descent,
you can more or less reconstruct the contour
lines.  The idea is that you can go back and forth
from one set of lines to the other.

Figure 6
The gravitational potential energy of two masses
separated by a distance r is   – GMm rGMm r .

M
m

r



25-4  Field Plots and Electric Potential

From Equation (2) we see that if we stay a constant
distance r out from M, if we are one of the concentric
circles in Figure (5), then the potential energy of the
unit test mass remains constant.  These circles, drawn
perpendicular to the lines of force, are again equal
potential energy lines.

There is a convention in physics to use the word
potential when talking about the potential energy of a
unit mass or unit charge.  With this convention, then

 – GM/r  in Equation (2) is the formula for the gravita-
tional potential of a mass M, and the constant radius
circles in Figure (5) are lines of constant potential.
Thus the name equipotential lines for these circles is
fitting.

Negative and Positive
Potential Energy
In Figure (7) we have drawn the electric field lines of
a point charge Q and drawn the set of concentric circles
perpendicular to the field lines as shown.  From the
close analogy between the electric and gravitational
force, we expect that these circles represent lines of
constant electric potential energy, that they are the
electric equipotential lines.

But there is one important difference between Figures
(5) and (7).  In Figure (5) the gravitational force on our
unit test mass is attractive, in toward the mass M.  In
Figure (7), the force on our unit positive test particle is
out, away from Q if Q is positive.  When we have an
attractive force as in Figure (5), the potential energy
is negative as in Equation (1).  But when the force is
repulsive, as in Figure (7), the potential energy is
positive.  Let us briefly review the physical origin for
this difference in the sign of the potential energy.

In any discussion of potential energy, it is necessary to
define the zero of potential energy, i.e. to say where the
floor is.  In the case of satellite motion, we defined the
satellite’s potential energy as being zero when the
satellite was infinitely far away from the planet.  If we
release a satellite at rest a great distance from the planet,
it will start falling toward the planet.  As it falls, it gains
kinetic energy, which it must get at the expense of
gravitational potential energy.  Since the satellite started
with zero gravitational potential energy when far out
and loses potential energy as it falls in, it must end up
with negative potential energy when it is near the
planet.  This is the physical origin of the minus sign in
Equation (1).  Using the convention that potential
energy is zero at infinity, then attractive forces lead to
negative potential energies.

If the force is repulsive as in Figure (7), then we have
to do work on our test particle in order to bring it in from
infinity.  The work we do against the repulsive force is
stored up as positive potential energy which could be
released if we let go of the test particle (and the test
particle goes flying out).  Thus the convention that
potential energy is zero at infinity leads to positive
potential energies for repulsive forces like that shown
in Figure (7).

+Q

r

equipotential
lines

electric
field lines

Figure 7
The electric potential  is the potential energy of a
positive unit test charge   qtest  = + 1 coulomb.
Because a positive charge  + Q and a positive test
charge repel this potential energy is positive.
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ELECTRIC POTENTIAL
OF A POINT CHARGE
Using the fact that we can go from the gravitational
force law to Coulomb’s law by replacing GMm by

  Qq 4πε0Qq 4πε0 (see Exercise 1), we expect that the formula
for the electric potential energy of a charge q a distance
r from Q is

  electric potential energy
of a charge q

= +
Qq

4πε0r
(3)

The + sign in Equation (3) indicates that for positive Q
and q we have a repulsive force and positive potential
energy.  (If Q is negative, but q still positive, the force
is attractive and the potential energy must be negative.)

To determine the potential energy of a unit test charge,
we set q = 1 in Equation (3) to get

  
electric potential
energy of a unit
test charge

≡ electric
potential

=
Qq

4πε0r

(4)

Following the same convention we used for gravity, we
will use the name electric potential for the potential
energy of a unit test charge.  Thus Equation (4) is the
formula for the electric potential in the region sur-
rounding the charge Q.  As expected, the lines of equal
potential, the equipotential lines are the circles of
constant radius seen in Figure (7).

Exercise 1

Start with Newton's gravitational force law, replace
GMm by   Qq 4π ε0Qq 4π ε0 , and show that you end up with
Coulomb's electrical force law.

CONSERVATIVE FORCES
(This is a formal aside to introduce a point that we will
treat in much more detail later.)

Suppose we have a fixed charge Q and a small test
particle q as shown in Figure (8).  The potential energy
of q is defined as zero when it is infinitely far away from
Q.  If we carry q in from infinity to a distance r, we do
an amount of work on the particle

   
Work we do = Fus

∞

r

⋅dx (5)

If we apply just enough force to overcome the electric
repulsive force, if  Fus = –qE , then the work we do
should all be stored as electric potential energy, and
Equation (5), with  Fus = –qE  should give us the
correct electric potential energy of the charge q.

But an interesting question arises.  Suppose we bring
the charge q in along two different paths, paths (1) and
(2) shown in Figure (8).  Do we do the same amount of
work, store the same potential energy for the two
different paths?

Figure 8
If we bring a test particle q in from infinity to
a distance r from the charge Q, the electric
potential energy equals    Qq/4ππεεor .  But this
potential energy is the work we do in bringing
q in from infinity:

   
Fus ⋅⋅ dr

∞∞

r

=
Qq

4ππεεor

This answer does not depend upon the path we
take bringing q in.

rQ Fus
q Fe

dr

qFus

Fe
dr

path 1

path 2
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If we lift an eraser off the floor up to a height h, and
hold it still, then it does not matter what path we took,
the net amount of work we did was mgh and this is
stored as gravitational potential energy.  When the
work we do against a force depends only on the initial
and final points, and not on the path we take, we say that
the force is conservative.

In contrast, if we move the eraser over a horizontal table
from one point to another, the amount of work we do
against friction depends very much on the path.  The
longer the path the more work we do.  As a result we
cannot define a friction potential energy because it
has no unique value.  Friction is a non-conservative
force, and non-conservative forces do not have unique
potential energies.

The gravitational fields of stationary masses and the
electric fields of stationary charges  all produce conser-
vative forces, and therefore have unique potential
energies.  We will see however that moving charges
can produce electric fields that are not conservative!
When that happens, we will have to take a very careful
look at our picture of electric potential energy.  But in
dealing with the electric fields of static charges, as we
will for a few chapters, we will have unique electric
potential energies, and maps of equipotential lines will
have an unambiguous meaning.

ELECTRIC VOLTAGE
In our discussion of Bernoulli’s equation, we gave the
collection of terms (P + ρgh + 1/2ρv2) the name hy-
drodynamic voltage.  The content of Bernoulli’s equa-
tion is that this hydrodynamic voltage is constant along
a stream line when the fluid is incompressible and
viscous forces can be neglected.  Two of the three
terms, ρgh and 1/2ρv2 represent the energy of a unit
volume of the fluid, thus we see that our hydrodynamic
voltage has the dimensions of energy per unit volume.

Electric voltage is a quantity with the dimensions of
energy per unit charge that in different situations is
represented by a series of terms like the terms in
Bernoulli’s hydrodynamic voltage.  There is the poten-
tial energy of an electric field, the chemical energy
supplied by a battery, even a kinetic energy term, seen
in careful studies of superconductors, that is strictly
analogous to the   1 21 2ρv2 term in Bernoulli’s equation.
In other words, electric voltage is a complex concept,
but it has one simplifying feature.  Electric voltages are
measured by a common experimental device called a
voltmeter.  In fact we will take as the definition of
electric voltage, that quantity which we measure using
a voltmeter.

This sounds like a nebulous definition.  Without telling
you how a voltmeter works, how are you to know what
the meter is measuring?  To overcome this objection,
we will build up our understanding of what a voltmeter
measures by considering the various possible sources
of voltage one at a time.  Bernoulli’s equation gave us
all the hydrodynamic voltage terms at once.  For
electric voltage we will have to dig them out as we find
them.

Our first example of an electric voltage term is the
electric potential energy of a unit test charge.  This has
the dimensions of energy per unit charge which in the
MKS system is joules/coulomb and called volts.

  
1

joule
Coulomb ≡ 1 volt (6)
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In Figure (9), which is a repeat of Figure (8) showing
the electric field lines and equipotential lines for a point
charge Q, we see from Equation (4) that a unit test
particle at Point (1) has a potential energy, or voltage V1
given by

   
V1 =

Q

4πε0r1

electricpotentialor
voltage at Point(1)

At Point (2), the electric potential or voltage V2 is given
by

   
V2 =

Q

4πε0r2

electricpotentialor
voltage at Point(2)

Voltmeters have the property that they only measure
the difference in voltage between two points.  Thus if
we put one lead of a voltmeter at Point (1), and the other
at Point (2) as shown, then we get a voltage reading V
given by

  voltmeter
reading

V ≡ V2 – V1 =
Q

4πε0

1
r2

–
1
r1

If we put the two voltmeter leads at points equal
distances from Q,  i.e. if   r1 = r2,  then the voltmeter
would read zero.  Since the voltage difference between
any two points on an equipotential line is zero, the
voltmeter reading must also be zero when the leads are
attached to any two points on an equipotential line.

This observation suggests an experimental way to map
equipotential lines or surfaces.  Attach one lead of the
voltmeter to some particular point, call it Point (A).
Then move the other lead around.  Whenever you get
a zero reading on the voltmeter, the second lead must
be at another point of the same equipotential line as
Point (A).  By marking all the points where the meter
reads zero, you get a picture of the equipotential line.

The discussion we have just given for finding the
equipotential lines surrounding a point charge Q is not
practical.  This involves electrostatic measurements
that are extremely difficult to carry out.  Just the damp
air from your breath would affect the voltages sur-
rounding a point charge, and typical voltmeters found
in the lab cannot make electrostatic measurements.
Sophisticated meters in carefully controlled environ-
ments are required for this work.

But the idea of potential plotting can be illustrated
nicely by the simple laboratory apparatus illustrated in
Figure (10).  In that apparatus we have a tray of water
(slightly salty or dirty, so that it is somewhat conduc-
tive), and two metal cylinders attached by wire leads to
a battery as shown.  There are also two probes consist-
ing of a bent, stiff wire attached to a block of wood and
adjusted so that the tips of the wires stick down in the
water.  The other end of the probes are attached to a
voltmeter so we can read the voltage difference be-
tween the two points (A) and (B), where the probes
touch the water.

Figure 10
Simple setup for plotting fields.  You plot
equipotentials by placing one probe (A) at a given
position and moving the other (B) around.
Whenever the voltage V on the voltmeter reads
zero, the probes are at points of equipotential.

r2

r1

+

–
volt
meter

V

1

2

Figure 9
A voltmeter measures the difference in electrical
voltage between two points.

brass
cylinders

tap water pyrex dish

battery

V
A

B

probes

volt
meter
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If we keep Probe (A) fixed and move Probe (B) around,
whenever the voltmeter reads zero, Probe (B) will be on
the equipotential line that goes through Point (A).
Without too much effort, one can get a complete plot of
the equipotential line.  Each time we move Probe (A)
we can plot a new equipotential line.  A plot of a series
of equipotential lines is shown in Figure (11).

Once we have the equipotential lines shown in Figure
(11), we can sketch the lines of force by drawing a set
of lines perpendicular to the equipotential as we did in
Figure (12).  With a little practice you can sketch fairly
accurate plots, and the beauty of the process is that you
did not have to do any calculations!

Figure 12
It does not take too much practice to sketch in the field lines.  Draw smooth lines, always
perpendicular to the equipotential lines, and maintain any symmetry that should be there.

Figure 11
Plot of the equipotential lines from a student project by
B. J. Grattan. Instead of a tray of water, Grattan used a
sheet of conductive paper, painting two circles with
aluminum paint to replace the brass cylinders. (The
conductive paper and the tray of water give similar
results.) We used the Adobe Illustrator program to
draw the lines through Grattan's data points.

A
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Exercise 2
The equipotential plot of Figure (11) and the field lines
of Figure (12) were taken from a student project.  The
field lines look like the field of two point charges +Q and
-Q separated by a distance r.  But who knows what is
happening in the shallow tank of water (or a sheet of
conducting paper)?  Perhaps the field lines more nearly
represent the field of two line charges +λ  and -λ
separated by a distance r.

The field of a point charge drops off as 1/r2 while the field
of a line charge drops off as 1/r.  The point of the exercise
is to decide whether the field lines in Figure (12) (or your
own field plot if you have constructed one in the lab)
more closely represent the field of a point or a line
charge.

Hint—Look at the electric field at Point A in Figure (12),
enlarged in Figure (13).  We know that the field E at Point
A is made up of two components,  E1  directed away from
the left hand cylinder, and  E2 directed toward the right
hand cylinder, and the net field E is the vector sum of the
two components.  If the field is the field of point charges
then  E1   drops off as  1/r12  and   E2   as  1/r22 .  But if the field
is that of line charges,  E1   drops off as  1/r1 and  E2   as

 1/r2 .  We have chosen Point (A) so that  r1, the distance
from (A) to the left cylinder is quite a bit longer than the
distance r2  to the right cylinder.  As a result, the ratio of

 E1   to   E2   and thus the direction of E, will be quite
different for  1 r1 r  and  1 r21 r2   forces.  This difference is great
enough that you can decide, even from student lab
results, whether you are looking at the field of point or
line charges.  Try it yourself and see which way it comes
out.

Figure 13
Knowing the direction of the electric field at Point (A)
allows us to determine the relative magnitude of the
fields  E1  and  E2  produced by charges 1 and 2 alone.
At Point (A), construct a vector E  of convenient length
parallel to the field line through (A).  Then decompose
E  into component vectors  E1  and  E2 , where  E1  lies
along the line from charge 1 to Point (A), and  E2
along the line toward charge 2.  Then adjust the
lengths of  E1  and  E2   so that their vector sum is E .

E2

2

E1

1E = E  + E

A

toward charge 1

tow
ard

charge
2

(repulsive)
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A Field Plot Model
The analogy between a field plot and a map maker’s
contour plot can be made even more obvious by
constructing a plywood model like that shown in
Figure (14).

To construct the model, we made a computer plot of the
electric field of charge distribution consisting of a
charge +3 and –1 seen in Figure (15).  We enlarged the
computer plot and then cut out pieces of plywood that
had the shapes of the contour lines.  The pieces of
plywood were stacked on top of each other and glued
together to produce the three dimensional view of the
field structure.

In this model, each additional thickness of plywood
represents one more equal step in the electric potential
or voltage.  The voltage of the positive charge Q = +3
is represented by the fat positive spike that goes up
toward +  ∞  and the negative charge q = –1 is repre-
sented by the smaller hole that heads down to 

 
–  ∞ .

These spikes can be seen in the back view in Figure
(14), and the potential plot in Figure (16).

In addition to seeing the contour lines in the slabs of
plywood, we have also marked the lines of steepest
descent with narrow strips of black tape.  These lines of
steepest descent are always perpendicular to the con-
tour lines, and are in fact, the electric field lines, when
viewed from the top as in the photograph of Figure (15).

Figure (17) is a plywood model of the electric potential
for two positive charges, Q = +5, Q = +2. Here we get
two hills.

Figure 14
Model of the electric field in the region of two point
charges   Q+ = + 3,   Q– = – 1.   Using the analogy to a
topographical map, we cut out plywood slabs in the
shape of the equipotentials from the computer plot of
Figure 15, and stacked the slabs to form a three
dimensional surface.  The field lines, which are
marked with narrow black tape on the model, always
lead in the direction of steepest descent on the surface.

Figure 17
Model of the electric potential in the region
of two point charges Q = +5 and Q = +2.

Figure 16
Potential plot along the
line of the two charges
+3, –1. The positive
charge creates an upward
spike, while the negative
charge makes a hole.
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V = .1

V = .2

V = .3

V = .4

V = .5

V = .1

V
=

–.

1

V
=

.0

–1 +3  
Figure 15
Computer plot of the field lines and equipotentials for a charge distribution
consisting of a positive charge + 3 and a negative charge – 1.  These lines
were then used to construct the plywood model.
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Computer Plots
There are now many excellent programs that have
personal computers draw out field plots for various
charge distributions.  In most of these programs you
enter an array of charges and the computer draws the
field and equipotential lines.  You should practice with
one of these programs in order to develop an intuition
for the field structures various charge distributions
produce.  In particular, try the charge distribution
shown in Figure (18) and (19).  In Figure (18), we wish
to see the field of oppositely charged plates (a positive
plate on the left and a negative one on the right).  This
charge distribution will appear in the next chapter in
our discussion of the parallel plate capacitor.

In Figure (19) we are modeling the field of a circle or
in  3-dimensions a hollow sphere of charge.  Something
rather remarkable happens to the electric field lines in
this case.  Try it and see what happens!

Exercise 3

If you have a computer plotting program available, plot
the field lines for the charge distributions shown in
Figures (18,19), and explain what the significant fea-
tures of the plot are.

+       –
+       –
+       –
+       –
+       –

+
+

+

+
+ + +

+

+
+

Figure 19
We have placed + charges around a circle to
simulate a cylinder or sphere of charge.  You
get interesting results when you plot the field
lines for this distribution of charge.

Figure 18
The idea is to use the computer to develop an intuition
for the shape of the electric field produced by various
distributions of electric charge.  Here the parallel lines
of charge simulates two plates with opposite charge.

Exercise 4

Figures (20a) and (20b) are computer plots of the
electric field of opposite charges. One of the plots
represents the  1/r2 field of 3 dimensional point charges.
The other is the end view of the 1/r field of line charges.
You are to decide which is which, explaining how you
can tell.

a)

b)

Figure 20
Computer plots of 1/r and   1 / r 2  (two dimensional
and three dimensional) fields of equal and opposite
charges. You are to figure out which is which.



CHAPTER26 ELECTRIC FIELDS
AND CONDUCTORS

In this chapter we will first discuss the behavior of
electric fields in the presence of conductors, and then
apply the results to three practical devices, the Van de
Graaff generator, the electron gun, and the parallel
plate capacitor.  Each of these examples provides not
only an explanation of a practical device, but also helps
build an intuitive picture of the concept of electric
voltage.

Chapter 26
Electric Fields
and Conductors

ELECTRIC FIELD
INSIDE A CONDUCTOR
If we have a piece of metal a few centimeters across as
illustrated in Figure (1), and suddenly turn on an
electric field, what happens?  Initially the field goes
right through the metal.  But within a few pico seconds
(1 pico second =  10–12  seconds) the electrons in the
metal redistribute themselves inside the metal creating
their own field that soon cancels the external applied
electric field, as indicated in Figure (2).

metal

E = ?

Figure 2
If you place a chunk of metal in an
external electric field, the electrons move
until there is no longer a force on them.

–
–
–
–

+
+
+
+

Figure 1
What is the electric field inside a chunk of metal?
Metals have conduction electrons that are free to move.
If there were an electric field inside the metal, the
conduction electrons would be accelerated by the field.
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The very concept of an electrical conductor requires
that, in the steady state, there be no electric field inside.
To see why, imagine that there is a field inside.  Since
it is a conductor, the electrons in the conductor are free
to move.  If there is a field inside, the field will exert a
force on the electrons and the electrons will move.
They will continue to move until there is no force on
them, i.e., until there is no field remaining inside.  The
electrons must continue to move until the field they
create just cancels the external field you applied.

Surface Charges
Where does the redistributed charge have to go in order
to create an electric field that precisely cancels the
applied electric field?  Gauss’ law provides a remark-
ably simple answer to this question.  The redistributed
charge must reside on the surface of the conductor.
This is because Gauss’ law requires that there be no net
charge inside the volume of a conductor.

To see why, let us assume that a charge Q is inside a
conductor as shown in Figure (3).  Draw a small
Gaussian surface around Q.  Then by Gauss’ law the
flux   Φ = E⋅A  coming out through the Gaussian sur-
face must be equal to   Qin ε0Qin ε0 where  Qin is the net charge
inside the Gaussian surface.  But if there is no field
inside the conductor,  if  E  = 0,  then the flux   E⋅A out
through the Gaussian surface must be zero, and there-
fore the charge  Qin must be zero.

If there is no charge inside the conductor, then the only
place any charge can exist is in the surface. If there is
a redistribution of charge, the redistributed charge must
lie on the surface of the conductor.

Figure (4) is a qualitative sketch of how surface charge
can create a field that cancels the applied field.

Figure 4c
Inside the block of metal the fields cancel.  The
result is that the external field on the left stops on
the negative surface charge.  The field on the right
starts again on the positive surface charge.

–
–
–
–

+
+
+
+

E + E' = 0 EE

–

+

Figure 4b
In response to the electric field, the electrons move to
the left surface of the metal, leaving behind positive
charge on the right surface.  These two surface charges
have their own field  E ′′ that is oppositely directed to E.

– +

E
E'– +

– +
– +

metal
applied
electric
field
 E

Figure 4a
An external field is applied to a block of metal.

Figure 3
Is there any electric charge inside a conductor?  To
find out,  draw a Gaussian surface around the
suspected charge.  Since there is no electric field
inside the conductor, there is no flux out through
the surface, and therefore no charge inside.

+Q
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Gauss’ law can be used to calculate how much charge
must be at the surface if a field of strength E is
impinging as shown in Figure (5).  In that figure we
have drawn a small pill box shaped Gaussian surface,
with one end in the conductor and the other outside in
the field E .  If the area of the end of the pill box is dA,
then the flux out of the pill box on the right is

  Φout = EdA.

Let  σ  coulombs/meter2 be the charge density on the
surface.  The amount of the conductor’s surface sur-
rounded by the pill box is dA, thus the amount of charge
inside the pill box is

  Amount of charge
inside the

Gaussian surface
≡ Qin = σdA

By Gauss’ law, the flux   Φout = EdA must equal 1/ε0
times the total charge inside the Gaussian surface and
we get

  
Φout =

Qin

ε0
=

σdA
ε0

= EdA

The dA's cancel and we are left with

   
E =

σ

ε0

E = electric field at the conductor

σ = charge densityat the surface (1)

Equation (1) gives a simple relation between the strength
of the electric field at the surface of a conductor, and the
surface charge density σ  at that point.  Just remember
that the field E   must be perpendicular to the surface of
the conductor.  (If the applied field was not originally
perpendicular to the surface, surface charges will slide
along the surface, reorienting the external field to make
it perpendicular.)

To appreciate how far we have come with the concepts
of fields and Gauss’ law, just imagine trying to derive
Equation (1) from Coulomb’s law.  We wouldn’t even
know how to begin.

We will now work an example and assign a few
exercises to build an intuition for the behavior of fields
and conductors.  Then we will apply the results to some
practical devices.

In Figure (4a) we see the electric field just after it has
been turned on.  Since the electrons in the metal are
negatively charged (q = -e), the force on the electrons
F  =  (-e) E is opposite to E and directed to the left.

In Figure (4b), electrons have been sucked over to the
left surface of the metal, leaving positive charge on the
right surface.  The negative charge on the left surface
combined with the positive charge on the right pro-
duced the left directed field  E′  shown by the dotted
lines.  The oppositely directed fields E and  E′  cancel in
Figure (4c) giving no net field inside the metal.

Surface Charge Density
When a field E impinges on the surface of a conductor,
it must be oriented at right angles to the conductor as
shown in Figure (5).  The reason for this is that if E had
a component  E| |  parallel to the surface,  E| |  would pull
the movable charge along the surface and change the
charge distribution.  The only direction the surface
charge cannot be pulled is directly out of the surface of
the conductor, thus for a stable setup the electric field
at the surface must be perpendicular as shown.

+

E

E

surface
charge
σ coul/m   2

area
dA

+
+
+
+
+
+
+
+

metal

Charged surface inside pillbox. 
The amount of charge on this 
surface is σdA

Figure 5
To calculate the surface charge density, we draw a
small cylindrical pill box of cross-sectional area
dA.  We then equate the flux of electric field out
through the right surface of the pill box to

  1/εεotimes the charge inside the pill box.
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Example: Field
in a Hollow Metal Sphere
Suppose we have the hollow metal sphere shown in
Figure (6).  A total charge Q is placed on the sphere.
What are the electric fields outside and inside the
sphere?

One key to solving this problem is to realize that since
the sphere is symmetric, the fields it produces must also
be symmetric.  We are not interested in fields that do
one thing on the left side and something else on the
right, for we do not have any physical cause for such an
asymmetry.

In Figure (7) we have drawn a Gaussian surface
surrounding the metal sphere as shown.  Since there is
a net charge +Q on the sphere, and therefore inside the
Gaussian surface, there must be a net flux   Q ε0Q ε0 out
through the surface.  Since the Gaussian surface has an
area   4π r2 , Gauss' law gives

 
  

Φ = EoutA⊥ = Eout × 4πr2 =
Q
ε0

 
  

Eout =
Q

4πε0r2
(2)

which happens to be the field of a point charge.

In Figure (8) we have drawn a Gaussian surface inside
the metal at a radius ri.  Since there is no field inside the
metal,   EA⊥ = 0  and there is no flux flowing out
through the Gaussian surface.  Thus by Gauss' law there
can be no net charge inside the Gaussian surface.
Explicitly this means that there is no surface charge on
the inside of the conductor.  The charge Q we spread on
the conducting sphere all went to the outside surface!

Finally in Figure (9) we have drawn a Gaussian surface
inside the hollow part of the hollow sphere.  Since there
is no charge—only empty space inside this Gaussian
surface, there can be no flux out through the surface,
and the field E  inside the hollow part of the sphere is
exactly zero.  This is a rather remarkable result consid-
ering how little effort was required to obtain it.

E

ro

Gaussian
surface

metal

metal

Figure 7
If we place a Gaussian surface around and outside
the sphere, we know that the charge Q must be
inside the Gaussian surface, and therefore    Q /εεo

lines must come out through the surface

Figure 8
If we place our Gaussian surface inside the metal
where   E = 0, no lines come out through the Gaussian
surface and therefore there must be no net charge Q
inside the Gaussian surface.  The fact that there is no
charge within that surface means all the charge we
placed on the sphere spreads to the outside surface.

E

ri

Gaussian
surface

metal

Figure 6
We place a charge Q on a hollow metal sphere.
Where do the charge and the field lines go?
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Exercise 2
A chunk of metal has an irregularly shaped cavity inside
as shown in Figure (11).  There are no holes and the
cavity is completely surrounded by metal.

The metal chunk is struck by lightning which produces
huge electric fields and deposits an unknown amount of
charge on the metal, but does not burn a hole into the
cavity.  Show that the lightning does not create an
electric field inside the cavity.  (For a time on the order of
pico seconds, an electric field will penetrate into the metal, but
if the metal is a good conductor like silver or copper, the
distance will be very short.)

(What does this problem have to do with the advice to
stay in a car during a thundershower?)

                  

metal

cavity

Figure 11
A chunk of metal with a completely enclosed hollow
cavity inside is struck by lightning.

Exercise 3
A positive charge +Q placed
on a conducting sphere of ra-
dius R, produces the electric
field shown.

a)  What is the charge density
σ  on the surface of the sphere?

b)  Use Equation (1) to find a formula for the magnitude
of the electric field E produced by the surface charge
density σ .

c)  How does the field calculated in part b) compare with
the strength of the electric field a distance R from a point
charge Q?

Exercise 4

Repeat Exercise 1 assuming that the conducting sphere
has a net charge of – Q. Does the charge on the
conducting sphere have any effect on the fields inside
the sphere? Why is there no field outside the sphere?

E

ri

Gaussian
surface

metal

Figure 9
If the Gaussian surface is drawn inside the hollow cavity
as shown, then there is no charge inside the Gaussian
surface.  Thus no field lines emerge through the
Gaussian surface, and E  must be zero inside the cavity.

Exercise 1
A positive charge +Q is surrounded concentrically by a
conducting sphere with an inner radius ra  and outer
radius rb as shown in Figure (10).  The conducting
sphere has no net charge. Using Gauss’ law, find the
electric field inside the hollow section  (r < ra) , inside the
conducting sphere  (ra <r <rb) and outside the sphere

 (r > rb).  Also calculate the surface charge densities on
the inner and outer surfaces of the conducting sphere.
Show that Equation (1) applies to the charge densities
you calculate.

                     

+Q
rb

ra

Figure 10
Start with an uncharged hollow metal sphere and place
a charge +Q inside.  Use Gauss' law to determine the
electric field and the surface charges throughout the
region.

E

R
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 VAN DE GRAAFF GENERATOR
The Van de Graaff generator is a conceptually straight-
forward device designed to produce high voltages.  A
sketch of the apparatus is shown in Figure (12), where
we have a hollow metal sphere with a hole in the
bottom, and a conveyer belt whose purpose is to bring
charge up into the sphere.  The belt is driven by a motor
at the bottom.

The first step is to get electric charge onto the belt.  This
is done electrostatically by having an appropriate ma-
terial rub against the belt.  For example, if you rub a
rubber rod with cat fur, you leave a negative charge on
the rubber rod.  If you rub a glass rod with silk, a positive
charge will be left on the glass rod.  I do not know what
sign of charge is left on a comb when you run it through
your hair on a dry day, but enough charge can be left on
the comb to pick up small pieces of paper.  We will
leave the theory of creating electrostatic charges to
other texts.  For our discussion, it is sufficient to
visualize that some kind of rubbing of the belt at the
bottom near the motor deposits charge on the belt. (As
an example of charging by rubbing, run a comb through
your hair several times. The comb becomes electrically
charged and will pick up small pieces of paper.)

Acting like a conveyor belt, the motorized belt carries
the charge up and into the inside of the hollow metal
sphere.  If there is already charge on the sphere, then,
as we have seen in Example (1), there will be an electric
field outside the sphere as shown in Figure (13).  (For
this example we are assuming that the belt is carrying
positive charge.)  But inside the sphere there will be no
field.  (The hole in the bottom of the sphere lets a small
amount of electric field leak inside, but not enough to
worry about.)

As the charge is being carried up by the belt, the electric
field outside the sphere pushes back on the charge, and
the belt has to do work to get the charge up to the sphere.
The more charge that has built up on the sphere, the
stronger the electric field E, and the more work the belt
has to do.  In a typical Van de Graaff generator used in
lecture demonstration, you can hear the motor working
harder when a large charge has built up on the sphere.

+

+ +
+

+

+
++

+

+

wire

E = 0 E

+
+
+
+
+
+

E

metal
sphere

conveyor
belt

motor
pulley
drive

motor
pulley
drive

charge placed
on the belt

charge removed
from the belt

Figure 12
The Van de Graaff generator.  Electric charge is
carried up the belt and dumped inside the hollow
metal sphere.  Since there are no electric fields
inside the sphere, the electric charge freely flows
off the belt to the sphere, where it then spreads
evenly to the outside surface of the sphere.

Figure 13
It takes work to carry the charge up to the sphere
against the electric field that is pushing down on the
charge.  But once inside the sphere where there is
almost no field, the charge freely moves off the belt,
onto the wire, charging up the sphere.  The more
charge on the sphere, the stronger the electric field E
outside the sphere, and the more work required to
bring new charge up into the sphere.  (In the
demonstration model, you can hear the motor slow
down as the sphere becomes charged up.)
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When the charge gets to the sphere how do we get it off
the belt onto the sphere?  When the sphere already has
a lot of positive charge on it, why would the positive
charge on the belt want to flow over to the sphere?
Shouldn’t the positive charge on the belt be repelled by
the positive sphere?

Here is where our knowledge of electric fields comes
in.  As illustrated in Figure (13), there may be very
strong electric fields outside the sphere, but inside there
are none.  Once the conveyor belt gets the charge inside
the sphere, the charge is completely free to run off to the
sphere.  All we need is a small wire that is attached to
the inside of the sphere that rubs against the belt.  In fact,
the neighboring + charge on the belt helps push the
charge off the belt onto the wire.

Once the charge is on the wire and flows to the inside
of the sphere, it must immediately flow to the outside
of the sphere where it helps produce a stronger field E
shown in Figure (13).

Electric Discharge
When a large amount of charge has accumulated on the
metal sphere of the Van de Graaff generator, we can
produce some very strong fields and high voltages.  We
can estimate the voltage by bringing a grounded sphere
up to the Van de Graaff generator as shown in Figure
(14).  A voltage of about 100,000 volts is required to
make a spark jump about an inch through air.  Thus if
we get a spark about 2 inches long between the Van de
Graaff generator and the grounded sphere, we have
brought enough charge onto the generator sphere to
create a voltage of about 200,000 volts.  (The length of
the sparks acts as a crude voltmeter!)

As an exercise, let us estimate how many coulombs of
charge must be on the Van de Graaff generator sphere
to bring it up to a voltage of 200,000 volts.

Outside the Van de Graaff generator sphere, the electric
field is roughly equal to the electric field of a point
charge.  Thus the voltage or electric potential of the
sphere should be given by Equation (25-4) as

V = 
Q

4πε0r (25-4)

where r is the radius of the Van de Graaff generator
sphere. (Remember that r is not squared in the formula
for potential energy or voltage.)

Let us assume that r = 10 cm or .1 m, and that the voltage
V is up to 200,000 volts.  Then Equation (25-4) gives

  Q = 4πε0rV

= 4π × 9 × 10-12 × .1 × 200,000

  Q ≈ 2 × 10-6 coulombs

A couple millionth’s of a coulomb of charge is enough
to create 200,000 volt sparks.  As we said earlier, a
whole coulomb is a huge amount of charge!

Figure 14
We can discharge the Van de Graaff generator
by bringing up a grounded sphere as shown.
Since about 100,000 volts are required to make a
spark one inch long, we can use the maximum
length of sparks to estimate the voltage produced
by the Van de Graaff generator.

motor

metal grounding plate

wire to water pipe

grounding
wire

spark

insulated
support

grounded
metal sphere
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Grounding
The grounded sphere in Figure (14) that we used to
produce the sparks, provides a good example of the
way we use conductors and wires.

Beneath the Van de Graaff generator apparatus we
have placed a large sheet of aluminum called a ground-
ing plane that is attached to the metal pipes and the
electrical ground in the room.  (Whenever we have
neglected to use this grounding plane during a demon-
stration we have regretted it.)  We have attached a
copper wire from the grounding plane to the “grounded”
sphere as shown.

Thus in Figure (14), the grounding plane, the room’s
metal pipes and electrical ground wires, and the
grounded sphere are all attached to each other via a
conductor.  Now there can be no electric field inside a
conductor, therefore all these objects are at the same
electric potential or voltage.  (If you have a voltage
difference between two points, there must be an electric
field between these two points to produce the voltage
difference.)  It is common practice in working with
electricity to define the voltage of the water pipes (or a
metal rod stuck deeply into the earth) as zero volts or
“ground”.  (The ground wires in most home wiring are
attached to the water pipes.)  Any object that is con-
nected by a wire to the water pipes or electrical ground
wire is said to be grounded.  The use of the earth as the
definition of the zero of electric voltage is much like
using the floor of a room as the definition of the zero of
the gravitational potential energy of an object.

In Figure (14), when the grounded sphere is brought up
to the Van de Graaff generator and we get a 2 inch long
spark, the spark tells us that the Van de Graaff sphere
had been raised to a potential of at least 200,000 volts
above ground.

Van de Graaff generators are found primarily in two
applications.  One is in science museums and lecture
demonstration to impress visitors and students.  The
other is in physics research.  Compared to modern
accelerators, the 200,000 volts or up to 100 million
volts that Van de Graaff generators produce is small.
But the voltages are very stable and can be precisely
controlled.  As a result the Van de Graaff’s make
excellent tools for studying the fine details of the
structure of atomic nuclei.

THE ELECTRON GUN
In Figure (15) we have a rough sketch of a television
tube with an electron gun at one end to create a beam
of electrons, deflection plates to move the electron
beam, and a phosphor screen at the other end to produce
a bright spot where the electrons strike the end of the
tube.

Figure (16) illustrates how a picture is drawn on a
television screen.  The electron beam is swept horizon-
tally across the face of the tube, then the beam is moved
down one line and swept horizontally again.  An
American television picture has about 500 horizontal
lines in one picture.

As the beam is swept across, the brightness of the spot
can be adjusted by changing the intensity of the elec-
tron beam.  In Figure (16), line 3, the beam starts out
bright, is dimmed when it gets to the left side of the
letter A, shut off completely when it gets to the black
line, then turned on to full brightness to complete the
line.  In a standard television set, one sweep across the
tube takes about 60 microseconds.  To draw the fine
details you see on a good television set requires that the
intensity of the beam can be turned up and down in little
more than a tenth of a microsecond.

Figure 15
Cathode ray tubes,  like the one shown above, are
commonly used in television sets, oscilloscopes, and
computer monitors.  The electron beam (otherwise
known as a "cathode ray") is created in the electron
gun, is aimed by  the deflection plates, and produces a
bright spot where it strikes the phosphor screen.

bright
spot

electron beam
deflection
plates

electron
gun

phosphor
screen
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The Filament
As shown in Figure (17), the source of the electrons in
an electron gun is the filament, a piece of wire that has
been heated red-hot by the passage of an electric
current.  At these temperatures, some of the electrons
in the filament gain enough thermal kinetic energy to
evaporate out through the surface of the wire.  The
white coating you may see on a filament reduces the
amount of energy an electron needs to escape out
through the metal surface, and therefore helps produce
a more intense beam of electrons.  At standard tempera-
ture and pressure, air molecules are about 10- molecu-
lar diameters apart as indicated in Figure (18).  There-
fore if the filament is in air, an electron that has
evaporated from the filament can travel, at most, a few
hundred molecular diameters before striking an air
molecule.  This is why the red-hot burner on an electric
stove does not emit a beam of electrons.  The only way
we can get electrons to travel far from the filament is to
place the filament in a vacuum as we did in Figure (17).
The better the vacuum, the farther the electrons can
travel.

The heart of this system is the electron gun which
creates the electron beam.  The actual electron gun in
a television tube is a complex looking device with
indirect heaters and focusing rings all mounted on the
basic gun.  What we will describe instead is a student-
built gun which does not produce the fine beam of a
commercial gun, but which is easy to build and easy to
understand.

Figure 16
The letter A on a TV screen.  To construct an
image the electron beam is swept horizontally, and
turned up where the picture should be bright and
turned down when dark.  The entire image consists
of a series of these horizontal lines, evenly spaced,
one below the other.
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off surface of
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Figure 18
Whenever we heat a metal to a high enough
temperature, electrons boil out of the surface.  But if
there is air at standard pressure around, the electrons
do not get very far before striking an air molecule.

filament surface

air
moleculeelectron

Figure 17
Source of the electrons.  The tungsten filament
is heated by an electric current.  When it
becomes red-hot, electrons boil out through the
surface.  The white coating on the filament
makes it easier for the electrons to escape.
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Accelerating Field
Once the electrons are out of the filament we use an
electric field to accelerate them.  This is done by placing
a metal cap with a hole in the end over the end of the
filament as shown in Figure (19).  The filament and cap
are attached to a battery as shown in Figure (20) so that
the cap is positively charged relative to the filament.

Intuitively the gun works as follows.  The electrons are
repelled by the negatively charged filament and are
attracted to the positively charged cap.  Most of the
electrons rush over, strike, and are absorbed by the cap
as shown in Figure (21).  But an electron headed for the
hole in the cap discovers too late that it has missed the
cap and goes on out to form the electron beam.

A picture of the resulting electron beam is seen in
Figure (22).  The beam is visible because some air
remains inside the tube, and the air molecules glow
when they are struck by an electron.

A Field Plot
A field plot of the electric field lines inside the electron
gun cap gives a more precise picture of what is happen-
ing.  Figure (23) is a computer plot of the field lines for
a cylindrical filament inside a metal cap.  We chose a
cylindrical filament rather than a bent wire filament
because it has the cylindrical symmetry of the cap and
is therefore much easier to calculate and draw.  But the
fields for a wire filament are not too different.

First notice that the field lines are perpendicular to both
metal surfaces.  This agrees with our earlier discussion
that an electric field at the surface of a conductor cannot
have a parallel component for that would move the
charge in the conductor.  The second thing to note is that
due to the unfortunate fact that the charge on the
electron is negative, the electric field points oppositely
to the direction of the force on the electrons. The force
is in the direction of -E.

Figure 20
We then attach a battery to the metal cap so that the
cap has a positive voltage relative to the filament.

+ + + + +
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beam of
electrons

filament

metal cap
Figure 19
To create a beam of electrons, we start by placing a
metal cap with a hole in it, over the filament.

Figure 22
Resulting electron beam.

Figure 21
Electrons flow from the negative filament
to the positive cap.  The beam of electrons
is formed by the electrons that miss the cap
and go out through the hole.

+ +
–

+ + + +
+
+

+
+

+ + + + + +

– – – – –
–
–
–
–

––––––
beam of electrons 
that missed the cap 
and went out
through the hole

negative filament

positive cap

flow of electrons +

+



26-11

Equipotential Plot
Once we know the field lines, we can plot the equipo-
tential lines as shown in Figure (24).  The lines are
labeled assuming that the filament is grounded (0 volts)
and  that the cap is at 100 volts .  The shape of the
equipotentials, shown by dashed lines, does  not change
when we use different accelerating voltages, only the
numerical value of the equipotentials changes.

The reason that the equipotential lines are of such
interest in Figure (24) is that they can also be viewed as
a map of the electron’s kinetic energy.

Remember that the voltage V is the potential energy of
a unit positive test charge.  A charge q has a potential
energy qV, and an electron, with a charge  – e , has an
electric potential energy   – eV .

In our electron gun, the electrons evaporate from the
filament with very little kinetic energy, call it zero.  By
the time the electrons get to the 10-volt equipotential,
their electric potential energy has dropped to (–e×10)
joules, and by conservation of energy, their kinetic
energy has gone up to (+e×10) joules.  At the 50 volt
equipotential the electron’s kinetic energy has risen to
(e×50) joules, and when the electrons reach the 100
volt cap, their energy is up to (e×100) joules.  Thus the
equipotential lines in Figure (24) provide a map of the
kinetic energy of the electrons.

The electrons, however, do not move along the -E field
lines.  If they boil out of the filament with a negligible
speed they will start moving in the direction -E.  But as
the electrons gain momentum, the force  -eE has less
and less effect.  (Remember, for example, that for a
satellite in a circular orbit, the force on the satellite is
down toward the center of the earth.  But the satellite
moves around the earth in an orbit of constant radius.)
In Figure (23), the dotted lines show a computer plot of
the trajectories of the electrons at several points.  The
most important trajectories for our purposes are those
that pass through the hole in the cap and go out and form
the electron beam.

Exercise 5

Describe two other examples where an object does not
move in the direction of the net force acting on it.

equipotential lines

80 V
50 V
20 V

Figure 24
Equipotential plot.  We see that by the time the
electrons have reached the hole in the cap, they
have crossed the same equipotential lines and
therefore have gained as much kinetic energy as
the electrons that strike the cap. (From a student
project by Daniel Leslie and Elad Levy.)

trajectories of
individual electrons

cylindrical
filament

electric
field

cap
Figure 23
Plot of the electric field in the region between the
filament and the cap.  Here we assume that we have
a cylindrical filament heated by a wire inside.
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ELECTRON VOLT
AS A UNIT OF ENERGY
What is perhaps most remarkable about the electron
gun is that every electron that leaves the filament and
strikes the cap gains precisely the same kinetic energy.
If we use a battery that produces 100 volt accelerating
voltage, then every electron gains precisely (e×100)
joules of kinetic energy.  This is also true of the
electrons that miss the cap and go out and form the
electron beam.

The amount of energy gained by an electron that falls
through a 1 volt potential is (e×1 volt)  =  1.6 x 10-19

joules.  This amount of energy is called an electron volt
and designated by the symbol eV.

  
1eV =

energy gained by an electron
falling through a 1 volt potential

= (e coulombs) × (1 volt)

= 1.6 x 10-19 joules

(3)

The dimensions in Equation (3) make a bit more sense
when we realize that the volt has the dimensions of
joule/coulomb, so that

  
1eV = e coulombs × 1

joule
coulomb

= (e) joules (3a)

The electron volt is an extremely convenient unit for
describing the energy of electrons produced by an
electron gun.  If we use a 100 volt battery to accelerate
the electrons, we get 100 eV electrons.  Two hundred
volt batteries produce 200 eV electrons, etc.

To solve problems like calculating the speed of a 100
eV electron, you need to convert from eV to joules.  The
conversion factor is

   
1.6 × 10-19 joules

eV
conversion
factor (4)

For example, if we have a 100 eV electron, its kinetic
energy  1 21 2 mv2 is given by

  KE = 1 21 2 mv2

= 100 eV × 1.6 × 10-19 joules
eV

(5)

Using the value   m = 9.11 × 10-31 kg  for the electron
mass in Equation (5) gives

  
v =

2 × 100 × 1.6 × 10-19

9.11 × 10-31

= 6 × 106 meters
sec

(6)

which is 2% the speed of light.

In studies involving atomic particles such as electrons
and protons, the electron volt is both a convenient and
very commonly used unit.  If the electron volt is too
small, we can measure the particle energy in MeV
(millions of electron volts) or GeV (billions of electron
volts or Gigavolts).

  1 MeV ≡ 106 eV

1 GeV ≡ 109 eV (6)

For example, if you work the following exercises, you
will see that the rest energies m0c2 of an electron and a
proton have the values

 
electron rest energy = .51 MeV

proton rest energy = .93 GeV (7)

The reason that it is worth remembering that an electron’s
rest energy is about .5 MeV and a proton’s about 1 GeV,
is that when a particle’s kinetic energy gets up toward
its rest energy, the particle’s speed becomes a signifi-
cant fraction of the speed of light and nonrelativistic
formulas like 1/2 mv2 for kinetic energy no longer
apply.
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Example
Calculate the rest energy of an electron in eV.

Solution:

  
E =

m0c
2 joules

1.6 × 10-19 joules
eV

=
9.11 × 10–31 × 3 × 108 2

1.6 × 10-19

= .51 × 106 eV

Exercise 6
Calculate the rest energy of a proton in eV and GeV.

Exercise 7

What accelerating voltage must be used in an electron
gun to produce electrons whose kinetic energy equals
their rest energy?

About Computer Plots
One final note in our discussion of the electron gun.
You might feel that by using the computer plots in
Figures (23) and (24) we have cheated a bit.  We
haven’t done the work ourselves, we let somebody (or
something) else do the calculations for us and we are
just using their answers.  Yes and no!

First of all, with a little bit of practice you can learn to
draw sketches that are quite close to the computer plots.
Use a trick like noting that field lines must be perpen-
dicular to the surface of a conductor where they touch
the conductor.  If two conductors have equal and
opposite charge – if they were charged by a battery – all
the field lines that start on the positive conductor will
stop on the negative one.  Use any symmetry you can
find to help sketch the field lines and then sketch the
equipotential lines perpendicular to the field lines.
Some places it is easier to visualize the equipotential
lines, e.g., near the surface of a conductor, and then
draw in the perpendicular field lines.

The other point is that, for a number of practical
problems the geometry of the conductors is compli-
cated enough that only by using a computer can we
accurately plot the field lines and equipotentials.  But
once a computer plot is drawn, we do not have to worry
about how it was calculated.  Like a hiker in a new
territory, we can use the computer plot as our contour
map to tell us the shape and important features of the
terrain.  For example in our field plots of the electron
gun, we see that there is virtually no field out in front of
the hole where the electrons  emerge, therefore from the
time the electrons leave the hole they coast freely at
constant speed and energy down the tube.

Figure 24a
Another field plot by Leslie and Levy, showing the
electric field and equipotential lines in a gun with a
shorter cap.

100 V
80 V

50 V

20 V

0 V

equipotential lines
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THE PARALLEL PLATE CAPACITOR
Our final example in this chapter of fields and conduc-
tors is the parallel plate capacitor.  Here we will work
with a much simpler field structure than for the electron
gun, and will therefore be able to calculate field strengths
and voltages.  The parallel plate capacitor serves as the
prototype example of a capacitor, a device used through-
out physics and electrical engineering for storing elec-
tric fields and electric energy.

Suppose we take two circular metal plates of area A,
separate them by a distance d, and attach a battery as
shown in Figure (25).  This setup is called a parallel
plate capacitor, and the field lines and equipotential for
this setup are shown in the computer plot of Figure (26).

Except at the edges of the plates, the field lines go
straight down from the positive to the negative plate,
and the equipotentials are equally spaced horizontal
lines parallel to the plates.  If the plate separation d is
small compared to the diameter D of the plates, then we
can neglect the fringing of the field at the edge of the
plates.  The result is what we will call an ideal parallel
plate capacitor whose field structure is shown in Figure
(27).  The advantage of working with this ideal capaci-
tor is that we can easily derive the relationship between
the charging voltage V,  and the charge Q.

Let us take a close look at what we have in Figure (27).
The electric field lines E leave the positively charged
top plate and go straight down to the negatively charged
bottom plate.  Since all the lines starting at the top plate
stop at the bottom one, there must be an equal and
opposite charge +Q and -Q on the two plates.  There is
no net charge on the capacitor, only a separation of
charge.  And because the field lines go straight down,
nowhere do they get closer together or farther apart, the
field must have a uniform strength E between the
plates.

We can use Gauss’ law to quickly calculate the field
strength E.  The top plate has a charge Q, therefore the
total flux out of the top plate must be   Φ = Q/ε0 .  But we
also have a field of strength E flowing out of a plate of
area A.  Thus flux of E flowing between the plates is

  Φ = EA.  Equating these two formulas for flux gives

  
Φ = EA =

Q
ε0

  
E =

Q
ε0A

(8)

We can relate the voltage V and the field strength E by
remembering that E is the force on a unit test charge
and V is the potential energy of a unit test charge.  If
I lift a unit positive test charge from the bottom plate
a distance d up to the top one, I have to exert an
upward force of strength E for a distance d and
therefore do an amount of work  E×d.  This work is
stored as the electric potential energy of the unit test
charge, and is therefore the voltage V:

 V = E d (9)

Figure 26
The electric field between and around
the edge of the capacitor plates.
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Figure 25
The parallel plate capacitor.  The capacitor is charged
up by connecting a battery across the plates as shown.
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Figure 27
In our idealized parallel plate capacitor the field
lines go straight from the positive to the negative
plate, and the field is uniform between the plates.
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It may seem surprising, but V is also the voltage of the
battery (see Figure 25) used to charge up the capacitor.

There is also a simple relationship between the charge
Q on the capacitor plates and the voltage difference V
between them.  Substituting the value of E from
Equation (8) into Equation (9) gives

  
V =

d
ε0A

Q (10)

Equation (10) makes an interesting prediction.  If we
have a fixed charge Q on the capacitor (say we charged
up the capacitor and removed the battery), then if we
increase the separation d between the plates, the volt-
age V will increase.

One problem with trying to measure this increase in
voltage is that if we attach a common voltmeter be-
tween the plates to measure V, the capacitor will
quickly discharge through the voltmeter.  In order to see
this effect we must use a special voltmeter called an
electrometer that will not allow the capacitor to dis-
charge. The classic electrometer, used in the 1800's, is
the gold leaf electrometer shown in Figures (28) and
(29). When the top plate of the electrometer is charged,
some of the charge flows to the gold leaves, forcing the
leaves apart. The greater the voltage, the greater the
charge and the greater the force separating the leaves.
Thus the separation of the leaves is a rough measure of
the voltage.

In Figure (28), we see a gold leaf electrometer attached
to two metal capacitor plates. When the plates are
charged, the gold leaves separate, indicating that there
is a voltage difference between the plates.

In Figures (29a,b), we are looking through the elec-
trometer at the edge of the capacitor plates. In going
from (29a) to (29b), we moved the plates apart without
changing the charge on the plates. We see that when the
plates are farther apart, the gold leaves are more
separated, indicating a greater voltage as predicted by
equation (10).

Figure 28
Gold leaf electrometer attached
to a parallel plate capacitor.

Figure 29b
Without changing the charge, the plates
are moved further apart. The increased
separation of the gold leaves shows that
the voltage difference between the
capacitor plates has increased.

Figure 29a
Looking through the electrometer at the
edge of the charged capacitor plates.

g o l d
leaves
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Exercise  8

Two circular metal plates of radius 10 cm are separated
by microscope slide covers of thickness d = . 12 mm.  A
voltage difference of 5 volts is set up between the plates
using a battery as shown in Figure (25).  What is the
charge Q on the plates?

Deflection Plates
A fitting conclusion to this chapter is to see how the
fields in parallel plate capacitor can be used to deflect
the beam of electrons produced by an electron gun.  In
Figure (30) the beam of electrons from an electron gun
is aimed between the plates of a parallel plate capacitor.
The upward directed electric field E produces a down-
ward directed force -eE on the electrons, so that when
the electrons emerge from the plates, they have been
deflected downward by an angle θ as shown.  We wish
to calculate this angle θ which depends on the strength
of the deflection voltage Vp, the length D of the plates,
and on the speed v of the electrons.

While the electrons are between the plates, their accel-
eration is given by

A  =  F
me

  =  -eE
me

where me is the electron mass.  This acceleration is
constant and directed downward, just as in our old

projectile motion studies.  Using Equation (9)  E = V/d
for the magnitude of E, we find that the downward
acceleration A of the electrons has a magnitude

A   =  eE
me

  =  
eVp

med

where Vp, is the voltage and d the separation of the
deflection plates.

If a particle is subjected to a downward acceleration for
a time T, and initially has no downward velocity, its
final downward velocity vfy is from the constant accel-
eration formulas as

vfy  =  AyT  =  
eVp

med
  T

(11)

If the electrons emerge from the electron gun at a speed
v, then the time T it takes them to pass between the
plates is

T  =  Dv (12)

The tangent of the deflection angle θ is given by the
ratio vfy/v which we can get from Equations (11) and
(12):

  
vfy =

eVp

med
×

D
v

              

v

vfy

θ

  
tan θ =

vfy

v
=

eVpD

medv2
(13)

The final step is to note that the speed v of the electrons
is determined by the electron gun accelerating voltage
Vacc by the relationship

  1
2

mev2 = eVacc or v2 =
2eVacc

me
(14)

Equations (13) and (14) finally give

  
tanθ =

eVpD

med 2eVacc me2eVacc me

=
1
2

D
d

Vp

Vacc
(15)

which is a fairly simple result considering the steps we
went through to get it.  It is reassuring that   tanθ comes
out as a dimensionless ratio, which it must.

D
–

+

θ
electron
gun

deflection voltage VPV

d

Figure 30
To deflect the beam of electrons, we place what is
essentially  a parallel plate capacitor in the path of the
beam as shown.  The electrons are deflected by the
electric field between the capacitor plates.
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Exercise 9
In an electron gun, deflection plates 5 cm long are
separated by a distance d = 1.2 cm. The electron beam
is produced by a 75 volt accelerating voltage. What
deflection voltage Vp is required to bend the beam 10
degrees?

Exercise 10
In what is called the Millikan oil drop experiment, shown
in Figure (31), a vapor of oil is sprayed between two
capacitor plates  and the oil drops are electrically
charged by radioactive particles.

Consider a particular oil drop of mass m that has lost one
electron and therefore has an electric charge q = + e.
(The mass m of the drop was determined by measuring
its terminal velocity in free fall in the air.  We will not worry
about that part of the experiment, and simply assume
that the drop's mass m is known.)  To measure the
charge q on the oil drop, and thus determine the
electron charge e, an upward electric field Eis applied
to the oil drop.  The strength of the field E is adjusted until
the upward electric force just balances the downward
gravitational force.  When the forces are balanced, the
drop, seen through a microscope, will be observed to
come to rest due to air resistance.

The electric field E that supports the oil drop is pro-
duced by a parallel plate capacitor and power supply
that can be adjusted to the desired voltage V.  The
separation between the plates is d.

a)     Reproduce the sketch of Figure (31), Then put a +
sign beside the positive battery terminal and a – sign
beside the negative one.

b)  Find the formula for the voltage V required to
precisely support the oil drop against the gravitational
force.  Express your answer in terms of the geometry of
the capacitor (plate separation d, area A, etc.) the
drop's mass m, the acceleration due to gravity g, and
the electron charge e.

m E
Fe

Fg
d

power supply
of voltage Vmicroscope

Figure 31
Millikan oil drop apparatus



Chapter 27
Basic Electric Circuits

CHAPTER 27 Basic Electric Cir-
cuits

In the modern age (post 1870) we have been sur-
rounded by electric circuits.  House wiring is our most
familiar example, but we have become increasingly
familiar with electric circuits in radio and television
sets, and even the digital watch you may be wearing.  In
this chapter we will discuss the basic electric circuits in
order to introduce the concepts of electric current,
resistance, and voltage drops around the circuit.  We
will restrict ourselves to devices like batteries, resis-
tors, light bulbs, and capacitors.  The main purpose is
to develop the background needed to work with electric
circuits and electronic measuring equipment in the
laboratory.
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ELECTRIC CURRENT
An electric current in a wire is conceptually somewhat
like the current of water in a river.  We can define the
current in a river as the amount of water per second
flowing under a bridge.  The amount of water could be
defined as the number of water molecules, but a more
convenient unit would be gallons, liters, or cubic
meters.

An electric current in a wire is usually associated with
the flow of electrons and is measured as the amount of
charge per second flowing past some point or through
some cross-sectional area of the wire, as illustrated in
Figure (1).  We could measure the amount of charge by
counting the number of electrons crossing the area, but
it is more convenient to use our standard unit of charge,
the coulomb, and define an electric current as the
number of coulombs per second passing the cross-
sectional area.  The unit of current defined this way is
called an ampere.

 

1 ampere =

1 coulomb per
second passing
a cross–sectional
area of wire

(1)

From your experience with household wiring you
should already be familiar with the ampere (amp) as a
unit of current.  A typical light bulb draws between  1 21 2
and 1 ampere of current, and so does the typical motor
in an electric appliance (drill, eggbeater, etc.).  A
microwave oven and a toaster may draw up to 6 amps,
and hair dryers and electric heaters up to 12 amps.
Household wiring is limited in its capability of carrying
electric current.  If you try to carry too much current in
a wire, the wire gets hot and poses a fire hazard.

Household wiring is protected by fuses or circuit
breakers that shut off the current if it exceeds 15 or 20
amps.  (You can see why you do not want to run a hair
dryer and an electric heater on the same circuit.)

There is a common misconception that the electrons in
a wire travel very fast when a current is flowing in the
wire.  After all when you turn on a wall light switch the
light on the other side of the room appears to turn on
instantly.  How did the electrons get there so fast?

The answer can be seen by an analogy to a garden hose.
When you first attach an empty hose to a spigot and turn
on the water, it takes a while before the hose fills up with
water and water comes out of the other end.  But when
the hose is already full and you turn on the spigot, water
almost instantly comes out of the other end.  Not the
water that just went in, but the water that was already
in the hose.

A copper wire is analogous to the hose that is already
full of water; the electrons are already there.  When you
turn on the light switch, the light comes on almost
instantly because all the “electric fluid” in the wire
starts moving almost at once.

To help build an intuition,  let us estimate how fast the
electrons must move in a copper wire with a 1 millime-
ter cross-sectional area carrying an electric current of
one ampere.  This is not an unreasonable situation for
household wiring.

A copper atom has a nucleus containing 29 protons
surrounded by a cloud of 29 electrons.  Of the 29
electrons, 27 are tightly bound to the nucleus and 2 are
in an outer shell, loosely bound.  (All metal atoms have
one, two, and sometimes 3 loosely bound outer elec-
trons.)  When copper atoms are collected together to
form a copper crystal, the 27 tightly bound electrons
remain with their respective nuclei, but the two loosely
bound electrons are free to wander throughout the
crystal.  In a metal crystal or wire, it is the loosely bound
electrons (called conduction electrons) that form the
electric fluid that makes the wire a conductor.

Figure 1
An electric current is defined as the amount of charge
per second flowing past a cross-sectional area.

cross sectional area

moving 
electric
charge
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Positive and Negative Currents
If you are using a hose to fill a bucket with water, there
is not much question about which way the current of
water is flowing—from the hose to the bucket.  But
with electric current, because there are two kinds of
electric charge, the situation is not that simple.  As
shown in Figure (2), there are two ways to give an
object a positive charge, add positive charge or remove
negative charge.  If a wire connected to the object is
doing the charging, it may be difficult to tell whether
there is a current of positive charge into the object or a
current of negative charge out of the object.  Both have
essentially the same effect.

You may argue that at least for copper wires a current
of positive charge doesn’t make sense because the
electric current is being carried by the negative conduc-
tion electrons.  But a simple model of an electric current
will clearly demonstrate that a positive current flowing
one way is essentially equivalent to a negative current
flowing the other way.

Copper has an atomic weight of 63.5, thus there are
63.5 grams of copper in a mole.  And the density of
copper is 9  gm /cm3, thus a mole of copper has a
volume

 volume of one
mole of copper

=
63.5gm / mole

9gm / cm3 = 7 cm3

mole

Since a mole of a substance contains an Avogadro’s
number 6 × 1023 of particles of that substance, and
since there are 2 conduction electrons per copper atom,
7 cm3 of copper contain 12 × 1023 conduction elec-
trons.  Dividing by 7, we see that there are 1.7 × 1023

conduction electrons in every cubic centimeter of
copper and 1.7 × 1020 in a cubic millimeter.  Convert-
ing this to coulombs, we get

  number of
coulombs of
conduction
electrons
in 1mm3

of copper

= 1.7×1020electrons mm3electrons mm3

6.25×1018electrons coulombelectrons coulomb

= 27coulombs mm3coulombs mm3

In our 1 millimeter cross-sectional area wire, if the
electrons flowed at a speed of 1 millimeter per second,
27 coulombs of charge would flow past any point in the
wire per second, and we would have a current of 27
amperes.  To have a current of 1 ampere, the electrons
would have to move only 1/27 as fast, or 1/27 of a
millimeter per second!  This slow speed results from
the huge density of conduction electrons.

Figure 2
A current of positive charge into an
object, or a current of negative charge
out,  leaves the object positively charged.
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In Figure (3) we have tried to sketch a picture of a
copper wire in which the conduction electrons are
moving to the left producing a left directed negative
current.  The problem with Figure (3) is that it is hard
to show the conduction electrons flowing through the
lattice of stationary positive copper nuclei.  The picture
is difficult to draw, and Figure (3) is not particularly
informative.

To more clearly show that the positive charge is at rest
and that it is the negative charge that is moving, we have
in Figure (4) constructed a model of a copper wire in
which we have two separate rods, one moving and one
at rest.  The stationary rod has the positive copper nuclei
and the moving rod has the negative conduction elec-
trons.  This model is not a very good representation of
what is going on inside the copper wire, but it does
remind us clearly that the positive charge is at rest, and
that the current is being carried by the moving negative
charge.

When you see this model, which we will use again in
later discussions, think of the two rods as merged
together.  Picture the minus charge as flowing through
the lattice of positive charge.  Remember that the only
reason that we drew them as separate rods was to
clearly show which charge was carrying the electric
current.

Using the results of the previous section, we can make
our model of Figure (4) more specific by assuming it
represents a copper wire with a 1 millimeter cross
section carrying a current of one ampere.  In that

example the average speed of the conduction electrons
was 1/27 of a millimeter per second, which we will take
as the speed v of the moving negative rod in Figure (4).

Figure (5a) is the same as Figure (4), except we have
drawn a stick figure representing a person walking to
the left at a speed v.  The person and the negatively
charged rod are both moving to the left at the same
speed.

Figure (5b) is the same situation from the point of view
of the stick figure person.  From her point of view, the
negative rod is at rest and it is the positive rod that is
moving to the right.  Our left directed negative current
in Figure (5a) is seen by the moving observer to be a
right directed positive current (Figure 5b).  Whether
we have a left directed negative current or a right
directed positive current just depends upon the point of
view of the observer.

But how fast was our moving observer walking?  If
Figure (5) is a model of a 1 mm2 copper wire carrying
a current of 1 ampere, the speed v in Figure (5) is 1/27
of a millimeter per second.  This is about 2 millimeters
per minute!  Although faster than the continental drift,
this motion should certainly have little effect on what
we see.  If the wire is leading to a toaster, the toast will
come out the same whether or not we walk by at a speed
of 2 mm per minute.  For most purposes, we can take
a left directed negative current and a right directed
positive current as being equivalent.  Relatively sophis-
ticated experiments, such as those using the Hall effect
(to be discussed later) are required to tell the difference.

+ –

copper wire

positive copper
ions at rest

+ – + – + – + – + – + – + –

moving conduction
electrons

+
–

+
–

+
–

+
–

+
–

+
–

+
–

positively charged
rod at rest

moving negatively
charged rod

v

Figure 4
Model of a copper wire carrying an electric current.
We are representing the positive copper ions by a
positively charged rod at rest, and the conduction
electrons by a moving, negatively charged rod.

Figure 3
A copper wire at rest with the conduction
electrons moving to the left.  This gives us
a left-directed negative current.



27-5

A Convention
It was Ben Franklin who made the assignment of
positive and negative charge.  The charge left on a glass
rod rubbed by silk was defined as positive, and that left
on a rubber rod rubbed by cat fur as negative.  This has
often been considered a tragic mistake, for it leaves the
electron, the common carrier of electric current, with a
negative charge.  It also leads to the unfortunate intui-
tive picture that an atom that has lost some electrons
ends up with a positive charge.

Some physics textbooks written in the 1930s redefined
the electron as being positive, but this was a disaster.
We cannot undo over two centuries of convention that
leads to the electron as being negative.

The worst problem with Franklin’s convention comes
when we try to handle the minus signs in problems
involving the flow of electrons in a wire.  But we have

just seen that the flow of electrons in one direction is
almost completely equivalent to the flow of positive
charge in the other.  If we do our calculations for
positive currents, then we know that the electrons are
simply moving in the opposite direction.

In order to maintain sanity and not get tangled up with
minus signs, in this text we will, whenever possible,
talk about the flow of positive currents, and talk about
the force on positive test charges.  If the problem we are
working on involves electrons, we will work every-
thing assuming positive charges and positive currents,
and only at the end of the problem we will take into
account the negative sign of the electron.  With some
practice, you will find this an easy convention to use.
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+
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a) observer walking along with the moving
    negatively charged rod

b) from the observer's point of view the negative
    rod is at rest and the positive charge is moving
    to the right

v

v

v

Figure 5 a, b
In (a) we have a left directed negative current, while in (b) we have a right directed
positive current.  The only difference is the perspective of the observer.  (You can turn a
negative current into an oppositely flowing positive one simply by moving your head.)
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CURRENT AND VOLTAGE
Students first studying electricity can have difficulty
conceptually distinguishing between the concepts of
current and voltage.  This problem can be handled by
referring back to our hydrodynamic analogy of Chap-
ter 23.

In Chapter 23 we were discussing Bernoulli’s equation
which stated that the quantity (P + ρgh + 1/2 ρv2)
was constant along a stream line if we could neglect
viscous effects in the fluid.  Because of the special
nature of this collection of terms, we gave them the
name hydrodynamic voltage.

  hydrodynamic
voltage

= P + ρgh + 1
2

ρv2 (23-23)

(The second and third terms in the hydrodynamic
voltage are the potential energy of a unit volume of
fluid and the kinetic energy. The pressure term, while
not a potential energy, is related to the work required to
move fluid into a higher pressure region.)

Many features of hydrodynamic voltage should al-
ready be familiar.  If you live in a house with good water
pressure, when you turn on the faucet the water comes
out rapidly.  But if someone is running the washing
machine in the basement or watering the garden, the
water pressure may be low, and the water just dribbles
out of the faucet.  We will think of the high pressure
water as high voltage water, and the low pressure water
as low voltage water.

Let us look more carefully at high voltage water in a
faucet.  When the faucet is shut off, the water is at rest
but the pressure is high, and the main contribution to the
hydrodynamic voltage is the P term.  When the faucet
is on, the water that has just left the faucet has dropped
back to atmospheric pressure but it is moving rapidly.
Now it is the 1/2 ρv2 that contributes most to the
hydrodynamic voltage.  If the water originally comes

from a town water tank, when the water was at the top
of the tank it was at atmospheric pressure and not
moving, but was at a great height h.  In the town water
tank the hydrodynamic voltage comes mainly from the
ρgh term.

Let us focus our attention on the high pressure in a
faucet that is shut off.  In this case we have high voltage
water but no current.  We can get a big current if we turn
the faucet on, but the voltage is there whether or not we
have a current.

In household wiring, the electrical outlets may be
thought of as faucets for the electrical fluid in the wires.
The high voltage in these wires is like the high pressure
in the water pipes.  You can have a high voltage at the
outlet without drawing any current, or you can connect
an appliance and draw a current of this high pressure
electrical fluid.

Resistors
In an electric heater the electrical energy supplied by
the power station is converted into heat energy by
having electric current flow through a dissipative or
resistive material.  The actual process by which electri-
cal energy is turned into heat energy is fairly complex
but not unlike the conversion of mechanical energy to
heat through friction.  One can think of resistance as an
internal friction encountered by the electric current.

In our discussion of Bernoulli’s equation we saw that
the hydrodynamic voltage  P + ρgh + 1/2 ρv2  was
constant along a stream line if there were no viscous
effects.  But we also saw in Figure (23-24) that when
there were viscous effects this hydrodynamic voltage
dropped as we went along a stream line.

Heights in barometer tubes 
dropping due to viscosity

v

Figure 23-24
Hydrodynamic voltage drop due to viscous effects.
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In fluid flows, we get the most dissipation where the
fluid is moving rapidly through a narrow constriction.
This is seen in  our venturi demonstration of Figure
(23-18), reproduced here in Figure (6). Here we have a
large tube with a constriction.  The glass barometer
tubes show us that the pressure remains relatively
constant before the constriction, but does not return to
its original value afterward. There is a net pressure drop
of   ρgh,  where h is the height drop indicated in the
figure.

Consider the points in the fluid at the dots labeled (2)
and (9), in the center of the stream below tubes 2 and 9.
These points are at the same heights (  h2 =  h9), and the
fluid velocities are the same (  v2  =  v9 ) because the flow
tube has returned to its original size. Because of the
pressure drop (  P9  <  P2), the hydrodynamic voltage
(   P9 + ρgh9 + 1/2 ρv9

2 ) at point (9) is less than that at
point (2) by an amount equal to  P2–  P9  =   ρgh.The
barometer tubes 2 and 9 are acting as hydrodynamic
voltmeters showing us where the voltage drop occurs.

Just as in fluid flows, dissipation in electric currents are
associated with voltage drops, in this case electrical
voltage drops.  In general, the amount of the voltage
drop depends on the amount of current, the geometry of
the flow path, on the material through which the current
is flowing, and on the temperature of the material.  But
in a special device called a resistor, the voltage drop   ∆V
depends primarily on the current i through the resistor

and is proportional to that current.  When the voltage
drop   ∆∆ V is proportional to the current  i, the resistor
is said to obey Ohm’s law.  This can be written as the
equation

   ∆V = iR Ohm's law (1)

The proportionality constant R is called the resistance
R of the resistor.  From Equation (1) you can see that R
has the dimensions volt/amp.  This unit is called an
ohm, a name which is convenient in practice but which
further complicates the problem of following dimen-
sions in electrical calculations.

  
R = ∆V

i
volts
amps = ∆V

i
ohms

Resistors are the most common element in electronic
circuits. They usually consist of a small cylinder with
wire pigtails sticking out each end as shown in Figure
(7).  The material inside the cylinder which creates the
voltage drop, which turns electrical energy into heat
energy, is usually carbon.

The resistors you find in an electronics shop come in a
huge selection of values, with resistances ranging from
about 0.1 ohm up to around 109 ohms in a standard
series of steps.  The physical size of the resistor depends
not on the value of the resistance but on the amount of
electrical energy the resistor is capable of dissipating
without burning up.  The value of the resistance is
usually indicated by colored stripes painted on the
resistor, there being a standard color code so that you
can read the value from the stripes.

(A light bulb is a good example of an electrical device
that dissipates energy, in this case mostly in the form of
heat and some light.  The only problem with a light bulb
is that as the filament gets hot, its resistance increases.
If we wish to use Ohm’s law, we have to add the
qualification that the bulb’s resistance R increases with
temperature.)

resistor
wire wire

Figure 6
The hydrodynamic voltage, as measured by the
barometer tubes, drops by an amount   ρρgh  in going
across the constriction from Point (2) to Point (9).

Figure 7
The resistor, found in most electronic circuits.  The
purpose of the resistor is to cause an electric voltage
drop analogous to the hydrodynamic voltage drop we
saw in Figure 6 across the restriction in the flow tube.

(1)

h

vwater(2) •

(3) (4) (5) (6) (7) (8)

(9)•
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A Simple Circuit
To get some intuition for how resistors are used,
consider the circuit shown in Figure (8) containing a
battery and a resistor connected by wires.  In drawing
circuits, it is convention to use a line  for a
wire, the symbol  for a resistor, and

+ –  for a battery.  In the symbol for a battery,
the short perpendicular line represents the negative
terminal of the battery and the long side the positive
terminal.  When we have a current i flowing through the
wire we draw an arrow indicating the direction of flow
of positive charge i  and label the current
with a letter such as i, i1, etc.

In Figure (9), we have labeled the voltages V1, V2, V3
and V4 at four points around the circuit.  By definition
we will take the negative side of the battery as being
zero volts, or what we call ground

V4   =  0 volts        by definition (2)

On the positive side of the battery, the voltage is up to
the battery voltage Vb which is 1.5 volts for a common
flashlight battery and up to 9 volts for many transistor
radio batteries

V1  =  Vb         the battery voltage (3)

Point (2) at the upper end of the resistor, is connected
to the positive terminal of the battery, Point (1), by a
wire.  In our circuit diagrams we always assume that
our wires are good conductors, having no electric fields
inside them and therefore no voltage drops along them.
Thus

  
V2 = V1 = Vb

no voltage drop
along a wire (4)

The bottom of the resistor is connected to the negative
terminal of the battery by a wire, therefore

  
V3 = V4 = 0 no voltage drop

along a wire (5)

Equations (4) and (5) determine the voltage drop   ∆V
that must be occurring at the resistor

  ∆V = V2 – V3 = Vb (6)

And by Ohm’s law, Equation (1), this voltage drop is
related to the current i through the resistor by

   ∆V = iR = Vb Ohmslaw (7)

Solving for the current i in the circuit gives

 

i =
Vb

R (8)

In future discussions of circuits we will not write out all
the steps as we have in Equations (2) through (8), but
the first time through a circuit we wanted to show all the
details.

Figure 8
About the simplest electrical circuit consists of a
battery connected to a resistor.  If the resistor
were a light bulb, you would have a flashlight.

current i

resistor

R

wire

battery

V
+
–By convention, the

negative side of the
battery is usually

considered to be at
0 volts (ground).

i

+
–

V2
1V 

V = i R

V3

bV 

4V 

Figure 9
Voltages around the circuit.
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Equation (8) is the one that really shows us how
resistors are used in a circuit.  We can see from
Equation (8) that if we use a small resistor, we get a big
current, and if we use a large resistor we get a small
current.  In most applications resistors are used to
control the flow of current.

In modern electronics such as radios and computers,
typical battery voltages are around 5 volts and typical
currents a milliampere (10-3 amps).  What size resistor
R do we have to use in Equation (8) so that we get a one
milliampere current from a 5 volt battery?  The answer
is

  
R =

Vb

i
=

5 volts

10-3 amps
= 5000 ohms ≡ 5000 Ω (9)

where we used the standard symbol Ω for ohms.  Many
of the resistors in electronics circuits have values like
this in the 1,000 Ω  to 10,000 Ω  range.

The Short Circuit
Equation (8) raises an interesting problem.  What if

 R = 0 ?  The equation predicts an infinite current!  We
could try to make  R = 0  by attaching a wire rather than
a resistor from Points (2) to (3) in Figure (9).  What
would happen is that a very large current would start to
flow and either melt the wire, start a fire, drain the
battery, or destroy the power supply.  (A power supply
is an electronic battery.)  When this happens, you have
created what is called a short circuit.  The common
lingo is that you have shorted out the battery or power
supply and this is not a good thing to do.

Figure 10
The voltage drops from V to 0 as the current i flows
through the resistor.  The power dissipated is the
current i coulombs/second times the voltage drop V
joules/coulomb, which is iV joules/second, or watts.

Power
As one of the roles of a resistor is electrical power
dissipation, let us determine the power that is being
dissipated when a current is flowing through a resistor.
Recall that power is the amount of energy transferred
or dissipated per unit time.  In the MKS system power
has the dimensions of joules per second which is called
a watt

 
Power =

joules
second

= watt (10)

Now suppose we have a current flowing through a
resistor R as shown in Figure (10).  The voltage drop
across the resistor is V, from a voltage of V volts at the
top to 0 volts at the bottom as shown.

Because V is the electric potential energy of a unit
charge (the coulomb), every coulomb of charge flow-
ing through the resistor loses V joules of electric
potential energy which is changed to heat.

If we have a current  i, then  i  coulombs flow through
the resistor every second. Thus the energy lost per
second is the number of coulombs  (i)  times the energy
lost per coulomb (V) or  (iV):

  Power = i coul
sec × V

joules
coul

= iV
joules

sec = iVwatts
(11)

Ohm’s law, Equation (1), can be used to express the
power in terms of R and either i or V

 
Power = iV = i2R =

V2

R
(11a)

i

V = 0

V
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Exercise 1
These are some simple exercises to have you become
familiar with the concepts of volts and amps.

a)  Design a circuit consisting of a 9 volt battery and a
resistor, where the current through the resistor is 25
milliamperes (   25×10– 3  amps).

b)  A flashlight consists of a 1.5 volt battery and a 1 watt
light bulb. How much current flows through the bulb
when the flashlight is on?

c)  When you plug a 1000 watt heater into a 120 volt
power line, how much current goes through the heater?
What is the resistance R of the heater when the filament
is hot?

d)  In most households, each circuit has a voltage of 120
volts and is fused for 20 amps. (The circuit breaker
opens up if the current exceeds 20 amps). What is the
maximum power you can draw from one circuit in your
house?

e)  An electric dryer requires 3000 watts of power, yet it
has to be plugged into wires that can handle only 20
amps. What is the least voltage you can have on the
circuit?

f)  In many parts of the world, the standard voltage is 240
volts. The wires to appliances are much thinner. Explain
why.

KIRCHOFF’S LAW
Imagine that you are going for an afternoon hike on a
nearby mountain.  You drive up to the base lodge, park
your car, and start up the trail.  The trail goes up over a
ridge, down into a ravine, up to the peak of the
mountain, down the other side and then around the
mountain back to the base lodge.  When you get back
to your car, how much gravitational potential energy
have you gained from the trip?  The answer is clearly
zero—you are right back where you started.

If you defined gh, which is the potential energy of a unit
mass, as your gravitational voltage, then as you went up
the ridge,  there was a voltage rise as h increased.  Going
down into the ravine there was a voltage drop, or what
we could call a negative voltage rise.  The big voltage
rise is up to the top of the mountain, and the big negative
voltage rise is down the back side of the mountain.
When you add up all the voltage rises for the complete
trip, counting voltage drops as negative rises, the sum
is zero.

Consider our Figure (9) redrawn here.  If we start at
Point (4) where the voltage is zero, and “walk” around
the circuit in the direction of the positive current i, we
first encounter a voltage rise up to  V = Vb due to the
battery, then a voltage drop back to zero at the resistor.
When we get back to the starting point, the sum of the
voltage rises is zero just as in our trip through the
mountains.  Even in more complicated circuits with
many branches and different circuit elements, it is
usually true that the sum of the voltage rises around any
complete path, back to your starting point, is zero.  It
turns out that this is a powerful tool for analyzing
electric circuits, and is known as Kirchoff’s law.
(Kirchoff’s law can be violated, we can get a net
voltage rise in a complete circuit, if changing magnetic
fields are present.  We will treat this phenomenon in a
later chapter.  For now we will discuss the usual
situation where Kirchoff’s law applies.)

Figure 9 (redrawn)
Voltages around the circuit.

i

+
–

V2
1V 

V = i R

V3

bV 

4V 
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Application of Kirchoff’s Law
There are some relatively standard, cookbook like
procedures that make it easy to apply Kirchoff’s law to
the analysis of circuits.  The steps in the recipe are as
follows:

(1) Sketch the circuit and use arrows to show the
direction of the positive current in each loop as we did
in Figure (11).  Do not be too concerned about getting
the correct direction for the current i.  If you have the

arrow pointing the wrong way, then when you finish
solving the problem,  i will turn out to be negative.

(2)  Label all the voltage rises in the circuit.  Use arrows
to indicate the direction of the voltage rise as we did in
Figure (12).  Note that if we go through the resistor in
the direction of the current, we get a voltage drop.
Therefore the arrow showing the voltage rise in a
resistor must point back, opposite to the direction of the

current  i  in the resistor.  (The analogy is to a rock strewn
waterfall where the water loses hydrodynamic voltage
as it flows down through the rocks.  The direction of the
voltage rise is back up the waterfall, in a direction
opposite to that of the current.)

(3)  The final step is to “walk” around the loop in the
direction of  i (or any direction you choose), and set the
sum of the voltage rises you encounter equal to zero.  If
you encounter an arrow that points in the direction you
are walking, it counts as a positive voltage rise (like  Vb
in Figure 12).  If the arrow points against you (like  VR),
then it is a negative rise.  Applying this rule to Figure
(12) gives

i

Figure 11
Labeling the
direction of the
current.

i

bV RV  = i R

 
Sum of the voltage rises
going clockwise around

the circuit of Figure 12
= Vb + VR

= Vb + (-iR)

= 0

(12)

Equation (12) gives

i  =  Vb
R (13)

which is the result we had back in Equation (8).

Series Resistors
By now we have beaten to death our simple battery
resistor circuit.  Let us try something a little more
challenging—let us put in two resistors as shown in
Figure (13).  In that figure we have drawn the circuit
and labeled the direction of the current (Step 1), and
drawn in the arrows representing the voltage rises (Step
2).  Setting the sum of the voltage rises equal to zero
(Step 3) gives

Vb + (-iR1) + (-iR2)  =  0 (14)

i  =  Vb
(R1 + R2)

(15)

The two resistors in Figure (13) are said to be connected
in series.  Comparing Equation (13) for a single resistor
and Equation (15) for the series resistors, we see that if

R1 + R2  =  R     (series resistors) (16)

then we get the same current i in both cases (if we use
the same battery).  We say that if R1 + R2  =  R then
the series resistors are equivalent to the single resistor
R.

Figure 12
Labeling the
voltage rises.

2V  = i R

i

bV 

1V  = i R1

2

1R

2R

Figure 13
Two resistors in series.



27-12  Basic Electric Circuits

Parallel Resistors
A bit more challenging is the circuit of Figure (14)
where the resistors are wired in “parallel”.  In Step (1),
we drew the circuit and labeled the currents.  But here
we have something new.  When the current gets to the
point labeled (A), it is like a fork in the stream and the
current divides.  We have labeled the two branch
currents i1 and  i2 , and have the obvious subsidiary
condition (conservation of current, if you like).

 i1 + i2 = i (17)

There is no problem with Step (2), the voltage rises are
V

b
,  i1R1  and   i2R2   as shown.  But we get something

new when we try to write down Kirchoff’s law for the
sum of the voltage rises around a complete circuit.
Now we have three different ways we can go around a
complete circuit, as shown in Figures (15 a, b, c).

Applying Kirchoff’s law to the path shown in Figure
(15a) we get

Vb + (-i1R1)  =  0 (18)

For Figure (15b) we get

 (-i2R2) + (i1R1) = 0 (19)

and for Figure (15c) we get

Vb + (-i2R2)  =  0 (20)

The main problem with using Kirchoff’s laws for
complex circuits is that we can get more equations than
we need or want.  For our current example, if you solve
Equation (18) for Vb  =  i1R1, then put that result in
Equation (20), you get  i1R1 - i2R2  =  0  which is
Equation (19).  In other words Equation (19) does not
tell us anything that we did not already know from
Equations (18) and (20).  The mathematicians would
say that Equations (18), (19), and (20) are not linearly
independent.

Let us look at the situation from a slightly different
point of view.  To completely solve the circuit of Figure
(15), we have to determine the currents  i,  i1 and  i2.  We
have three unknowns, but four equations, Equations
(17), (18), (19) and (20).  It is well known that you need
as many equations as unknowns to solve a system of
equations, and therefore we have one too many equa-
tions.

i

bV  i  R1 1R1  i  R2 2

i 2

i 1

A

Figure 14
Two resistors in parallel.

i

bV R1 R2

i 1

R1

i 2

i 1

i

bV R1

i 2

i 1

R2

R2

(a)

(b)

(c)

Figure 15
Three possible loops for analyzing the
parallel resistance circuit.  They give
more equations than needed.
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We cannot arbitrarily throw out one of the equations for
the remaining three must be linearly independent.  For
example, if we threw out Equation (17) and tried to
solve Equations (18), (19) and (20) for i1, i2, and i, we
couldn’t get an answer because Equation (19) contains
no information not already in Equation (18) and (20).
When you are working with a system of linear equa-
tions, the hardest problem is to decide which is a set of
linear independent equations.  Then you can use a
standard set of procedures that mathematicians have
for solving linear equations.  These procedures involve
determinants and matrices, which are easily handled on
a computer, but are tedious to work by hand.

In our treatment of circuit theory we will limit our
discussion to simple circuits where we can use grade
school methods for solving the equations.  Problems of
linear independence, determinants and matrices will be
left to other treatments of the topic.

To solve our parallel resistor circuit of Figure (14), we
have from Equation (18)

i1  =  Vb
R1

and from Equation (20)

i2  =  Vb
R2

Substituting these values in Equation (17) gives

 
i = i1 + i2 =

Vb

R1
+

Vb

R2

= Vb (
1

R1
+

1
R2

)
(21)

Comparing Equation (21) for parallel resistors, and
Equation (13) for a single resistor

i  =  Vb (1
R

) (13)

We see that two parallel resistors R
1
 and R

2
 are equiva-

lent to a single resistor R if they obey the relationship

  1
R

=
1

R1
+

1
R2

equivalent
parallel
resistors

(22)

Exercise 2
You are given a device, sealed in a box, with electrical
leads on each end. (Such a device is often referred to
as a "black box", the word black referring to our lack of
knowledge of the contents, rather than the actual color
of the device.) You use an instrument called an
ohmmeter to measure the electrical resistance be-
tween the two terminals and find that it's resistance R is
470 ohms (470  Ω ).

                   

R  =  470 Ω

a) Sketch a circuit, containing the black box and one
resistor, where the total resistance of the circuit is
500  Ω .

b) Sketch a circuit, containing the black box and one
resistor, where the total resistance of the circuit is
400  Ω .

Exercise 3 The Voltage Divider
We wish to measure the voltage  Vb produced by a high
voltage power supply, but our voltmeter has the limited
range of +2 to -2 volts.  To make the measurement we
use the voltage divider circuit shown below, containing
a big resistor  R1 and a small resistor  R2 . If, for example,

 R2 is 1000 times smaller than  R1, then the voltage
across  R2 is 1000 times smaller than that across  R1. By
measuring the small voltage across the small resistor
we can use this result to determine the big voltage  Vb.

a)   What current i flows through the circuit.  Express your
answer in terms of Vb.

b)   Find the formula for Vb in terms of  V2 , the voltage
measured across the small resistor.

c)  Find a formula for  Vb in terms of V2 ,  R1  and  R2,
assuming  R1 > > R2, so that you can replace (  R1 + R2 )
by  R1 in the equation for i.

d)   Our voltmeter reads  V2 = .24volts.  What was  Vb?

bV 

1V 

2V 

1
6R  = 10 Ω

2
3R  = 10 Ω volt

meter

Voltage
divider
circuit
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CAPACITANCE AND CAPACITORS
In addition to the resistor, another common circuit
element is the capacitor.  A resistor dissipates energy,
causes a voltage drop given by Ohm’s law V = iR, and
is often used to limit the amount of current flowing in
a section of a circuit.  A capacitor is a device for storing
electrical charge and maintains a voltage proportional
to the charge stored.  We have already seen one explicit
example of a capacitor, the parallel plate capacitor
studied in the last chapter.  Here we will abstract the
general features of capacitors, and see how they are
used as circuit elements.

Hydrodynamic Analogy
Before focusing on the electrical capacitor, it is instruc-
tive to consider an accurate hydrodynamic analogy—
the cylindrical water tank shown in Figure (16).  If the
tank is filled to a height h, then all the water in the tank
has a hydrodynamic voltage

  
Vh = P + ρgh +

1
2

ρv2 = ρgh (23)

For water at the top of the tank, y = h, the voltage is all
in the form of gravitational potential energy ρgh.  (We
will ignore atmospheric pressure.)  At the bottom of the
tank where y = 0, the voltage is all in the pressure term
P  = ρgh.  The dynamic voltage term   1 21 2 ρv2 does not
play a significant role.

Let us denote by the letter Q the quantity or volume of
water stored in the tank.  If we talk only about cylindri-
cal tanks (of cross-sectional area A), then this volume
is proportional to the height h and therefore the hydro-
dynamic voltage Vh

  Volume of water
in cylindrical tank ≡ Q = Ah =

A

ρg
ρgh

  
Q =

A
ρg

Vh (24)

If we define the proportionality constant A/ρg in
Equation (24) as the capacitance C of the tank

   

C =
A

ρg
≡

capacitance of
a cylindrical tank
with a cross –
sectional area A

(25)

then we get

 Q = CVh (26)

as the relation between the hydrodynamic voltage and
volume Q of water in the tank.

h

area A
Figure 16
Analogy between a cylindrical tank of water and an
electrical capacitor.  In the tank, all the water in the
tank is at a hydrodynamic voltage    Vh = ρρ gh , and the
quantity Q of water in the tank, given by Q = Ah =

   A/ρρ g ρρ gh = A/ρρ g Vh  is proportional to  Vh .
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Cylindrical Tank as a
Constant Voltage Source
One of the main uses of a water storage tank is to
maintain a water supply at constant hydrodynamic
voltage.

Figure (17) is a schematic diagram of a typical town
water supply.  Water is pumped from the reservoir up
into the water tank where a constant height h and
therefore constant voltage ρgh is maintained.  The
houses in the town all draw constant voltage water from
this tank.

Let us see what would happen if the water tank was too
small.  As soon as several houses started using water,
the level h in the tank would drop and the pump at the
reservoir would have to come on.  The pump would
raise the level back to h and shut off.  Then the level
would drop again and the pump would come on again.
The result would be that the hydrodynamic voltage or
water pressure supplied to the town would vary and
customers might complain.

On the other hand if the town water tank has a large
cross-sectional area and therefore large capacitance C,
a few houses drawing water would have very little
effect on the level h and therefore voltage   ρgh of the
water.  The town would have a constant voltage water
supply and the water company could pump water from
the reservoir at night when electricity rates were low.

We will see that one of the important uses of electrical
capacitors in electric circuits is to maintain constant or
nearly constant electric voltages.  There is an accurate
analogy to the way the town water tank maintains
constant voltage water.  If we use too small a capacitor,
the electrical voltage will also fluctuate when current is
drawn.

reservoir pump

h
tank

Figure 17
Town water supply.  By maintaining a
constant height  h of water in the storage
tank, all the water supplied to the town has a
constant hydrodynamic voltage    Vh ρρ gh .
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Electrical Capacitance
Figure (18) is a repeat of the sketches of the parallel
plate capacitor discussed in Chapter 26.  The important
features of the capacitor are the following.  We have
two metal plates of area A separated by a distance d.
The positive plate shown on top has a charge + Q, the
bottom plate a charge – Q.  Since the area of the plates
is A, the surface charge density on the inside of the plate
is

σ  =  
Q
A

(27)

In Chapter 26,  page 26-3, we saw that a charge density
σ  on the surface of a conductor produced an electric
field of strength

E  =  σ
ε0

(28)

perpendicularly out of the conductor.  In Figure (18)
this field starts at the positive charge on the inside of the
upper plate and stops at the negative charge on the
inside surface of the bottom  plate.

Recall that one form of electric voltage is the electric
potential energy of a unit test charge.  To lift a positive
unit test charge from the bottom plate to the top one
requires an amount of work equal to the force E on a
unit charge times the distance d the charge was lifted.
This work  E*d  is equal to the increase of the potential
energy of the unit charge, and therefore to the increase
in voltage in going from the bottom to the top plate.  If
we say that the bottom plate is at a voltage V = 0, then
the voltage at the top plate is

V  =  E d (29)

Using Equation (28) for E and Equation (27) for σ, we
get the relationship

V  =  σ
ε0

 d  =  
Q

ε0A
 d

or

  
Q =

ε0A

d
V (30)

which is our old Equation (26-10).

As in our hydrodynamic analogy, we see that the
quantity of charge Q stored in the capacitor is propor-
tional to the voltage V on the capacitor.  Again we call
the proportionality constant the capacitance C

  
Q = CV

definitionof
electrical
capacitance

(31)

Comparing Equations (30) and (31) we see that the
formula for the capacitance C of a parallel plate capaci-
tor is

   

C =
ε0A

d

capacitanceof a
parallel plate
capacitor of area A,
plateseparationd

(32)

For both the parallel plate capacitor and the cylindrical
water tank, the capacitance is proportional to the cross-
sectional area A.  The new feature for the electrical
capacitor is that the capacitance increases as we make
the plate separation d smaller and smaller.

Our parallel plate capacitor is but one example of many
kinds of capacitors used in electronic circuits.  In some,
the geometry of the metal conductors is different, and
in others the space between the conductors is filled with
a material called a dielectric which increases the effec-
tive capacitance.  But in all common capacitors the
amount of charge Q is proportional to voltage V across
the capacitor, i.e. Q = CV, where C is constant indepen-
dent of the voltage V and in most cases independent of
the temperature.

Figure 18
The parallel plate capacitor.  If we place charges + Q
and – Q on plates of area A, the charge density on
the plates will be    σσ = Q/A , the electric field will be

   E = σσ /εε0 and the voltage between the plates V = Ed.

E = σ/ε

plates of area A –Q

+Q
V = Ed

V = 0

d 0



27-17

The dimensions of capacitance C are coulombs per
volt, which is given the name farad in honor of Michael
Faraday who pioneered the concept of an electric field.
Although such an honor may be deserved, this is one
more example of the excessive use of names in the
MKS system that make it hard to follow the dimensions
in a calculation.

To get a feeling for the size of a farad, suppose that we
have two metal plates with an area A  =  0.1 meter2

and make a separation d = 1 millimeter = 10-3 meters.
These plates will have a capacitance C given by

  
C =

ε0A

d
=

9 × 10-12 × .1

10-3

= 9 × 10-10 farads

which is about one billionth of a farad.  If you keep the
separation at 1 millimeter you would need plates with
an area of 100 million square meters (an area 10
kilometers on a side) to have a capacitance of 1 farad.

Commercial capacitors used in electronic circuits come
in various shapes like those shown in Figure (19), and
in an enormous range of values from a few farads down
to  10–14  farads.

Our calculation of the capacitance of a parallel plate
capacitor demonstrates that it is not an easy trick to
produce capacitors with a capacitance of  10– 6  farads
or larger.  One technique is to take two long strips of
metal foil separated by an insulator, and roll them up
into a small cylinder.  This gives us a large plate area
with a reasonably small separation, stuffed into a
relatively small volume.

In a special kind of a capacitor called an electrolytic
capacitor, the effective plate separation d is reduced to
almost atomic dimensions.  Only this way are we able
to create the physically small 1 farad capacitor shown
in Figure (19).  The problem with electrolytic capaci-
tors is that one side has to be positive and the other
negative, as marked on the capacitor.  If you reverse the
voltage on an electrolytic capacitor, it will not work and
may explode.

Exercise 4 - Electrolytic Capacitor
In an electrolytic capacitor, one of the plates is a thin
aluminum sheet and the other is a conducting dielectric
liquid surrounding the aluminum.  A nonconducting
oxide layer forms on the surface of the aluminum and
plays the same role as the air gap in the parallel plate
capacitors we have been discussing.  The fact that the
oxide layer is very thin means that you can construct a
capacitor with a very large capacitance in a small
container.

dielectric liquid

aluminum oxide
layer

For this problem, assume that you have a dielectric
capacitor whose total capacitance is 1 farad, and that
the oxide layer acts like an air gap  10– 7 meters thick in
a parallel plate capacitor.  From this, estimate the area
of the aluminum surface in the capacitor.

Figure 19
Examples of capacitors used in electronic circuits. The
one on the right is a variable capacitor whose plate
area is changed by turning the knob. The square black
capacitor is a 4 farad electrolytic. Its capacitance is one
million times greater than the tall regular capacitor
behind it.



27-18  Basic Electric Circuits

ENERGY STORAGE IN CAPACITORS
In physics, one of the important uses of capacitors is
energy storage.  The advantage of using capacitors is
that large quantities of energy can be released in a very
short time.  For example,  Figure (20) is a photograph
of the Nova laser at the Lawrence Livermore National
Laboratory.  This laser produces short, but very high
energy pulses of light for fusion research.  The laser is
powered by a bank of capacitors which, for the short
length of time needed,  can supply power at a rate about
200 times the power generating capacity of the United
States.

The easiest way to determine the amount of energy
stored in a capacitor is to calculate how much work is
required to charge up the capacitor.  In Figure (21) we
have a capacitor of capacitance C that already has a
charge + Q on the positive plate and – Q on the negative
plate.  The voltage V across the capacitor is related to
Q by Equation (12), Q = CV.

Now let us take a charge dQ out of the bottom plate,
leaving a charge – (Q + dQ) behind, and lift it to the top
plate, leaving (Q + dQ) there.  The work dW we do to
lift the charge is equal to dQ times the work required to
lift a unit test charge, namely dQ times the voltage V

 dW = VdQ

or replacing V by Q/C, we have

 
dW =

Q
C

dQ (33)

Figure 20
The Nova laser,  powered by  a bank of capacitors.  While the laser
is being fired, the capacitors supply 200 times as much power as
the generating capacity of the United States.

–Q

+Q

dQ

V volts

0 volts

Figure 21
Charging up a capacitor.  If the capacitor is
already charged up to a voltage V, the amount
of work required to lift an additional charge dQ
from the bottom to top plate is dW = VdQ.
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You can see from Equation (33) that when the capacitor
is uncharged and we lift the first dQ, no work is required
because there is no field yet in the capacitor.  However
once there is a big charge on the capacitor, much work
is required to lift an additional dQ.  The total amount of
work to charge the capacitor from zero charge to a final
charge  Qf  is clearly given by the integral

 

Work = dW =
Q
C0

Qf

dQ

The fact that the capacitance C is a constant, means that
we can take it outside the integral and we get

 

W =
1
C

Q
0

Qf

dQ =
Qf

2

2C (34)

Since it is easier to measure the final voltage V rather
than the charge  Qf  in a capacitor, we use  Qf = CV to

rewrite Equation (34) in the form

 
Energy stored
in a capacitor

=
CVf

2

2 (35)

The energy stored is proportional to the capacitance C
of the capacitor, and the square of the voltage V.

Energy Density in an Electric Field
Equation 35 can be written in a form that shows  that the
energy stored in a capacitor is proportional to the
square of the strength of the electric field. Substituting

  Vf = E × d  and   C = ε0A dε0A d into Equation 35 gives

  
Energy stored
in a capacitor

=
C Vf

2

2
=

1
2

ε0A
d

× E2 d2

=
ε0 E2

2
× A d =

ε0 E2

2
×

Volume
Inside
capacitor

where we note that   A × d is the volume inside the
capacitor.

Since the energy stored in the capacitor is proportional
to the volume occupied by the electric field, we see that
the energy per unit volume, the energy density, is
simply given by

  
Energy
density

=
ε0 E2

2
(36)

This result, that the energy density in an electric field is
proportional to the square of the strength of the field,
turns out to be a far more general result than we might
expect from the above derivation. It applies not just to
the uniform electric field in an idealized capacitor, but
to electric fields of arbitrary shape.

Exercise  5
A parallel plate capacitor consists of two circular alumi-
num plates with a radius of 11 cm separated by a
distance of 1 millimeter. The capacitor is charged to a
voltage of 5 volts.

a) What is the capacitance, in farads, of the capacitor?

b) Using Equation 35, calculate the energy stored in the
capacitor.

c) What is the magnitude of the electric field E between
the plates?

d) Using equation 36, calculate the energy density in the
electric field.

e) What is the volume of space, in cubic meters,
between the plates?

f) From your answers to parts d) and e), calculate the
total energy in the electric field between the plates.
Compare your answer with your answer to part b-
.

g) Using Einstein's formula  E = mc2 , calculate the mass,
in kilograms, of the electric field between the plates.

h) The mass of the electric field is equal to the mass of
how many electrons?
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CAPACITORS AS
CIRCUIT ELEMENTS
Figure (22) is a simple circuit consisting of a battery of
voltage Vb and a capacitor of capacitance C.  The
standard circuit symbol for a capacitor is   ,
which is a sketch of a parallel plate capacitor.

When the battery is attached to the capacitor, the upper
plate becomes positively charged and the lower one
negatively charged as shown.  The upper plate could
actually become positively charged either by positive
charge flowing into it or negative charge flowing out—
it does not matter.  We have followed our convention
of always showing the direction of positive currents,
thus we show i flowing into the positive plate and out
of the negative one.

We have also followed our convention of labeling the
voltage rises with an arrow pointing in the direction of
the higher voltage.  The voltage V

c
 on the capacitor is

related to the charge Q stored by the definition of
capacitance,  Vc = Q/ C .

Applying Kirchoff’s law to Figure (22), i.e., setting the
sum of the voltage rises around the circuit equal to zero,
we get

Vb + (-Vc)  =  Vb -Q/C  =  0

Q  =  CVb (37)

Thus we get a relatively straightforward result for the
amount of charge stored by the battery.

For something a little more challenging, we have
connected two capacitors in parallel to a battery as
shown in Figure (23).  Because single wires go all the
way across the top and across the bottom, the three
voltages V

b
, V

1
 and V

2
 must all be equal, and we get

 Q1 = C1Vb Q2 = C2Vb

The total charge Q stored on the two capacitors in
parallel is therefore

Q  =  Q1 + Q2  = (C1+ C2)Vb

Comparing this with Equation (37), we see that two
capacitors in parallel store the same charge as a single
capacitor C given by

  
C = C1 + C2

capacitors
attached in
parallel (38)

Comparing this result with Equation (16), we find that
for capacitors in parallel or resistors in series, the
effective capacitance or resistance is just the sum of the
values of the individual components.

+ i

+ i

Vb
+Q

–Q
V  = c

Q
C

i

Vb

i1

C1 C2V  = 1
Q
C

1
1

V  = 2
Q
C

2

2

i2

Figure 22
A battery and a capacitor in a circuit.  We have drawn
the diagram showing positive current flowing into the
top plate and out of the bottom plate.  The upper plate
could have become positively charged by having a
negative current flowing out of it.  The arrow
designating the voltage on the capacitor points in the
direction of the voltage rise.

Figure 23
Capacitors connected in parallel.  The
three voltages  Vb ,  V1 and  V2  must all
be level because the wires go all the
way across the three elements.
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In Figure (24) we have two capacitors in series.  The
trick here is to note that all the charge that flowed out
of the bottom plate of C1 flowed into the top plate of C2,
as indicated in the diagram.  But if there is a charge
– Q on the bottom plate of C1, there must be an equal
and opposite charge + Q on the top and we have
Q1 = Q.  Similarly we must have Q2 = Q.

To apply Kirchoff’s law, we set the sum of the voltage
rises to zero to get

 
Vb +

–Q1

C1
+

–Q2

C2
= 0

Setting Q
1
  =  Q

2
  =  Q  gives

 
Vb = Q

1
C1

+
1

C2
(39)

Comparing Equation (39) with Equation (37) in the
form Vb  =  Q/C we see that

  1
C

=
1

C1
+

1
C2

capacitors
attached in
series

(40)

is the formula for the effective capacitance of capaci-
tors connected in series.  This is analogous to the
formula for parallel resistors.

It is interesting to note that for storing charge, parallel
capacitors are more efficient because the charge can
flow into both capacitors as seen in Figure (23).  When
the capacitors are in series, charge flowing out of the
bottom of one capacitor flows into the top of the next,
and we get no enhancement in charge storage capabil-
ity.  What we do get from series capacitors is higher
voltages, the total voltage rise across the pair is the sum
of the voltage rise on each.

Exercise 6

You have a 5 microfarad (abbreviated 5µf) capacitor
and a 10 µf capacitor. What are all the values of
capacitor you can make from these two?

Figure 24
Capacitors in series.  In this case the sum of  V1
and  V2  must be equal to the battery voltage  Vb .

Q
C

1
1

2V  =

i

bV 

1V  = 1C

2C Q
C

2
2

i

i
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THE RC CIRCUIT
The capacitor circuits we have discussed so far are not
too exciting.  When you are working with an electronic
circuit you do not hitch capacitors together in series or
parallel, you simply go to the parts drawer and select a
capacitor of the desired value.

If we add a resistor to the circuit as shown in Figure
(25), we begin to get some interesting results.  The
circuit is designed so that if the mercury switch is
closed, the capacitor is charged up to a voltage Vb by the
battery.  Then, at a time we will call t = 0, the switch is
opened, so that the capacitor will discharge through the
resistor.  During the discharge, the battery is discon-
nected and the only part of the circuit that is active is that
shown in Figure (26).  (The reason for using a mercury
switch was to get a clean break in the current. Mechani-
cal switches do not work well.)

Figure (27) shows the capacitor voltage just before and
for a while after the switch was opened.  We are looking
at the experimental results of discharging a

 C = 10-6 farad  (one microfarad) capacitor through an
 R = 104 ohm resistor.  We see that a good fraction of

the capacitor voltage has decayed in about 10 millisec-
onds (10-2 seconds) .

To analyze the capacitor discharge, we apply Kirchoff’s
law to the circuit in Figure (26).  Setting the sum of the
voltage rises around the circuit equal to zero gives

 VC – VR = 0

Q
C

– iR = 0

which can be written in the form

 
–i +

Q
RC

= 0 (41)

The problem with Equation (41) is that we have two
unknowns, i and Q, and only one equation.  We need to
find another relationship between these variables in
order to predict the behavior of the circuit.

Figure 26
Capacitor discharge. When the switch is open, the
only part of the circuit we have to look at is the
capacitor discharging through the resistor.

Figure 25
An RC circuit.  When the mercury switch is
closed, the capacitor quickly charges up to a
voltage   VC = Vb . When the switch is opened, the
capacitor discharges through the resistor.

Vb C V  = C
Q
C V  = iRR

i

R

mercury switch
open

Vb C R

mercury switch

Vb V

b

bC V  = RVbV  = C

i = V /R

R

mercury switch
closed

CV  = C
Q
C

V  = iRR

i

R
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The additional relationship is obtained by noting that
the current i is the number of coulombs per second
flowing out of the capacitor.  In a short time dt, an
amount of charge dQ that leaves the capacitor is given
by

dQ  =  idt (42)

Dividing Equation (42) through by dt, and including a
minus sign to represent the fact that i is causing a
decrease in the charge Q in the capacitor, we get

  dQ
dt

= –i
dischargeof
a capacitor

(43)

Substituting Equation (43) in (41) gives one equation
for the unknown Q

  dQ
dt

+
Q

RC
= 0

equation for
the discharge
of a capacitor

(44)

Exponential Decay
The next problem is that Equation (44) is a differential
equation, of a type we have not yet discussed in the text.
We met another kind of differential equation in our
discussion of harmonic motion, a differential equation
that involved second derivatives and had oscillating
sinusoidal solutions.  Equation (44) has only a first
derivative, and produces a different kind of solution.

There are two principle ways of solving a differential
equation.  One is to use a computer, and the other, the
so-called analytic method, is to guess the answer and
then check to see if you have made the correct guess.
We will first apply the analytic method to Equation
(44).  In the supplement we will show how a computer
solution is obtained.

The important thing to remember about a differential
equation is that the solution is a shape or a curve, not a
number.  The equation x2  =  4 has the solutions
x  =  ±2, the solution to Equation (44) is the curve
shown in Figure (27).  One of the advantages of
working with electric circuits is that the theory gives
you the differential equation, and the equipment in the
lab allows you to look at the solution.  The curve in
Figure (27) is the voltage on the capacitor recorded by
the computer based oscilloscope we used to record the
motion of air carts and do the analysis of sound waves.
We are now using the device as a voltmeter that draws
a picture of the voltage.

The curve in Figure (27) is well known to scientists in
many fields as an exponential decay.  Exponential
decays are best known in studies of radioactive decay
and are associated with the familiar concept of a half
life.  Let us first write down the formula for an exponen-
tial decay, check that the formula is, in fact, a solution
to Equation (44) and then discuss the special properties
of the curve.

Figure 27
Experimental results
from discharging the
one microfarad

  10– 6 f  capacitor
through a 10 k ohm

  104 ΩΩ  resistor.
The switch,  shown
in Figure 26, is
thrown at time t = 0.

Vb

C = 10   f

i

-6
R = 10  Ω4
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If Figure (27) represents an exponential decay of the
capacitor voltage V

c
, then V

c
 must be of the form

  VC = V0e–α t (45)

where  V0  and α  are constants to be determined.  Since
Equation (44) is in terms of Q rather than  VC , we can
use the definition of capacitance Q = CV to rewrite
Equation (45) as

  CVC = CV0e– α t

Q = Q0e– α t
(46)

where  Q0  =  CV0.

Differentiating Equation (46) with respect to time
gives

  dQ
dt

= –αQ0e–α t = – αQ (47)

This result illustrates one of the properties of an expo-
nential decay, namely that the derivative of the function
is proportional to the function itself (here   dQ dtdQ dt = –αQ).

Substituting Equation (47) into our differential Equa-
tion (44) gives

dQ
dt

 + 
Q

RC
  =  0

(44)

  
–αQ +

Q
RC

= 0 (48)

The Qs cancel in Equation (48) and we get

  
α =

1
RC

(49)

Thus the coefficient of the exponent is determined by
the differential equation.

Exercise 7

Determine the constant V0 in Equation (45) from Figure
(27), by noting that at   t = 0,   e– α t =e0 =1.

The Time Constant RC
Substituting Equation (49) for α  back into our formula
for  VC  gives

 VC = V0e– t RCt RC (50)

Since the exponent (t/RC) must be dimensionless, the
quantity RC in the denominator must have the dimen-
sions of time.  Since R is in ohms and C in farads, we
must have

 ohms * farads = seconds (51)

We have mentioned that units in electrical calculations
are hard to follow, and this is a prime example.  We
leave it as a challenge to go back and actually show,
from the definition of the ohm and of the farad, that the
product ohms times farads comes out in seconds.

The quantity RC that appears in Equation (50) is known
as the time constant for the decay.  At the time t = RC,
the voltage  VC  has the value

 VC (at t = RC) = Vbe–RC RCRC RC

= Vbe
–1 =

Vb
e

(52)

I.e., in one time constant RC, the voltage has decayed
to 1/e = 1/2.7 of its initial value.

To see if this analysis works experimentally, we have
gone back to Figure (27) and marked the time RC.  In
that experiment

R  =  104 ohms

C  =  10-6 farads
thus

 RC = 10-2 ohm farads

= 10-2 seconds
= 10 milliseconds

(53)

We see that at a time T = RC, the voltage dropped from
V

b  
= 4 volts to V(t=RC) = 1.5 volts, which is down by

a factor 1/e = 1/2.7.
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Vb e/
2

0

RC 2RC

initial slope

Vb e/

Vb

If we wait another time constant, until t = 2RC, we have

 
VC (at t = 2RC) = Vbe–2 =

Vb

e2

and we get another factor of  e = 2.7  in the denominator.
In Figure (28) the voltage is down to 4/(2.7*2.7) = .55
volts at  t = 2RC.  After each succeeding time constant
RC, the voltage drops by another factor of 1/e.

Half-Lives
When you first studied radioactive decay, you learned
about half-lives.  A half-life was the time it took for half
of the remaining radioactive particles to decay.  Wait
another half-life and half of those are gone.  In our
description of the exponential decay, the time constant
RC is similar to a half-life, but just a bit longer.  When
we wait for a time constant, the voltage decays down to
1/2.7 of its initial value rather than 1/2 of its initial
value.  In Figure (29) we compare the half-life t 1/2 and
the time constant RC.  Although the half-life is easier
to explain, we will see that the time constant RC
provides a more convenient unit of time for the analysis
of the exponential decay curve.

Initial Slope
One of the special features of a time constant is the fact
that the initial slope of the curve intercepts the zero
value one time constant later, as illustrated in Figure
(30).  It does not matter where we take our initial time
to be.  Pick any point on the curve, draw a tangent line
at that point, and the tangent line intercepts the V = 0
line one time constant RC later.  This turns out to be the
most convenient way to determine the time constant
from an experimental curve.  Try it yourself in the
following exercise.

Figure 30
The initial slope of the discharge curve intersects the

  VC = 0  origin at a time t = RC, one time constant later.
This fact provides an easy way to estimate the time
constant for an exponential curve.

Vb

e/

2/

0

RCt(1/2)

1/e  =  1/2.7

Vb

Vb

Figure 29
The time it takes the voltage to
drop to half its initial value, what
we could call the "half life" of
the voltage, is a bit shorter than
the time constant RC.

Vb

e/
2

0

RC 2RC

Vb

e/Vb

Figure 28
Exponential decay of the voltage in the capacitor.  In a
time t = RC the voltage drops by a factor 1/e = 1/2.7.  In
the next time interval RC, the voltage drops by another
factor of 1/e.
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Exercise 8

In Figure (31) we have the experimental voltage decay
for an RC circuit where R is known to be  105 ohms.
Determine the time constant for this curve and from that
find out what the value of the capacitance C must have
been.

The Exponential Rise
Figure (32) is a circuit in which we use a battery to
charge a capacitor through a resistance R.  The experi-
mental result, for our capacitor C = 10-6 farads, R = 104

ohms  is shown in Figure (33).  Here the capacitor starts
charging relatively fast, then the rate of charging slows
until the capacitor voltage finally reaches the battery
voltage Vb .

If the shape of the curve in Figure (33) looks vaguely
familiar, it should.  Turn the curve over and it looks like
our exponential decay curve with time increasing
toward the left.  If that is true, then the initial slope of
the charge up curve should intercept the  VC = Vb  line
one time constant later as shown in Figure (34), and it
does.

Because we have a battery in the circuit while the
capacitor is charging up, the analysis is a bit more
messy than for the capacitor discharge.  (You should be
able to repeat the analysis of the capacitor discharge on
your own, and at least be able to follow the steps for
analyzing the charge up.)

In Figure (32) we have drawn the circuit diagram and
indicated the voltage rises around the circuit.  Kirchoff’s
law there gives

 Vb + (–VR) + (–VC) = 0

 
Vb – iR –

Q
C

= 0 (54)

One difference between Figure (32) for the charge up
and Figure (27) for the discharge, is that for the charge
up, the current i is flowing into, rather than out of, the
capacitor.  Therefore in a time dt the charge in the
capacitor increases by an amount dQ = idt, and we
have

dQ
dt

  =  +i (55)

Using Equation (55) in (54), dividing through by R, and
rearranging a bit, gives

dQ
dt

 + 
Q

RC
  =  Vb

R (56)

It is the term on the right that makes this differential
equation harder to solve.  A simple guess like the one
we made in Equation (46) does not work, and we have
to try a more complicated guess like

  Q = A + Be– α t (57)

When you take a course in solving differential equa-
tions, much of the time is spent learning how to guess
the form of solutions.  For now, let us just see if the
guess in Equation (57) can be made to work for some
value of the constants A, B, and α .

CV  = Q/C

i

bV 

RV  = iR

C

R

Figure 32
Charging up a capacitor through a resistor.

Figure 31
Experimental results for the discharge of
a capacitor through a   105 ΩΩ  resistor.

C R = 10  Ω5
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We can express this result in terms of voltages if we
divide through by C and use  VC  = Q/C, we get

  
VC = Vb 1 – e– t/RC charging a

capacitor (63)

(We warned you that the addition of just one more term
to our differential equation would make it messier to
solve.)

The answer, Equation (63) is the standard form for an
exponential rise.  It is in fact just our exponential decay
curve turned upside down, and Figure (34) represents
the easy way to determine the time constant RC from
experimental data.

Differentiating Equation (57) with respect to time
gives

  dQ
dt

= –αBe– αt (58)

Substituting Equations (57) and (58) into (56) gives

  
– αBe– αt +

A
RC

+
B

RC
e– αt =

Vb

R
(59)

The only way we can satisfy Equation (59) is have the
two terms with an e-αt cancel each other.  I.e., we must
have

- αB + B
RC

  =  0

  
α =

1
RC

(60)

which is a familiar result.

The remaining terms in Equation (59) give

 A
RC

=
Vb

R
A = CVb (61)

Putting the values for A and α  (Equations 61 and 60)
back into our guess (Equation 57), we get

 Q = CVb + Be– t/RC (62)

The final step is to note that at time t = 0, Q = 0, so that

 0 = CVb + Be0 B = – CVb

thus our final result is

 
Q = CVb 1 – e– t/RC (63a)

R = 10  Ω4

C = 10   farads 
–6

Vb

Figure 33
Plot of the capacitor voltage versus time for the charging up of a capacitor through a resistor.
If you turn the diagram upside down, you get the curve for the discharge of a capacitor.

Vb

RC
Figure 34
If you continue along the initial slope line of the
charge-up curve, you intersect the final voltage  Vb
at a time t = RC, one time constant later.  Turn this
diagram upside down and it looks like Figure 31.
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Exercise 9

Figure (35) shows the voltage across a capacitor C
being charged through a resistance R.  Given that
C = 1.0 x  10– 8  farads, estimate the value of R.

THE NEON BULB OSCILLATOR
We will end this chapter on basic electric circuits with
a discussion of an electronic device called a neon bulb
oscillator.  This is conceptually the world’s simplest
electronic device that does something useful—it oscil-
lates and its frequency of oscillation can be adjusted.
The device is not practical, for it is hard to adjust, its
waveform is far from being a pure sinusoidal shape,
and it requires a relatively high voltage power supply.
But when you work with this apparatus, you will begin
to get a feeling for the kind of tricks we pull in order to
make useful apparatus.

The Neon Bulb
The new circuit element we will add to our neon
oscillator circuit is the common neon bulb which glows
orange and is often used as a night light.  The bulb,
which we will designate by the symbol  is
simply a small glass tube with neon gas inside and two
wires as shown in Figure (36).  The bulb turns on when
there is a large enough voltage difference between the
wires that the neon gas becomes ionized and starts to
glow.  For typical neon bulbs, the glow starts when the
voltage reaches approximately 100 volts.  When the
bulb is glowing the neon gas is a good conductor and
the bulb is like a closed switch.  When the bulb is not
glowing, the gas is inert and the bulb is like an open
switch.

A given neon bulb has a rather consistent voltage Vf
(firing voltage) at which it turns on, and voltage Vq
(quenching voltage) at which it shuts off.  In a typical
bulb Vf may be 100 volts and Vq equal to 40 volts.
These numbers will, however, vary from bulb to bulb.
When a neon bulb is included in a circuit, it acts like an
automatic switch, closing (turning on) when the volt-
age across it reaches Vf and opening (shutting off)
when the voltage drops to Vq.

neon gas

glass
bulb

wires

Figure 36
A neon bulb.  When the voltage across the wires
reaches a threshold value, typically around 100 volts,
the neon gas starts to glow, and the gas suddenly
changes from an insulator to a conductor.

Figure 35
Given the experimental results for the charge-up of
a capacitor, determine the value of the resistance R.
(Answer R = 68K)

bV 
C = 1.0  10  farads

R = ?

–8
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Vb
Vf

Vq

R = 10Meg  C = .5µf

The Neon Oscillator Circuit
We can make a neon oscillator using the circuit shown
in Figure (37).  The left hand part of the circuit is just
the RC circuit we used in Figure (32) to charge up a
capacitor.  The only really new feature is the neon bulb
in parallel with the capacitor.  The recording voltmeter,
indicated by the symbol V  is there to record the
capacitor voltage  VC .

The output of the neon oscillator circuit is shown in
Figure (38).  Initially the capacitor is charging up just
as it did in Figure (33).  During the charge up, the neon
bulb is off; it is like an open switch and might as well
not be there.  The effective circuit is shown in Figure
(39).  When the voltage on the capacitor (and on the
neon bulb) reaches the firing voltage Vf, the neon bulb
turns on and acts like a short circuit as shown in Figure
(40).  It is not exactly a short circuit, the neon bulb and
the wire leads have some small resistance.  But the
resistance is so small that the capacitor rapidly dis-
charges through the bulb, and the capacitor voltage
drops almost instantly.

When the capacitor and neon bulb voltage Vc drops to
the bulb quenching voltage Vq, the bulb shuts off, and
the capacitor starts charging up again.  As seen in
Figure (38), this process keeps repeating and we get the
oscillating voltage shown.

For the last cycle in Figure (38), we opened  a switch to
disconnect the neon bulb, allowing the capacitor to
charge up all the way to the power supply voltage  Vb .
This allowed us to display all three voltages  Vb ,  Vf ,
and  Vq  on one experimental plot.

Figure 37
Neon bulb oscillator circuit.

Figure 39
Effective circuit while the neon bulb is off.

Figure 40
Effective circuit while the neon bulb is glowing.
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Figure 38
Experimental output of a neon oscillator
circuit. The capacitor charges up until the
voltage reaches the neon bulb firing
voltage  Vf , at which point the neon bulb
turns on and the voltage rapidly drops.
When the voltage has fallen to the quench
voltage  Vq , the neon bulb shuts off and the
capacitor voltage starts to rise again. On the
last cycle, we opened a switch to disconnect
the neon bulb, allowing the capacitor to
charge up all the way to the power supply
voltage  Vb .

(A voltage divider was used to measure these
high voltages. In the figure, the voltage scale
has been corrected to represent the actual
voltage on the capacitor.)
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Dividing Equation (66) by Equation (67) gives

 
e(t2– t1)/RC =

1 –Vq/Vb

1 –Vf/Vb
=

Vb –Vq

Vb –Vf
(68)

where we used the fact that

 
  e–α

e–β = eβ – α

Taking the logarithm of Equation (68), using
ln(eα)  =  α, we have

 t2– t1

RC
= ln

Vb–Vq

Vb–Vf

or using T = t2 - t1 we get for the period of oscillation

  

T = RC ln
Vb–Vq

Vb–Vf

period of
neon oscillator (69)

Equation (69) was a bit messy to derive, and it is not a
fundamental result that you need to memorize.  You are
unlikely to meet a neon oscillator except in an introduc-
tory physics lab.  But we have used the theory devel-
oped in this chapter to make an explicit prediction that
can be tested in the laboratory.

Exercise 10

See how well Equation (69) applies to the experimental
data of Figure (38). (The marked values on resistors and
capacitors are usually accurate only to within ± 10%.)

Period of Oscillation
To calculate the period of oscillation, we start with the
diagram of Figure (41) showing a cycle of the oscilla-
tion superimposed upon the complete charge up curve
which starts at  VC = 0  and goes up to  VC = Vb.  This
curve is given by the formula

 VC = Vb 1 – e–t/RC (63)

What we want to calculate is the time T = (t2 - t1) it takes
for the capacitor to charge up from a voltage Vq to Vf.

At time t
1
,  VC  = V

q
 and Equation (63) gives

 Vq = Vb 1 – e–t1/RC (64)

At time t  = t
2
,  VC   =  V

f 
 and we have

 Vf = Vb 1 – e– t2/RC (65)

Equation (64) and (65) can be rearranged to give

 
e–t1/RC = 1 –

Vq

Vb
(66)

 
e–t2/RC = 1 –

Vf

Vb
(67)

Vb
Vf

Vq

1t 2t

T

Figure 41
Determining the period T of the oscillation.  The
formulas for t1 and t2 are obtained from the
capacitor charge up equations

  Vf = Vb 1 – e– t1/RC

  Vq = Vb 1 – e– t2/RC

The messy part is extracting the period   T = t2 – t1
from these equations.
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Equation (69) provides clear instructions on how to
change the period or frequency of a neon oscillator.
The easiest way to make major changes in the period is
to change the time constant RC.  Because of the ease
with which we can select different values of R and C
(typical values of R ranging from 102 ohms to 108

ohms, and typical values of C from 10-4 to 10-12

farads), a large range of time constants RC are avail-
able. However high frequencies are limited by the
characteristics of the neon bulb. We found it difficult to
get the circuit to oscillate faster than 30 cycles per
second.

Adjusting the battery voltage  Vb changes the shape of
the neon oscillator wave and also allows fine adjust-
ments in the period .

Experimental Setup
An experimental problem you face while working with
the neon oscillator circuit, is that the voltages of interest
range up to 100 volts or more. Modern oscilloscopes or
recording voltmeters tend to operate in the range of +5

to –5 volts or less, and should not be attached to a
voltage source of the order of 100 volts. This problem
can be solved by using the voltage divider circuit
discussed in Exercise (3), and shown in Figure (42).

For a standard laboratory experiment, we have found it
convenient to mount, in one box, the voltage divider,
neon bulb, and switch - the components shown inside
the dotted rectangle of Figure (42). This reduces stu-
dent exposure to high voltages and guarantees that the
voltmeter will be exposed to voltages 1000 times
smaller than those across the capacitor.

In Figure (43), we have recorded the entire voltage
range of the experiment, starting from an uncharged
capacitor. We first opened the switch above the neon
bulb in Figure (42), and let the capacitor charge up to
the full voltage  Vb . Then closing the switch allowed
the capacitor voltage to oscillate between  Vf  and  Vq  as
seen in Figure (38). While the actual capacitor voltage
ranges from 0 to 100 volts, the recording voltmeter
shows a range of 0 to 100 millivolts because of the
1000 to 1 voltage divider.

Figure 42
Neon oscillator circuit with
voltage divider. The switch
above the neon bulb allows
us to disconnect the bulb
from the circuit. It is
convenient to mount, in a
single box, the components
within the dotted rectangle.
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Figure 43
Full range of voltages from
the neon oscillator circuit.
The voltage scale is in
millivolts because of the
voltage divider.
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Vb C R

mercury switch

scope

Figure 44a
Circuit for observing the discharge of a capacitor.

Figure 44b
The capacitor plates.

Figure 44c
Voltage during discharge.

Exercise 11 Review Problem

Figure (44a) shows the circuit used to observe the
discharge of a capacitor.  The capacitor is made from
the two circular aluminum plates shown in Figure (44b).
The plates have a diameter of 22 cm and are separated
a distance (d) by small pieces of glass.  In Figure (44c),
we are observing the discharge of the capacitor through
a   10kΩ 104Ω  resistor.  For this discharge, what is the
separation (d) of the plates?
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CHAPTER 28 MAGNETISM

In our discussion of the four basic interactions, we saw
that electric forces are very strong but in most circum-
stances tend to cancel.  The strength of the forces are
so great, but the cancellation is so nearly complete that
the slightest imbalance in the cancellation leads to
important effects such as molecular forces.  As illus-
trated in Figure (18-6) reproduced here, a positively
charged proton brought up to a neutral hydrogen atom
experiences a net attractive force because the negative
charge in the atom is pulled closer to the proton.  This
net force is the simplest example of the type of molecu-
lar force called a covalent bond.

In this chapter we will study another way that the
precise balance between attractive and repulsive elec-
tric forces can be upset.  So far in our discussion of
electrical phenomena such as the flow of currents in
wires, the charging of capacitors, etc., we have ignored
the effects of special relativity.  And we had good
reason to.  We saw that the conduction electrons in a
wire move at utterly nonrelativistic speeds, like two

millimeters per minute.  One would not expect phenom-
ena like the Lorentz contraction or time dilation to play
any observable role whatever in such electrical phe-
nomena.

But, as we shall see,  observable effects do result from
the tiny imbalance in electric forces caused by the
Lorentz contraction.  Since these effects are not de-
scribable by Coulomb’s law, they are traditionally
given another name—magnetism.  Magnetism is one of
the consequences of requiring that the electrical force
law and electric phenomena be consistent with the
principle of relativity.

Historically this point of view is backwards.  Magnetic
effects were known in the time of the ancient Greeks.
Hans Christian Oersted first demonstrated the connec-
tion between magnetic and electric forces in 1820 and
James Clerk Maxwell wrote out a complete theory of
electromagnetic phenomena in 1860.  Einstein did not
discover special relativity until 1905.  In fact, Einstein
used Maxwell’s theory as an important guide in his
discovery.

If you follow an historical approach, it appears that
special relativity is a consequence of electricity theory,
and a large number of physics texts treat it that way.
Seldom is there a serious discussion of special relativ-
ity until after Maxwell’s theory of electricity has been
developed.  This is considered necessary in order to
explain the experiments and arguments that lead to the
discovery of the special theory.

proton

electron

proton

+
–

+

center of
electron cloud

Figure 18-6
The net attraction between a positive
charge and a neutral atom is caused by a
redistribution of charge in the atom.
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But as we know today, electricity is one of but several
basic forces in nature, and all of them are consistent
with special relativity.  Einstein’s famous theory of
gravity called general relativity can be viewed as a
repair of Newton’s theory of gravity to make it consis-
tent with the principle of relativity.  (This “repair”
produced only minor corrections when applied to our
solar system, but has sweeping philosophical implica-
tions.)  If the principle of relativity underlies the
structure of all forces in nature, if all known phenom-
ena are consistent with the principle, then it is not
especially necessary to introduce special relativity in
the context of its historical origins in electromagnetic
theory.

In this chapter we are taking a non-historical point of
view.  We already know about special relativity (from
chapter one), and have just studied Coulomb’s electri-
cal force law and some simple applications like the
electron gun and basic circuits.  We would now like to
see if Coulomb's law is consistent with the principle of
relativity.  In some sense,  we would like to do for
Coulomb’s law of electricity what Einstein did to
Newton’s law of gravity.

Two Garden Peas
In preparation for our discussion of relativistic effects
in electricity theory, let us review a homely example
that demonstrates both how strong electric forces actu-
ally are, and how complete the cancellation must be for
the world to act the way it does.  Suppose we had two
garden peas, each with a mass of about 2 grams,
separated by a distance of 1 meter.  Each pea would
contain about one mole (6 × 1023 ) of protons in the
atomic nuclei, an equal number of electrons surround-
ing the nuclei.  Thus each pea has a total positive charge
+Q in the protons given by

  total positive
charge in a
garden pea

≈ 6 × 1023e

= 6 × 1023 × 1.6 × 10-19

= 105 coulombs

(1)

and there is an equal and opposite amount of negative
charge in the electrons.
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To put this answer in a more recognizable form, note
that the weight of one metric ton (1000 kg) of matter is

   

  Fg (1 metric ton) = mg

= 103 kg × 9.8
m

sec2

= 9.8 × 103 newtons

Expressing the force between our two positively charged
peas in metric tons we get

  repulsive force
between two
positive peas
1 meter apart

=
8.8 × 1019 newtons

9.8 × 103 newtons/ton

≈ 1015 tons !

(4)
If we stripped the electrons from two garden peas, and
placed them one meter apart, they would repel each
other with an electric force of 1015 tons!!  Yet for two
real garden peas, the attractive and repulsive electric
force cancel so precisely that the peas can lie next to
each other on your dinner plate.

Exercise 1

Calculate the strength of the gravitational force between
the peas.  How much stronger is the uncancelled
electric force of Equation (3)?

With forces of the order of 1015 tons precisely cancel-
ing in two garden peas, we can see that even the tiniest
imbalance in these forces could lead to striking results.
An imbalance of one part in 1015, one part in a million
billion, would leave a one ton residual electric force.
This is still huge.  We have to take seriously imbalances
that are thousands of times smaller.  One possible
source of an imbalance is the Lorentz contraction, as
seen in the following thought experiment.

When two peas are separated by a distance of 1 meter
as shown in Figure (1), we can think of there being four
pairs of electric forces involved.  The positive charge in
pea (1) repels the positive charge in pea (2) with a force
of magnitude

  repulsive force
between positive
charge in
the two peas

=
QQ

4πε0r2
(2)

which gives rise to one pair of repulsive forces.  The
negative charges in each pea also repel each other with
a force of the same magnitude, giving rise to the second
repulsive pair of electric forces.  But the positive charge
in Pea (1) attracts the negative charge in Pea (2), and the
negative charge in Pea (1) attracts the positive charge
in Pea (2).  This gives us two pairs of attractive forces
that precisely cancel the repulsive forces.

Let us put numbers into Equation (2) to see how big
these cancelling electric forces are.  Equation (2) can be
viewed as giving the net force if we removed all the
electrons from each garden pea, leaving just the pure
positive charge of the protons.  The result would be

  
F =

Q2

4πε0r
2

=
(105 coulombs)

2

4π × 9 × 10-12 × (1)2

= 8.8 × 1019 newtons (3)

Figure 1
Electric forces between two garden peas.  On
pea #1, there is the attractive force between the
protons in pea #1 and the electrons in pea #2,
and between the electrons in pea #1 and the
protons in pea #2.  The two repulsive forces are
between the electrons in the two peas and the
protons in the two peas.  The net force is zero.

pea

1

pea

2
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A THOUGHT EXPERIMENT
In our previous discussion of electric currents, we had
difficulty drawing diagrams showing the electrons
flowing through the positive charge.  To clarify the role
of the positive and negative charge, we suggested a
model of a copper wire in which we think of the positive
and negative charge as being attached to separate rods
as shown in Figure (27-5a) repeated here.  In that model
the rods have equal and opposite charge to represent the
fact that the copper wire is electrically neutral, and the
negative rod is moving to represent the electric current
being carried by a flow of the negative conduction
electrons.

The point of the model in Figure (27-5) was to show
that a left directed negative current, seen in (a) is
essentially equivalent to a right directed positive cur-
rent seen in (b).  In Figure (27-5a), we drew a stick
figure diagram of a person walking to the left at the
same speed v as the negative rod.  Figure (27-5b) is the
same setup from the point of view of the stick figure
person.  She sees the negative rod at rest and the
positive rod moving to the right as shown.

In another calculation, we saw that if a millimeter cross
section copper wire carried a steady current of one
ampere, the conduction electrons would have to move
at the slow speed of 1/27 of a millimeter per second, a
motion so slow that it would be hard to detect.  As a
result there should be no important physical difference
between the two points of view, and a left directed
negative current should be physically equivalent to a
right directed positive current.

A closer examination of Figure (27-5) shows that we
have left something out.  The bottom figure, (27-5b) is
not precisely what the moving observer sees.  To show
what has been left out, we have in Figure (2a) redrawn
Figure (27-5a) and carefully labeled the individual
charges.  To maintain strict overall charge neutrality we
have used charges +Q on the positive rod, charges -Q
on the negative rod, and both sets of charges have equal
separations of   centimeters.

From the point of view of the moving observer in
Figure (2b), the negative rod is at rest and the positive
rod is moving to the right as we saw back in Figure (27-
5b).  But, due to the Lorentz contraction, the spacing
between the charges is no longer   !  Since the positive
rod was at rest and is now moving, the length of the
positive spacing must be contracted to a distance

1 - v2/c2 as shown.

On the other hand the negative rod was moving in
Figure (2a), therefore the negative spacing must ex-
pand to  / 1 - v2/c2 when the negative rod comes to
rest.  (Start with a spacing / 1 - v2/c2 for the negative
charges at rest in Figure (2b), and go up to Figure (2a)
where the negative rod is moving at a speed v. There the
spacing must contract by a factor 1 - v2/c2, and the
new spacing is / 1 - v2/c2   × 1 - v2/c2  =  as
shown.)

As a result of the Lorentz contraction, the moving
observer will see that the positive charges on her
moving rod are closer together than the negative charges
on her stationary rod.  (We have exaggerated this effect
in our sketch, Figure (2b)).  Thus the moving observer
of Figure (2b) sees not only a right directed positive
current, but also a net positive charge density on her
two rods.  The  Lorentz contraction has changed a
neutral wire in Figure (2a) into a positively charged one
in Figure (2b)!
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a) observer walking along with the moving
    negatively charged rod

b) from the observer's point of view the negative
    rod is at rest and the positive charge is moving
    to the right

v

v

v

Figure 27-5 a,b
In (a) we have a left directed negative current, while in
(b) we have a right directed positive current.  The only
difference is the perspective of the observer.  (You can
turn a negative current into an oppositely flowing
positive one simply by moving your head.)
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a) Observer walking along with the moving negatively
    charged rod.

b) Charged rods from the observer's point of view. Now
     that the positive charge is moving, the spacing
     between positive charges has contracted from    
     to                   . The negative rod is now at rest, the
     Lorentz contraction is undone, and the negative
     spacing has expanded from    to                     . 
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Figure 2
An electric current from two points of view.
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Charge Density on the Two Rods
Our next step will be to calculate the net charge density
λ on the pair of rods shown in Figure (2b).  Somewhat
messy algebra is required for this calculation, but the
result will be used in much of the remainder of the text.
The effort will be worth it.

If we have a rod with charges spaced a distance d apart
as shown in Figure (3), then a unit length of the rod, 1
meter, contains 1/d charges. (For example, if d = .01
meter, then there will be 1/d = 100 charges per meter.)
If each charge is of strength Q, then there is a total
charge Q/d on each meter of the rod.  Thus the charge
density is  λ  =  Q/d coulombs per meter.  Applying this
result to the positive rod of Figure (2b) gives us a
positive charge density

  
λ+ =

Q
d+

=
Q

1 - v2/c2 (5)

And on the negative rod the charge density is

  
λ– =

–Q
d–

=
–Q

/ 1 – v2/c2

=
–Q 1 – v2/c2 (6)

Multiplying the top and bottom of the right side of
Equation (6) by 1 - v2/c2, we can write   λ– as

  
λ– =

–Q 1 – v2/c2

×
1 – v2/c2

1 – v2/c2

=
–Q

1 – v2/c2
1 – v2/c2 (7)

+ + + + + + +
d

Q Q Q Q Q Q Q

λ coulombs/meter = Q/d

The net charge density λ  is obtained by adding λ + and
  λ–  of Equations (5) and (7) to get

  
λ = λ+

+ λ–
=

Q

1– v2/c2
1– (1– v2/c2)

  
λ =

Q

1– v2/c2

v2

c2
= λ +

v2

c2 (8)

Equation (8) can be simplified by noting that the
current i carried by the positive rod in Figure (2b)  is
equal to the charge λ +  on 1 meter of the rod times the
speed v of the rod

   
i = λ + v

current i
carried by the
positive rod

(9)

(In one second, v meters of rod move past any fixed
cross-sectional area, and the charge on this v meters of
rod is

 
λ + v

.
)  Using Equation (9), we can replace λ + and

one of the v’s in Equation (8) by i to get the result

  
λ =

iv

c2
(10)

Due to the Lorentz contraction , the moving observer in
Figure (2b) sees a net positive charge density    λλ = iv c2iv c2

on the wire which from our point of view, Figure (2a)
was precisely neutral.

Although Equation (10) may be formally correct, one
has the feeling that it is insane to worry about the
Lorentz contraction for speeds as slow as 2 millimeters
per minute.  But the Lorentz contraction changes a
precisely neutral pair of rods shown in Figure (2a), into
a pair with a net positive charge density λ  =  iv/c2 in
Figure (2b).  We have unbalanced a perfect cancella-
tion of charge which could lead to an imbalance in the
cancellation of electrostatic forces.  Since we saw from
our discussion of the two garden peas that imbalances
as small as one part in 1018 or less might be observable,
let us see if there are any real experiments where the
charge density λ is detectable.

Figure 3
If the charges are a distance d apart, then there are
1/d charges per meter of rod.  (If d = .1 meters, then
there are 10 charges/meter.)  If the magnitude of
each charge is Q, then λλ, the charge per meter is Q
times as great, i.e.,    λλ = Q * (1/d).
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A Proposed Experiment
How would we detect the charge imbalance in Figure
(2b)?  If there is a net positive charge density l on the two
rods in Figure (2b), repeated here again in Figure (4),
then the net charge should produce a radial electric field
whose strength is given by the formula

E  =  λ
2πε0r

(11)

We derived this result in our very first discussions of
Coulomb’s law in Chapter 24.  (Remember that the two
separate rods are our model for a single copper wire
carrying a current.  The rods are not physically sepa-
rated as we have had to draw them, the negative
conduction electrons and positive nuclei are flowing
through each other.)

We can test for the existence of the electric field
produced by the positive charge density λ  =  iv/c2 by
placing a test particle of charge q a distance r from the

wire as shown in Figure (4).  This test particle should
experience a force

F  =  qE (12)

which would be repulsive if the test particle q is positive
and attractive if q is negative.  Using Equations (10) for
λ and (11) for E, Equation (12) gives for the predicted
magnitude of F:

F   =  q E   =  
q λ

2πε0r
  =  

q iv

2πε0rc2
(13)

Rearranging the terms on the right side of Equation
(13), we can write F  in the form

  
F = qv×

i

2πrε0c2
(14)

Why we have written Equation (14) this way will
become clear shortly.

+ + + + + + +
– – – – – –

+

r

v

1– v  /c2 2

+q

F = qE

/ 1– v  /c2 2

Figure 4
To test for the net charge density, as seen by the observer at rest
relative to the minus charge, the observer places a test charge q a
distance r from the wire as shown.  If there is a net charge λλ on
the wire, the charge will produce an electric field E, which will
exert a force  F= qE on the test particle as shown.
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Origin of Magnetic Forces
You might think that the next step is to put reasonable
numbers into Equation (14) and see if we get a force F
that is strong enough to be observed.  But there is an
important thought experiment we will carry out first.
The idea is to look at the force on a test particle from two
different points of view, one where the wire appears
charged as in Figures (4 & 2b), and where the wire
appears neutral as in Figure (2a). The two points of
view are shown in Figure (5).

Figure (5b), on the left, is the situation as observed by
the moving observer.  She has a copper wire carrying
a positive current directed to the right.  Due to the
Lorentz contraction, her copper wire has a charge
density λ which creates an electric field E.  To observe
E, she mounts a test particle -q at one end of a spring
whose other end is fixed, nailed to her floor.  She detects
the force  F = –qE by observing how much the spring
has been stretched.

Our point of view is shown in Figure (5a).  It is exactly
the same setup, we have touched nothing!  It is just
viewed by someone moving to the right relative to her.

In our point of view, the moving observer, the negative
rod, and the test particle are all moving to the left at a

speed v.  The positive rod is at rest, the Lorentz
contractions are undone, and there is no net charge on
our rods.  All we have is a negative current flowing to
the left.

We can also see the test particle.  It is now moving to
the left at a speed v, and it is still attached to the spring.

Here is the crucial point of this discussion.  We also
see that the spring is stretched.  We also see that the
end of the spring has been pulled beyond the mark
indicating the unstretched length.  We also detect the
force F on the test particle!

Why do we see a force F on the test particle?  Our
copper wire is electrically neutral; we do not have an
electric field E to produce the force F .  Yet F is there.
If we cut the spring, the test particle would accelerate
toward the copper wire, and both we and the moving
observer would see this acceleration.

At this point, we have come upon a basic problem.
Even if the Lorentz contraction is very small and the
force F in Figure (5b) is very small, we at least predict
that F exists.  In Figure (5a) we predict that a neutral
wire, that is carrying a current but has absolutely no net
charge on it, exerts an attractive force on a moving
negative charge as shown.
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Figure 5
Two views of the same experiment.  For the observer moving with the electrons, she sees a positively charged wire
exerting an attractive force on the negative charge at rest.  We see an electrically neutral wire carrying a negative
current, and a moving negative charge.  The spring is still stretched, meaning the attractive force is still there.
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With a few modifications, the experiment shown in
Figure (5a) is easy to perform and gives clear results.
Instead of a negative test particle attached to a spring,
we will use a beam of electrons in an electron gun as
shown in Figure (6).  In Figure (6a) we see the setup of
our thought experiment.  In Figure (6b) we have
replaced the two charged rods with a neutral copper
wire carrying a current -i, and replaced the test particle
with an electron beam.

According to Equation (14), the force F on the test
particle -q should have a strength proportional to the
current i in the wire.  Thus when we turn on a current
(shorting the wire on the terminals of a car storage

battery to produce a healthy current) we will see the
electron beam deflected toward the wire if there is an
observable force.  The experimental result is shown in
Figure (6c).  There is a large, easily observed deflec-
tion.  The force F is easily seen.

Exercise 2

In Figure (7) we reversed the direction of the current in
the wire and observe that the electron beam is deflected
away from the wire.  Devise a thought experiment,
analogous to the one shown in Figure (5a,b) that ex-
plains why the electron beam is repelled from the wire
by this setup.  (This is not a trivial problem; you may have
to try several charge distributions on moving rods
before you can imitate the situation shown in Figure (7a).
But the effort is worth it because you will be making a
physical prediction that is checked by the experimental
results of Figure (7b).

Figure 6c
For an experimental test of the results of the thought
experiment, we replace the moving negative charge
with a beam of electrons in an electron gun.  The
electrons are attracted to the wire as predicted.
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Figure 6d Movie
Movie showing
magnetic deflection.

Figure 7
If we reverse the direction of the current in the wire,
the electrons in the beam are repelled
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MAGNETIC FORCE LAW
From our Coulomb’s law calculation of the electric
force in Figure (5a), we were able to obtain the formula
for the magnetic force in Figure (5b).  The result,
Equation (14) repeated here, is

  
F = qv×

i

2πrε0c
2

(14)

where q is the charge on the test particle, i the current
in the wire, and r the distance from the wire to the charge
as shown in Figure (8).  The only thing our derivation
does not make clear is whether v in Equation (14) is the
speed of the test charge or the speed of the electrons in
the wire.  We can’t tell because we used the same speed
v for both in our thought experiment.  A more complex
thought experiment will show that the v in Equation
(14) is the speed of the test particle.

The Magnetic Field B
In Equation (14) we have broken the somewhat com-
plex formula for the magnetic force into two parts.  The
first part qv is related to the test charge (q is its charge
and v its speed), and the second part in the curly
brackets, which we will designate by the letter B

B  ≡  i
2π rε0c2 (15)

is related to the wire.  The wire is carrying a current i and
located a distance r away.

The quantity B in Equation (15) is called the magnitude
of the magnetic field of the wire, and in terms of B the
magnetic force becomes

 Fmagnetic   =  qvB (16)

Equation (16) is almost a complete statement of the
magnetic force law.  What we have left to do for the law
is to assign a direction to B, i.e. turn it into the vector B,
and then turn Equation (16) into a vector equation for
the force Fmagnetic.

Magnetic Forces
Historically an electric force was defined as the force
between charged particles and was expressed by
Coulomb’s law.  The force in Figure (5a) between a
moving test charge and an uncharged wire does not
meet this criterion.  You might say that for historical
reasons, it is not eligible to be called an electric force.

The forces we saw in Figures (6c) and (7b), between a
moving charge and a neutral electric current, were
known before special relativity and were called mag-
netic forces.  Our derivation of the magnetic force in
Figure (5a) from the electric force seen in Figure (5b)
demonstrates that electric and magnetic forces in this
example are the same thing just seen from a different
point of view.

When we go from Figure (5b) to (5a), which we can do
by moving our head at a speed of 2 millimeters per
minute, we see essentially no change in the physical
setup but we have an enormous change in perspective.
We go from a right directed positive current to a left
directed negative current, and the force on the test
particle changes from an electric to a magnetic force.

– i

– q

F

v

r

Figure 8
Force on a charge -q moving at a speed v parallel to
a negative current -i a distance r away.
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Direction of the Magnetic Field
We will temporarily leave our special relativity thought
experiment and approach magnetism in a more tradi-
tional way.  Figure (9) is a sketch of the magnetic field
of the earth.  By convention the direction of the
magnetic field lines are defined by the direction that a
compass needle points.  At the equator the magnetic
field lines point north (as does a compass needle) and
the field lines are parallel to the surface of the earth.  As
we go north from the equator the magnetic field lines
begin to point down into the earth as well as north.  At
the north magnetic pole the magnetic field lines go
straight down.

Figure (9) is drawn with the magnetic north pole at the
top.  The earth’s rotational axis, passing through the
true north pole, is at an angle of 11.5 degrees as shown.
Over time the location of the earth’s magnetic pole
wanders, and occasionally flips down to the southern
hemisphere.  Currently the north magnetic pole is
located in north central Canada.

Earth's rotational axis

Magnetic field lines
pointing north

North magnetic pole N

S

There is one more definition.  In the MKS system of
units, it is traditional to define the constant µ0 by the
equation

   
µ0 =

1

ε0c
2 definition of µ0 (17)

Using this definition of µ0 in Equation (15) for B, we
get

   
B =

µ0i

2π r
magnetic field of a wire (18)

as the formula for the magnetic field of a wire.

It turns out to be quite an accomplishment to get
Equations (16), (17), and (18) out of one thought
experiment.  These equations will provide the founda-
tion for most of the rest of our discussion of electric and
magnetic (electromagnetic) theory.

Figure 9
Magnetic field of the earth. The magnetic field lines show that the direction a freely floating compass
needle would point at any location outside the earth.  For example, at the equator the compass needle
would be parallel to the surface of the earth and point north.  At the north magnetic pole, the compass
needle would point straight down (and thus not be very useful for navigation).
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As we mentioned, it is by long standing convention that
the direction of the magnetic field is defined by the
direction a compass needle points.  We can therefore
use a set of small compasses to map the direction of the
magnetic field.

In 1820, while preparing a physics lecture demonstra-
tion for a class of students, Hans Christian Oersted
discovered that an electric current in a wire could

deflect a compass needle.  This was the first evidence
of the connection between the subject of electricity
with its charges and currents, and magnetism with its
magnets and compasses.

The fact that a wire carrying a current deflects a
compass needle means that the current must be produc-
ing a magnetic field.  We can use the deflected compass
needles to show us the shape of the magnetic field of
a wire.  This is done in Figures (10a,b) where we see a
ring of compasses surrounding a vertical wire. In (10a)
there is no current in the wire, and all the compass
needles all point north (black tips). In (10b) we have
turned on an upward directed current in the wire, and
the compass needles point in a circle around the wire.
Using the north pole of the compass needle to define
the direction of the magnetic field, we see that the
magnetic field goes in a counterclockwise circle around
the wire.

In Figure (11) we have replaced the compasses in
Figure (10) with a sprinkle of iron filings.  When the
current in the wire is turned on, the iron filings align
themselves to produce the circular field pattern shown.
What is happening is that each iron filing is acting as a
small compass needle and is lining up parallel to the
magnetic field.  While we cannot tell which way is
north with iron filings, we get a much more complete

Figure 10b
When an upward directed current is turned on,
the compass needles point in a
counterclockwise circle about the wire.

Figure 10a
With no current flowing in the wire,
all the compass needles point north.

Figure 11
Iron fillings sprinkled around a current form a circular
pattern.  Each iron filing lines up like a compass needle,
giving us a map of the magnetic field.
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The Right Hand Rule for Currents
Iron filings give us an excellent picture of the shape of
the magnetic field, but do not tell us which way the field
is pointing.  For that we have to go back to compasses
as in Figure (9), where B is defined as pointing in the
direction of the north tip of the compass needle.  In that
figure we see that when a positive current i is flowing
toward us, the magnetic field goes in a counter clock-
wise direction as illustrated in Figure (14).

The above description for the direction may be hard to
remember.  A more concise description is the follow-
ing.  Point the thumb of your right hand in the
direction of the current as shown in Figure (14), then
your fingers will curl in the direction of the magnetic
field.  This mnemonic device for remembering the
direction of B is one of the  right hand rules.  (This is
the version we used in Figure 2-37 to distinguish right
and left hand threads.) If we had used compasses that
pointed south, we would have gotten a left hand rule.

i

B

picture or map of the direction of the magnetic field.
Figure (11) is convincing evidence that the magnetic
field surrounding a wire carrying a current is in a
circular field, not unlike the circular flow pattern of
water around the core of a vortex.

The use of iron filings turns out to be a wonderfully
simple way to map magnetic field patterns.  In Figure
(12), a sheet of cardboard was placed on a bar magnet
and iron filings sprinkled on the cardboard.  The result,
with two poles or points of focus resembles what is
called a dipole field.

In Figure (13) we have thrown iron filings at an old iron
magnet and created what one young observer called a
“magnet plant.”  Here we see the three dimensional
structure of the magnetic field, not only between the
pole pieces but over the top half of the magnet.

Figure 12
A sheet of cardboard is placed over the poles of a
magnet and sprinkled with iron filings.  From the
pattern of the filings we see the shape of the more
complex magnetic field of the magnet.

Figure 13
You get a three dimensional picture of the magnetic
field if you pour the iron filings directly on the magnet.
Our young daughter called this a Magnet Plant.

Figure 14
Right hand rule for the magnetic field of a
current i.  Point the thumb in the direction of
the positive current and your fingers curl in
the direction of the magnetic field.
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Parallel Currents Attract
While we are in the business of discussing mnemonic
rules, there is another that makes it easy to remember
whether a charge moving parallel to a current is at-
tracted or repelled.  In Figure (6) we had a beam of
negative electrons moving parallel to a negative cur-
rent -i, and the electrons were attracted to the current.
In Figure (7) the current was reversed and the electrons
were repelled.  One can work out a thought experiment
similar to the ones we have done in this chapter to show
that a positive charge moving parallel to a positive
current as shown in Figure (15) is attracted.

The simple, yet general rule is that parallel currents
attract, opposite currents repel.  A positive charge
moving in the direction of a positive current, or a
negative charge moving along with a negative current
are attracting parallel currents.  When we have negative
charges moving opposite to a negative current as in
Figure (7) we have an example of opposite currents that
repel.

The Magnetic Force Law
Now that we have a direction assigned to the magnetic
field B we are in a position to include directions in our
formula for magnetic forces.  In Figure (16) which is
the same as (15) but also shows the magnetic field, we
have a positive charge moving parallel to a positive
current, and therefore an attractive force whose magni-
tude is given by Equation (16) as

Fmag   =  qvB (16)

There are three different vectors in Equation (16),
Fmag, v, and B.  Our problem is to see if we can combine
these vectors in any way so that something like Equa-
tion (16) tells us both the magnitude and the direction
of the magnetic force Fmag.  That is, can we turn
Equation (16) into a vector equation?

Figure 16
The directions of the vectors  Fmag, v and B for a
positive charge moving parallel to a positive current.

+i

+q

v

Fmagnetic

v

Fmag

B

(a) side view

Fmag

B

(b) top view

i up

+i

+q

+q

Figure 15
A positive charge, moving parallel to a positive
current, is attracted by the current.  Thinking of
the moving positive charge as a positive upward
directed current, we have the rule that parallel
currents attract, opposite currents repel.
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The right hand side of Equation (16) involves the
product of the vectors  v and B.  So far in the text we
have discussed two different ways of multiplying
vectors;  the dot product   A⋅B which gives a scalar
number C, and the cross product  A×B

 
which gives the

vector C.  Since we want the product of v and B to give
us the vector Fmag, the cross product appears to be the
better candidate, and we can try

   
Fmag = qv × B

magnetic
force law

(19)

as our vector equation.

To see if Equation (19) works, look at the three vectors
v, B, and Fmag of Figure (16) redrawn in Figure (17).
The force Fmag is perpendicular to the plane defined by
v and B which is the essential feature of a vector cross
product.  To see if Fmag is in the correct direction, we
use the cross product right hand rule.  Point the fingers
of your right hand in the direction of the first vector in
the cross product, in this case v, and curl them in the
direction of the second vector, now B.  Then your
thumb will point in the direction of the cross product
v × B.  Looking at Figure (17), we see that the thumb of
the right hand sketch does point in the direction of Fmag,
therefore the direction of Fmag is correctly given by the
cross product  v × B.  (If the direction had come out
wrong, we could have used B × v  instead.)

Although the formula for Fmag, Equation (19), was
derived for a special case, the result is general.  When-
ever a particle of charge q is moving with a velocity v
through a magnetic field B, no matter what the relative
directions of v and B, the magnetic force is correctly
given as qv × B.

Exercise 3
Using the magnetic force law   Fmag = qv × B and the
right hand rule for the magnetic field of a current, show
that:

(a) An electron moving parallel to a negative current -i
is attracted (Figure 6)

(b) An electron moving opposite to a negative current is
repelled (Figure 7)

Lorentz Force Law
Since electric and magnetic forces are closely related,
it makes sense to write one formula for both the electric
and the magnetic force on a charged particle.  If we have
a charge q moving with a velocity v through an electric
field E and a magnetic field B, then the electric force is
qE, the magnetic force qv × B, and the total “electro-
magnetic” force is given by

    
F = qE + qv × B

Lorentz
force law (20)

Equation (20), which is known as the Lorentz force
law, is a complete description of the electric and
magnetic forces on a charged particle, provided E and
B are known.

v

Fmag

B

F      = q v  X  Bmag

+q

B points back
into paper

Figure 17
Right hand rule for the vector cross product   v ×× B.
Point the fingers of your right hand in the direction
of the first vector  v, and then curl them in the
direction of the second vector B.  Your thumb ends
up pointing in the direction of the vector   v ×× B.
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Dimensions of the
Magnetic Field, Tesla and Gauss
The dimensions of the magnetic field can be obtained
from the magnetic force law.  In the MKS system we
have

  
F newtons = q coulombs v

meters
second

× B

which gives us B in units of newton seconds per
coulomb meter.  This set of dimensions is given the
name tesla

   
newton second
coulomb meter

≡ tesla

MKSunits
for
magnetic
fields

(21)

Although most MKS electrical quantities like the volt
and ampere are convenient, the tesla is too large.  Only
the strongest electromagnets, or the new superconduct-
ing magnets used in particle accelerators or magnetic
resonance imaging apparatus, can produce fields of the
order of 1 tesla or more.  Fields produced by coils of
wire we use in the lab are typically 100 times weaker,
and the earth’s magnetic field is 100 times weaker still.

In the CGS system of units, magnetic fields are mea-
sured in gauss, where

 
1 gauss = 10–4 tesla

The gauss is so much more convenient a unit that there
is a major incentive to work with CGS units when
studying magnetic phenomena.  For example the earth’s
magnetic field has a strength of about 1 gauss at the
earth’s surface, and the magnetic field that deflected
the electrons in Figures (6) and (7) has a strength of
about 30 gauss at the electron beam.  Refrigerator
magnets have comparable strengths.

We could be pedantic, insist on using only MKS units,
and suffer with numbers like .00021 tesla in discus-
sions of the earth’s magnetic field.  But if someone
wants you to measure a magnetic field, they hand you
a “gauss meter” not a tesla meter.  Magnetic-type
instruments are usually calibrated in gauss.  If you

worked only with tesla, you would have a hard time
communicating with much of the scientific commu-
nity.  What we will do in this text is use either gauss or
tesla depending upon which is the more convenient
unit.  When we come to a calculation, we will convert
any gauss to tesla, just as we convert any distances
measured in centimeters to meters.

Uniform Magnetic Fields
Using the magnetic force law Fmag  =  qv × B to cal-
culate magnetic forces is often the easy part of the
problem.  The hard part can be to determine the
magnetic field B.  For a current in a straight wire, we
were able to use a thought experiment and the Lorentz
contraction to get Equation (20) for the strength of B.
But in more complicated situations, where we may
have bent wires, thought experiments become too
difficult and we need other techniques for calculating
B.

One of the other techniques, which we will discuss in
the next chapter, is called Ampere’s law.  This law will
give us the ability to calculate the magnetic field of
simple current distribution much the same way that
Gauss’ law allowed us to calculate the electric field of
simple charge distributions.  But until we get to Ampere’s
law in the next chapter, we will confine our study of the
magnetic force law to the simplest of all possible
magnetic fields, the uniform magnetic field.

Figure 18
Between the poles of this magnet there
is a relatively uniform magnetic field.
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Working with uniform magnetic fields, fields that are
constant in both magnitude and direction, is so conve-
nient that physicists and engineers go to great lengths
to construct them.  One place to find a uniform field is
between the flat pole pieces of a magnet, as seen in
Figure (18) which is our “magnet plant”  of Figure (13)
with fewer iron filings.

If we bend a wire in a loop, then a current around the
loop produces the fairly complex field pattern shown in
Figure (19).  When we use two loops as seen in Figure
(20), the field becomes more complicated in some
places but begins to be more uniform in the central
region between the coils.  With many loops, with the
coil of wire shown in Figure (21a), we get a nearly
uniform field inside.  Such a coil is called a solenoid,
and will be studied extensively in the next chapter. An
iron filing map of the field of a large diameter, tightly
wound solenoid is seen in Figure (21b).

i

Figure 19
The magnetic field of a current loop is fairly complex.

Figure 20
The magnetic field in the region between a pair of
coils is relatively uniform.  We can achieve the
greatest uniformity by making the separation d
between the coils equal to the radius of the coils.
Such a setup is called a  pair of Helmholtz coils.

i i

d

Section of coil

Figure 21b
Iron filing map of the magnetic field of a
large diameter coil. (Student project,
Alexandra Lesk and Kirsten Teany.)

Figure 21a
Magnetic field in the upper half of a section of a
coil of wire. When you have many closely spaced
coils, the field inside can become quite uniform
through most of the length of the coil.
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Helmholtz Coils
For now we will confine our attention to the reasonably
uniform field in the central region between two coils
seen in Figure (20).  Helmholtz discovered that when
the coils are spaced a distance d apart equal to the coil
radius r (Figure 22), we get a maximally uniform field
B between the coils.  This arrangement, which is called
a pair of Helmholtz coils, is commonly used in physics
and engineering apparatus.  Figure (23) shows a pair of
Helmholtz coils we use in our undergraduate physics
labs and which will be used for several of the experi-
ments discussed later.  An iron filing map of the field
produced by these coils is seen in Figure (24a), and one
of the experiments will give us  a field plot similar to
Figure (24b).

In our derivation of the magnetic field of a current in a
straight wire, we saw that the strength of the magnetic
field was proportional to the current  i  in the wire.
This is true even if the wire is bent to form coils, or even
twisted into a complex tangle.  That means that once
you have mapped the magnetic field for a given current
(i) in a set of wires, doubling the current produces the
same shape map with twice as strong a field.

For the Helmholtz coils in Figure (23), it was observed
that when a current of one amp flowed through the
coils, the strength of the magnetic field in the central
regions was 8 gauss.  A current of 2 amps produced a
16 gauss field.  Thus the field strength, for these coils,
is related to the current i by

  

B gauss = 8i amps
for the Helmholtz
coils of
Figure (23)only

In the lab we measure the strength of B simply by
reading (i) from an ampmeter and multiplying by 8.  Of
course, if you are using a different set of coils,(i) will be
multiplied by a different number.  (Do not worry about
the mixed units, remember that we convert gauss to
tesla before doing MKS calculations.)

One can derive a formula for an idealized set of
Helmholtz coils.  The derivation is complicated and the
answer  B  =  8µ0Ni/ 5 5 r   is rather a mess.  (N is the
number of turns in each coil.)  The simple feature which
we expected, is that B is proportional to the strength of
the current (i) in the coils.  Because another law, called
Faraday’s law, can be used to give us a more accurate
calibration of real Helmholtz coils, we will leave the
derivation of the Helmholtz formula above to other
texts.

d

r

d = r

Figure 23
Helmholtz coils used in a number of lab
experiments discussed in the text.  Each coil
consists of 60 turns of fairly heavy magnet wire.

Figure 22
For Helmholtz coils, the separation d equals the coil
radius r.
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MOTION OF CHARGED PARTICLES
IN MAGNETIC FIELDS
In physics, one of the primary uses of magnetic fields
is to control the motion of charged particles.  When the
magnetic field is uniform, the motion is particularly
simple and has many practical applications from par-
ticle accelerators to mass spectrometers.  Here we will
discuss this motion and several of the applications.

The main feature of the magnetic force law,

Fmagnetic  =  qv × B (19)

is that because of the cross product v × B, the magnetic
force is always perpendicular to the velocity v of the
charged particle.  This has one important immediate
consequence.  Magnetic forces do no work!  The
formula for the power, i.e., the work done per second,
is

  Work done
per second

by a force F

= power = F⋅v (22)

Since the magnetic force Fmag is always perpendicular
to v, we have

  Work done by a
magnetic force

= Fmagnetic ⋅ v

= q v × B ⋅ v ≡ 0
(23)

magnetic fields do not change the energy of a particle,
they simply change the direction of motion.

Figure 24b
Plot from a student experiment, of the magnetic
field in the region between and around the coils.

Figure 24a
Iron filing map of the magnetic field of the
Helmholtz coils. (Student project, Alexandra
Lesk and Kirsten Teany.)
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Motion in a Uniform Magnetic Field
When we have a charged particle moving through a
uniform magnetic field, we get a particularly simple
kind of motion—the circular motion seen in Figure
(25b).  In Figure (25a) we sketched the experimental
setup where an electron gun is placed between a pair of
Helmholtz coils so that the magnetic field B is perpen-
dicular to the electron beam as shown.  Figure (25b) is
a photograph of the electron beam deflected into a
circular path.   In Figure (25c) we have a sketch of the
forces on an electron in the beam.  The magnetic field
B in this diagram is up out of the paper, thus v × B points
radially out from the circle.  But the electron has a
negative charge, thus the magnetic force  FB

  FB = –e v × B

points in toward the center of the circle as shown.

Figure 25c
As the electrons move along a curved path, the
magnetic force    F = – qv ×× B  always remains
perpendicular to the velocity and therefore cannot
change the speed of the electrons.  The resulting
motion is uniform circular motion where the
force and the acceleration are directed toward the
center of the circle.

v

F

–q

F = (–q) v X B

B directed
out of paper

electron gun

Helmholtz
coils

v

B F = (– e) v X B

side view
this way

Figure 25a
Top view looking down on the electron gun placed
between the Helmholtz coils.  The electrons in the
beam move perpendicular to the magnetic field B.
The magnetic force    F = (– e) v ×× B is directed up,
out of the paper in this drawing.

Figure 25b
Side view of the electron beam, as seen through the
lower coil in Figure 25a.  In this view the magnetic
field is directed out of the paper toward the reader.

Figure 25d
Movie of the
experiment.
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To apply Newton’s second law to the electrons in
Figure (25), we note that a particle moving in a circle
accelerates toward the center of the circle, the same
direction as Fmag in Figure (25c).   Thus  FB and  ma  are
in the same direction and we can use the fact that for
circular motion  a  =  v2 /r  to get  FB = m a   or

qvB  =  mv2/r (24)

Solving for r, we predict from Equation (24) that the
electron beam will be bent into a circle of radius r given
by

 
r =

mv
qB

(25)

Equation (25) is an important result that we will use
often.  But it is so easy to derive, and it is such good
practice to derive it, that it may be a good idea not to
memorize it.

Let us use the experimental numbers provided with
Figure (25b) as an example of the use of Equation (25).
In that figure, the strength of the magnetic field is B =
70 gauss, and the electrons were accelerated by an
accelerating voltage of 135 volts.  The constants m and
q are the mass and charge of an electron.

The first step is to calculate the speed v of the electrons
using the fact that the electrons have 135 eV of kinetic
energy. We begin by converting from eV to joules
using the conversion factor   1.6 × 10-19 joules per eV.
This gives

  1
2

mv2 = 135 eV × 1.6 × 10-19 joules
eV

v2 =
2 × 135 × 1.6 × 10-19

.911 × 10-30

= 47.4 × 1012 m2

s2

v = 6.9 × 106 m
s

(26)

Next convert B from gauss to the MKS tesla

  70 gauss = 70 × 10– 4 tesla (27)

Substituting Equations (26) and (27) in (25) gives

  
r =

mv
qB

=
.911 × 10-30 × 6.9 × 106

1.6 × 10-19 × 7 × 10-3

  r = 5.6 × 10-3 m = .56 cm (28)

Exercise 4
The scale of distance shown in Figure (25b) was drawn
knowing the dimensions of the cap in the electron gun.
Use this scale to estimate the radius of curvature of the
electron beam and compare the result with the predic-
tion of Equation (28).

Exercise 5

Use the experimental results shown in Figure (26) (B =
70 gauss) to estimate the accelerating voltage used for
the electrons in the beam.  (The experimental answer is
included in the homework answer section.)

Figure 26
Use the fact that the magnetic field for this
example was 70 gauss to estimate the accelerating
voltage that produced the electron beam.



28-22  Magnetism

The pulse of electrons enter an evacuated circular track
shown in the top view.  To keep the pulse of electrons
moving in the circular track, large electromagnets
shown in the cross-sectional view are used to provide
a perpendicular magnetic field.  In this example the
magnetic field B points downward so that the magnetic
force qv × B  =  -ev × B points inward toward the
center of the track.

We saw that a magnetic field cannot do any work on the
electrons since the magnetic force is perpendicular to
the particle’s velocity.  Therefore to give the electrons
more energy, we use an electric field E.  This is done by
inserting into one section of the path a device that
produces an electric field so that the electric force -eE
points in the direction of the motion of the electrons.

One might think of using a charged parallel plate
capacitor to create the electric field E, but that is not
feasible.  Later we will see that radio waves have an
electric field E associated with them, and it is a radio
wave electric field in a so-called “resonant cavity” that
is used to produce the required strong fields.  For now
it does not matter how E is produced, it is this electric
field that adds energy to the electrons.

Particle Accelerators
Our knowledge of the structure of matter on a sub-
atomic scale, where we study the various kinds of
elementary particles, has come from our ability to
accelerate particles to high energies in particle accel-
erators such as the synchrotron.  In a synchrotron, an
electric field E  is used to give the particle’s energy, and
a magnetic field B is used to keep the particles confined
to a circular track.

Figure (27a) is a schematic diagram of a small electron
synchrotron.  At the top is an electron gun that is used
to produce a beam of electrons.  In practice the gun is
quickly turned on then off to produce a pulse of
electrons.

top view

electron
gun

evacuated circular doughnut
through which electrons move

electric field
accelerates
electrons

B

cross-section
of doughnut

electro-
magnets

cross-sectional view

B

path of 
electrons

Figure 27a
Diagram of a synchrotron, in which the electrons,
produced by the electron gun, travel through a
circular evacuated doughnut.  The electrons are
accelerated by an electric field, gaining energy on
each trip around.  The electrons are kept in a
circular orbit by an increasingly strong magnetic
field produced by the electromagnets.

Figure 27b
The Berkeley synchrotron shown here, accelerated
protons rather than electrons.  It was the first machine
with enough energy to create anti protons.  After this
machine was built, ways were devised for focusing the
particle beam and using an evacuated doughnut with a
much smaller cross-sectional area.
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When electrons gain energy, their momentum p = mv
increases.  Writing Equation (25) in the form

r  =  mv
qB

  =  
p

qB (25a)

we see that an increase in the electron’s momentum p
will cause the orbital radius r to increase.  The radius r
will increase unless we compensate by increasing the
strength B of the magnetic field.  The rate at which we
increase B must be synchronized with the rate at which
we increase the particle’s momentum  p  in order to
keep r constant and keep the electrons in the circular
path.  Because of this synchronization, the device is
called a synchrotron.

You can see that the amount of energy or momentum
we can supply to the particles is limited by how strong
a field B we can make.  Iron electromagnets can create
fields up to about 1 tesla (here the MKS unit is useful)
or 10,000 gauss.  The superconducting magnets, being
used in the latest accelerator designs, can go up to
around 5 tesla.

Noting that B is limited to one or a few tesla, Equation
(25) tells us that to get more momentum or energy, we
must use accelerators with a bigger radius r.  This
explains why particle accelerators are getting bigger
and bigger.  The biggest particle accelerator now
operating in the United States is the proton accelerator
at the Fermi National Accelerator Laboratory in Batavia,
Illinois shown in Figures (28) and (29).

In Figure (28), we see a section of tunnel and the
magnets that surround the 2 inch diameter evacuated
pipe which carries the protons. Originally there was
one ring using iron magnets (painted red and blue in the
photograph). Later another ring with superconducting
magnets was installed, in order to obtain stronger
magnetic fields and higher proton energies. The ring of
superconducting magnets (painted yellow) is beneath
the ring of iron magnets.

Figure (29) is an aerial view showing the 4 mile
circumference of the accelerator. Currently the largest
accelerator in the world is at the European Center for
Particle Physics (CERN). The 27 kilometer path of that
accelerator is seen in Figure (30) on the next page.

Figure 29
Aerial view of the Fermi Lab particle accelerator.

Figure 28
The Fermi Lab accelerator has two accelerating
rings, one on top of the other. In each, the
evacuated doughnut is only 2 inches in diameter,
and four miles in circumference. The bottom ring
uses superconducting magnets (painted yellow),
while the older upper ring has iron magnets
(painted red and blue.)
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RELATIVISTIC ENERGY
AND MOMENTA
Even the smallest synchrotrons accelerate electrons
and protons up to relativistic energies where we can no
longer use the non relativistic formula 1/2 mv2 for
kinetic energy.  For any calculations involving the large
accelerators we must use fully relativistic calculations
like E  =  mc2 for energy and p = mv for momentum
where m  =  m0/ 1 - v2/c2 is the relativistic mass.

Equation (25) or (25a) for a charged particle moving in
a circular orbit of radius r, can be written in the form

p  =  qBr (25b)

where B is the strength of the uniform magnetic field
and p the particle momentum.  It turns out that Equation
(25) is correct even at relativistic energies provided

 p = mv is the relativistic momentum.  Thus a knowl-

edge of the magnetic field and orbital radius immedi-
ately tells us the momentum of the particles in the large
synchrotrons.

To determine the energy of the particles in these
machines, we need a relationship between a particle’s
energy E and momentum p.  The relationship can be
obtained by writing out E and p in the forms

 
p = mv =

m0

1 - v2/c2
v (29)

 
E = mc2 =

m0

1 - v2/c2
c2 (30)

It is then straightforward algebraic substitution
to show that

 
E2 = p2c2 + m0

2c4 An exact
relationship

(31)

Figure 30
Path for the 8 kilometer circumference Super Proton Synchrotron (SPS, solid circle) and
the 27 kilometer Large Electron-Positron collider (LEP, dashed circle) at CERN, on the
border between France and Switzerland. The Geneva airport is in the foreground.
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Exercise 6

Directly check Equation (31) by plugging in the values
of p and E from Equations (29) and (30).

In the big particle accelerators the kinetic energy
supplied by the accelerators greatly exceeds the particle’s
rest energy m0c2, so that the m0c2 2 term in Equation
(31) is completely negligible.  For these “highly relativ-
istic” particles, we can drop the m02 c4 term in Equation
(31) and we get the much simpler formula

  E ≈ pc If E >> m0c
2 (32)

Equation (32) is an accurate relationship between
energy and momentum for any particle moving at a
speed so close to the speed of light that its total energy
E greatly exceeds its rest energy m0c2.

For the high energy particle accelerators we can com-
bine Equations (25) and (32) to get

E  =  p c  =  qBrc (33)

Consider CERN's Super Proton Synchrotron or SPS,
shown by the smaller solid circle in Figure (30), which
was used to discover the particles responsible for the
weak interaction. In this accelerator, the magnets pro-
duced fields of B = 1.1 tesla, and the radius of the ring
was  r = 1.3km (for a circumference of 8km). Thus we
have

  E = qBrc

= 1.6 × 10-19 coulombs × 1.1 tesla

× 1.3 × 103m × 3 × 108 m
s

m
s

= 6.9 × 10–8 joules

Converting this answer to electron volts, we get

  
E =

6.9 × 10–8 joules

1.6 × 10-19 joules
eV

= 430 × 109 eV

= 430GeV (34)

How good was our approximation that we could ne-
glect the particle’s rest energy and use the simple
Equation (32)?  Recall that the rest energy of a proton
is about 1GeV. Thus the SPS accelerator produced
protons with a kinetic energy 430 times greater!  For
these particles it is not much of an error to neglect the
rest energy.

Exercise 7
a)  The Fermi lab accelerator, with its radius of
1 kilometer, uses superconducting magnets to produce
beams of protons with a kinetic energy of 1000 GeV

 1012eV . How strong a magnetic field is required to
produce protons of this energy?

b)   Iron electromagnets cannot produce magnetic
fields stronger than 2 tesla, which  is why superconduct-
ing magnets were required to produce the 1000 GeV
protons discussed in part a).  Before the ring with
superconducting magnets was constructed, a ring
using iron magnets already existed in the same tunnel.
The iron magnets could produce 1.5 tesla fields. What
was the maximum energy to which protons could be
accelerated before the superconducting magnets were
installed?  (You can see both rings of magnets in Figure
28.)

Exercise 8
The large electron-positron (LEP) collider, being con-
structed at CERN, will create head on collisions be-
tween electrons and positrons. (Electrons will go around
one way, and positrons, having the opposite charge,
will go around the other.) The path of the LEP accelera-
tor, which will have a circumference of 27 km, is shown
in Figure (30), superimposed on the countryside north
of Geneva, Switzerland.

a)  Assuming that the LEP accelerator will use 3 tesla
superconducting magnets, what will be the maximum
kinetic energy, in eV, of the electrons and positrons that
will be accelerated by this machine?

b)  What will be the speed of these electrons and
positrons?  (How many 9’s in v/c?)
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BUBBLE CHAMBERS
In the study of elementary particles, it is just as impor-
tant to have adequate means of observing particles as it
is to have accelerating machines to produce them.  One
of the more useful devices for this purpose is the bubble
chamber invented by Donald Glaser in 1954.

It may not be true that Glaser invented the bubble
chamber while looking at the streaks of bubbles in a
glass of beer.  But the idea is not too far off.  When a
charged particle like an electron, proton or some exotic
elementary particle, passes through a container of
liquid hydrogen, the charged particle tends to tear
electrons from the hydrogen atoms that it passes,
leaving a trail of ionized hydrogen atoms.  If the
pressure of the liquid hydrogen is suddenly reduced the
liquid will start boiling if it has a “seed”—a special
location where the boiling can start.  The trail of ionized
hydrogen atoms left by the charged particle provides a
trail of seeds for boiling.  The result is a line of bubbles
showing where the particle went.

In a typical bubble chamber, a stereoscopic camera is
used to record the three dimensional paths of the
particles.  It is impressive to look at the three dimen-
sional paths in stereoscopic viewers, but unfortunately
all we can conveniently do in a book is show a flat two
dimensional image like the one in Figure (32).  In that
picture we see the paths of some of the now more
common  exotic  elementary particles.  In the interest-
ing part of this photograph, sketched above, a negative
π- meson collides with a positive proton to create a
neutral Λ0 and a neutral Κ0 meson.  The neutral Λ0 and
Κ0 do not leave tracks, but they are detected by the fact
that the Κ0 decayed into a π+ and a π- meson, and the
Λ0 decayed into a π- and a proton  p+, all of which are
charged particles that left tracks.

To analyze a picture like Figure (32) you need more
information than just the tracks left behind by particles.
You would also like to know the charge and the
momentum or energy of the particles.  This is done by
placing the bubble chamber in a magnetic field so that
positive particle tracks are curved one way and nega-
tives ones the other.  And, from Equation (25b), we see
that the radii of the tracks tell us the momenta of the
particles.

Figure 31a
Schematic diagram of the Berkeley
10-inch hydrogen bubble chamber.

stereo
camera

beam of
charged
particles
from
accelerator

light

liquid hydrogen

Figure 31b
The 10-inch Bubble chamber at the Lawrence
Radiation Laboratory, University of California,
Berkeley.  (Photograph copyright The Ealing
Corporation, Cambridge, Mass.)
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Exercise 9
Calculate the energy, in eV of the electron as it entered
the photograph in Figure (33).  Since you do not know
off hand whether the particle was relativistic or not, use
the exact relation

 E2 = p2c2 +m0
2c4 (31)

to determine E from p.  From your answer decide
whether you could have used the non relativistic formula

 KE = 1/2m0v
2  or the fully relativistic formula E = pc, or

whether you were in an intermediate range where
neither approximation works well.

Another example of a bubble chamber photograph is
Figure (33) where we see the spiral path produced by
an electron.  The fact that the path is spiral, that the
radius of the path is getting smaller, immediately tells
us that the electron is losing momentum and therefore
energy as it moves through the liquid hydrogen.  The
magnetic field used for this photograph had a strength
B = 1.17 tesla, and the initial radius of the spiral was 7.3
cm.  From this we can determine the momentum and
energy of the electron.

Figure 32
Bubble chamber photograph showing the creation of a

  K0  meson and a   ΛΛ0  particle, and their subsequent
annihilations.  We now know that the K  meson is a
quark/anti quark pair, and the   ΛΛ0  particle contains 3
quarks as does a proton and a neutron.  The K  and ΛΛ
particles last long enough to be seen in a bubble
chamber photograph because they each contain a
strange quark which decays slowly via the weak
interaction.  (Photo copyright The Ealing Corporation
Cambridge, Mass.)

π π−
+

π−

π−

pΛ0
K0

H atom

Figure 33
Spiraling electron.  An electron enters the chamber at
the lower left and spirals to rest as it loses momentum.
The spiral track is caused by the magnetic field applied
to the chamber which deflects a charged particle into a
curved path with a radius of curvature proportional to
the particle's momentum.  The straight track crossing
the spiral is a proton recoiling from a collision with a
stray neutron.  Because the proton has much greater
mass than the electron, its track is much less curved.

R  = 7.3 cm  i e-

p

B = 1.17 tesla
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The Mass Spectrometer
A device commonly seen in chemistry and geology
labs is the mass spectrometer which is based on the
circular orbits that a charged particle follows in a
uniform magnetic field.  Figure (34) is a sketch of a
mass spectrometer which consists of a semi circular
evacuated chamber with a uniform magnetic field  B
directed up out of the paper.  The direction of  B   is
chosen to deflect positive ions around inside the cham-
ber to a photographic plate on the right side.  The ions
to be studied are boiled off a heated filament and
accelerated by a negative cap in a reversed voltage
electron gun shown in Figure (35).  By measuring the
position where the ions strike the photographic plate,
we know the radius of the orbit taken by the ion.
Combine this with the knowledge of the field B of the
spectrometer, and we can determine the ion’s momen-
tum p if the charge q is known.  The speed of the ion is
determined by the accelerating voltage in the gun, thus
knowing p gives us the mass m of the ions.  Non
relativistic formulas work well and the calculations are
nearly identical to our analysis of the path of th- electrons in Figure (25).  (See Equations 26 to 28.

Mass spectrometers are used to identify elements in 
 small sample of material, and are particularly useful i
 being able to separate different isotopes of an element
 Two different isotopes of an element have differen
 numbers of neutrons in the nucleus, everything else

being the same.  Thus ions of the two isotopes will have
slightly different masses, and land at slightly different
distances down the photographic plate.  If an isotope is
missing in one sample the corresponding line on the
photographic plate will be absent.  The analogy be-
tween looking at the lines identifying isotopes, and
looking at a photographic plate showing the spectrum
of light, suggested the name mass spectrometer.

Exercise 10
Suppose that you wish to measure the mass of an iodine
atom using the apparatus of Figures (34) and (35).  You
coat the filament of the gun in Figure (35) with iodine,
and heat the filament until iodine atoms start to boil off.
In the process, some of the iodine atoms lose an
electron and become positive ions with a charge +e.
The ions are then accelerated in the gun by a battery of
voltage  Vb  and then pass into the evacuated chamber.

(a) Assuming that   Vb   = 125 volts (accelerating voltage)
and B = 1000 gauss (0.1 tesla), and that the iodine
atoms follow a path of radius r = 18.2 cm, calculate the
mass m of the iodine atoms.

(b) How many times more massive is the iodine ion than
a proton?  From the fact that protons and neutrons have
about the same mass, and that an electron is 2000 times
lighter, use your result to estimate how many nuclear
particles (protons or neutrons) are in  an iodine nucleus.

Figure 35
When the substance to be studied is heated by a
filament, atoms evaporate and some lose an electron
and become electrically charged positive ions.  The
ions are then accelerated by an electric field to
produce a beam of ions of known kinetic energy.
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can

battery

atoms

Figure 34
Top view of a mass spectrograph.  A uniform
magnetic field B  rises directly up through
the chamber.  The beam of atoms is produced
by the accelerating gun shown in Figure 35.
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Magnetic Focusing
In the magnetic force examples we have considered so
far, the velocity v of the charged particle started out
perpendicular to  B  and we got the circular orbits we
have been discussing.

If we place an electron gun so that the electron beam is
aimed down the axis of a pair of Helmholtz coils, as
shown in Figure (36), the electron velocity v is parallel
to  B ,    v × B = 0  and there is no magnetic force.

Figure (36) is a bit too idealized for the student built
electron gun we have been using in earlier examples.
Some of the electrons do come out straight as shown in
Figure (36), but many come out at an angle as shown in
Figure (37a).  In Figure (37b) we look at the velocity
components v⊥ and v||  of an electron emerging at an
angle  q.  Because v|| × B  =  0 only the perpendicular
component  v⊥ contributes to the magnetic force

Fmag  =  qv⊥ × B (36)

This force is perpendicular to both v⊥ and  B  as shown
in the end view of the electron gun, Figure (37b).  In this
end view, where we can’t see   v|| , the electron appears
to travel around the usual circular path.

Figure 37a
In reality the electron beam spreads out when it leaves
the cap.  Most of the electrons are not moving parallel
to B , and there will be a magnetic force on them.

Figure 37b
Consider an electron emerging from the cap at an
angle θθ   from the center line as shown in the side
view above.  Such an electron has a component of
velocity  v⊥⊥  perpendicular to the magnetic field.  This
produces a magnetic force    FB = – e v⊥⊥ ×× B  which
points toward the axis of the gun.  The magnetic
force  FB  can be seen in the end view above.  From
the end view the electron will appear to travel in a
circle about the axis of the gun.  The stronger the
magnetic field, the smaller the radius of the circle.

v

vθ

v

F  = (– e) v  X BB

v

B

FB

B out of paper

side view end view

B

B

Figure 36
Electron gun inserted so that the beam of
electrons moves parallel to the magnetic field of
the coils.  If the beam is truly parallel to B ,
there will be no magnetic force on the electrons.

B
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It is in the side view, Figure (38) that we see the effects
of   v|| .  Since there is no force related to   v|| , this
component of velocity is unchanged and simply carries
the electron at a constant horizontal speed down the
electron gun.  The quantity   v||  is often called the drift
speed of the particle.  (The situation is not unlike
projectile motion, where the horizontal component vx
of the projectile’s velocity is unaffected by the vertical
acceleration   ay .)

When we combine the circular motion, seen in the end
view of Figure (37c), with the constant drift speed  v|| ,
down the tube seen in Figure (38a) the net effect is a
helical path like a stretched spring seen in Figure (38b).
The electron in effect spirals around and travels along
the magnetic field line.  The stronger the magnetic
field, the smaller the circle in Figure (37c), and the
tighter the helix.

B

v
v

θ
v

v

v

The tightening of the helix is seen in Figure (39) where
in (a) we see an electron beam with no magnetic field.
The electrons are spraying out in a fairly wide cone.  In
(b) we have a 75 gauss magnetic field aligned parallel
to the axis of the gun and we are beginning to see the
helical motion of the electrons.  In (c) the magnetic field
is increased to 200 gauss and the radius of the helix has
decreased considerably.  As B is increased, the elec-
trons are confined more and more closely to a path
along the magnetic field lines.  In our electron gun, the
magnetic field is having the effect of focusing the
electron beam.

a) No magnetic field

c) B = 200 gauss

Figure 38a
In the side view of the motion of the
electron, we see that  v||   is unchanged,  v||
just carries the electron down the tube.

b) B = 75 gauss

helical motion
of the electron

Figure 38b
Oblique view of the helical motion of the electron.
When you combine the uniform motion of the electron
down the tube with the circular motion around the
axis of the tube, you get a helical motion with the
same shape as the wire in a stretched spring.

Figure 39
Focusing an electron beam with a parallel
magnetic field.  The beam travels along a
helical path which becomes tighter as the
strength of the magnetic field is increased.

d) Movie
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SPACE PHYSICS
Even in non-uniform magnetic fields there is a ten-
dency for a charged particle to move in a spiral path
along a magnetic field line as illustrated in Figure (40).
This is true as long as the magnetic field is reasonably
uniform over a distance equal to the radius r of the spiral
(from Equation (25), r  =  mv⊥/qvB).  Neglecting the
spiral part of the motion, we see that the large scale
effect is that charged particles tend to move or flow
along magnetic field lines.  This plays an important role
in space physics phenomena which deals with charged
particles emitted by the sun (the “solar wind”) and the
interaction of these particles with the magnetic field of
the earth and other planets.

There are so many interesting and complex effects in
the interaction of the solar wind with planetary mag-
netic fields that space physics has become an entire
field of physics.  Seldom are we aware of these effects
unless a particularly powerful burst of solar wind
particles disrupts radio communications or causes an
Aurora Borealis to be seen as far south as the temperate
latitudes.  The Aurora are caused when particles from
the solar wind spiral in along the earth’s magnetic field
lines and end up striking atoms in the upper atmo-
sphere.  The atoms struck by the solar wind particles
emit light just like the residual air atoms struck by the
electrons in an electron gun.

The Magnetic Bottle
If a magnetic field has the correct shape, if the field lines
pinch together as shown at the left or the right side of
Figure (41), then the magnetic force  Fmag  on a charged
particle has a component that is directed back from the
pinch.  For charged particles with the correct speed, this
back component of the magnetic force can reflect the
particle and reverse  v|| .  If the magnetic field is pinched
at both ends, as in Figure (41) the charged particle can
reflect back and forth, trapped as if it were in a magnetic
bottle.

In the subject of plasma physics, one often deals with
hot ionized gasses, particularly in experiments de-
signed to study the possibility of creating controlled
fusion reactions.  These gases are so hot that they would
melt and vaporize any known substance they touch.
The only known way to confine these gases to do
experiments on them is either do the experiments so
fast that the gas does not have time to escape (inertial
confinement), or use magnetic fields and devices like
the magnetic bottle shown in Figure (41) (magnetic
confinement).

B path of charged
             particle

FB

B

FB

B

magnetic "bottle"

Figure 40
When charged particles from the sun enter the
earth's magnetic field, they spiral around the
magnetic field lines much like the electrons in
the magnetic focusing experiment of Figure 39.

Figure 41
Magnetic bottle.  When the magnetic field lines pinch
together, the charged particles can be reflected back in
a process called magnetic mirroring.  (At the two ends
of the magnetic bottle above,  the magnetic force  FB
has a component back into the bottle.)
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Van Allen Radiation Belts
The earth’s magnetic field shown in Figure (9) and
repeated in Figure (42) forms magnetic bottles that can
trap charged particles from the solar wind.  The ends of
the bottles are where the field lines come together at the
north and south magnetic poles, and the regions where
significant numbers of particles are trapped are called
the Van Allen radiation belts shown in Figure (42).
Protons are trapped in the inner belt and electrons in the
outer one.

It is not feasible to do hand calculations of the motion
of charged particles in non-uniform magnetic fields.
The motion is just too complicated.  But computer
calculations, very similar to the orbit calculations dis-
cussed in Chapter 4, work well for electric and mag-
netic forces.  As long as we have a formula for the shape
of E   or B , we can use the Lorentz force law (Equation
20)

F  =  qE + qv × B

as one of the steps in the computer program.  The
computer does not care how complicated the path is,
but we might have trouble drawing and interpreting the
results.

In Figure (43), a student, Jeff Lelek, started with the
formula for a “dipole magnetic field”, namely

  
B = –

B0

R3 * Z – 3* Z⋅R *R (37)

which is a reasonably accurate representation of the
earth’s magnetic field, and calculated some electron
orbits for this field.  The result is fairly complex, but we
do get the feeling that the electron is spiraling around
the magnetic field lines and reflecting near the mag-
netic poles.

To provide a simpler interpretation of this motion, the
student let the calculation run for a long time, saving up
the particle coordinates at many hundreds of different
points along the long orbit.  These points are then
plotted as the dot pattern shown in Figure (43).  (In this
picture, the latitude of the particle is ignored, the points
are all plotted in one plane so we can see the extent of
the radial and north-south motion of the particles.)  The
result gives us a good picture of the distribution of
particles in a Van Allen radiation belt.  This and similar
calculations are discussed in the supplement on com-
puter calculations with the Lorentz force law.

Figure 42
Charged particles, trapped by the earth's magnetic field,
spiral around the magnetic field lines reflecting where
the lines pinch together at the poles.  The earth's
magnetic field thus forms a magnetic bottle, holding the
charged particles of the Van Allen radiation belts.

Figure 43
Computer plot of the motion of a proton in a dipole
magnetic field.  The formula for this field and the
computer program used to calculate the motion of
the proton are given in the Appendix.  As you can
see, the motion is relatively complex.  Not only does
the proton reflect back and forth between the poles,
but also precesses around the equator.
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Figure 44
In this computer plot, all the data points from Figure 43 are plotted as dots in one plane.  From this we see the
shape of a Van Allen radiation belt emerge. (Figures (43) and (44) from a student project by Jeff Lelek.)
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Ampere's Law

CHAPTER 29 AMPERE'S LAW

In  this chapter our main focus will be on Ampere’s law,
a general theorem that allows us to calculate the
magnetic fields of simple current distributions in much
the same way that Gauss’ law allowed us to calculate
the electric field of simple charge distributions.

As we use them, Gauss’ and Ampere’s laws are integral
theorems.  With Gauss’ law we related the total flux out
through a closed surface to   1/ε0 times the net charge
inside the surface.  In general, to calculate the total flux
through a surface we have to perform what is called a
surface integral.  Ampere’s law will relate the integral
of the magnetic field around a closed path to the total
current flowing through that path.  This integral around
a closed path is called a line integral.

Until now we have concentrated on examples that did
not require us to say much about integration.  But as we
discuss Ampere’s law in this chapter and the remaining
Maxwell equations in the next few chapters, it will be
convenient to draw upon the formalism of the surface
and line integral.  Therefore we will take a short break
to discuss the mathematical concepts involved in these
integrals.



29-2  Ampere's Law

THE SURFACE INTEGRAL
In our discussion of Gauss’ law near the end of Chapter
24, we defined the flux  Φ  of a fluid in a flow tube as the
amount of water per second flowing past the cross-
sectional area of the tube as shown in Figure (1).  This
is equal to the velocity v times the cross-sectional area

  A⊥  of the tube as given in Equation (24-46)

   Φ = vA⊥ flux in a flow tube (24-46)

As seen in Figure (2), if we slice the flow tube by a plane
that is not normal to the flow tube, the area  A  of the
intersection of the tube and plane is larger than the
cross-sectional area   A⊥.   The relationship is
A⊥  =  A cos θ  where θ  is the angle between v and A
(see Equation 24-45). Defining the vector A as having
a magnitude A and direction normal to the plane, we
have

  v ⋅ A = vA cos θ = vA⊥

and the formula for the flux in the flow tube is

  Φ = v ⋅ A (24-47a)

In Chapter 24 we considered only problems where A⊥
was something simple like a sphere around a point
source, or a cylinder around a line source, and we could
easily write a formula for the total flux.  We now wish
to consider how we should calculate, at least in prin-
ciple, the flux in a more complex flow like the stream
shown in Figure (3).

To give our flux calculation a sense of reality, suppose
that we wish to catch all the salmon swimming up a
stream to spawn.  As shown in Figure (3), we place a net

that goes completely across the stream, from bank to
bank, from the surface to the bottom.  The total flux ΦT
of water flowing through this net is therefore equal to
the total current in the stream.

To calculate the total flux   ΦT ,  we break the stream
flow up into a number of small flow tubes bounded by
stream lines as shown in (3).  Focusing our attention on
the i th flow tube, we see that the tube intersects an area

 dAi  of the fish net.  The flux through the fish net due
to the i th tube is

  dΦi = vi⋅dAi (1)

where  vi   is the velocity of the water at the intersection
of the tube and the net.  The total flux or current of water
in the stream is simply the sum of the fluxes in each flow
tube, which can be written

   ΦT = Φi∑
all flow
tubes

= vi⋅dAi∑
i

(2)

where the  dAi  are just those areas on the fish net
marked out by the flow tubes.

If we go to infinitesimal sized flow tubes, the sum in
Equation (2) becomes an integral which can be written
as

   
ΦT = v⋅dA

area of
fish net

surface integral (3)

plane slicing 
the flow tube

area A

A

v

A

θ

=  v A.flux   Φ =  vA
Figure 2
If we have an area A that is not normal to the stream,
then the cross-sectional area is    A⊥⊥ = A cos θθ , and the
flux is    ΦΦ = vA⊥⊥ = vA cos θθ , which can also  be written

   ΦΦ = v ⋅⋅ A .

cross-sectional
area A

vflow tube

flux   Φ = vA
Figure 1
The flux of water ΦΦ  through a flow tube is the
amount of water per second flowing past a
cross-sectional area   A⊥⊥.
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where the  dA's are infinitesimal pieces of area on the
fish net and our sum or integration extends over the
entire submerged area of the net.  Because we are
integrating over an area or surface in Equation (3), this
integral is called a surface integral.

Think of Equation (3), not as an integral you “do”, like
 x2dx = x3/3, but more as a formal statement of the

steps we went through to calculate the total flux   ΦT.

Suppose, for example, someone came up to you and
asked how you would calculate the total current in the
stream.  If you were a mathematician you might
answer, “I would calculate the integral

  ΦT = v⋅dA
S

(3a)

where S is a surface cutting the stream.”

If you were a physicist, you might answer, “Throw a
fish net across the stream, making sure that there are no
gaps that the fish can get through.  (This defines the
mathematician's surface S).  Then measure the flux of
water through each hole in the net (these are the   v⋅dA's
of Equation 3a), and then add them up to get the total
flux (do the integral).”

Basically, the mathematician’s statement in Equation
(3a) is short hand notation for all the steps that the
physicist would carry out.

Gauss’ Law
The statement of Gauss’ law applied to electric fields
in Chapter (24) was that the total electric flux    ΦT out
through a closed surface  was equal to 1/ε0 times the
total charge  Qin inside the surface.  Our surface integral
of Equation (3) allows us to give a more formal (at least
more mathematical sounding) statement of Gauss’
law.

Suppose we have a collection of charged particles as
shown in Figure (4), which are completely surrounded
by a closed surface S.  (Think of the closed surface as
being the surface of an inflated balloon.  There cannot
be any holes in the surface or air would escape.)  The
total flux of the field E out through the surface S is
formally given by the surface integral

  ΦT = E⋅dA
S

(4)

where the dA are small pieces of the surface, and E is
the electric field vector at each dA.

fish net
across stream

i th flow
tube

vi

dAi

Q1

Q2

Q4

Q5

Q3

surface S

Figure 3
To calculate the flux of water through a fish net, we can
first calculate the flux of water through each hole in the
net, and then add up the fluxes to get the total flux.

Figure 4
Closed surface S completely surrounding a collection
of charges.  The flux of E  out through the closed
surface is equal to   1 εε01 εε0 times the total charge inside.
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The total charge  Qin inside the surface S is obtained by
adding up all the charges we find inside.  Any charges
outside do not count.  (We have to have a completely
closed surface so that we can decide whether a charge
is inside or not.)  Then equating the total flux   ΦT to

  Qin/ε0 we get the integral equation

   
E⋅dA

closed
surfaceS

=
Qin
ε0

formal
statementof
Gauss' law

(5)

There is nothing really new in Equation (5) that we did
not say back in Chapter (24).  What we now have is a
convenient short hand notation for all the steps we
discussed earlier.

We will now use Equation (5) to calculate the electric
field of a point charge.  Although we have done this
same calculation before, we will do it again to remind
us of the steps we actually go through to apply Equation
(5).  A formal equation like this becomes real or useful
only when we have an explicit example to remind us
how it is used.  When you memorize such an equation,
also memorize an example to go with it.

In Figure (5), we have a point charge +Q that produces
a radial electric field E as shown.  To apply Gauss’ law
we draw a spherical surface S of radius r around the
charge.  For this surface we have

  ΦT = E
S

⋅dA = EA⊥ = E(r)4πr2

Inside the surface the total charge is Q.  Thus Gauss’
law, Equation (5), gives

  
E

S

⋅dA =
Qin

ε0

E(r)4π r2  =  
Q
ε0

E(r)  =  
Q

4πε0r2 (6)

The only thing that is new here is the use of the notation
  E

S
⋅dA  for total flux ΦT.

  When we actually wish to
calculate ΦT, we look for a surface that is perpendicular
to E so that we can use the simple formula EA⊥.

If the charge distribution were complex, more like
Figure (4), we could calculate   E

S
⋅dA by casting a fish

net all around the charges and evaluating   Ei⋅dAi for
each hole in the net.  The formal expression of the
surface integral at least gives us a procedure we can
follow if we are desperate.

surface S

Q

r

E

Figure 5
For the electric field of a point charge, we know
immediately that the total flux   ΦΦT  out through the
spherical surface is the area    4ππ r2  times the strength

 E r  of the field. Thus

    ΦΦT ≡ E ⋅⋅dA
S

= E r × 4ππ r2
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THE LINE INTEGRAL
Another formal concept which we will use extensively
in the remaining chapters on electromagnetic theory is
the line integral.  You have already been exposed to the
idea in earlier discussions of the concept of work.  If we
exert a force F on a particle while the particle moves
from Point (1) to Point (2) as shown in Figure (6), then
the work we do is given by the integral

  
Work W = F

1

2

⋅dx (7)

where we are integrating along the path in Figure
(6).

Equation (7) is short hand notation for many steps.
What it really says is to draw the path taken by the
particle in going from Point (1) to (2), break the path up
into lots of little steps dxi, calculate the work dWi we
do during each step,     dWi = Fi⋅dxi,  and then add up
all the dWi  to get the total work W.

The first thing we have to worry about in discussing
Equation (7), is what path the particle takes in going
from Point (1) to Point (2).  If we are moving an eraser
over a blackboard, the longer the path, the more work
we do.  In this case, we cannot do the line integral until
the path has been specified.

On the other hand, if we are carrying the particle around
the room, exerting a force  F = –Fg that just over-
comes the gravitational force, then the work we do is
stored as gravitational potential energy.  The change in
potential energy, and therefore the line integral of
Equation (7), depends only on the end points (1) and (2)
and not on the path we take.  When the line integral of
a force does not depend upon the path, we say that the
force is conservative.

A formal statement that a force is conservative is that
the line integrals are equal for any two paths -- for
example, path (a) and path (b) in Figure (7).

  
F

1(patha)

2

⋅dx = F

1(pathb)

2

⋅dx (8)

1

2F

i

i

dW  =  F  dxi ii

idx

W      =  Σ F dx
i i itot

F dx
2

1Figure 6
To calculate the total work done moving a particle from
point (1) to point (2) along a path , first break the path
up into many short displacements  dx.  The work  dWi  is

   dWi = Fi ⋅⋅ dxi .  The total work W is the sum of all the  dWi .

(2)

(1)

pa
th b

path a

Figure 7
If the work done in carrying the particle from point (1)
to point (2) does not depend upon which path we take,
we say that the force is conservative.
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Let us write Equation (8) in the form

 
  

F

1(patha)

2

⋅dx – F

1(pathb)

2

⋅dx = 0

Now take the minus sign inside the integral over Path
(b) so that we have  a sum of   Fi⋅ –dxi

  
F

1(patha)

2

⋅dx + F

1(pathb)

2

⋅ –dx = 0 (9)

For the path (b)  integral, we have reversed the direction
of each step.  The sum of the reversed steps is the same
as going back, from point (2) to point (1) as illustrated
in Figure (8). Thus Equation (9) becomes

  
F

1(patha)

2

⋅dx + F

2(pathb)

1

⋅dx = 0 (10)

If Equation (10) applies for any Path (a) and (b), then
the force F is conservative.

Equation (10) does not really depend upon the Points
(1) and (2).  More generally, it says that if you go out and
then come back to your starting point, and the sum of
all your   Fi⋅dxi   is zero, then the force is conservative.
This special case of a line integral that comes back to
the starting point as in Figure (9) is called the line
integral around a closed path, and is denoted by an
integral sign with a circle in the center

  
F⋅dx ≡

the line integral
around a closedpath
as in Figure 9

(11)

With the notation of Equation (11), we can formally
define a conservative force F as one for which

    
F⋅dx

forany
closedpath

= 0 definition of a
conservative force

(12)

This line integral around a closed path will turn out to
be an extremely useful mathematical tool.  We have
already seen that it distinguishes a conservative force
like gravity, where   F⋅dx = 0,  from a non conserva-
tive force like friction on a blackboard eraser, for which

  F⋅dx ≠ 0 .  In another case, namely Ampere’s law to
be discussed next, the line integral of the magnetic field
around a closed path tells us something about the
currents that flow through the path.

(2)

(1)

– path b

path a

dx

– dx

i dxi

Fi
Figure 9
For a conservative force, the line integral    F ⋅⋅dx , that
goes completely around a closed path, must be zero.  It
is not necessary to specify where the calculation starts.

Figure 8
If we take path b backwards, i.e. go from point (2) to
point (1), the  dxi  on path b are reversed and the
integral along path b changes sign.  If the line integral
from (1) to (2) does not depend upon the path, then the
line integral for any return trip must be the negative of
the integral for the trip out, and the sum of the two
integrals must be zero.
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AMPERE’S LAW
Figure (10), which is similar to Figure (28-14), is a
sketch of the magnetic field produced by a current in a
straight wire.  In this figure the current i is directed up
and out of the paper, and the magnetic field lines travel
in counter clockwise circles as shown.  We saw from
equation (28-18) that the strength of the magnetic field
is given by

  
B =

µ0i

2πr
(28-18)

In Figure (11) we have drawn a circular path of radius
r around the wire and broken the path into a series of
steps indicated by short vectors  d i.  We drew the stick
figure to emphasize the idea that this is really a path and
that  d i shows the length and direction of the i th step.

For each of the steps, calculate the dot product   Bi⋅d i
where  Bi is the magnetic field at that step, and then
add up the   Bi⋅d i for all the steps around the path to get

  Bi⋅d iΣ
all steps

around path

→ B⋅d
(13)

The result is the line integral of B around the closed
path.

Why bother calculating this line integral?  Let us put in
the value for  B  given by Equation (28-18) and see
why.  We happen to have chosen a path where each step

 d i is parallel to B at that point, so that

  Bi⋅d i = Bid i (14)

and Equation (13) becomes

  B⋅d = Bd (15)

In addition, our path has a constant radius r, so that
B  =  µ0i/2π r   is constant all around the path.  We can
take this constant outside the integral in Equation (15)
to get

  B⋅d = B d (16)

Next we note that  d   is just the sum of the lengths of
our steps around the circle; i.e., it is just the circumfer-
ence   2πr  of the circle, and we get

  B⋅d = B d = B × 2πr (17)

Finally substituting the value of B from Equation (28-
18) we get

  
B⋅d =

µ0i

2πr
× 2πr = µ0i (18)

Figure 10
Circular magnetic field of a wire.

iup

B

  B =
µ0i
2πr

Figure 11
Circular path of radius r around the wire.  As we
walk around the path, each step represents a
displacement  d .  To calculate the line integral

   B ⋅⋅d , we take the dot product of  d  with B at
each interval and add them up as we go around
the entire path.  In this case the result is simply
B(r) times the circumference    2ππ r  of the path.

  Bi⋅d iΣ
i

→ B⋅d = B r ×2πr

r

d  i
Bi

iup
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There are several points we want to make about Equa-
tion (18).  First we made the calculation easy by
choosing a circular path that was parallel to B all the
way around.  This allowed us to replace the dot product

  B⋅d  by a numerical product  Bd , pull the constant B
outside the integral, and get an answer almost by
inspection.  This should be reminiscent of our work
with Gauss’ law where we chose surfaces that made it
easy to solve the problem.

The second point is that we get an exceptionally simple
answer for the line integral of B around the wire,
namely

  
B⋅d = µ0i (18a)

The line integral depends only on the current i through
the path and not on the radius r of the circular path.

What about more general paths that go around the
wire?  To find out, we have to do a slightly harder
calculation, but the answer is interesting enough to
justify the effort.

In Figure (12) we have constructed a closed path made
up of three arc sections of lengths r1θ1,

 r2θ2, and r3θ3
connected by radial sections as shown.  These arcs are
sections of circles of radii r

1
, r

2
 and r

3
, respectively.  We

wish to calculate   B⋅d   for this path and see how the
answer compares with what we got for the circular
path.

The first thing to note as we go around our new path is
that in all the radial sections, B and  d  are perpendicu-
lar to each other, so that    B⋅d = 0.   The radial sections
do not contribute to our line integral and all we have to
do is add up the contributions from the three arc
segments.  These are easy to calculate because

  B⋅d = Bd   and B is constant over each arc, so that the
integral of   B⋅d  over an arc segment is just the value of
B times the length  rθ  of the arc.  We get

  
B⋅d

arc 1

= B1 r1θ1 =
µ0i

2πr1
r1θ1 =

µ0iθ1

2π

  
B⋅d

arc 2

= B2 r2θ2 =
µ0i

2πr2
r2θ2 =

µ0iθ2

2π

  
B⋅d

arc 3

= B3 r3θ3 =
µ0i

2πr3
r3θ3 =

µ0iθ3

2π

Adding the contribution from each arc segment we get
the line integral around the closed path

  
B⋅d =

µ0iθ1

2π
+

µ0iθ2

2π
+

µ0iθ3

2π

=
µ0i

2π
θ1 + θ2 + θ3

But  θ1 + θ2 + θ3   is the sum of the angles around the
circle, and is therefore equal to   2π.  Thus we get for the
path of Figure (12)

r θ2
2

r θ1
1

r θ3 3

θ1
θ2

θ3

B

B is perpendicular to d   here

Figure 12
A somewhat arbitrary path around the wire is made of
arc sections connected by radial sections.  Since B is
perpendicular to  d  in the radial sections, the radial
sections do not contribute to the    B ⋅⋅d  for this path.
In the arcs, the length of the arc increases with r, but B
decreases as 1/r, so that the contribution of the arc
does not depend upon how far out it is.  As a result the

   B ⋅⋅d  is the same for this path as for a circular path
centered on the wire.
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On the outer segment we are going in the same direc-
tion as B so that   B⋅d  is positive and we get

  
B⋅d

arc 1

= B1 r1θ =
µ0i

2πr1
r1θ =

µ0i

2π
θ

On the inner arc we are coming back around in a
direction opposite to B, the quantity   B⋅d  is negative,
and we get

  
B⋅d

arc 2

= –B2 r2θ =
–µ0i

2πr2
r2θ =

–µ0i

2π
θ

Adding up the two contributions from the two arcs, we
get

  
B⋅d

Path of
Figure 14

=
µ0iθ
2π

arc 1

+
–µ0iθ

2π
arc 2

= 0 (20)

For this closed path which does not go around the
current, we get   B⋅d  = 0.  This result is not changed
if we add more arcs and radial segments to the path.  As
long as the path does not go around the current, we get
zero for   B⋅d .

dθ

  
B⋅d =

µ0i

2π
2π = µ0i (19)

which is the same answer we got for the circular path.

The result in Equation (19) did not depend upon how
many line segments we used, because each arc contrib-
uted an angle θ, and if the path goes all the way around,
the angles always add up to  2π.  In Figure (13) we have
imitated a smooth path (the dotted line) by a path
consisting of many arc sections.  The more arcs we use
the closer the imitation.  We can come arbitrarily close
to the desired path using paths whose integral   B⋅d
is   µ0i.  In this sense we have proved that Equation (19)
applies to any closed path around the wire.

It is another story if the path does not go around the
wire.  In Figure (14) we have such a path made up of two
arc and two radial segments as shown.  As before, we
can ignore the radial segments because B and  d  are
perpendicular and   B⋅d = 0.

θ

B

r θ1

r θ2

Figure 14
In this example, where the path does not go around the
wire, the sections labeled  r1θθ  and   r2θθ  contribute equal
and opposite amounts to the line integral    B ⋅⋅d .  As a
result    B ⋅⋅d  is zero for this, or any path that does not go
around the wire.

Figure 13
We can approximate an arbitrary path (dotted line)
by a series of connected radial and arc sections.  The
smaller the angle   d θθ   marking the arc sections, the
better the approximation.  In calculating    B ⋅⋅d , the
radial sections do not count, and we can bring all the
arc sections back to a single circle centered on the
wire.  As a result,    B ⋅⋅d  does not depend upon the
shape of the path, as long as the path goes around
the wire.
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FT  =  qv × B (22)

where B is the effective field acting on the test particle,
then Equations (21) and (22) give

 
B = B1 + B2 + B3 (23)

The fact that magnetic fields add vectorially is a
consequence of the vector addition of forces and our
use of the magnetic force law to define B.

With Equation (23) we can now calculate    B⋅d  for
the field of several wires.   Let us draw a path around
two of the wires, as shown in Figure (15b). For this
path, we get

  B⋅d
Closed path
of Fig. 29–15

= B1 + B2 + B3 ⋅ d

= B1⋅d + B2⋅d + B3⋅d
(24)

Since the closed path goes around currents i1 and i2, we
get from Equation (19)

Several Wires
It is relatively straightforward to generalize our results
to the case where we have several wires as in Figures
(15 a,b).  Here we have three currents  i1, i2, and i3 each
alone producing a magnetic field  B1, B2 and B3

respectively.

The first step is to show that the net field B at any point
is the vector sum of the fields of the individual wires.
We can do this by considering the force on a test particle
of charge q moving with a velocity v as shown in Figure
(15a).  Our earlier results tell us that the current i1 exerts
a force

F1  =  qv × B1

Similarly i2 and i3 exert forces

F2  =  qv × B2

F3  =  qv × B3

Newton’s second law required us to take the vector sum
of the individual forces to get the total force F acting on
an object

  F = F1 + F2 + F3

= qv × B1 + B2 + B3
(21)

If we write this total force in the form

Figure 15a
A charge q moving in the vicinity of three currents
i1 ,  i2  and i3 .  If the magnetic field B at the charge
is the vector sum of the fields  B1,  B2 and  B3 of the
three wires, then the net magnetic force  FB on q is
given by

   FB = qv ×× B = qv ×× B1 + B2 + B3

= qv ×× B1 + qv ×× B2 + qv ×× B3

= FB1 + FB2 + FB3

and we get the desired result that the net force on q
is the vector sum of the forces exerted by each wire.

q

v

i3

i1 i2

i3

i1 i2

closed path

Figure 15b
Calculating    B ⋅⋅d  for a path that
goes around two of the wires.
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Field of a Straight Wire
Our first application of Ampere’s law will be to calcu-
late the magnetic field of a straight wire.  We will use
this trivial example to illustrate the steps used in
applying Ampere’s law.

First we sketch the situation as in Figure (16), and then
write down Ampere’s law to remind us of the law we
are using

  B⋅d = µ0ienclosed

Next we choose a closed path that makes the line
integral as simple as possible.  Generally the path
should either be along B so that    B⋅d = Bd , or
perpendicular so that   B⋅d = 0.  The circular path of
Figure (16) gives   B⋅d = Bd  with B constant, thus

  B⋅d = Bd = B d = B * 2πr = µ0i

The result is

 B  =  
µ0i
2π r

 

which we expected.  When you memorize Ampere’s
law, memorize an example like this to go with it.

  B1⋅d = µ0i1

  B2⋅d = µ0i2

Since the path misses i3, we get

  B3⋅d = 0

and Equation (24) gives

  
B⋅d

Closed path
of Fig. 15

= µ0 i1 + i2 = µ0 ×
current
enclosed
by path

(25)

Equation (25) tells us that   B⋅d   around a closed path
is equal to µ0 times the total current i  =  i1+ i

2
 encircled

by the path.  This has the flavor of Gauss’ law which
said that the total flux or surface integral of E  out
through a closed surface was 1/ε0 times the total charge
Qin inside the surface.  Just as charge outside the closed
surface did not contribute to the surface integral of E,
currents outside the closed path do not contribute to the
line integral of B.

We derived Equation (25) for the case that all our
currents were in parallel straight wires.  It turns out that
it does not matter if the wires are straight, bent, or form
a hideous tangle.  As a general rule, if we construct a
closed path, then the line integral of B around the closed
path is µ0 times the net current  ienclosed flowing
through the path

    

B⋅d
any closed
path

= µ0ienclosed
Ampere's

Law

(26)

This extremely powerful and general theorem is known
as Ampere’s law.

So far in this chapter we have focused on mathematical
concepts.  Let us now work out some practical applica-
tions of Ampere’s law to get a feeling for how the law
is used.

r

circular path
of radius r

iup

B

Figure 16
Using Ampere's law to calculate the magnetic field of a
wire.  We have    B ⋅⋅d = B × 2ππ r  around the path.
Thus Ampere's law    B ⋅⋅d = µµ0i  gives    B = µµ0i/2ππ r .
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Exercise 3
Show that a uniform magnetic field B cannot drop
abruptly to zero as one moves at right angles to it, as
suggested by the horizontal arrow through point a in
Figure (19).  (Hint: Apply Ampere's law to the rectangu-
lar path shown by the dashed lines.)   In actual magnets
"fringing" of the lines of B always occurs, which means
that B approaches zero gradually.

Figure 19

Exercise 4
Figure (20) shows a cross section of a long cylindrical
conductor of radius a, carrying a uniformly distributed
current i.  Assume  a = 2.0 cm, i = 100A, and sketch a
plot of B(r) over the range 0 < r < 4 cm.

Figure 20

(The above are some choice problems from Halliday
and Resnick.)

N

S

B

a

r

a

i      = 100 ampstotal

Exercise 1
Each of the indicated eight conductors in Figure (17)
carries 2.0A of current into (dark) or out of (white) the
page.  Two paths are indicated for the line integral

  B ⋅ d . What is the value of the integral for (a) the
dotted path?  (b) the dashed path?

Figure 17

Exercise 2
Eight wires cut the page perpendicularly at the points
shown in Figure (18).  A wire labeled with the integer k
(k = 1, 2..., 8) bears the current  ki0.  For those with odd
k, the current is up, out of the page; for those with even
k it is down, into the page.  Evaluate   B ⋅ d  along the
closed path shown, in the direction shown.

Figure 18

1

2

3
4

5

6
8

7
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Exercise 5
Figure (21) shows a cross section of a hollow cylindrical
conductor of radii a and b, carrying a uniformly distrib-
uted current i.

a)  Show that B(r) for the range b < r < a is given by

  
B(r) =

µ0i
2π r

r2 – b2

a2 – b2

b)  Test this formula for the special cases of r = a, r = b,
and r = 0.

c)  Assume a = 2.0 cm, b = 1.8 cm, and i = 100 A. What
is the value of B at r = a?  (Give your answer in tesla and
gauss.)

Figure 22

r

a

b
r

a

b c

Figure 21
coaxial  cable

Exercise 6
Figure (22) shows a cross section of a long conductor
of a type called a coaxial cable.  Its radii (a, b, c) are
shown in the figure.  Equal but opposite currents i exist
in the two conductors.  Derive expressions for B(r) in the
ranges

a)  r < c,

b)  c < r < b,

c)  b < r < a, and

d)  r > a.

e)  Test these expressions for all the special cases that
occur to you.

Exercise 6 is a model of a coaxial cable, where the
current goes one way on the inner conductor and back
the other way on the outside shield. If we draw any
circuit outside the cable, there is no net current through
the circuit, thus there is no magnetic field outside. As
a  result, coaxial cables confine all magnetic fields to
the inside of the cable. This is important in many
electronics applications where you do not want fields
to radiate out from your wires. The cables we use in the
lab, the ones with the so called BNC connectors, are
coaxial cables, as are the cables that carry cable televi-
sion.
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FIELD OF A SOLENOID
As with Gauss’ law, Ampere’s law is most useful when
we already know the field structure and wish to calcu-
late the strength of the field.  The classic example to
which ampere’s law is applied is the calculation of the
magnetic field of a long straight solenoid.

A long solenoid is a coil of wire in which the length L
of the coil is considerably larger than the diameter d of
the individual turns.  The shape of the field produced
when a current i flows through the coil was illustrated
in Figure (28-21) and is sketched here in Figure (23).
Iron filings gave us the shape of the field and Ampere’s
law will tell us the strength.

The important and useful feature of a solenoid is that we
have a nearly uniform magnetic field inside the coil and
nearly zero field outside.  The longer the solenoid,
relative to the diameter d, the more uniform the field B
inside and the more nearly it is zero outside.

Right Hand Rule for Solenoids
The direction of the field inside the solenoid is a bit
tricky to figure out.  As shown  in Figure (24), up near
the wires and in between the turns, the field goes in a
circle around the wire just as it does for a straight wire.
As we go out from the wire the circular patterns merge
to create the uniform field in the center of the solenoid.

We see, from Figure (24), that if the current goes
around the coil in such a way that the current is up out
of the paper on the right side and down into the paper
on the left, then the field close to the wires will go in
counterclockwise circles on the right and clockwise
circles on the left.  For both these sets of circles, the field
inside the coil points down.  As a result the uniform
field inside the coil is down as shown.

There is a simple way to remember this result without
having to look at the field close to the wires.  Curl the
fingers of your right hand in the direction of the flow of
the current i in the solenoid, and your thumb will point
in the direction of the magnetic field inside the sole-
noid.  We will call this the right hand rule for solenoids.d

L

i

B

h

nh turns
enclosed

N turns
in coil

n = N/L is
the number
of turns per
unit length

(1)

i up

Figure 23
Calculating the magnetic field of a long solenoid.
Around the path starting at point (1) we have

   B ⋅⋅d = 0 + Bh + 0 + 0 .  The amount of current
enclosed by the path is   itot = (nh)i  where n is the number
of turns per unit length.  Thus Ampere's law

   B ⋅⋅ d = µµ0itot  gives    Bh = µµ0nhi  or    B = µµ0ni .

Figure 24
If you know the direction of the current in the wire,
you can determine the direction of the magnetic field
by looking very close to the wire where the field goes
around the wire.  You get the same answer if you curl
the fingers of your right hand around in the direction
the current in the coil is flowing.  Your thumb then
points in the direction of the field.

B

idown iup
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Evaluation of the Line Integral
Figure (25) is a detail showing the path we are going to
use to evaluate   B⋅d  for the solenoid.  This path goes
down the solenoid in the direction of B (side 1), and out
through the coil (side 2), up where B = 0 (side 3) and
back into the coil (side 4).

We can write   B⋅d  as the sum of four terms for the
four sides

  
B⋅d = B⋅d

side 1

+ B⋅d
side 2

+ B⋅d
side 3

+ B⋅d
side 4

On sides 2 and 4, when the path is inside the coil, B and
 d   are perpendicular and we get   B⋅d = 0.  Outside

the coil it is still 0 because there is no field there.
Likewise   B⋅d = 0 for side 3 because there is no field
there.  The only contribution we get is from side 1 inside
the coil.  If h is the height of our path, then

  B⋅d = B⋅d
side 1

= Bh (27)

Calculation of  ienclosed
From Figure (25) we see that we get a current i up
through our path each time another turn comes up
through the path.  On the left side of the coil the current
goes down into the paper, but these downward currents
lie outside our path and therefore are not included in our
evaluation of   ienclosed.  Only the positive upward
currents count, and  ienclosed 

is simply i times the
number of turns that go up through the path.

To calculate the number of turns in a height h of the coil,
we note that if the coil has a length L and a total of N
turns, then the number of turns per unit length n is given
by

  number of turns
per unit length ≡ n =

N
L

(28)

and in a height h there must be nh turns

 number of turns
in a height h

= nh (29)

With nh turns, each carrying a current i, going up
through our path, we see that  ienclosed must be

ienclosed  =  inh (30)

Using Ampere's law
We are now ready to apply Ampere’s law to evaluate
the strength B of the field inside the solenoid.  Using
Equation (27) for   B⋅d , and Equation (31) for

 ienclosed,
 
we get

  B⋅d = µ0ienclosed

Bh  =  µ0nih

   B = µ0ni
magnetic field
inside a solenoid

(31)

The uniform magnetic field inside a long solenoid is
proportional to the current i in the solenoid, and the
number of turns per unit length, n.

h

(4)

(3)

(2)

(1)

iup

B

thumb pointing in
same direction as
current through path

path for    B•d

Figure 25
Right hand rule for using Ampere's law.  We define the
positive direction around the path as the direction you
curl the fingers of your right hand when the thumb is
pointing in the direction of the current through the
path.  (As you see, we can come up with a right hand
rule for almost anything.)
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Exercise 7
We will so often be using solenoids later in the course,
that you should be able to derive the formula   B = µ0ni,
starting from Ampere’s law without looking at notes.
This is a good time to practice.  Take a blank sheet of
paper, sketch a solenoid of length L with N turns.  Then
close the text and any notes, and derive the formula for
B.

We have mentioned that equations like
  B1 ⋅ d = µ0ienclosed  are meaningless hen scratching

until you know how to use them.  The best way to do that
is learn worked examples along with the equation.  Two
good examples for Ampere’s law are to be able to
calculate the magnetic field inside a wire (Exercise 4),
and to be able to derive the magnetic field inside a
solenoid.  If you can do these two derivations without
looking at notes, you should have a fairly good grasp of
the law.

One More Right Hand Rule
If we really want to be careful about minus signs (and
it is not always necessary), we have to say how the sign
of  ienclosed 

 
is evaluated in Figure (25).  If, as in Figure

(26) we reversed the direction of our path, then on side
(1)    B⋅d   is negative because our path is going in the
opposite direction to B. Thus for this path the complete
integral   B⋅d  is negative, and somehow our  ienclosed
must also be negative, so that we get the same answer
we got for Figure (25).

If we curl the fingers of our right hand in the direction
that we go around the path, then in Figure (25) our
thumb points up parallel to the current through the path,
and in Figure (26) our thumb points down, opposite to
the current.  If we define the direction indicated by our
right hand thumb as the positive direction through the
path, as shown in Figure (27), then the current is going
in a positive direction in Figure (25) but in a negative
direction in Figure (26).  This gives us a negative

 ienclosed 
for Figure (26) which goes along with the

minus sign we got in the evaluation of   B⋅d .

By now you should be getting the idea of how we define
directions in magnetic formula.  Always use your right
hand.  After a while you get so used to using your right
hand that you do not have to remember the individual
right hand rules.

positive direction
through paththumb pointing 

down into
paper

h

(4)

(3)

(2)

(1)

iup

B
Figure 26
If we go around the wrong way, we just get two minus
signs and all the results are the same.  Here we went
around the path so that our thumb pointed opposite to
the direction of the current through the path.  As a
result the magnetic field in the solenoid points opposite
to the direction of the path in the solenoid.

Figure 27
In general, we use the right hand convention to
associate a positive direction around a path to a
positive direction through a path.
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The Toroid
If we take a long solenoid, bend it in a circle and fit the
ends together, we get what is called a toroid shown in
Figure (28).  The great advantage of a toroid is that there
are no end effects.  In the straight solenoid the magnetic
field at the ends fanned out into space as seen in our iron
filing map of Figure (28-23).  With the toroid there are
no ends.  The field is completely confined to the region
inside the toroid and there is essentially no field outside.
For this reason a toroid is an ideal magnetic field
storage device.

It is easy to use Ampere’s law to calculate the magnetic
field inside the toroid.  In Figure (28) we have drawn a
path of radius r inside the toroid.  Going around this path
in the same direction as B, we immediately get

  
B⋅d = B×2πr (32)

because B is constant in magnitude and parallel to  d .

If there are N turns of wire in the toroid, and the wire
carries a current i, then all N turns come up through the
path on the inside of the solenoid, and  ienclosed  

is given
by

 ienclosed = Ni (33)

Using Equations (32) and (33) in Ampere’s law gives

  B⋅d = µ0ienclosed

  B × 2πr = µ0Ni

    
B =

µ0Ni

2πr
magnetic field
of a toroid

(34)

Note that   N 2πrN 2πr is the number of turns per unit length,
n, so that Equation (34) can be written B  =  µ0ni
which is the solenoid formula of Equation (31).  To a
good approximation the field in a toroid is the same as
in the center of a straight solenoid.

The derivation of Equation (34) is so easy and such a
good illustration of the use of Ampere’s law that it
should be remembered as an example of Ampere’s
law.

r

B

i

  B ⋅⋅ d = B * 2ππr

µµ0itot = µµ0Ni
⇒⇒ B =

µµ0Ni
2ππr

Figure 28
When the solenoid is bent into the shape of a toroid, there are no end effects.  The
magnetic field is confined to the region inside the toroid, and Ampere's law is easily
applied.  (You should remember this as an example of the use of Ampere's law.)
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Exercise 8
Figure 29 shows a 400-turn solenoid that is  47.5 cm long
and has a diameter of 2.54 cm. (The 10 turns of wire
wrapped around the center are for a later experiment.)
Calculate the magnitude of the magnetic field B near the
center of the solenoid when the wire carries a current of
3 amperes. (Give your answer in tesla and gauss.)

Exercise 9

Figure 30 shows the toroidal solenoid that we use in
several experiments later on. The coil has 696 turns
wound on a 2.6 cm diameter plastic rod bent into a circle
of radius 21.5 cm. What is the strength of the magnetic
field inside the coil when a current of 1 amp is flowing
through the wire? (Give your answer in tesla and gauss.)

Figure 30
A 696 turn toroidal solenoid  wound on
a 2.6 cm diameter plastic rod bent into
a circle of radius 21.5 cm.

Figure 29
A 400 turn straight solenoid 47.5 cm long,
wound on a 2.54 cm diameter rod.



FARADAY'S LAW

In this chapter we will discuss one of the more remark-
able, and in terms of practical impact, important laws
of physics – Faraday’s law.  This law explains the
operation of the air cart speed detector we have used
in air track experiments, the operation of AC voltage
generators that supply most of the electrical power in
the world, and transformers and inductors which are
important components in the electronic circuits in
radio and television sets.

In one form, Faraday’s law deals with the line integral
   E⋅ d  of an electric field around a closed path.  As an

introduction we will begin with a discussion of this line
integral for electric fields produced by static charges.
(Nothing very interesting happens there.)  Then we will
analyze an experiment that is similar to our air cart
speed detector to see why we get a voltage proportional
to the speed of the air cart.  Applying the principle of
relativity to our speed detector, i.e., riding along with
the air cart gives us an entirely new picture of the
behavior of electric fields, a behavior that is best
expressed in terms of the line integral    E⋅ d .  After a
discussion of this behavior, we will go through some
practical applications of Faraday’s law.

Chapter 30
Faraday's Law
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ELECTRIC FIELD
OF STATIC CHARGES
In this somewhat formal section, we show that

  E⋅d = 0  for the electric field of static charges.  With
this as a background, we are in a better position to
appreciate an experiment in which   E⋅d   is not zero.

In Figure (1), we have sketched a closed path through
the electric field E of a point charge, and wish to
calculate the line integral   E⋅d  for this path.  To
simplify the calculation, we have made the path out of
arc and radial sections.  But as in our discussion of
Figure 29-13, we can get arbitrarily close to any path
using arc and radial sections, thus what we learn from
the path of Figure (1) should apply to a general path.

Because the electric field is radial, E  is perpendicular
to  d  and   E⋅d  is zero on the arc sections.  On the radial
sections, for every step out where E⋅ dr  is positive
there is an exactly corresponding step back where E⋅ dr
is negative.  Because we come back to the starting
point, we take the same steps back as we took out, all
the radial   E⋅d r cancel and we are left with   E⋅d = 0
for the electric field of a point charge.

Now consider the distribution of fixed point charges
shown in Figure (2).  Let  E1 be the field of Q1, E2 of Q2,
etc.  Because an electric field is the force on a unit test
charge, and because forces add as vectors, the total
electric field E at any point is the vector sum of the
individual fields at that point

 E = E1 + E2 + E3 + E4 + E5
(1)

We can now use Equation (1) to calculate   E⋅d
around the closed path in Figure (2).  The result is

  
E⋅d = E1 + E2 + ... + E5 ⋅ d

= E1⋅d + + E5⋅d
(2)

But   E1⋅d = 0  since E1 is the field of a point charge,
and the same is true for E2  . . .  E5.  Thus the right side
of Equation (2) is zero and we have

  
E⋅d = 0

for the field E of
any distribution of
static charges

(3)

Equation (3) applies to any distribution of static charges,
a point charge, a line charge, and static charges on
conductors and in capacitors.

d

E

Q1

Q2

Q
4Q

3

Q
5

closed 
path

E

Figure 1
Closed path through the electric field of a
point charge.  The product    E ⋅⋅d  is zero
on the arc sections, and the path goes out
just as much as it comes in on the radial
sections.  As a result    E ⋅⋅d = 0  when we
integrate around the entire path.

Figure 2
Closed path in a region of a distribution of point
charge.  Since    E ⋅⋅d = 0  is zero for the field of
each point charge alone, it must also be zero for
the total field   E = E1 + E2 + E3 + E4 + E5
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A MAGNETIC FORCE EXPERIMENT
Figures (3a,b) are two views of an experiment designed
to test for the magnetic force on the conduction elec-
trons in a moving copper wire.  We have a wire loop
with a gap and the loop is being pulled out of a magnet.
At this instant only the end of the loop, the end opposite
the gap, is in the magnetic field.  It will soon leave the
field since it is being pulled out at a velocity v as shown.

In our earlier discussions we saw that a copper atom has
two loosely bound conduction electrons that are free to
flow from one atom to another in a copper wire.  These
conduction electrons form a negatively charged elec-
tric fluid that flows in a wire much like water in a pipe.

Because of the gap we inserted in the wire loop of
Figure (3), the conduction electrons in this loop cannot
flow.  If we move the loop, the conduction electrons
must move with the wire.  That means that the conduc-
tion electrons have a velocity v to the right as shown,
perpendicular to the magnetic field which is directed
into the page.  Thus we expect that there should be a
magnetic force

  Fmag = – ev × B (4)

acting on the electrons.  This force will be directed
down as shown in Figure (3b).

Since the gap in the loop does not allow the conduction
electrons to flow along the wire, how are we going to
detect the magnetic force on them?  There is no net
force on the wire because the magnetic field exerts an
equal and opposite force on the positive copper ions in
the wire.

Our conjecture is that this magnetic force on the
conduction electrons would act much like the gravita-
tional force on the water molecules in a static column
of water.  The pressure at the bottom of the column is
higher than the pressure at the top due to the gravita-
tional force.  Perhaps the pressure of the negatively

v
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directed into paper
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Figure 3b
When you pull a wire loop through a magnetic field, the electrons, moving at a velocity v with the wire, feel
a magnetic force   FB = –e v ×× B if they are in the field.  This force raises the pressure of the electron fluid
on the bottom of the loop and reduces it on the top, creating a voltage V across the gap.  The arrow next to
the voltmeter indicates a voltage rise for positive charge, which is a voltage drop for negative charge.

Figure 3a
Wire loop moving through magnetic
field of iron magnet.
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charged electric fluid is higher at the bottom of the loop
than the top due to the magnetic force.

To find out if this is true, we use an electrical pressure
gauge, which  is a voltmeter.  A correctly designed
voltmeter measures an electrical pressure drop without
allowing any current to flow.  Thus we can place the
voltmeter across the gap and still not let the conduction
electrons flow in the loop.

If our conjecture is right, we should see a voltage
reading while the magnetic force is acting.  Explicitly
there should be a voltage reading while the wire is
moving and one end of the loop is in the magnetic field
as shown.  The voltage should go to zero as soon as the
wire leaves the magnetic field.  If we reverse the
direction of motion of the loop, the velocity v of the
conduction electrons is reversed, the magnetic force
-ev × B should also be reversed, and thus the sign of the
voltage on the voltmeter should reverse.  If we oscillate
the wire back and forth, keeping one end in the mag-
netic field, we should get an oscillating voltage reading
on the meter.

The wonderful thing about this experiment is that all
these predictions work precisely as described.  There
are further simple tests like moving the loop faster to get
a stronger magnetic force and therefore a bigger volt-
age reading.  Or stopping the wire in the middle of the
magnetic field and getting no voltage reading.  They all
work!

The next step is to calculate the magnitude of the
voltage reading we expect to see.  As you follow this
calculation, do not worry about the sign of the voltage
V because many sign conventions (right hand rules,
positive charge, etc.) are involved.  Instead concentrate
on the basic physical ideas.   (In the laboratory, the sign
of the voltage V you read on a voltmeter depends on
how you attached the leads of the voltmeter to the
apparatus.  If you wish to change the sign of the voltage
reading, you can reverse the leads.)

Since voltage has the dimensions of the potential
energy of a unit test charge, the magnitude of the
voltage in Figure (3) should be the strength of the force
on a unit test charge,   – e v × B with  – e  replaced by
1, times the height h over which the force acts.  This
height h is the height of the magnetic field region in
Figure (3).  Since v and B are perpendicular,    v×B = vB
and we expect the voltage V to be given by

  
V =

force on unit
test charge

×
distance over
which force acts

   
V = vB × h

voltage V on loop
moving at speed
v through field B

(5)

Figure 3c
Pulling the coil out of the magnet
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AIR CART SPEED DETECTOR
The air cart velocity detector we have previously
discussed, provides a direct verification of Equation
(5).  The only significant difference between the air cart
speed detector and the loop in Figure (3) is that the
speed detector coil has a number of turns (usually 10).
In order to see the effect of having more than one turn
in the coil, we show a two turn coil being pulled out of
a magnetic field in Figure (4).

Figure (4) is beginning to look like a plumbing diagram
for a house.  To analyze the diagram, let us start at
Position (1) at the top of the voltmeter and follow the
wire all the way around until we get to Position (6) at
the bottom end of the voltmeter.  When we get to
Position (2), we enter a region  from (2) to (3) where the
magnetic force is increasing the electron fluid pressure
by an amount vBh, as in Figure (3).

Now instead of going directly to the voltmeter as in
Figure (3), we go around until we get to Position (4)

where we enter another region, from (4) to (5), where
the magnetic force is increasing the fluid pressure.  We
get another increase of vBh, and then go to Position (6)
at the bottom of the voltmeter.  In Figure (4) we have
two voltage rises as we go around the two loops, and we
should get twice the reading on the voltmeter.

  
V = 2vBh

voltage reading
for 2 loops

It is an easy abstraction to see that if our coil had N turns,
the voltage rise would be N times as great, or

  
V = NvBh

voltage on an N turn
coilbeingpulledout
of a magneticfield

(6)

Adding more turns is an easy way to increase or
amplify the voltage.
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Figure 4
A two turn loop being pulled through a magnetic field.  With
two turns we have twice as much force pushing the electric
fluid toward the bottom of the gap giving twice the voltage V.
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The setup for the air cart speed detector is shown in
Figure (6).  A multi turn coil, etched on a circuit board
as shown in Figure (5), is mounted as a sail on top of an
air cart.  Suspended over the air cart are two angle iron
bars with magnets set across the top as shown.  This
produces a reasonably uniform magnetic field that goes
across from one bar to the other as seen in the end view
of Figure (6).

In Figure (7), we show the experiment of letting the cart
travel at constant speed through the velocity detector.
In the initial position (a), the coil has not yet reached the
magnetic field and the voltage on the coil is zero, as
indicated in the voltage curve at the bottom of the
figure.

The situation most closely corresponding to Figure (4)
is position (d) where the coil is leaving the magnet.
According to Equation (6), the voltage at this point
should be given by V  =  NvBh, where N = 10 for our
10 turn coil, v is the speed of the carts, B is the strength
of the magnetic field between the angle iron bars, and
h is the average height of the coils.  (Since the coils are
drawn on a circuit board the outer loop has the greatest
height h and the inner loop the least.)  The first time you
use this apparatus, you can directly measure V, N, v and
h and use Equation (6) to determine the magnetic field
strength B.  After that, you know the constants N, B and
h, and Equation (6) written as

  
v = V ×

1
NBh

(6a)

gives you the cart’s speed in terms of the measured
voltage V.  Equation (6a) explains why the apparatus
acts as a speed detector.

Let us look at the voltage readings for the other cart
positions.  The zero readings at Positions (a) and (e) are
easily understood.  None of the coil is in the magnetic
field and therefore there is no magnetic force or volt-
age.

Figure 6
The Faraday velocity detector.  The apparatus is reasonably easy to build.  We first constructed a 10
turn coil by etching the turns of the coil on a circuit board.  This was much better than winding a coil,
for a wound coil tends to have wrinkles that produce bumps in the data.  Light electrical leads, not
shown, go directly from the coil to the oscilloscope.  The coil is mounted on top of an air cart and
moves through a magnetic field produced by two pieces of angle iron with magnets on top as shown.
Essentially we have reproduced the setup shown in Figures 3 and 4, but with the coil mounted on an
air cart.  As long as the coil remains with one end in the magnetic field and the other outside, as shown
in (b), there will be a voltage on the leads to the coil that is proportional to the velocity of the cart.

Figure 5
The multi turn coil that rides on the air cart.
(Only 5 turns are shown.)
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magnets

(a)

(b)

(c)

(d)

(e)

v

(a) (b)

(c)
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voltage
on coil

position of cart

V
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V = 0

V = 0

V = 0

v

v

v

v

Figure 7
Voltage on the coil as it moves at
constant speed through the magnetic
field.  At position (a ) the coil has not yet
reached the field and there is no voltage.
At position (b) one end of the cart is in
the field, the other outside, and we get a
voltage proportional to the speed of the
cart.  At (c) there is no voltage because
both ends of the cart are in the magnetic
field and the magnetic force on the two
ends cancel.  (There is no change of
magnetic flux at this point.)  At (d), the
other end alone is inside the field,  and
we get the opposite voltage from the one
we had at (b).  (Due to the thickness of
the coil and fringing of the magnetic
field, the voltage rises and falls will be
somewhat rounded.)

Figure 6c
Velocity detector apparatus. The magnetic
field goes across, between the two pieces of
angle iron. The coil, mounted on a circuit
board, is entering the magnetic field.
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We need a closer look to understand the changes in
voltage, when all or part of the coil is inside the
magnetic field.  This situation, for a one turn coil, is
illustrated in Figure (8).  For easier interpretation we
have moved the gap and voltmeter to the bottom of the
coil as shown.  It turns out that it does not matter where
the gap is located, we get the same voltage reading.  We
have also labeled the figures (b), (c), and (d) to corre-
spond to the positions of the air cart in Figure (7).

In Figure (8c) where both ends of the coil are in the
magnetic field, the conduction electrons are being
pulled down in both ends and the fluid is balanced.  The
electron fluid would not flow in either direction if the
gap were closed, thus there is no pressure across the gap
and no voltage reading.  In contrast, in Figure (8d)
where only the left end of the coil is in the magnetic
field, the magnetic force on the left side would cause the
conduction electrons to flow counterclockwise around
the loop if it were not for the gap.  There must be an
electric pressure or voltage drop across the gap to
prevent the counterclockwise flow.  This voltage drop
is what we measure by the voltmeter.

In Figure (8b), where the coil is entering the magnetic
field, the magnetic force on the right side of the coil
would try to cause a clockwise flow of the conduction
electrons.  We should get a pressure or voltage opposite
to Figure (8d) where the coil is leaving.  This reversal
in voltage is seen in the air cart experiment of Figure
(7), as the cart travels from (b) to (d).

Note that in Figure (8), where the horizontal sections of
the coil are also in the magnetic field, the magnetic
force is across rather than along the wire in these
sections.  This is like the gravitational force on the fluid
in a horizontal section of pipe.  It does not produce any
pressure drops.
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Figure 8
When the coil is completely in the magnetic field, the
magnetic force on the electrons in the left hand leg (1)
is balanced by the force on the electrons in the right
hand leg (2), and there is no net pressure or voltage
across the gap.  When the coil is part way out, there is
a voltage across the gap which balances the magnetic
force on the electrons.  The sign of the voltage depends
upon which leg is in the magnetic field.
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A RELATIVITY EXPERIMENT
Now that we have seen, from Figure (7), extensive
experimental evidence for the magnetic force on the
conduction electrons in a wire, let us go back to Figure
(3) where we first considered these forces, and slightly
modify the experiment.  Instead of pulling the coil out
of the magnet, let us pull the magnet away from the coil
as shown in Figure (9b).

In Figure (9a) we have redrawn Figure (3), and added
a stick figure to represent a student who happens to be
walking by the apparatus at the same speed that we are
pulling the coil out of the magnet.  To this moving
observer, the coil is at rest and she sees the magnet
moving to the left as shown in (9b).  In other words,
pulling the magnet away from the coil is precisely the
same experiment as pulling the coil from the magnet,
except it is viewed by a moving observer.

The problem that the moving observer faces in Figure
(9b) is that, to her, the electrons in the coil are at rest.  For
her the electron speed is v = 0 and the magnetic force

 FB, given by

  FB = –e v × B = 0 for Figure 9b (7)

is zero!  Without a magnetic force to create the pressure
in the electrical fluid in the wire, she might predict that
there would be no voltage reading in the voltmeter.

But there is a voltage reading on the voltmeter!  We
have used this voltage to build our air cart velocity
detector.  If the voltmeter had a digital readout, for
example, then it is clear that everyone would read the
same number no matter how they were moving, whether
they were like us moving with the magnet (9a), or like
her moving with the coil (9b).  In other words, she has
to find some way to explain the voltage reading that she
must see.

The answer she needs lies in the Lorentz force law that
we discussed in Chapter 28.  This law tells us the total
electromagnetic force on a charge q due to either
electric or magnetic fields, or both.  We wrote the law
in the form

  F = qE + qv × B (28-20)

where E  and  B  are the electric and magnetic fields
acting on the charge.

magnetic
force
F  = (– e) v X BB

v

electrons in 
wire at rest;
no magnetic
force

(a) moving coil, magnets at rest
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(b) moving magnet, coil at rest
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directed into paper

Figure 9
The only difference between (a) and (b) is the point
of view of the observer.  In (a) we see a magnetic
force    FB = –e v × B  because the electrons are
moving at a speed v through a magnetic field B .
To the observer in (b), the magnet is moving, not
the electrons.  Since the electrons are at rest, there
is no magnetic force on them.  Yet the voltmeter
reading is the same from both points of view.
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Let us propose that the Lorentz force law is generally
correct even if we change coordinate systems.  In
Figure (9a) where we explained everything in terms of
a magnetic force on the conduction electrons, there was
apparently no electric field and the Lorentz force law
gave

   F = qE + qv × B

= – e v × B
in Figure9a,

E = 0
(8a)

In Figure (9b), where  v = 0, we have

   F = qE + qv × B

= –e E
in Figure9b,

v = 0
(8b)

In other words, we will assume that the magnetic force
of Figure (9a) has become an electric force in Figure
(9b).  Equating the two forces gives

   
E

That should be
in Figure 9b

= v × B
From

Figure 9a
(9)

In Figure (9c) we have redrawn Figure (9b) showing an
electric field causing the force on the electrons. Be-
cause the electrons have a negative charge, the electric
field must point up in order to cause a downward force.

That the magnetic force of Figure (9a) becomes an
electric force in Figure (9c) should  not be a completely
surprising result.  In our derivation of the magnetic
force law, we also saw that an electric force from one
point of view was a magnetic force from another point
of view.  The Lorentz force law, which includes both
electric and magnetic forces, has the great advantage
that it gives the correct electromagnetic force from any
point of view.

Exercise 1

Equation (9) equates E in Figure (9c) with   v × B in Figure
(9a).  Show that E  and   v × Bpoint in the same direction.

electrons in 
wire at rest
feel an
electric force

(c) moving magnet, coil at rest
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X X X X X
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v

v

upward electric field E
causes downward force
on electrons

Figure 9c
From the point of view that the coil is at rest, the
downward force on the electrons in the coil must be
produced by an upward directed electric field.
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FARADAY'S LAW
An experiment whose results may be surprising, is
shown in Figure (10).  Here we have a magnetic field
produced by an electromagnet so that we can turn B on
and off. We have a wire loop that is large enough to
surround but not lie in the magnetic field, so that  B = 0
all along the wire.  Again we have a gap and a voltmeter
to measure any forces that might be exerted on the
conduction electrons in the wire.

We have seen that if we pull the wire out of the magnet,
Figure (9a), we will get a voltage reading while the loop
is leaving the magnetic field.  We have also seen, Figure
(9c), that we get a voltage reading if the magnetic field
is pulled out of the loop.  In both cases we started with
a magnetic field through the loop, ended up with no
magnetic field through the loop, and got a reading on
the voltmeter while the amount of magnetic field
through the loop was decreasing.

Now what we are going to do in Figure (10) is simply
shut off the electromagnet.  Initially we have a mag-
netic field through the loop, finally no field through the
loop.  It may or may not be a surprise, but when we shut
off the magnetic field, we also get a voltage reading.
We get a voltage reading if we pull the loop out of the
field, the field out of the loop, or shut off the field.  We
are seeing that we get a voltage reading whenever we
change the amount of magnetic field, the flux of
magnetic field, through the loop.

Magnetic Flux
In our discussion of velocity fields and electric fields,
we used the concept of the flux of a field.  For the
velocity field, the flux   Φv of water was the volume of
water flowing per second past some perpendicular area

  A⊥.  For a uniform stream moving at a speed v, the flux
was   Φv = vA⊥.  For the electric field, the formula for
flux was   ΦE = EA⊥.

In Figures (9 and 10), we have a magnetic field that
"flows" through a wire loop.  Following the same
convention that we used for velocity and electric fields,
we will define the magnetic flux   ΦB as the strength of
the field B times the perpendicular area   A⊥ through
which the field is flowing

  ΦB = BA⊥
Definition of
magnetic flux

(10)

In both figures (9) and (10), the flux   ΦB through the
wire loop is decreasing.  In Figure (9),   ΦB decreases
because the perpendicular area    A⊥ is decreasing as the
loop and the magnet move apart.  In Figure (10), the
flux   ΦB is decreasing because B is being shut off.  The
important observation is that whenever the flux    ΦB
through the loop decreases, whatever the reason for the
change may be, we get a voltage reading V on the
voltmeter.

Figure 10
Here we have a large coil that lies completely outside
the magnetic field.  Thus there is no magnetic force on
any of the electrons in the coil wire.  Yet when we turn
the magnet on or off, we get a reading in the volt meter.

coil at rest
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magnetic field
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One Form of Faraday's Law
The precise relationship between the voltage and the
change in the magnetic flux through the loop is found
from our analysis of Figure (9) where the loop and the
magnet were pulled apart.  We got a voltage given by
Equation (5) as

 V = vBh (5)

Let us apply Equation (5) to the case where the magnet
is being pulled out of the loop as shown in Figure (11).
In a time dt, the magnet moves to the left a distance dx
given by

dx  =  vdt (11)

and the area of magnetic field that has left the loop,
shown by the cross hatched band in Figure (11), is

 

dA = hdx =
area of magnetic
field that has
left the loop

(12)

This decrease in area causes a decrease in the magnetic
flux   ΦB = BA ⊥ through the loop.  The change in flux

  dΦB is given by

  dΦB = –BdA = –Bhdx

= –Bhvdt (13)

where the – sign indicates a reduction in flux, and we
used Equation (11) to replace dx by vdt .

Dividing both sides of Equation (13) by dt gives

  dΦB

dt
= –Bhv (14)

But Bhv is just our voltmeter reading.  Thus we get the
surprisingly simple formula

   
V = –

dΦB

dt
Oneform of
Faraday's law (15)

Equation (15) is one form of Faraday’s law.

Equation (15) has a generality that goes beyond our
original analysis of the magnetic force on the conduc-
tion electrons.  It makes no statement about what causes
the magnetic flux to change.  We can pull the loop out
of the field as in Figure (9a), the field out of the loop as
in Figure (9b), or shut the field off as in Figure (10).  In
all three cases Equation (15) predicts that we should see
a voltage, and we do.

If we have a coil with more than one turn, as we had
back in Figure (4), and put a voltmeter across the ends
of the coil, then we get N times the voltage, and
Equation (15) becomes

   
V = N –

dΦB

dt
for a coil
with N turns

(15a)

provided dΦB/dt is the rate of change of magnetic flux
in each loop of the coil.

Exercise 2

Go back to Figure (7) and explain the voltage plot in
terms of the rate of change of the flux of magnetic
field through the coil riding on top of the air cart.
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moving
electromagnet

V

flux leaving
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Figure 11
As the magnet and the coil move away from each
other, the amount of magnetic flux through the
coil decreases.  When the magnet has moved a
distance dx, the decrease in area is hdx, and the
magnetic flux decreases by    B×hdx.
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A Circular Electric Field
In Figure (10), where we shut the magnet off and got a
voltage reading on the voltmeter, there must have been
some force on the electrons in the wire to produce the
voltage.  Since there was no magnetic field out at the
wire, the force must have been produced by an electric
field.  We already have a hint of what that electric field
looks like from Figure (9c).  In that figure, we saw that
the moving magnetic field created an upwardly di-
rected electric field acting on the electrons on the left
side of the wire loop.

To figure out the shape of the electric field produced
when we shut off the magnet, consider Figure (12),
where we have a circular magnet and a circular loop of
wire .  We chose this geometry so that the problem
would have circular symmetry (except at the gap in the
loop).

To produce the same kind of voltage V that we have
seen in the previous experiments, the electric field at
the wire must be directed up on the left hand side, as it
was in Figure (9c).  But because of the circular symme-
try of the setup in Figure (12), the upwardly directed
electric field on the left side, which is parallel to the
wire, must remain parallel to the wire as we go around
the wire loop.  In other words, the only way we can have
an upwardly directed electric field acting on the elec-
trons on the left side of the loop, and maintain circular
symmetry, is to have the electric field go in a circle all
the way around the loop as shown in Figure (12).

We can determine the strength of this circular electric
field, by figuring out how strong an electric field must
act on the electrons in the wire, in order to produce the
voltage V across the gap. We then use Equation (15) to
relate this voltage to the rate of change of the magnetic
flux through the loop.

E
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X X X X X X

X X X X X X

X X X X X X

X X X X X X
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X X
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being turned off
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around decreasing
magnetic flux

upwardly directed 
electric field exerts downward 
electric force on electrons in the
left side of wire loop as in Fig. 9b

circular electric field
pushes on electrons
all the way around
the wire loop

E
  

V = –
dΦB

dt

Figure 12
When the magnetic field in the magnet is turned off, a circular electric field is
generated.  This electric field exerts a force on the electrons in the wire, creating
a pressure in the electric fluid that is recorded as a voltage pulse by the voltmeter.
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Recall that the definition of electric voltage used in
deriving Equation (5) was

  
V =

force on unit
test charge

×
distance over
which force acts

For Figure (12), the force on a unit test charge is the
electric field E, and this force acts over the full circum-
ference   2πr of the wire loop.  Thus the voltage V across
the gap is

  V = E × 2πr

Equating this voltage to the rate of change of magnetic
flux through the wire loop gives

  
V = E × 2πr = –

dΦB
dt (16)

Equation (16) tells us that the faster the magnetic field
dies, i.e. the greater   dΦB dtdΦB dt, the stronger the electric
field E produced.

Line Integral of  E around a Closed Path
In Figure (13) we have removed the wire loop and volt
meter from Figure (12) so that we can focus our
attention on the circular electric field produced by the
decreasing magnetic flux.  This is not the first time we
have encountered a circular field.  The velocity field of
a vortex and the magnetic field of a straight current
carrying wire are both circular.  We have redrawn
Figure (29-10) from the last chapter, showing the
circular magnetic field around a wire.

The formula for the strength of the magnetic field in
Figure (29-10) is

  B × 2πr = µ0 i (28-18)

a result we derived back in Equation 28-18.  This
should be compared with the formula for the strength
of the electric field in Figure (13)

  
E × 2πr = –

dΦB
dt

(16)
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Figure 13
Circular electric field around
a changing magnetic flux.

Figure 29-10
Circular magnetic field
around an electric current.

  
E × 2π r = –

dΦB
dt   B × 2πr = µ0 i
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In our discussion of Ampere’s law, we called   µ0i the
“source” of the circular magnetic field.  By analogy, we
should think of the rate of change of magnetic flux,

  – dΦB/dt, as the “source” of the circular electric field.

In Chapter 29, we generalized Ampere’s law by replac-
ing   B * 2πr by the line integral   B⋅d  along a closed
path around the wire.  The result was

   
B⋅d = µ0i

Ampere's law
for
magnetic fields

(29-18)

where the line integral can be carried out along any
closed path surrounding the wire.  Because of close
analogy between the structure and magnitude of the
magnetic field in Figure (29-10) and the electric field in
Figure (13), we expect that the more general formula
for the electric field produced by a changing magnetic
flux is

   
E⋅d = –

dΦB
dt

Faraday's law
for
electric fields

(17)

Equation 17 is the most general form of Faraday’s law.
It says that the line integral of the electric field around
any closed path is equal to (minus) the rate of change
of magnetic flux through the path.

USING FARADAY'S LAW
Up until now we have been looking for arguments
leading up to Faraday’s law.  Let us now reverse the
procedure, treating Equation 17 as a basic law for
electric fields, and see what the consequences are.

Electric Field of an Electromagnet
As a beginning exercise in the use of Faraday's law, let
us use  Equation (17) to calculate the electric field of the
electromagnet in Figure (13).  We first argue that
because of the circular symmetry, the electric field
should travel in circles around the decreasing magnetic
field.  Thus we choose a circular path, shown in Figure
(13a), along which we will calculate    E⋅d .  Then
using the assumption (because of circular symmetry)
that E is parallel to  d  and has a constant magnitude all
the way around the circular path, we can write

  E⋅d = E d = E d = E 2πr (18)

Using this result in Equation (17) gives

  E⋅d = E 2πr = –
dΦB
dt

(19)

which is the result we had in Equation (16).

Right Hand Rule for Faraday's Law
We can get the correct direction for E with the follow-
ing right hand rule.  Point the thumb of your right hand
in the direction of the magnetic field.  If the magnetic
flux is decreasing (if   –dΦB/dt is positive), then the
fingers of your right hand curl in the direction of E.  If
the magnetic flux is increasing, then E points the other
way.  Please practice this right hand rule on Figures
(13a), (9c), and (15).

downward pointing
magnetic field
being turned off

path for
calculating

E⋅d

r

X X

X X X X

X X X X X X
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Figure 13a
Using Faraday's law to calculate E.
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Electric Field of Static Charges
If all we have around are static electric charges, then
there are no magnetic fields, no magnetic flux, and no
changing magnetic flux.  For this special case,

  dΦB/dt = 0 and Faraday’s law gives

  
E⋅d = 0

for electric fields
produced by
static charges

(20)

When the line integral of a force is zero around any
closed path, we say that the force is conservative.  (See
Equation 29-12.)  Thus we see that if we have only
static electric charge (or constant magnetic fields), the
electric field is a conservative field.

In contrast, if we have changing magnetic fields, if
  dΦB/dt  is not zero, the electric field is not conserva-

tive.  This can lead to some rather interesting results
which we will see in our discussion of a device called
the betatron.

THE BETATRON
As we have mentioned before, when you encounter a
new and strange equation like Faraday’s law, it is
essential to have an example that you know inside out
that illustrates the equation.  This transforms the equa-
tion from a collection of symbols into a set of instruc-
tions for solving problems and making predictions.
One of the best examples to learn for the early form of
Faraday’s law, Equation (15a), was the air cart speed
detector experiment shown in Figure (7).  (You should
have done Exercise 2 analyzing the experiment using
Equation (15a).

The most direct example illustrating Faraday’s law for
electric fields, Equation (17), is the particle accelerator
called the betatron.  This device was used in the 1950s
for study of elementary particles, and later for creating
electron beams for medical research.

A cross-sectional view of the betatron is shown in
Figure (14a). The device consists of a large electro-
magnet with a circular evacuated doughnut shaped
chamber for the electrons.  The circular shape of the
electromagnet and the evacuated chamber are more
clearly seen  in the top view, Figure (14b).  In that view
we show the strong upward directed magnetic field B0
in the gap and the weaker upward directed magnetic
field out at the evacuated doughnut.

The outer magnetic field Br is required to keep the
electrons moving along a circular orbit inside the
evacuated chamber.  This field exerts a force

  FB = –e v × Br that points toward the center of the
circle and has a magnitude mv2/r in order to produce
the required radial acceleration.  Thus Br  is given by

Br  =  mv
er

which is our familiar formula for electrons moving
along a circular path in a magnetic field. (As a quick
review, derive the above equation.)

Since a magnetic field does no work we need some
means of accelerating the electrons.  In a synchrotron,
shown in Figure (28-27), a cavity which produces an
electric accelerating field is inserted into the electron’s
path.  As an electron gains energy and momentum (mv)
each time it goes through the cavity, the magnetic field

Bo

evacuated doughnut for
charged particles

electromagnet

Br Br

Figure 14a
Cross-sectional view of a betatron, showing
the central field  B0  and the field  Br  out at the
evacuated doughnut.  The relative strength of

 B0  and  Br  can be adjusted by changing the
shape of the electromagnet pole pieces.
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B was increased so that the electron’s orbital radius r =
mv/eB remains constant.  (The synchronizing of B with
the momentum mv leads to the name synchrotron.)

In the betatron of Figure (14), we have a magnetic field
Br to keep the electrons in a circular orbit, and as the
electrons are accelerated, Br is increased to keep the
electrons in an orbit of constant radius r.  But what
accelerates the electrons?  There is no cavity as in a
synchrotron.

Suppose that both B0 and Br are increased simulta-
neously.  In the design shown in Figure (14a), B0 and
Br  are produced by the same electromagnet, so that we
can increase both together by turning up the electro-
magnet.  If the strong central field B0 is increased, we
have a large change in the magnetic flux through the
electron orbit, and therefore by Faraday’s law

  E ⋅ d = – dΦB/dt we must have a circular electric

field around the flux as shown in Figure (15), just as in
Figure (13).  This electric field is exactly parallel to the
orbit of the electrons and accelerates them continu-
ously as they go around.

What is elegant about the application of Faraday's law
to the electrons in the betatron, is that   E ⋅ d , which
has the dimensions of voltage, is the voltage gained by
an electron going once around the circular orbit.  The
energy gained is just this voltage in electron volts

  energy gained
(in eV) by electron
going around once

= E ⋅ d (21)

This voltage is then related to   dΦB/dt by Faraday’s
law.

magnetic field B
at the electron path

r path of 
electrons

evacuated 
doughnut

o
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v

FBmagnetic field B
directed up E

oB  directed
up and increasing

E

Figure 15
When the strong central field  B0  in the
betatron is rapidly increased, it produces a
circular electric field that is used to
accelerate the electrons.  The electric field E
is related to the flux   ΦΦB of the central field

 B0  by Faraday's law    E ⋅⋅d = – d ΦΦB / dt .

Figure 14b
Top view of the betatron showing the
evacuated doughnut, the path of the
electrons, and the magnetic fields  B0  in the
center and  Br   out at the electron path.  In
order to keep the electrons moving on a
circular path inside the doughnut, the
magnetic force    FB = –e v ×× Br   must have a
magnitude   FB = mv2 rmv2 r  where r is the radius of
the evacuated doughnut.
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Let us consider an explicit example to get a feeling for
the kind of numbers involved.  In the 100 MeV betatron
built by General Electric, the electron orbital radius is
84 cm, and the magnetic field  B0  is cycled  from 0 to
.8 tesla in about 4 milliseconds. (The field  B0  is then
dropped back to 0 and a new batch of electrons are
accelerated. The cycle is repeated 60 times a second.)

The maximum flux   Φm through the orbit is

  Φm = B0 max
πr2 = .8 tesla × π × (.84m)2

  Φm = 1.8 tesla m2

If this amount of flux is created in 4 milliseconds, then
the average value of the rate of change of magnetic flux

  ΦB  is

  dΦB

dt
=

Φm

.004 sec
=

1.8
.004

= 450 volts

Thus each electron gains 450 electron volts of kinetic
energy each time it goes once around its orbit.

Exercise 3
(a) How many times must the electron go around to
reach its final voltage of 100 MeV advertised by the
manufacturer?

(b) For a short while, until the electron’s kinetic energy
gets up to about the electron’s rest energy  m0c2, the
electron is traveling at speeds noticeably less than c.
After that the electron’s speed remains very close to c.
How many orbits does the electron have to make before
its kinetic energy equals its rest energy?  What fraction
of the total is this?

(c) How long does it take the electron to go from the point
that its kinetic energy equals its rest energy, up to the
maximum of 100 MeV?  Does this time fit within the 4
milliseconds that the magnetic flux is being increased?

TWO KINDS OF FIELDS
At the beginning of the chapter we showed that the line
integral   E ⋅ d  around a closed path was zero for any
electric field produced by static charges.  Now we see
that the line integral is not zero for the electric field
produced by a changing magnetic flux.  Instead it is
given by Faraday’s law   E ⋅ d = –dΦB/dt.  These
results are shown schematically in Figure (16) where
we are looking at the electric field of a charged rod in
(16a) and a betatron in (16b).

In Figure (17), we have sketched a wire loop with a
voltmeter, the arrangement we used in Figure (12) to
measure the   E ⋅ d .  We will call this device an
“   E ⋅ d  meter ”.  If you put the   E ⋅ d  

 meter over
the changing magnetic flux in Figure (16b), the voltme-
ter will show a reading of magnitude V =   dΦB/dt.  If
we put the   E ⋅ d  meter over the charged rod in
Figure (16a), the meter reads V = 0.  Thus we have a
simple physical device, our   E ⋅ d  meter, which can
distinguish the radial field in Figure (16a) from the
circular field in Figure (16b).  In fact it can distinguish
the circular field in (16b) from any electric field E
whatsoever that we can construct from static charges.
Our   E ⋅ d  meter allows us to separate all electric
fields into two kinds, those like the one in (16b) that can
give a  non zero reading, and those, produced by static
charges, which give a   zero reading.

Fields which register on our   E ⋅ d  meter generally
close on themselves like the circular fields in (16b).
Since these fields do not appear to have sources, they
are called sourceless or  “solenoidal” fields.  An

  E ⋅ d  meter is the kind of device we need to detect
solenoidal fields.

The conservative fields produced by static charges
never close on themselves.  They always start on
positive charge, end on negative charge, or come from
or go to infinity.  These fields diverge from point
charges and thus are sometimes called “divergent”
fields.  Our   E ⋅ d  meter does not work on the
divergent fields because we always get a zero reading.
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Although the   E ⋅ d  meter does not work on diver-
gent fields, Gauss’ law with the surface integral does.
In a number of examples we used Gauss' law

  
E ⋅ dA

closed
surface

=
Qin

ε0
(29-5)

to calculate the electric field of static charges.  We are
seeing now that we use a surface integral to measure
divergent fields, and a line integral to measure sole-
noidal fields.  There are two kinds of electric fields, and
we have two kinds of integrals to detect them.

It turns out to be a general mathematical theorem that
any vector field can be separated into a purely divergent
part and a purely solenoidal part.  The field can be
uniquely specified if we have both an equation involv-
ing a Gauss’ law type surface integral to tell us the
divergent part, and an equation involving a Faraday’s
law type line integral to tell us the solenoidal part.

(b) Electric field produced by a changing

     magnetic flux has 

EoB  directed
up and increasing

E

E⋅d ≠ 0

E ⋅ d = – dΦB dtdΦB dt

E

charged
rod

(a) Electric field of a static charge distribution

      has the property E ⋅ d = 0

E⋅d = 0

integration

path

integration

path

VE ⋅ d meter

Figure 17
Wire loop and a volt meter can be used directly to
measure    E ⋅⋅d  around the loop.  We like to call
this apparatus an    E ⋅⋅d  meter.

Figure 16
Two kinds of electric field.  Only the
field produced by the changing magnetic
flux has a non zero line integral.
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Exercise 4
a) Maxwell’s equations are a set of equations that
completely define the behavior of electric fields E and
magnetic fields B.  One of Maxwell’s equations is
Faraday’s law

  E ⋅ d = – dΦB/dt

which gives the line integral for the electric field. How
many Maxwell equations are there?  (How many equa-
tions will it take to completely define both E and B?)

b) Are any of the other equations for electric and
magnetic fields we have discussed earlier, candidates
to be one of Maxwell’s equations?

c) At least one of Maxwell’s equations is missing – we
have not discussed it.  Can you guess what the equation
is and write it down?  Explain what you can about your
guess.

d) Back in our early discussion of velocity fields and
Gauss’ law, we said that a point source  for the velocity
field of an incompressible fluid like water, was a small
“magic” sphere in which water molecules were created.
Suppose we do not believe in magic and assume that
for real water there is no way that water molecules can
be created or destroyed.  Write down an integral equa-
tion for real water that expresses  the fact that the
vreal water has no sources (that create water molecules)
or sinks (that destroy them).

Do the best you can on these exercises now.  Keep a
record of your work, and see how well you did when we
discuss the answers later in chapter 32.

Note on our    E ⋅⋅ d  meter

Back in Figure (17) we used a wire loop and a voltmeter
as an    E ⋅ d  meter.  I.e., we are saying that the
voltage reading V on the voltmeter gives us the integral
of  E around the closed path defined by the wire loop.
This is strictly true for a loop at rest, where the conduc-
tion electrons experience no magnetic force and all
forces creating the electric pressure are caused by the
electric field E.

Earlier, in Figure (9), we had two views of an    E ⋅ d
meter.   In the bottom view, (9b) the loop is at rest and
the voltage must be caused by an electric force.  The
moving magnetic field must have an electric field
associated with it.  But in Figure (9a) where the magnet
is at rest, there is no electric field and the voltage
reading is caused by the magnetic force on the conduc-
tion electrons in the moving wire.  Strictly speaking,  in
Figure (9a) the wire loop and voltmeter are measuring
a pressure caused by magnetic forces and not an

   E ⋅ d .  The wire loop must be at rest, the path for
our line integral cannot move, if we are measuring

   E ⋅ d .

In practice, however,  it makes little difference whether
we move the magnet or the loop, because the principle
of relativity requires that we get the same voltage V.
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APPLICATIONS OF
FARADAY’S LAW
The last few sections have been somewhat heavy on
theory.  To end this chapter on a more practical note, we
will consider some simple applications of Faraday’s
law, one that has immense practical applications and
another that we can use in the laboratory.  First we will
discuss the AC voltage generator which is used by most
power stations throughout the world.  We will also
describe a field mapping experiment in which we use
our   E ⋅ d  meter to map the magnetic field of a pair
of Helmholtz coils.  In the next chapter Faraday’s law
is used to explain the operation of transformers and
inductors that are common circuit elements in radio and
television sets.

The AC Voltage Generator
In Figure (18) we have inserted a wire loop of area A in
the magnetic field B of a magnet.  We then rotate the
coil at a frequency ω  about an axis of the coil as shown.
We also attach a voltmeter to the coil, using sliding
contacts so that the voltmeter leads do not twist as the
coil spins.

As shown in Figure (19), as the loop turns, the magnetic
flux changes sinusoidally from a maximum positive
flux in (19a) to zero flux in (c) to a maximum negative
flux in (d) to zero in (e).  In (18c), we have shown the
vector A representing the area of the coil (A points

magnet

magnet

coil of wire

rotating coil
of area A

V

B
ω

a) end view of a coil of wire
    rotating in a magnetic field

b) top view showing the coil of area A

c) Vector A representing the 
    area of the loop

A

Figure 18
An electric generator consists of a coil
of wire rotating in a magnetic field.

Φ   = BA

ω

Φ   = B A
      = BA cosθ

small θ

B

θ

Φ   = 0

A

Φ   = –BAθ = 2π

B

Φ   = 0

B

θ = 0 B

B

B

B

Bθ = 3π
2

θ = π
2

rotating coil
of area A

magnet

a)

c)

d)

b)

e)

B

B

.

Figure 19
The changing magnetic flux through the rotating loop.
The general formula for   ΦΦB  is    BAcosθθ  where θθ   is the
angle shown in (b), between the magnetic field and the
normal to the loop.  If the coil is rotating uniformly,

then    θθ = ωω t , and    ΦΦB = BAcosωω t
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perpendicular to the plane of the coil) and we can use
our usual formula for magnetic flux to get

  ΦB = B⋅A = BAcos θ (22)

If the coil is rotating at a constant angular velocity ω ,
then θ  =  ωt  and we have

  ΦB = BAcos ωt (23)

Differentiating Equation (23) with respect to time
gives

  dΦB

dt
= –ωBA sinωt (24)

Finally we use Faraday’s law in the form

  
V = –

dΦB

dt
(15)

to predict that the voltage V on the voltmeter will be

  V = ωBA sin ωt (25)

If we use a coil with N turns, we get a voltage N times
as great, or

  V = ωNBA sin ωt = V0sin ωt (26)

where  V0 is the amplitude of the sine wave as shown in
Figure (20). Equation (26) shows that by rotating a coil
in a magnetic field, we get an alternating or “AC”
voltage.  Power stations use this same principle to
generate AC voltages.

Equation 26 predicts that the voltage amplitude  V0
produced by an N turn coil of area A rotating in a
magnetic field B is

  V0 = ωNBA (27)

where the angular frequency ω radians per second is
related to the frequency f cycles per second and the
period T seconds per cycle by

  
ω rad

sec
= 2π rad

cycle
× f

cycle
sec

= 2π rad
cycle

×
1

T
sec

cycle

Exercise 5
Suppose that you have a magnetic field B = 1 tesla, and
you rotate the coil at 60 revolutions (cycles) per second.
Design a generator that will produce a sine wave
voltage whose amplitude is 120 volts.

Exercise 6
Figures (21a,b) show the voltage produced by a coil of
wire rotating in a uniform magnetic field of a fairly large
electromagnet. (The setup is similar to that shown in
Figures 18 and 19.) The coil was square, 4 cm on a side,
and had 10 turns. To go from the results shown in Figure
(21a) to those shown in Figure (21b), we increased the
rotational speed of the motor turning the coil. In both
diagrams, we have selected one cycle of the output
wave, and see that the frequency has increased from 10
cycles per second to nearly 31 cycles per second.

a) Explain why the amplitude of the voltage signal
increased in going from Figure (21a) to (21b). Is the
increase what you expected?

b) Calculate the strength of the magnetic field of the
electromagnet used. Do you get the same answer using
Figure (21a) and using Figure (21b)?Vo

Vo–
T

t

Figure 20
Amplitude and period of a sine wave.
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Gaussmeter
Exercise 6 demonstrates one way to measure the
strength of the magnetic field of a magnet. By spinning
a coil in a magnetic field, we produce a voltage ampli-
tude given by Equation 27 as   V0 = ωNBA. Thus by
measuring  V0 , ω, N, and A, we can solve for the
magnetic field B.

A device designed to measure magnetic fields is called
a gaussmeter. A commercial gaussmeter, used in our
plasma physics lab, had a small coil mounted in the tip
of a metal tube as shown in Figure (22).  A small motor
also in the tube spun the coil at high speed, and the
amplitude V0 of the coil voltage was displayed on a
meter.  The meter could have been calibrated using
Equation (27), but more likely was calibrated by insert-
ing the spinning coil into a known magnetic field.

In an attempt to measure the magnetic field in the
Helmholtz coils used for our electron gun experiments,
students have also built rotating coil gaussmeters.
Despite excellent workmanship, the results were uni-
formly poor.  The electrical noise generated by the
sliding contacts and the motor swamped the desired
signal except when B was strong.  This approach turned
out not to be the best way to measure B in the Helmholtz
coils.

rotating coil

motor

meter
IIIIIIIIIII

Figure 22
A commercial gauss meter, which measures the
strength of a magnetic field, has a motor and a
rotating coil like that shown in Figure 18.  The
amplitude  V0  of the voltage signal is displayed on
a meter that is calibrated in gauss.

Figure 21
Voltage output from a coil rotating in a uniform
magnetic field. The coil was 4 cm on a side, and
had 10 turns. In each figure we have selected
one cycle of the output wave, and see that the
frequency of rotation increased from 10 cycles
per second in a) to nearly 31 cycles per
second in b).

a)

b)
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A Field Mapping Experiment
To measure the magnetic field in the Helmholtz coils,
it is far easier to “rotate the field” than the detector loop.
That is, use an alternating current in the Helmholtz
coils, and you will get an alternating magnetic field in
the form

  B = B0 sin ωt (28)

where w is the frequency of the AC current in the coils.
Simply place a stationary detector loop in the magnetic
field as shown in Figure (23) and the magnetic flux
through the detector loop will be

  ΦB = B⋅A = B0⋅A sin ωt (29)

where A is the area of the detector loop.  By Faraday’s
law, the voltage in the voltmeter or oscilloscope at-
tached to the detector loop is given by

  
V = –

dΦB

dt
= – ωB0⋅A cos ωt (30)

If our detector loop has N turns of wire, then the voltage
will be N times as great, and the amplitude V0 we see
on the oscilloscope screen will be

  
V0 = Nω B0⋅A (31)

Figure 23
If you use an alternating current in the Helmholtz coils,
then B has an alternating amplitude    B = B0cos ωω t .
You can then easily map this field with the detector loop
shown above.  If you orient the loop so that the signal on
the oscilloscope is a maximum, then you know that B is
perpendicular to the detector loop and has a magnitude
given by

   V = V0sin ωω t = dΦΦB / dt = d / dt NABcos ωω t .

B

V

θ

oscilloscope

detector loop

10 turn
loop

small
stick

1 cm
area

2

Helmholtz coils

This is essentially the same formula we had for the
rotating coil gaussmeter, Equation (27).  The differ-
ence is that by “rotating the field” rather than the coil,
we avoid sliding contacts, motors, electrical noise, and
can make very precise measurements.

A feature of Equation (31) that we did not have when
we rotated the coil is the dot product   B0⋅A.  When the
detector coil is aligned so that its area vector A (which
is perpendicular to the plane of the detector coil) is
parallel to  B0,

 the dot product   B0⋅A is a maximum.
Thus we not only measure the magnitude of  B0, we also
get the direction by reorienting the detector coil until
the V0 is a maximum.

As a result, a small coil attached to an oscilloscope,
which is our   E⋅d  meter, can be used to accurately
map the magnitude and direction of the magnetic field
of the Helmholtz coils, or of any coil of wire.  Unlike
our earlier electric field mapping experiments, there
are no mysteries or unknown constants.  Faraday’s law,
through Equation (31), gives us a precise relation
between the observed voltage and the magnetic field.
The experimental setup is seen in Figure (24).

Still another way to measure magnetic fields is illus-
trated in Exercise 7.

Figure 24
Experimental setup for the magnetic field mapping
experiment. A 60 cycle AC current is running through
the Helmholtz coils, producing an alternating magnetic
flux through the 10 turn search coil. The resulting
induced voltage is seen on the oscilloscope screen.
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Exercise 7
The point of this experiment is to determine the strength
of the magnetic field produced by the small magnets
that sat on the angle iron bars in the velocity detector
apparatus.  We placed a short piece of wood between
two magnets so that there was a small gap between the
ends as seen in the actual size computer scan of Figure
(25).  The pair of magnets were then suspended over
the air track as shown in Figure (26).

On top of the air cart we mounted a single turn coil.
When the air cart passes under the magnets, the single
turn coil passes through the lower gap between the
magnets as shown.  The dimensions of the single turn
coil are shown in Figure 27. We also show the dimen-
sions and location of the lower end of one of the magnets
at a time when the coil has passed part way through the
gap.  You can see that, at this point, all the magnetic flux
across the lower gap is passing completely through the
single turn coil.  Figure 28 is a recording of the induced
voltage in the single turn coil as the coil passes com-
pletely through the gap.  The left hand blip was pro-
duced when the coil entered the gap, and the right hand
blip when the coil left the gap.  The air track was
horizontal, so that the speed of the air cart was constant
as the coil moved through the gap.  Determine the
strength of the magnetic field B in the gap.  Show and
explain your work.

Figure 25
Two C
Magnets with
wood spacer.

1 turn coil

air cart

air track

magnetic 
field

magnets

1 turn
coil

moving air cart

stationary
magnets

v

1 turn coil

25.3 cm

2.5 cm
2.54 cm

.95 cm

end of magnet

Figure 27
Dimensions of the single turn coil. We also
show the dimensions of the end of the
magnets through which the coil is passing.

Figure 26
A single turn coil, mounted on an air cart, moves
through the lower gap between the magnets.

Figure 28
Voltage induced in the single turn coil.
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Exercise 8
As shown in Figure (29), we started with a solenoid with
219 turns wrapped in a 1" diameter plastic tube. The coil
is 45.4 cm long. The current going through the coil first
goes through a .1  Ω   resistor. By measuring the voltage
V1 across that resistor, we can determine the current
through the solenoid. V1 is shown as the lower curve in
Figure (30).

a) Using V1 from Figure 30, calculate the magnitude B
of the magnetic field in the solenoid.

We then wound 150 turns of wire around the center
section of the solenoid, as indicated in Figure (29). You
can see that the entire flux   Φ1  of the Magnetic field of the
solenoid, goes through all the turns of the outer coil.

b) Use this fact to predict the voltage V2 across the outer
coil, and then compare your prediction with the experi-
mental V2 shown in the upper curve of Figure (30).

i (t)

B

R = .1Ω

1

V2

V1

150 turns

219 turns

45.4 cm

1" diameter
inner coil

Figure 29
The inner (primary) coil 1 is 45.4 cm long, has 219
turns and is wound on a 2.54 cm (1") diameter tube.
The outer (secondary) coil consists of 150 turns
wound tightly around the center section of the primary
coil. The current through the primary coil goes
through a .1Ω resistor, and the voltage  V1  is measured
across that resistor.  V2  is the voltage induced in the
secondary coil.

voltage  V2 across
the outer coil

both voltages are
to the same scale

voltage  V1 across
the .1Ω resistor

Figure 30
The voltage  V1  across the .1Ω resistor measures the current in the primary (219
turn) coil.  V2  is the voltage induces in the secondary (outer 150 turn) coil.



CHAPTER 31 INDUCTION AND MAG-
NETIC MOMENT
In this chapter we discuss several applications of
Faraday’s law and the Lorentz force law.  The first is
to the inductor which is a common electronic circuit
element.  We will pay particular attention to a circuit
containing an inductor and a capacitor, in which an
electric current oscillates back and forth between the
two.  Measurements of the period of the oscillation and
dimensions of the circuit elements allows us to predict
the speed of light without looking at light.  Such a
prediction leads to one of the basic questions faced by
physicists around the beginning of the 20th century:
who got to measure this predicted speed?  The answer
was provided by Einstein and his special theory of
relativity.

In the second part of this chapter we will discuss the
torque exerted by a magnetic field on a current loop,
and introduce the concept of a  magnetic moment.
This discussion will provide some insight into how the
presence of iron greatly enhances the strength of the
magnetic field in an electromagnet.  However the main
reason for developing the concept of magnetic moment
and the various magnetic moment equations is for our
later discussion of the behavior of atoms and elemen-
tary particles in a magnetic field.  It is useful to clearly
separate the classical ideas discussed here from the
quantum mechanical concepts to be developed later.

Chapter 31
Induction and
Magnetic Moment
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THE INDUCTOR
In our discussion of Faraday’s law and the betatron in
Chapter 30, particularly in Figure (30-15), we saw  that
an increasing magnetic field in the core of the betatron
creates a circular electric field around the core.  This
electric field was used to accelerate the electrons.

A more common and accessible way to produce the
same circular electric field is by turning up the current
in a solenoid as shown in Figure (1).  As we saw in our
discussion of Ampere’s law in Chapter 29, a current i
in a long coil of wire with n turns per unit length,

produces a nearly uniform magnetic field inside the
coil whose strength is given by the formula

  B = µ0ni (29-31)

and whose direction is given by the right hand rule as
shown in the side view, Figure (1a).

If the coil has a cross-sectional area A, as seen in the top
view Figure (1b), then the amount of magnetic flux ΦB
“flowing” up through the coil is given by

  ΦB = BA = µ0nAi (1)

And if we are increasing the current i in the coil, then
the rate of increase of this flux is (since µ0, n and A are
constants)

  dΦB

dt
= µ0nA

di
dt

(2)

It is the changing magnetic flux that creates the circular
electric field E shown in Figure (1b).

Figure 1
When we turn up the current in a solenoid, we increase
the magnetic field and therefore the magnetic flux up
through the coil. This increasing magnetic flux is the
source of the circular electric field seen in the top view.

i

B

B   = µ  nio

a)  side view of coil and magnetic field

area A
of coil

E

b)  top view showing the electric field
     surrounding the increasing magnetic flux

Bup
increasing

positive
path

right hand rule
for positive path

E

Bup
increasing

  
E ⋅ d = –

dΦB

dt
(Faraday's Law)

Figure 2  Sign conventions
We start by defining up, out of the paper, as the positive
direction.  Then use the right hand rule to define a
positively oriented path.  As a result, counter clockwise
is positive, clockwise is negative.  With these
conventions,    dΦΦB / dt  is positive for an increasing
upward directed magnetic flux.  In calculating the line
integral    E ⋅⋅d , we go around in a positive direction,
counter clockwise.  Everything is positive except the –
sign in Faraday's law, thus the electric field goes
around in a negative direction, clockwise as shown.
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In Figure (2) we have shown the top view of the
solenoid in Figure (1) and added in the circular electric
field we would get if we had an increasing magnetic
flux up through the solenoid.  We have also drawn a
circular path of radius r around the solenoid as shown.
If we calculate the line integral   E⋅d   for this closed
path, we get by Faraday’s law

  
E ⋅ d = –

dΦB

dt
(30-17)

  
E×2πr = – µ0nA

di
dt

(3)

where the integral   E ⋅ d is simply E times the cir-

cumference of the circle, and we used Equation (2) for
dΦB/dt.

The minus sign in Equation (3) tells us that if we use a
positive path as given by the right hand rule, and we are
increasing the flux up through this path, then    E⋅d
must be negative.  I.e., the electric field must go
clockwise, opposite to the positive path.  (Do not worry
too much about signs in this discussion.  We will
shortly find a simple, easily remembered, rule that tells
us which way the electric field points.)

Equation (3) tells us that the strength E of the circular
field is proportional to the rate of change of current i in
the solenoid, and drops off as 1/r if we are outside the
solenoid.  In the following exercise, you are to show
that we also have a circular field inside the solenoid, a
field that decreases linearly to zero at the center.

Exercise 1
Use Faraday’s law to calculate the electric field inside
the solenoid.  Note that for a circular path of radius r
inside the solenoid, the flux   ΦB  through the path is
proportional to the area of the path and not the area A
of the solenoid.

The calculation of the circular electric field inside and
outside a solenoid, when i is changing, is a good
example of the use of both Ampere’s law to calculate B
and Faraday’s law to calculate E .  It should be saved in
your collection of good examples.

Direction of the Electric Field
In Figure (2) and in the above exercise, we saw that an
increasing magnetic flux in the coil created a clockwise
circular electric field both inside and outside the wire as
shown in Figure (3).  In particular we have a circular
electric field at the wire, and this circular electric field
will act on the charges carrying the current in the wire.

To maintain our sign conventions, think of the current
in the wire as being carried by the flow of positive
charge.  The up directed magnetic field of Figure (3)
will be produced by a current flowing counterclock-
wise as shown (right hand rule).  In order to have an
increasing flux, this counterclockwise current must be
increasing.

We saw that the electric field is clockwise, opposite to
the direction of the current.  We are turning up the
current to increase the magnetic field, and the electric
field is opposing the increase.

If we already have a current in a solenoid, already have
an established B  field and try to decrease it, di/dt is
negative for this operation, and we get an extra minus
sign in Equation (3) that reverses the direction of E.  As

E

Bup
increasing

i

increasing current

i creates the increasing

magnetic flux
Figure 3
If the sign conventions described in Fig. 2 seemed too
arbitrary, here is a physical way to determine the
direction of E .  The rule is that the electric field E
opposes any change in the current i.  In this case, to
create an increasing upward directed magnetic flux,
the current i must be flowing counter clockwise as
shown, and be increasing.  To oppose this increase, the
electric field must be clockwise.
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a result we get a counterclockwise electric field that
exerts a force in the direction of i.  Thus when we try to
decrease the current, the electric field tries to maintain
it.

There is a general rule for determining the direction of
the electric field.  The electric field produced by the
changing magnetic flux always opposes the change.
If you have a counterclockwise current and increase it,
you will get a clockwise electric field that opposes the
increase.  If you have a counterclockwise current and
decrease it you get a counterclockwise electric field
that opposes the decrease.  If you have a clockwise
current and try to increase it, you get a counter clock-
wise electric field that opposes the increase, etc.  There
are many possibilities, but one rule—the electric field
always opposes the change.

Induced Voltage
We have just seen that the changing magnetic flux in a
solenoid creates an electric field that acts on the current
in the solenoid to oppose the change in the current.
From Equation (3), we see that the formula for the line
integral of this electric field around one loop of the coil
is given by

  E ⋅ d = –µ0nA
di
dt (4)

where the path is at the wire as shown in Figure (4). The
n in Equation (4), which comes from the formula for the
magnetic field of a solenoid, is the number of turns per
unit length in the solenoid.

In our discussion of the betatron, we saw that the
circular electric field accelerated electrons as they went
around the evacuated donut.  Each time the electrons
went around once, they gained an amount of kinetic
energy which, in electron volts, was equal to   E⋅d .
In our discussion of the electron gun, we saw that using

a battery of voltage  Vacc  to accelerate the electrons,
produced electrons whose kinetic energy, in electron

volts, was equal to  Vacc .  In other words, the circular
electric field can act like a battery of voltage

   Vacc = E⋅d .

When acting on the electrons in one loop of wire, the
circular electric field produces a voltage change   ∆V1
given by

    
∆V1 = E⋅d

changein electric
voltage in one
turn of the coil

(5a)

If we have a coil with N turns as shown in Figure (5),
then the change in voltage   ∆VN  across all N turns is N
times as great, and we have

    
∆VN = N E⋅d

changein electric
voltage in N
turns of the coil

(5b)

E

Bup
increasing

positively oriented

path inside wire for

calculating

current i
in wire

E⋅d

Figure 4
The electric field penetrates the wire, opposing the
change in the current i.  The line integral    E⋅d
around the coil is just equal to the change in voltage

  ∆∆V1  around each turn of the coil.
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Using Equation 4 for the    E⋅d  for a solenoid, we see
that the voltage change   ∆VN  across the entire solenoid
has a magnitude

    ∆VN = N E⋅d = µ0NnA
di
dt (6)

where N is the total number of turns, n = N/h is the
number of turns per unit length, A is the cross-sectional
area of the solenoid, and i the current through it.

To get the correct sign of   ∆VN , to see whether we have
a voltage rise or a voltage drop, we will use the rule that
the circular electric field opposes any change in the
current.  This rule is much easier to use than trying to
keep track of all the minus signs in the equations.

In summary, Equation (6) is telling us that if you try to
change the amount of current flowing in a solenoid, if

 di dtdi dt  is not zero, then a voltage will appear across the
ends of the solenoid.  The voltage has a magnitude
proportional to the rate  di dtdi dt  that we are trying to
change the current, and a direction that opposes the
change.  It is traditional to call this voltage   ∆VN  the
induced voltage.  One says that the changing magnetic
flux in the coil induces a voltage.  Such a coil of wire
is often called an inductor.

Inductance
If you take a piece of insulated wire, tangle it up in any
way you want, and run a current through it, you will get
an induced voltage  Vinduced  that is proportional to the
rate of change of current di/dt, and directed in a way
such that it opposes the change in the current.  If we
designate the proportionality constant by the letter L,
then the relationship between  Vinduced  and di/dt can be
written

  
Vinduced = L

di
dt

inducedvoltages
areproportional
to di/dt (7)

The constant L is called the inductance of the coil or
tangle of wire.  In the MKS system, inductance has the
dimension of volt seconds/ampere, which is called a
henry.

Comparing Equations (6) and (7), we immediately
obtain the formula for the inductance of a solenoid

   

L = µ0NnA =
µ0N

2A

h
inductanceof
a solenoid

(8)

where N is the number of turns in the solenoid, A the
cross-sectional area and h the length.  In the middle
term, n = N/h is the number of turns per unit length.

h

∆V
(voltage
across

coil)

N turns, area A

coil of
length h

n = N/h is the
number of turns
per unit length

iE
i

Ν

Figure 5
Our standard coil with N turns, area A and length h.
If you try to increase the current i in the coil, you get
an opposing voltage.
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Example 1 The toroidal Inductor
The simplest solenoid we can use is a toroidal one, like
that shown in Figure (6), where the magnetic field is
completely confined to the region inside the coil.
Essentially, the toroid is an ideal solenoid (no end
effects) of length   h = 2πR. To develop an intuitive
feeling for inductance and the size of a henry, let us
calculate the inductance of the toroidal solenoid shown
in the photograph of Figure (6b).  This solenoid has 696
turns and a radius of R = 21.5 cm.  Each coil has a radius
of r = 1.3 cm.  Thus we have

  N = 696 turns
R = 21.5cm
h = 2πR = 2π*.215 = 1.35m
r = 1.3cm

A = πr2 = π×.0132 = 5.31 × 10– 4m2

µ0 = 1.26 × 10– 6 henry/m

With

  
L =

µ0N
2A

h

we get

  
L =

1.26×10– 6 × 696
2 × 5.31×10– 4

1.35

= 2.40 ×10– 4 henry

We see that even a fairly big solenoid like the one
shown in Figure (6) has a small inductance at least
when measured in henrys.  At the end of the chapter we
will see that inserting an iron core into a solenoid
greatly increases the inductance.  Inductances as large
or larger than one henry are easily obtained with iron
core inductors.

R

B

2r

h = 2πR

Figure 6a
A toroid is an ideal solenoid of length h =     2ππR .

Figure 6b
Photograph of the toroidal solenoid used in various
experiments.  Although the coil looks big, the
inductance is only    2.40×× 10– 4 henry.  (If you put iron
inside the coil, you could greatly increase the
inductance, but you would not be able to calculate
its value.)
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INDUCTOR AS A CIRCUIT
ELEMENT
Because a changing electric current in a coil of wire
produces a voltage rise, small coils are often used as
circuit elements.  Such a device is called an inductor,
and the symbol used in circuit diagrams is a sketch of
a solenoid  and usually designated by the
symbol L.  The voltage rise across the three circuit
elements we have considered so far are

 VR = iR resistor (27-8)

 
VC =

Q
C

capacitor (27-31)

 
 

VL = L
di
dt

inductor (7)

As shown in Figure (7) the direction of the rise is
opposite to the current in a resistor, toward the positive
charge in a capacitor, and in a direction to oppose a
change in the current i in an inductor.  In (c), we are
showing the direction of the voltage rise for an increas-
ing current.  The voltage in the inductor is opposing an
increase in the current, just as the voltage in the resistor
(a) opposes the current i itself.

i

RV  = i R

i

CV  = Q
CC

i (increasing)

LV  = di
dtL L

R

+
–

Figure 7
The resistor R, capacitor C and
inductor L as circuit elements.

a)

b)

c)
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The LR Circuit
We will begin our discussion of the inductor as a circuit
element with the LR circuit shown in Figure (8).
Although this circuit is fairly easy to analyze, it is a bit
tricky to get the current i started.  One way to start the
current is shown in Figure (9) where we have a battery
and another resistor R1 attached as shown.

When the switch of Figure (9) has been closed for a
while, we have a constant current i0 that flows down
out of the battery, through the resistor R1, around up
through the inductor and back to the battery.  Because
the current is constant, di0 /dt  =  0 and there is no
voltage across the inductor.  When we have constant
“DC” currents, inductors act like short circuits.  That is
why the current, given the choice of going up through
the inductor L or the resistor R, all goes up through L.
(To say this another way, since the voltage across L is
zero, the voltage  VR across R must also be zero, and the
current  iR  =  VR/R  =  0.)  Since R1 is the only thing
that limits the current in Figure (9), i0 is given by

 
i 0 =

VB

R1
(9)

Equation (9) tells us that we have a serious problem if
we forget to include the current limiting resistor R1.

When we open the switch of Figure (9), the battery and
resistor R1 are immediately disconnected from the
circuit, and we have the simple LR circuit shown in
Figure (8).  Everything changes instantly except the
current i in the inductor.  The inductor instantly sets
up a voltage  VL  to oppose any change in the current.

Figure (10) is a recording of the voltage  VL  across the
inductor, where the switch in Figure (9) is opened at
time t = 0.  Before t = 0, we have a constant current i0
and no voltage  VL .  When the switch is opened the
voltage jumps up to VL  =  V0 and then decays expo-
nentially just as in the RC circuit.  What we want to do
is apply Kirchoff’s law to Figure (8) and see if we can
determine the time constant for this exponential decay.

i

 iRRLdi
dt L

Figure 8
The LR circuit.  If we have a decreasing current, the
voltage in the inductor opposes the decrease and
creates a voltage that continues to push the current
through the resistor. But, to label the voltages for
Kirchoff's law, it is easier to work with positive
quantities.  I.e. we label the circuit as if both i and di/dt
were positive.  With a positive di/dt, the voltage on the
inductor opposes the current, as shown.

RL

i0

+
–

i0 i0

Vb

switch

1R

Figure 9
To get a current started in an LR circuit, we begin with
the extra battery and resistor attached as shown.  With
the switch closed, in the steady state all the current i0
flows up through the inductor because it (theoretically)
has no resistance.  When the switch is opened, the
battery is disconnected, and we are left with the RL
circuit starting with an initial current i0 .
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If we walk around the circuit of Figure (8) in the
direction of i, and add up the voltage rises we encoun-
ter, and set the sum equal to zero (Kirchoff’s law), we
get

 
– iR – L

di
dt

= 0

di
dt

+
R
L

i = 0 (10)

Equation (10) is a simple first order differential equa-
tion for the current i.  We guess from our experimental
results in Figure (10) that i should be given by an
exponential decay of the form

  i = i0e–αt (11)

Differentiating Equation (11) to get di/dt, we have

  di
dt

= – αi 0e–αt (12)

and substituting (11) and (12) in Equation (10) gives

  
– αi0e–αt +

R
L

i0e–αt = 0 (13)

In Equation (13), i0 and e-α t cancel and we get

  α = R/L

Equation (11) for i becomes

  i = i0e–( R LR L)t = i0e–t ( L RL R)t ( L RL R)

≡ i0e–t Tt T

(14)

We see from Equation (14) that the time constant T for
the decay is

 

T =
L
R

=
time constant
for the decay
of an LR circuit

(15)

Everything we said about exponential decays and time
constants for RC circuits at the end of Chapter (27)
applies to the LR circuit, except that the time constant
is now L/R rather than RC.

Exercise 2

The LR circuit that produced the experimental results
shown in Figure (10) had a resistor whose resistance R
was 15 ohms.  Quickly estimate the inductance L.  (You
should be able to make this estimate accurate to within
about 10% simply by sketching a straight line on the
graph of Figure 10.)  Compare your result with the
inductance of the toroidal solenoid discussed in Figure
(6) on page 6.

Figure 10
Experimental recording of the voltage in an RL
circuit.  We see that once the switch of Fig. 9 is
opened, the voltage across the inductor jumps from
zero to   V0 = i0R .  This voltage on the inductor is
trying to maintain the current now that the battery
is disconnected.  The voltage and the current then
die with an exponential decay. (For this experiment,
we used the toroidal inductor of Figure 6, with
R = 15Ω , R1 = 4Ω , and  Vb  = 2.5 volts.)
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THE LC CIRCUIT
The next circuit we wish to look at is the LC circuit
shown in Figure (11).  All we have done is replace the
resistor R in Figure (8) with a capacitor C as shown.  It
does not seem like much of a change, but the behavior
of the circuit is very different.  The exponential decays
we saw in our LR and RC circuits occur because we are
losing energy in the resistor R.  In the LC circuit we
have no resistor, no energy loss, and we will not get an
exponential decay.  To see what we should get, we will
apply Kirchoff’s law to the LC circuit and see if we can
guess the solution to the resulting differential equation.

Walking clockwise around the circuit in Figure (11)
and setting the sum of the voltage rises to zero, we get

 
–

Q
C

– L
di
dt

= 0

di
dt

+
Q

LC
= 0 (16)

The problem we have with Equation (16) is that we
have two variables, i and Q, and one equation.  But we
had this problem before in our analysis of the RC
circuit, and solved it by noticing that the charge Q on the
capacitor is related to the current i flowing into the
capacitor by

 i =
dQ
dt

(17)

If we differentiate Equation (16) once with respect to
time to get

 d2i

dt2
+

1
LC

dQ
dt

= 0

Finally use Equation (17) i = dQ/dt and we get the
second order differential equation

 
d2i

dt2
+

1
LC

i = 0 (18)

The fact that we get a second order differential equation
(with a second derivative of i) instead of the first order
differential equations we got for LR and RC circuits,
shows that we have a very different kind of problem.  If
we try an exponential decay in Equation (18), it will not
work.

Exercise 3

Try the solution     i = i0e–α t    in Equation  (18) and see
what goes wrong.

We have previously seen a second order differential
equation in just the form of Equation (18) in our
discussion of simple harmonic motion.  We expect a
sinusoidal solution of the form

  i = i0sin ωt (19)

In order to try this guess, Equation (19), we differenti-
ate twice to get

  di
dt

= ωi0cos ωt

  d2i

dt2
= – ω2i0sin ωt (20)

and substitute Equation (20) into (18) to get

  
– ω2i0sin ωt +

i0

LC
sin ωt = 0 (21)

The quantity  i0 sin ωt 
 
cancels from Equation (21) and

we get

  
ω2 =

1
LC

; ω =
1

LC
(22)

We see that an oscillating current is a solution to
Kirchoff’s law, and that the frequency ω of oscillation
is determined by the values of L and C.

i

CL Q
C

di
dt

 L

Figure 11
The LC circuit.  This is the same as the LR
circuit of Figure (8), except that the resistor
has been replaced by a capacitor.
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Exercise 4
In Figure (12) we have an LC circuit consisting of a
toroidal coil shown in Figure (6) (on page 31-6), and the
parallel plate capacitor made of two aluminum plates
with small glass spacers. The voltage in Figure (12c) is
oscillating at the natural frequency of the circuit.

a)  What is the capacitance of the capacitor?

b)  The aluminum plates have a radius of 11 cm.
Assuming that we can use the parallel plate capacitor
formula

  C =
ε0 AC

d

where  AC is the area of the plates, estimate the thick-
ness d of the glass spacers used in this experiment.

 (The measured value was 1.56 millimeters. You should
get an answer closer to 1 mm. Errors could arise from
fringing fields, effect of the glass, and non-uniformity of
the surface of the plates.)

a)  The LC circuit

b) Inductor and capacitor used in the experiment

c) Oscillating voltage at the resonant frequency.

Figure 12
Oscillating current in an LC circuit consisting of the
toroidal inductor of Fig. 6 and a parallel plate
capacitor.  We will discuss shortly how we got the
current oscillating and measured the voltage.

i

CL
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Intuitive Picture of the LC Oscillation
The rather striking behavior of the LC circuit deserves
an attempt at an intuitive explanation.  The key to
understanding why the current oscillates lies in under-
standing the behavior of the inductor.  As we have
mentioned, the voltage rise on an inductor is always in
a direction to oppose a change in current.  The closest
analogy is the concept of inertia.  If you have a massive
object, a large force is required to accelerate it.  But
once you have the massive object moving, a large force
is required to stop it.

An inductor effectively supplies inertia to the current
flowing through it.  If you have a large inductor, a lot
of work is required to get the current started.  But once
the current is established, a lot of effort is required to
stop it.  In our LR circuit of Figure (10), once we got a
current going through the inductor L, the current con-
tinued to flow, even though there was no battery in the
circuit, because of the inertia supplied to the current by
the inductor.

Let us now see why an LC circuit oscillates.  One cycle
of an oscillation is shown in Figure (13) where we
begin in (a) with a current flowing up through the
inductor and over to the capacitor.  The capacitor
already has some positive charge on the upper plate and
the current is supplying more.  The capacitor voltage
VC is opposing the flow of the current, but the inertia
supplied to the current by the inductor keeps the current
flowing.

In the next stage, (b), so much charge has built up in the
capacitor, VC has become so large, that the current
stops flowing.  Now we have a charged up capacitor
which in (c) begins to discharge.  The current starts to
flow back down through tin inductor.  The current
continues to flow out of the capacitor until we reach (d)
where the capacitor is finally discharged.

The important point in (d) is that, although the capacitor
is empty, we still have a current and the inductor gives
the current inertia.  The current will continue to flow
even though it is no longer being pushed by the
capacitor.  Now in (e), the continuing current starts to
charge the capacitor up the other way.  The capacitor
voltage is trying to slow the current down but the
inductor voltage keeps it going.

Finally, in (f), enough positive charge has built up on
the bottom of the capacitor to stop the flow of the
current.  In (g) the current reverses and the capacitor
begins to discharge.  The inductor supplies the inertia
to keep this reversed current going until the capacitor is
charged the other way in (i).  But this is the same picture
as (a), and the cycle begins again.

This intuitive picture allows you to make a rough
estimate of how the frequency of the oscillation should
depend upon the size of the inductance L and capaci-
tance C.  If the inductance L is large, the current has
more inertia, it will charge up the capacitor more, and
should take longer.  If the capacitance C is larger, it
should take longer to fill up.  In other words, the period
should be longer, the frequency ω lower, if either L or
C are increased.  This is consistent with the result
ω  =  1/ LC we saw in Equation (22).

Before leaving Figure (13) go back over the individual
sketches and check two things.  First, verify that
Kirchoff’s law works for each stage; i.e., that the sum
of the voltage rises around the circuit is zero for each
stage.  Then note that whenever there is a voltage VL on
the inductor, the direction of VL always opposes the
change in current.

i

V C
+
– –

V La) f)

i = 0

di
dt

= 0;  Q = 0

+ V C+
– –

V L +

V C
+
– –

V Lb) g)+ V C+
– –

V L +

i

V C
+
– –

V Lc) h)+ C L 

CL d) i)
i

V C
+
– –

V L
+

V CV Le)

i = 0

di
dt

= 0;  Q = 0

i

i

i

i

+
– –

+

Figure 13
The various stages in the oscillation of
the electric charge in an LC circuit.
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The LC Circuit Experiment
The oscillation of the LC circuit in Figure (13) is a
resonance phenomena and the frequency

  ω0 = 1/ LC  is the resonance frequency of the
circuit.  If we drive the circuit, force the current to
oscillate, it will do so at any frequency, but the response
is biggest when we drive the circuit at the resonant
frequency ω0.

There turns out to be a very close analogy between the
LC circuit and a mass hanging on a spring as shown in
Figure (14).  The amplitude of the current in the circuit
is analogous to the amplitude of the motion of the mass.
If we oscillate the upper end of the spring at a low
frequency ω much less than the resonant frequency ω0,
the mass just moves up and down with our hand.  If ω
is much higher than ω0, the mass vibrates at a small
amplitude and its motion is out of phase with the
motion of our hand.  I.e., when our hand comes down,
the spring comes up, and vice versa.  But when we
oscillate our hand at the resonant frequency, the ampli-
tude of vibration increases until either the mass jumps

off the spring or some form of dampening or energy
loss comes into play.

It is clear from Figure (14) how to drive the motion of
a mass on a spring; just oscillate our hand up and down.
But how do we drive the LC circuit?  It turns out that for
the parallel plate capacitor and air core toroidal induc-
tor we are using, the resonance is so delicate that if we
insert something into the circuit to drive it, we kill the
resonance.  We need a way to drive it from the outside,
and an effective way to do that is shown in Figure (15).

CL

oscillator

scope

i =  i  sin ω t0

Run a wire from an oscillator around the coil and 
back to the oscillator. Do the same for the scope.

Figure 15
Driving the LC circuit.  The turns of wire from the
oscillator produce an oscillating magnetic field inside
the coil.  This in turn produces an electric field at the
coil wires which also oscillates and drives the current
in the coil. (A second wire wrapped around the coil is
used to detect the voltage. The alternating magnetic
field in the coil produces a voltage in the scope wire.)

i

B

magnetic field created
by the current from the 
oscillator 

Figure 14
To get the mass on the end of a spring
oscillating at some frequency ωω  you move your
hand up and down at the frequency  ωω . If ωω  is
the resonant frequency of the mass and spring
system, the oscillations become quite large.

m

ω
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In that figure we have taken a wire lead, wrapped it
around the toroidal coil a couple of times, and plugged
the ends into an oscillator as shown.  (Some oscillators
might not behave very well if you short them out this
way.  You may have to include a series resistor with the
wire that goes to the oscillator.)  When we turn on the
oscillator, we get a current    iosc = i0sinωt  in the wire,
where the frequency ω is determined by the oscillator
setting.

The important part of this setup is shown in Figure
(15b)  where the wire lead wraps a few times around the
toroid.  Since the wire lead itself forms a small coil and
since it carries a current iosc, it will create a magnetic
field Bosc as shown.  Part of the field Bosc will lie inside
the toroid and create magnetic flux   Φosc down the
toroid.  Since the current producing Bosc is oscillating
at a frequency ω, the field and the flux will also oscillate
at the same frequency.  As a result we have an oscillat-
ing magnetic flux in the toroid, which by Faraday’s law
creates an electric field of magnitude

  E ⋅ d = –dΦosc dtdΦosc dt  around the turns of the sole-
noid.  This electric field induces a voltage in the toroid

which drives the current in the LC circuit.  We can
change the driving frequency simply by adjusting the
oscillator.

To detect the oscillating current in the coil, we wrap
another wire around the coil, and plug that into an
oscilloscope. The changing magnetic flux in the coil
induces a voltage in the wire, a voltage that is detected
by the scope.

In Figure (16a) we carried out the experiment shown in
Figure (15), and recorded the amplitude VC of the
capacitor voltage as we changed the frequency ω on the
oscillator.  We see that the amplitude is very small until
we get to a narrow band of frequencies centered on ω0,
in what is a typical resonance curve.  The height of the
peak at  ω  =  ω0  is limited by residual resistance in the
LC circuit.  Theory predicts that if there were no
resistance, the amplitude at ω  =  ω0  would go to
infinity, but the wires in the toroid would melt first.  In
general, however, the less resistance in the circuit, the
narrower the peak in Figure (16a), and the sharper the
resonance.

RT

cross-sectional
area A  of the turnsT

torroidal
radius RTN turns

d

capacitor
plate
separation

capacitor plate
area Ac

3.63.43.23.02.8 3.8 4.0 4.2

3.6        rad/sec106

4.4        106

amplitude
in volts

0.25

0.50

0.75

radians/sec0ω

amplitude
peaks at 
ω   =  0

resonant 
frequency

Figure 16b
The LC apparatus.

Figure 16a
As we tune the oscillator frequency through
the resonant frequency, the amplitude of the
LC voltage goes through a peak.
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MEASURING THE SPEED OF LIGHT
The main reason we have focused on the LC resonance
experiment shown in Figure (15) is that this apparatus
can be used to measure the speed of light.  We will first
show how, and then discuss the philosophical implica-
tions of such a measurement.

The calculation is straightforward but a bit messy.  We
start with Equation (22) for the resonance frequency
ω0

  ω0 =
1

LC (22)

and then use Equation (8) for the inductance L of a
solenoid

  L = µ0N2A/h (8)

and Equation (27-32) for the capacitance of a parallel
plate capacitor

C  =  ε 0 AC/d (27-32)

For the apparatus shown in Figure (16b), the length of
the toroidal solenoid is   h = 2πRT, and the cross-
sectional area is  A = AT,  so that Equation (8) be-
comes

  L toroid = µ0N2A T/2πRT (23)

For the capacitor, A C is the area of the plates, d their
separation, and we can use Equation (27-32) as it
stands.  If we square Equation (22) to remove the square
root

  ω 0
2 =

1
LC (22a)

and use Equations (23) and (27-32) for L and C, we get

  
ω0

2 =
2πRT

µ0N2AT

×
d

ε0AC

=
1

µ0ε0

×
2πRTd

N2ATAC

(24)

The important point is that the product µ0ε0 appears in
Equation (24), and we can solve for 1/µ0ε0 to get

  1
µ0ε0

=
ω0

2N2AT AC
2πRT d (25)

Finally, recall in our early discussion of magnetism,
that µ0ε0 was related to the speed of light c by

  c2 =
1

µ0ε0
(27-18)

Using Equation (25) in (27-18), and taking the square
root gives

  
c =

1

µ0ε0

= ω0N
ATAC

2πRTd
(26)

Exercise 5

Show that c in Equation (26) has the dimensions of a
velocity. (Radians are really dimensionless.)

At first sight Equation (26) appears complex.  But look
at the quantities involved.

  ω0 = the measured resonant frequency

N = the number of turns in the solenoid

AT = cross–sectional area of the toroid

AC = area of capacitor plates

RT = radius of toroid

d = separation of capacitor plates

Although it is a lot of stuff, everything can be counted,
measured with a ruler, or in the case of ω0, determined
from the oscilloscope trace.  And the result is the speed
of light c.  We have determined the speed of light from
a table top experiment that does not involve light.

Exercise 6

The resonant curve in Figure (16a) was measured using
the apparatus shown in Figure (16b). For an inductor,
we used the toroid described in Figure (6). The parallel
plates have a radius of 11 cm, and a separation d =
1.56mm.  Use the experimental results of Figure (16a),
along with the measured parameters of the toroid and
parallel plates to predict the speed of light. (The result
is about 20% low due to problems determining the
capacitance, as we discussed in Exercise 3.)
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In our initial discussion of the special theory of relativ-
ity in Chapter 1, we pointed out that according to
Maxwell’s theory of light, the speed of light c could be
predicted from a table top experiment that did not
involve light.  This theory, developed in 1860, pre-
dicted that light should travel at a speed  c  =  1/ µ0ε0 ,
and Maxwell knew that the product µ0ε0 could be
determined from an experiment like the one we just
described.  (Different notation was used in 1860, but
the ideas were the same.)

This raised the fundamental question:  if you went out
and actually measured the speed of a pulse of light as
it passed by, would you get the predicted answer
1/ µ0ε0  ?   If you did, that would be evidence that you
were at rest.  If you did not, then you could use the
difference between the observed speed of the pulse and
1/ µ0ε0  as a measurement of your speed through
space.  This was the basis for the series of experiments
performed by Michaelson and Morley to detect the
motion of the earth.  It was the basis for the rather firm
conviction during the last half of the 19th  century that
the principle of relativity was wrong.

It was not until 1905 that Einstein resolved the problem
by assuming that anyone who measured the speed of a
pulse of light moving past them would get the answer
c = 1/ µ0ε0  =   3×108m/s, no matter how they were
moving.  And if everyone always got the same answer
for  c, then a measurement of the speed of light could
not be used as a way of detecting one’s own motion and
violating the principle of relativity.  The importance of
the LC resonance experiment, of the determination of
the speed of light without looking at light, is that it
focuses attention on the fundamental questions that
lead to Einstein’s special theory of relativity.

In the next chapter we will discuss Maxwell’s equa-
tions which are the grand finale of electricity theory.  It
was the solution of these equations that led Maxwell to
his theory of light and all the interesting problems that
were raised concerning the principle of relativity.

R

L

C

V

V

V

R

L

C

VR

V  = V   cos(ωt)R R0

VL

V  = V   ...L

VC

V  = V   ...C

L0

C0

Figure 17a
An LRC circuit driven
by a sinusoidal
oscillator. The voltage

 VR  across the resistor is
shown  in Figure (17b).

Figure 17b
Knowing  VR , find
the formulas and
sketch the voltages
for  VL  and  VC .

Exercise 7
In Figure (17a) we have an LRC series circuit driven by
a sinusoidal oscillator at a frequency ω  radians/sec.
The voltage  VR  is given by the equation

  VR = VR0cos (ωt)

as shown in the upper sketch of Figure  (17b).

Knowing  VR , find the formulas and sketch the voltages
for  VL  and  VC . Determine the formulas for the ampli-
tudes   VL0  and  VC0 in terms of  VR0  and ω .
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The second half of this chapter which discusses the
concept of magnetic moment, provides additional labo-
ratory oriented applications of Faraday’s law and the
Lorentz force law.  This topic contains essential back-
ground material for our later discussion of the behav-
ior of atoms and elementary particles in a magnetic
field, but is not required for the discussion of Maxwell’s
equations in the next chapter.  You may wish to read
through the magnetic moment discussion to get the
general idea now, and worry about the details when
you need them later.
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MAGNETIC MOMENT
We will see, using the Lorentz force law, that when a
current loop (a loop of wire with a current flowing in it)
is placed in a magnetic field, the field can exert a torque
on the loop.  This has an immediate practical applica-
tion in the design of electric motors.  But it also has an
impact on an atomic scale.  For example, iron atoms act
like current loops that can be aligned by a magnetic
field.  This alignment itself produces a magnetic field
and helps explain the magnetic properties of iron.  On
a still smaller scale elementary particles like the elec-
tron, proton, and neutron behave somewhat like a
current loop in that a magnetic field can exert a torque
on them.  The phenomena related to this torque, al-
though occurring on a subatomic scale, are surprisingly
well described by the so called “classical” theory we
will discuss here.

Magnetic Force on a Current
Before we consider a current loop, we will begin with
a derivation of the force exerted by a straight wire
carrying a current i as shown in Figure (18a).  In that
figure we have a positive current i flowing to the right
and a uniform magnetic field B directed down into the
paper.

In order to calculate the force exerted by B on i, we will
use our model of a current as consisting of rods of
charge moving past each other as shown in Figure
(18b).  The rods have equal and opposite charge
densities  QQ , and the positive rod is moving at a speed
v to represent a positive current.  The current i is the
amount of charge per second carried past any cross-
sectional area of the wire.  This is the amount of charge
per meter,  QQ , times the number of meters per second,
v, passing the cross-sectional area.  Thus

  
i =

Q coulombs
meter

×v
meter
second

=
Q

v
coulombs

second

(27)

In Figure (18b) we see that the downward magnetic
field B acts on the moving positive charges to produce
a force FQ of magnitude

  FQ = Q v × B = QvB

which points toward the top of the page.  The force f
on a unit length of the wire is equal to the force on one
charge Q times the number of charges per unit length,
which is  11 .  Thus

   force on a
unit length

ofwire
≡ f = FQ ×

1
=

QvB
(28)
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Figure 18
Magnetic force on the moving charges when
a current i is placed in a magnetic field.
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Figure 19
Sideways magnetic force on a current in a magnetic
field.  The force per unit length f  is related to the
charge per unit length λλ  by    f = λλv ×× B .  Since   λλv  is
the current i , we get    f = i ×× B .
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Using Equation (27) to replace  Qv/  by the current i in
(28), and noting that   f  points in the direction of   i ×B ,
as shown in Figure (19), we get

   
f = i × B

force per unit length
exerted by a magnetic

fieldB on a current i
(29)

where i  is a vector of magnitude i pointing in the
direction of the positive current.

Example 2
Calculate the magnetic force between two straight
parallel wires separated by a distance r, carrying paral-
lel positive currents i1 and i2  as shown in Figure (21).

Solution
The current i1 produces a magnetic field  B1, which
acts on i2 as shown in Figure (20) (and vice versa).
Since  B1 is the field of a straight wire, it has a
magnitude given by Equation (28-18) as

  
B1 =

µ0i1
2πr

(29-18)

The resulting force per unit length on  B2 is

   f = i 2×B1

which is directed in toward i1 and has a magnitude

   
f = i2B1 =

µ0 i1 i2
2πr

(30)

Equation (30) is used in the MKS definition of the
ampere and the coulomb.  In 1946 the following
definition of the ampere was adopted:

The ampere is the constant current which, if main-
tained in two straight parallel conductors of infinite
length, of negligible circular cross section, and placed
1 meter apart in a vacuum, would produce on each of
these conductors a force equal to    2 × 10–7 newtons per
meter of length.

Applying this definition to Equation (30), we set
 i1 = i2 = 1  to represent one ampere currents, r = 1 to

represent the one meter separation, and    f = 2 × 10–7

as the force per meter of length.  We get

  
2 × 10–7 =

µ0

2π

From this we see that   µ0 is now a defined constant with
the exact value

   
µ0 = 4π × 10–7 by definition (31)

With the above definition of the ampere, the coulomb
is officially defined by the amount of charge carried by
a one ampere current, per second, past a cross-sectional
area of a wire .

Looking back over our derivation of the formula
   f = i ×B, and then the above MKS definitions, we

see that it is the magnetic force law   F = Q v × B  which
now underlies the official definitions of charge and
current.

Figure 20
Force between two currents.

i1

i2

r

a)  top view

i1
(up)

i2
(up)

B1

b)  end view showing the magnetic field of current 
     i   exerting a magnetic force  on current i
    The force between parallel currents is attractive. 

1 2 

FB
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Torque on a Current Loop
In an easily performed experiment, we place a square
loop of wire of sides ( ) and (w) as shown in Figure
(21a), into a uniform magnetic field as shown in (21b).
The loop is allowed to rotate around the axis and is now
orientated at an angle θ as seen in (21c).

If we now turn on a current i, we get an upward
magnetic force proportional to   i × B  in the section from
point (1) to point (2), and a downward magnetic force
proportional to   i × B  in the section from point (3) to
point (4).  These two forces exert a torque about the axis
of the loop, a torque that is trying to increase the angle
θ.  (This torque is what turns the armature of an electric
motor.)

Following our earlier right hand conventions, we will
define the area a  of the loop as a vector whose
magnitude is the area (a = w) of the loop, and whose
direction is given by a right hand rule for the current in
the loop.  Curl the fingers of your right hand in the
direction of the positive current i and your thumb points
in the direction of a  as shown in Figure (22).

With this convention, the loop area A points toward the
upper left part of the page in Figure (21b) as shown.
And we see that the torque caused by the magnetic
forces, is trying to orient the loop so that the loop
area a  is parallel to B.  This is a key result we will use
often.

To calculate the magnitude of the magnetic torque, we
note that the magnitude of the force on side (1)-(2) or
side (3)-(4) is the force per unit length    f = i × B  times
the length  of the side

  F1,2 = F3,4 = f = iB

When the loop is orientated at an angle θ as shown, then
the lever arm for these forces is

  
lever arm =

w
2

sin θ

Since both forces are trying to turn the same way, the
total torque is twice the torque produced by one force,
and we have

   
torque = 2 ×

w
2

sinθ × iB
2 times
leverarm
times force

  torque = iB w sin θ (32)w axis

i

end of
loop

axis
(3)

(2)

(1)

(4)

i

B
F
3,4 F

3,4

i

F
1,2

=    i x B

a)  a wire loop carrying a current i, free to turn on the axis

b)  magnetic force acting on horizontal loop

=    i x B

w

Figure 21
Analysis of the forces on a current loop in a magnetic field.
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(    sin θ)w
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c)  magnetic force acting on tilted loop
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The final step is to convert Equation (32) into a vector
equation.  First recall that the vector torque τ  is defined
as

  τ = r × F

where r and  F1,2  are shown in Figure (23).  In the figure
we see that  r × F and therefore τ  points up out of the
paper.

Next we note that in Equation (32), θ  is the angle
between the magnetic field B and the loop area a .  In
addition, the vector cross product    a × B  has a magni-
tude

  
a × B = aBsin θ = w Bsin θ

and points up, in the same direction as the torque τ .
Thus Equation (32) immediately converts to the vector
equation

   
τ = i a × B (33)

where i is the current in the loop, and a  is the vector area
defined by the right hand convention of Figure (22).

Magnetic Moment
When you put a current loop in a magnetic field, there
is no net force on the loop (  F1,2 = -F3,4  in Figure 19b),
but we do get a torque.  Thus magnetic fields do not
accelerate current loops, but they do turn them.  In the
study of the behavior of current loops, it is the torque
that is important, and the torque is given by the simple
formula of Equation (33).

This result can be written in an even more compact
form if we define the magnetic moment  µµ of a current
loop as the current i times the vector area a  of the loop

   µµ ≡ ia
definition of
magnetic moment

(34)

With this definition, the formula for the torque on a
current loop reduces to

  
τ = µ × B (35)

Although we derived Equations (34) and (35) for a
square loop, they also apply to other shapes such as
round loops.

Figure 22
Right hand convention for the loop area A.

i

a
F1,2

r

end view

of loop

  τ1,2 = r × F1,2

  τ1,2  points up,
   out of the paper

Figure 23
The torque   ττ1,2  exerted by the force   F1,2  acting on
the side of the current loop.  The vector r is the
lever arm of   F1,2  about the axis of the coil.  You
can see that    r ×× F1,2  points up out of the paper.



31-22  Inductors and Magnetic Moment

Magnetic Energy
In Figure (24) we start with a current loop with its
magnetic moment µ aligned with the magnetic field as
shown in (24a).  We saw in Figure (21b) that this is the
orientation towards which the magnetic force is trying
to turn the loop.

If we grab the loop and rotate it around as shown in
(24b) until µ is finally orientated opposite B as in (24c)
we have to do work on the loop.  We can calculate the
amount of work we do rotating the loop from an angle
θ = 0 to θ = π using the angular analogy for the formula
for work. The linear formula for work is

 

W = Fxdx
x1

x2

(10-19)

Replacing the linear force  Fx  by the angular force τ ,
and the linear distances dx,  x1 ,and  x2  by the angular
distances dθ , 0 and π , we get

  
W = τ

0

π

dθ (36)

If we let go of the loop, the magnetic force will try to
reorient the loop back in the θ = 0 position shown in
Figure (24a).  We can think of the loop as falling back
down to the θ = 0 position releasing all the energy we
stored in it by the work we did.  In the θ = π position of
Figure (24c) the current loop has a potential energy
equal to the work we did in rotating the loop from
θ = 0 to  θ = π.

θ = 0(a)

µ

B

(b)

(c)

µ

θ

B

B

θ = π

µ

τ = µ x B 

τ   = µ B sin θ

Figure 24
The resting, low energy position of a current loop is
with µµ  parallel to B as shown in (a).  To turn the
loop the other way, we have to do work against the
restoring torque    ττ = µµ ×× B  as shown in (b).  The
total work we do to get the loop into its high energy
position (c) is    2µµB .  We can think of this as
magnetic potential energy that would be released if
we let the loop flip back down again.  We choose the
zero of this potential energy half way between so
that the magnetic potential energy ranges from

   +µµB  in (c) to    – µµB  in (a).
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We can calculate the magnetic potential energy by
evaluating the integral in Equation (36).  From Equa-
tion (35) we have

  τ = µ × B = µBsin θ

so that
  

W = µBsin θdθ
0

π

= –µBcos θ
0

π

= 2µB
(36a)

Thus the current loop in the θ = π position of (24c) has
an energy 2µΒ greater than the energy in the θ = 0
position of (24a).

It is very reasonable to define the zero of magnetic
potential energy for the position θ = π/2, half way
between the low and high energy positions.  Then the
magnetic potential energy is   + µB in the high energy

position and   – µB in the low energy position.  We
immediately guess that a more general formula for
magnetic potential energy of the current loop is

  
magnetic potential
energy of a
current loop

Emag = –µ⋅B

(37)

This gives Emag  =  +µB when the loop is in the high
energy position with µ  opposite B, and Emag  =  - µB
in the low energy position where µ  and B are parallel.
At an arbitrary angle θ , Equation (37) gives
Emag  =  - µBcos θ, a result you can obtain from equa-
tion (36a) if you integrate from θ  = 0 to θ  = θ , and
adjust the zero of potential energy to be at θ = π/2.
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Summary of Magnetic Moment
Equations
Since we will be using the magnetic moment equations
in later discussions, it will be convenient to summarize
them in one place.  They are a short set of surprisingly
compact equations.

A = area of current loop

  µ ≡ iA (34)

  τ = µ × B (35)

  Emag = –µ⋅ B (37)

Charge q in a Circular Orbit
Most applications of the concept of magnetic moment
are to atoms and elementary particles.  In the case of
atoms, we can often picture the magnetic moment as
resulting from an electron traveling in a circular orbit
like that shown in Figure (25).  In that figure we show
a charge q traveling at a speed v in a circular orbit of
radius r.  Since charge is being carried around this loop,
this is a current loop, where the current i is the amount
of charge per second being carried past a point on the
orbit.  In one second the charge q goes around v/2πr
times, therefore

   
i = q coulombs

v meter / sec

2πr meter

i = q
v

2πr

Since the area of the loop is π r2, we get as the formula
for the magnetic moment

  µ = iA = q
v

2πr * πr2

   

µ =
qvr
2

magnetic momentof
a charge q traveling
at a speed v in a
circularorbit of radiusr

(38)

We can make a further refinement of Equation (38) by
noting that the angular momentum J (we have already
used L for inductance) of a particle of mass m traveling
at a speed v in a circle of radius r has a magnitude
J  =  mv r

More importantly, J points perpendicular to the plane
of the orbit in a right handed sense as shown in Figure
(26a).  This is the same direction as the magnetic
moment µ  seen in (26b), thus if we write Equation (38)
in the form

  µ =
q

2m
mvr (38a)

and use J for mvr, we can write (38a) as the vector
equation

   

µ =
q

2m
J

relationbetween the angular

momentumJ and magnetic

momentµ for a particle

travelingin a circularorbit
(39)

Equation (39) is as far as we want to go in developing
magnetic moment formulas using strictly classical
physics.  We will come back to these equations when
we study the behavior of atoms in a magnetic field.

Figure 25
A charged particle in a circular orbit acts like a current
loop.  Its magnetic moment turns out to be    µµ = qvr /2.
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m r
v

J

q r
v

µ

J   = mvr

µ   =       (mvr)q
2m

(a) angular momentum of a particle in 

     a circular orbit

(b) magnetic moment of a charged particle

     in a  circular orbit

(angular momentum)

(magnetic moment)

Figure 26
Comparing the magnetic moment µµ  and angular
momentum  J   of a particle in a circular orbit, we see
that

   µµ =
q

2m J
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IRON MAGNETS
In iron and many other elements, the atoms have a net
magnetic moment due to the motion of the electrons
about the nucleus.  The classical picture is a small
current loop consisting of a charged particle moving in
a circular orbit as shown previously in Figures (25) and
(26).

If a material where the atoms have a net magnetic
moment is placed in an external magnetic field Bext the
torque exerted by the magnetic field tends to line up the
magnetic moments parallel to Bext  as illustrated in
Figure (27).  This picture, where we show all the atomic
magnetic moments aligned with Bext  is an exaggera-
tion.  In most cases the thermal motion of the atoms
seriously disrupts the alignment.  Only at temperatures
of the order of one degree above absolute zero and in
external fields of the order of one tesla do we get a
nearly complete alignment.

Iron and a few other elements are an exception.  A small
external field, of the order of 10 gauss (.001 tesla) or
less, can align the magnetic moments at room tempera-
ture.  This happens because neighboring atoms interact
with each other to preserve the alignment in an effect
called ferromagnetism.  The theory of how this inter-
action takes place, and why it suddenly disappears at a
certain temperature (at 1043 K for iron) has been and
still is one of the challenging problems of theoretical
physics.  (The problem was solved by Lars Onsager for
a two-dimensional array of iron atoms, but no one has
yet succeeded in working out the theory for a three-
dimensional array.)

The behavior of iron or other ferromagnetic materials
depends very much on how the substance was physi-
cally prepared, i.e., on how it was cooled from the
molten mixture, what impurities are present, etc.  In one
extreme, it takes a fairly strong external field to align
the magnetic moments, but once aligned they stay
there.  This preparation, called magnetically hard iron,
is used for permanent magnets.  In the other extreme,
a small external field of a few gauss causes a major
alignment which disappears when the external field is
removed.  This preparation called magnetically soft
iron is used for electromagnets.

Our purpose in this discussion of iron magnets is not to
go over the details of how magnetic moments are
aligned, what keeps them aligned or what disrupts the
alignment.  We will consider only the more fundamen-
tal question – what is the effect of lining up the
magnetic moments in a sample of matter.  What
happens if we line them all up as shown in Figure (27)?

A current loop has its own magnetic field which we saw
in our original discussion of magnetic field patterns and
which we have reproduced here in Figure (28).  This is
a fairly complex field shape.  (Out from the loop at
distances of several loop radii, the field has the shape of
what is called a “dipole” magnetic field.  In certain
regions earth’s magnetic field has this dipole magnetic
field shape.)

Bext Bext

Figure 27
Ferromagnetism.  When you apply an external
magnetic field to a piece of "magnetically soft"
iron (like a nail), the external magnetic field
aligns all of the magnetic moments of the iron
atoms inside the iron.  The magnetic field of the
current loops can be enormous compared to the
external field lining them up.  As a result a
small external field produced say by a coil of
wire, can create a strong field in the iron and we
have an electromagnet.  This phenomena is
called ferromagnetism.
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When you have a large collection of aligned current
loops as shown in Figure (27), the magnetic fields of
each of the current loops add together to produce the
magnetic field of the magnet.  The magnetic field of a
single current loop, shown in Figure (28), is bad
enough.  What kind of a mess do we get if we add up
the fields of thousands, billions, 6 × 1023 of these
current loops?  The calculation seems impossibly
difficult.

Ampere discovered a simple, elegant way to solve the
problem.  Instead of adding up the magnetic fields of
each current loop, he first added up the currents using
a diagram like that shown in Figure (29).

We can think of Figure (29) as the top view of the
aligned current loops of Figure (27).  If you look at
Figure (29) for a while, you see that all the currents
inside the large circle lie next to, or very close to, an
equal current flowing in the opposite direction.  We can
say that these currents inside the big circle cancel each
other.  They do not carry a net charge, and therefore do
not produce a net magnetic field.

The cancellation is complete everywhere except at the
outside surface.  At this surface we essentially have a
single large current loop with a current i equal to the
current i in each of the little loops.  It was in this way that
Ampere saw that the magnetic field produced by all the
small current loops packed together must be the same
as the magnetic field of one big loop.  What an
enormous simplification!

i

i

effective current
i around the
surface

i

current loop of
individual atom
(greatly enlarged)

enlarged
cross-section
of iron bar 
magnet

iron bar
magnet

B

Figure 28
Magnetic field of a current loop.

i
Figure 29
In an iron bar magnet, the iron atoms are
permanently aligned.  In the cross-sectional view
we are looking down on the aligned current
loops of the atoms.  Inside the iron, we picture
the currents as cancelling, leaving a net current
i (the same as the current in each loop) going
around the surface of the nail.  This picture of a
surface current replacing the actual current
loops was proposed by Ampere, and the surface
current is known as an Amperian current.
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Now let us return to Figure (27), redrawn in (30a),
where we had a collection of aligned current loops.  We
can think of this as a model of a magnetized iron rod
where all the iron atom magnetic moments are aligned.
From Figure (29) we see that one horizontal layer of
these current loops can be replaced by one large loop
carrying a current i that goes all the way around the iron
rod.  This is shown again at the top of Figure (30).

Now our rod consists of a number of layers of small
loops shown in (30a).  If each of these layers is replaced
by a single large loop, we end up with the stack of large
loops shown in (30b).  But this stack of large loops is
just the same current distribution we get in a sole-
noid!  Thus we get the remarkable result that the vector
sum of the magnetic fields of all the current loops in
Figure (30a) is just the simple field of a solenoid.  This
is why a bar magnet and a solenoid of the same size
have the same field shape, as seen in Figure (31).

Although a bar magnet and a solenoid have the same
field shape, the strength of the field in a bar magnet is
usually far stronger.  If the majority of the magnetic
moments in an iron bar are aligned, we get a field of the
order of one tesla inside the bar.  To obtain comparable
field strengths inside a solenoid made using copper
wire, we would have to use currents so strong that the
copper wire would soon heat up and perhaps melt due
to electrical resistance in the copper.

The Electromagnet
If we insert a magnetically soft iron rod into the core of
a solenoid as shown in Figure (32), we have an electro-
magnet.  It only takes a small external field to align a
majority of the magnetic moments in magnetically soft
iron.  And when the moments are aligned, we an get
fields approaching one tesla, 104 gauss, as a result.  This
is the principle of an electromagnet where a weak field
produced by a small current in the windings produces
a strong field in the iron.

i
i

i
i

i
i

i

i

a) small current loops

i

amperian
current

i

bar magnet solenoid

 wire
current

Figure 31
Comparison of the magnetic fields of an iron magnet
and a solenoid.  The fields are essentially the same
because the Amperian currents in a bar magnet are
essentially the same as the current in the coils of a
solenoid.

b) large Amperian
currents around
surfaceFigure 30

Ampere's picture of replacing
small current loop throughout
the substance by large ones on
the surface.



31-29

Figure (33) is a graph showing the strength of the
magnetic field inside the iron core of an electromagnet
as a function of the strength of the external magnetic
field produced by the windings of the solenoid.  In this
case a toroidal solenoid was used, the iron core is an
iron ring inside the toroid, and the results in Figure (33)
are for one particular sample of iron.  We can get
different results for different samples of iron prepared
in different ways.

The vertical axis in Figure (33) shows the percentage of
the maximum field Bmax we can get in the iron.  Bmax
is the “saturated” field we get when all the iron atoms
magnetic moments are aligned and has a typical value
of about 1 tesla.  We see that a very small external field
of 2 gauss brings the magnetic field up to 50% of its
saturated value.  Getting the other 50% is much harder.
We can more or less turn on the electromagnet using a
2 gauss external field, and that not much is to be gained
by using a stronger external field.

The Iron Core Inductor
When the external field is less than 2 gauss in Figure
(33), we have a more or less linear relationship shown
by the dotted line between the external field and the
field in the iron.  In this region of the curve, for Bext <
2 gauss, the iron is essentially acting as a magnetic field
amplifier.  For this sample, a 2 gauss external field
produces a 50,000 gauss magnetic field in the iron, an
amplification by a factor of 25,000.

If we amplify the magnetic field in our solenoid 25,000
times, we are also amplifying the magnetic flux ΦB by
the same factor.  If we have a varying current in the
solenoid, but keep Bext under 2 gauss, we will get a
varying magnetic field in the iron and a varying mag-
netic flux ΦB that is roughly proportional to the current
i in the solenoid.  The difference that the iron makes is
that the flux ΦB, and the rate of change of flux dΦB/dt
will be 25,000 times larger.  And so will the induced
voltage in the turns of the solenoid.  This means that the
inductance of the solenoid is also increased by 25,000
times.  If we inserted an iron ring into our air core
solenoid shown in Figure (6), and the iron had the same
magnetic properties as the iron sample studied in
Figure (33), the inductance of our toroidal solenoid
would increase 25,000 times from 1.8 × 10-4 henry up
to about 4 henrys.

Figure 32
In an electromagnet, some turns of wire are wrapped
around an iron bar.  When a current i is turned on, the
magnetic field of the turns of wire provide the external
field to align the iron atoms.  When the current i is
shut off, and the external field disappears, the iron
atoms return to a random alignment and the
electromagnet shuts off.  Whether the iron atoms
remain aligned or not, whether we have a permanent
magnet or not, depends upon the alloys (impurities) in
the iron and the way the iron was cooled after casting.

iron
core

Bexternal

i
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1.2 tesla
= 12000 gauss
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maxB

– 4

Figure 33
Example of a magnetization curve for
magnetically soft iron.  The impressive
feature is that an external field of only
a few gauss can produce fields in
excess of xxxxx gauss inside the iron.

Need student project
data for this.
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We can easily get large inductances from iron core
inductors, but there are certain disadvantages.  The
curve in Figure (33) is not strictly linear, therefore the
inductance has some dependence on the strength of the
current in the coil.  When we use an AC current in the
solenoid, the iron atoms have to flip back and forth to
keep their magnetic moments aligned with the AC
external field.  There is always some energy dissipated
in the process and the iron can get hot.  And if we try to
go to too high a frequency, the iron atoms may not be
able to flip fast enough, the magnetic field in the iron
will no longer be able to follow the external field, and
the amplification is lost.  None of these problems is
present with a  air core inductor that has no iron.

Superconducting Magnets
The fact that iron saturates, the fact that we can do no
better than aligning all the iron atoms current loops,
places a fundamental limit on the usefulness of electro-
magnets for producing strong magnetic fields.  Instead
it is necessary to return to air core solenoids or other
arrangements of coils of wire, and simply use huge
currents.

The problem with using copper wire for coils that
produce magnetic fields stronger than 1 tesla is that
such strong currents are required that even the small
resistance in copper produces enough heat to melt the
wire.  The only solutions for copper are to use an
elaborate cooling system to keep the copper from
heating, or do the experiment so fast that either the
copper does not have time to heat, or you do not mind
if it melts.

The introduction in the early 1970s of superconducting
wire that could carry huge currents yet had zero electri-
cal resistance revolutionized the design of strong field
magnets.  Magnets made from superconducting wire,
called superconducting magnets are routinely designed
to create magnetic fields of strengths up to 5 tesla.  Such
magnets will be used in the superconducting
supercollider discussed earlier, and are now found in
the magnetic resonance imaging devices in most large
hospitals.  The major problem with the superconduct-
ing magnets is that the superconducting wire has to be
cooled by liquid helium to keep the wire in its supercon-
ducting state.  And helium is a rare substance (at least
on earth) that is difficult to liquefy and hard to maintain
as a liquid.

In the late 1980s substances were discovered that are
superconducting when immersed in liquid nitrogen, an
inexpensive substance to create and maintain.  So far
we have not been able to make wires out of these “high
temperature” superconductors that can carry the huge
currents needed for big superconducting magnets.  But
this seems to be an engineering problem that when
solved, may have a revolutionary effect not just on the
design and use of superconducting magnets, but on
technology in general.
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APPENDIX
THE LC CIRCUIT
AND FOURIER ANALYSIS

The special feature of an LC circuit, like the one shown
in Figure (A1), is it’s resonance at an angular frequency

  ω0 = 1 LC1 LC .  If you drive the circuit with an oscillator
that puts out a sine wave voltage   V = V0sin ωt,  the
circuit will respond with a large voltage output when
the driving frequency ω  equals the circuit’s resonant
frequency   ω0.   We saw this resonance in our discus-
sion of the LC circuit shown in Figure (12) (p 31-11).

In Chapter 16, in our discussion of Fourier analysis, we
saw that a square wave of frequency   ω0  can be
constructed by adding up a series of harmonic sine
waves.  The first harmonic, of the form   A1sin ω1t , has
the same frequency as the square wave.  For a square
wave the second and all even harmonics are missing.
The third harmonic is of the form   A3sin ω3t .  That is,
the third harmonic’s frequency is three times the fre-
quency   ω1  of the first harmonic. The fifth harmonic is
of the form   A5sin ω5t . The amplitudes  A1 ,  A3 ,

 A5 ,... of the harmonic sine waves present in the square
wave, which are shown by the vertical bars in Figure
(A2), were determined by Fourier analysis.  (For a
square wave, there is the simple relationship  A3= A1 3A1 3,

 A5= A1 5A1 5, etc.)

The point of this lab is to demonstrate the physical
reality of the harmonics in a square wave.  We have
seen that an LC circuit can be driven to a large ampli-
tude resonance only when the driving frequency is
equal to or close to the resonant frequency   ω0 = 1 LC1 LC .
To put it another way, we can use the LC circuit to
detect the presence of a sine wave of frequency   ω0  in
the driving signal.  If that frequency is present in the
driving signal, the circuit will resonate.  If it is not
present, the circuit will not resonate.

Our experiment is to drive an LC circuit with a square
wave, and see if the various harmonics in the square
wave can each cause a resonance in the circuit.  For
example, if we adjust the frequency   ω1  of the square
wave to equal   ω0 , then we expect the first harmonic

  A1sin ω1t  to drive the circuit in resonance.

C

scope oscillator

L

R

V

Figure A1
The LC circuit.  For this experiment we used a fairly
large commercial   9.1 ×× 10– 3  henry inductor.  This
large inductance made the circuit more stable and less
noisy than when we tried to do the experiment with the
toroidal inductor of Figure (12).  This inductor turned
out to have an internal capacitance of   9.9 ×× 10– 10

farads (990 picofarads) due to the coil windings
themselves.  We used this internal capacitance for the
capacitor C of the circuit.  (The internal capacitance
was determined by measuring the resonant frequency

  ωω0 = 1 LC1 LC  and solving for C.)

By using a large inductor L, we can attach the scope
directly across the inductor, as shown, without the
scope having a serious effect on the circuit.  The
resistance R, with R =150KΩΩ , partially isolated the LC
circuit from the oscillator.  This allowed the oscillator
to gently drive the circuit without putting out much
current and without distorting the shape of the square
wave.  (The oscillator could not maintain a square
wave when we used the LC circuit shown in Figure
(12).)

If one wants to try values of C other than the internal
capacitance of the coil, one can add an external
capacitor in parallel with L and C of Figure (A1).  If
you use an external capacitor more than about 10 times
the internal capacitance, the internal capacitance of
the inductor can be neglected.
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If we then lower the frequency   ω1  of the square wave
so that   3ω1 = ω0 , then we expect that the third har-
monic   A3sin ω3t  should drive the circuit in resonance.
We should get another resonance when   5ω1 = ω0 , and
another at   7ω1 = ω0 , etc.  When the LC circuit is
driven by a square wave, there should be a whole series
of resonances, where in each case one of the harmonics
has the right frequency to drive the circuit.  These
resonances provide direct experimental evidence that
the various harmonics are physically present in the
square wave, that they have energy that can drive the
resonance.

In Figures A3 and A4 we look at the shape of the first
few harmonics in the square wave of Figure (A2), and
then watch as a square wave emerges as the harmonics
are added together.  (This is mostly a review of what we
did back in Chapter 16.) After that, we study the
resonances that occur when   ω1 = ω0 ,   3ω1 = ω0 ,

  5ω1 = ω0 , etc. Finally we drop the square wave fre-
quency to about   23ω1 = ω0 , and watch the LC circuit
ring like a bell repeatedly struck by a hammer.Figure
A1

Figure A2
Fourier analysis of a square wave.  The top part of the
MacScope output shows an experimental square wave.
We selected one cycle of the wave, chose Fourier
analysis, and see that the wave consists of a series of
odd harmonics.  You can see the progression of
amplitudes with  A3 = A1 3A1 3 , A5 = A1 5A1 5 ,  etc. In Figure
A3 we show the harmonics   A1sin ωω1 t ,   A3sin ωω 3 t ,and

  A5sin ωω5 t . In Figure A4 we add together the
harmonics to create a square wave.

 A1

 A5
 A3
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Figure A3
Displaying selected harmonics. Note that when you
select a harmonic, you not only see the shape of the
harmonic, but also see the harmonic’s frequency
displayed. (We highlighted this display with small
rectangles.) You can see, for example, that the third
harmonic is 159.5 kHz, 3 times the fundamental
frequency of 53.19 kHz.

Figure A4
Adding up harmonics to create a square wave.
The more harmonics we add, the closer we get.

Harmonic 1

Harmonic 3

Harmonic 5

Harmonic 1 selected.

Harmonics 1 and 3 selected.

Harmonics 1,3 and 5 selected.

Harmonics 1,3,5 and 7 selected.

Harmonics 1,3,5,7,9 and 11 selected.
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Figure A5 – Resonance at   ωω1 = ωω0
We get the biggest resonance when the frequency   ωω1 of the square wave is equal to the resonant
frequency   ωω0 of the circuit. We displayed the first harmonic by clicking on the bar over the 1 in
the Fourier analysis window, and see that the frequency of the first harmonic is 52.91 kilohertz.

Figure A6 – Resonance at    3ωω 1 = ωω0

Lowering the frequency of the square wave to 17.54 kilohertz, we get another resonance
shown above. In the Fourier analysis window, we selected the third harmonic, and see
that the frequency of this harmonic is 52.63 kilohertz. To within experimental accuracy,
this is equal to the LC circuit’s resonant frequency of 52.91 kilohertz.
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Figure A7 – Resonance at    5ωω 1 = ωω0

Lowering the frequency of the square wave to 10.25 kilohertz, we get another resonance. In
the Fourier analysis window, we selected the fifth harmonic, and see that the frequency of
this harmonic is 52.63 kilohertz. To within experimental accuracy, this is again equal to
the LC circuit’s resonant frequency of 52.91 kilohertz.

Figure A8 – Resonance at    11ωω 1 = ωω0

Skipping two resonances and lowering the frequency of the square wave to 4.712 kilohertz, we
get a sixth resonance. In the Fourier analysis window, we selected the eleventh harmonic,
and see that the frequency of this harmonic is 52.63 kilohertz. To within experimental
accuracy, this is again equal to the LC circuit’s resonant frequency of 52.91 kilohertz.
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Figure A9 – Ringing like a bell
Dropping the square wave frequency even further, we see that every time the voltage of the
square wave changes, the circuit responds like a bell struck by a hammer. This setup can
be used as the starting point for the study of damped resonant (LRC) circuits.
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Chapter 32
Maxwell's Equations

In electricity theory we have two vector fields E  and B,
and two equations are needed to define each field.
Therefore the total number of equations required must
be four.

How many of the required equations have we discussed
so far?  We have Gauss’ law for the divergent part of
E , and Faraday’s law for the solenoidal part.  It
appears that we already have a complete theory of the
electric field, and we do.  Gauss’ law and Faraday’s
law are two of the four equations needed.

For magnetism, we have Ampere’s law   that defines the
solenoidal part of B.  But we have not written an
equation involving the surface integral of B.  We are
missing a Gauss’ law type equation for the magnetic
field.  It would appear that the missing Gauss’ law for
B, plus Ampere’s law make up the remaining two
equations.

This is not quite correct.  The missing Gauss’ law is one
of the needed equations for B, and it is easily written
down because there are no known sources for a diver-
gent B field.  But Ampere’s law, in the form we have
been using

   B⋅dl = µ0 i (29-18)

has a logical flaw that was discovered by Maxwell.
When Maxwell corrected this flaw by adding another
source term to the right side of Equation (29-18), he
then had the complete, correct set of four equations for
E  and B.

In 1860 James Clerk Maxwell summarized the entire
content of the theory of electricity and magnetism in a
few short equations.  In this chapter we will review
these equations and investigate some of the predictions
one can make when the entire theory is available.

What does a complete theory of electricity and magne-
tism involve?  We have to fully specify the electric field
E , the magnetic field B, and describe what effect the
fields have when they interact with matter.

The interaction is described by the Lorentz force law

   F = qE + q v × B (28-18)

which tells us the force exerted on a charge q by the  E
and B fields.  As long as we stay away from the atomic
world where quantum mechanics dominates, then the
Lorentz force law combined with Newton’s second law
fully explains the behavior of   charges in the presence
of electric and magnetic fields, whatever the origin of
the fields may be.

To handle the electric and magnetic fields, recall our
discussion in Chapter 30 (on two kinds of fields) where
we saw that any vector field can be separated into two
parts; a divergent part like the electric field of static
charges, and a solenoidal part like the electric field in
a betatron or inductor.  To completely specify a vector
field, we need two equations – one involving a surface
integral or its equivalent to define the divergent part of
the field, and another involving a line integral or its
equivalent defining the solenoidal part.

CHAPTER 32 MAXWELL'S EQUATIONS
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All Maxwell did was to add one term to the four
equations for E  and B , and yet the entire set of
equations are named after him.  The reason for this is
that with the correct set of equations, Maxwell was able
to obtain solutions of the four equations, predictions of
these equations that could not be obtained until
Ampere’s law had been corrected.  The most famous of
these predictions was that a certain structure of electric
and magnetic fields could travel through empty space
at a speed    v = 1/ µ0ε0 .  Since Maxwell knew that

   1/ µ0ε0  was close to the observed speed    3 × 108 m/s
for light, he proposed that this structure of electric and
magnetic fields was light itself.

In this chapter, we will first describe the missing Gauss'
law for magnetic fields, then correct Ampere’s law to
get the complete set of Maxwell’s four equations.  We
will then solve these equations for a structure of electric
and magnetic fields that moves through empty space at
a speed    v = 1/ µ0ε0 .  We will see that this structure
explains various properties of light waves, radio waves,
and other components of the electromagnetic spec-
trum.  We will find, for example, that we can detect
radio waves by using the same equipment and proce-
dures we have used in earlier chapters to detect and
map electric and magnetic fields.

GAUSS’ LAW FOR
MAGNETIC FIELDS
Let us review a calculation we have done several times
now—the use of Gauss’ law to calculate the electric
field of a point particle.  Our latest form of the law is

  
E ⋅ dAclosed

surface

=
Qin

ε0
(29-5)

where Qin is the total amount of electric charge inside
the surface.

In Figure (1), we have a point charge Q and have
constructed a closed spherical surface of radius r cen-
tered on the charge.  For this surface, E is everywhere
perpendicular to the surface or parallel to every surface
element  dA, thus   E ⋅ dA = EdA.      Since E is of
constant magnitude, we get

  E ⋅ dA

closed
surface

= E dA

closed
surface

= E 4πr2

=
Qin

ε0

(1)

where Qin  =  Q .

rQ 

EFigure 1
Field of point charge.
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The solution of Equation (1) gives E  =  Q/4πε0r2 as
the strength of the electric field of a point charge.  A
similar calculation using a cylindrical surface gave us
the electric field of a charged rod.  By being clever, or
working very hard, one can use Gauss’ law in the form
of Equation (29-5) to solve for the electric field of any
static distribution of electric charge.

But the simple example of the field of a point charge
illustrates the point we wish to make.  Gauss’ law
determines the diverging kind of field we get from a
point source.  Electric fields have point sources, namely
electric charges, and it is these sources in the form of
Qin that appear on the right hand side of Equation
(29-5).

Figure (2) shows a magnetic field emerging from a
point source of magnetism.  Such a point source of
magnetism is given the name magnetic monopole and
magnetic monopoles are predicted to exist by various
recent theories of elementary particles.  These theories
are designed to unify three of the four basic interactions
– the electrical, the weak, and the nuclear interactions.
(They are called “Grand Unified Theories” or “GUT”
theories.  Gravity raises problems that are not handled
by GUT theories.)  These theories also predict that the
proton should decay with a half life of 1032 years.

In the last 20 years there has been an extensive search
for evidence for the decay of protons or the existence of
magnetic monopoles.  So far we have found no evi-
dence for either.  (You do not have to wait 1032 years
to see if protons decay; instead you can see if one out
of 1032 protons decays in one year.)

The failure to find the magnetic monopole, the fact that
no one has yet seen a magnetic field with the shape
shown in Figure (2), can be stated mathematically by
writing a form of Gauss’ law for magnetic fields with
the magnetic charge Qin set to zero

  B ⋅ dAclosed
surface

= 0 (2)

When reading Equation (2), interpret the zero on the
right side of Equation (2) as a statement that the
divergent part of the magnetic field has no source
term.  This is in contrast to Gauss’ law for electric
fields, where Qin /ε0 is the source term.

r

B

Figure  2
Magnetic field produced by  a point source.
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path on the wire so that  B and sections  d  of the path
are everywhere parallel.  Thus    B ⋅ d = Bd ,  and
since B is constant along the path, we have

  B ⋅ d = B d = B×2πr = µ0i

which gives our old formula  B  =  µ0 i/2π r  for the
magnetic field of a wire.

To see the flaw with Ampere’s law, consider a circuit
where a capacitor is being charged up by a current i as
shown in Figure (4).  When a capacitor becomes
charged, one plate becomes positively charged and the
other negatively charged as shown.  We can think of the
capacitor being charged because a positive current is
flowing into the left plate, making that plate positive,
and a positive current is flowing out of the right plate,
making that plate negative.

Figure (4) looks somewhat peculiar in that the current
i almost appears to be flowing through the capacitor.
We have a current i on the left, which continues on the
right, with a break between the capacitor plates.  To
emphasize the peculiar nature of this discontinuity in
the current, imagine that the wires leading to the
capacitor are huge wires, and that the capacitor plates
are just the ends of the wires as shown in Figure (5).

Now let us apply Ampere’s law to the situation shown
in Figure (5).  We have drawn three paths, Path (1)
around the wire leading into the positive plate of the
capacitor, Path (2) around the wire leading out of the
negative plate, and Path (3) around the gap between the
plates.  Applying Ampere’s law we have

MAXWELL’S CORRECTION
TO AMPERE’S LAW
As we mentioned in the introduction, Maxwell de-
tected a logical flaw in Ampere’s law which, when
corrected, gave him the complete set of equations for
the electric and magnetic fields.  With the complete set
of equations, Maxwell was able to obtain a theory of
light.  No theory of light could be obtained without the
correction.

Ampere’s law, Equation (29-18), uses the line integral
to detect the solenoidal component of the magnetic
field.  We had

   
B ⋅ d = µ0ienclosed

Ampere's
Law

(29-18)

where ienclosed is the total current encircled by the
closed path used to evaluate    B ⋅ d .  We can say that

  µ0ienclosed is the source term for this equation, in
analogy to Qin /ε0 being the source term for Gauss’
law.

Before we discuss Maxwell’s correction, let us review
the use of Equation (29-18) to calculate the magnetic
field of a straight current i as shown in Figure (3).   In
(3a) we see the wire carrying the current, and in (3b) we
show the circular magnetic field produced by the
current.  To apply Equation (29-18) we draw a closed
circular path of radius r around the wire, centering the

Figure  3
Using Ampere's law.

Figure  4
Charging up a capacitor.
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B ⋅ d

path 1
= µ0i

path 1 goes
around a current i

(3)

   
B ⋅ d

path 2
= µ0i

path 2 goes
around a current i

(4)

   
B ⋅ d

path 3
= 0

path 3 does not go
around any current

(5)

When we write out Ampere’s law this way, the
discontinuity in the current at the capacitor plates
looks a bit more disturbing.

For greater emphasis of the problem, imagine that the
gap in Figure (5) is very narrow, like Figure (5a) only
worse.  Assume we have a 1 mm diameter wire and the
gap is only 10 atomic diameters.  Then according to
Ampere’s law,   B ⋅ d  should still be zero if it is
correctly  centered on the gap.  But can we possibly
center a path on a gap that is only 10 atomic diameters
wide?  And even if we could, would   B ⋅ d

 
be zero

for this path, and have the full value µ0 i  for the path 10
atomic diameters away?  No, we simply cannot have
such a discontinuity in the magnetic field and there
must be something wrong with Ampere’s law.  This
was the problem recognized by Maxwell.

Maxwell’s solution was that even inside the gap at the
capacitor there was a source for   B ⋅ d ,  and that the
strength of the source was still µ0 i.  What actually
exists inside the gap is the electric field E  due to the +
and – charge accumulating on the capacitor plates as
shown in Figure (6).  Perhaps this electric field can
somehow replace the missing current in the gap.

The capacitor plates or rod ends in Figure (6) have a
charge density  σ  =  Q/A  where Q is the present
charge on the capacitor and A is the area of the plates.
In one of our early Gauss’ law calculations we saw that
a charge density on a conducting surface produces an
electric field of strength  E  =  σ/ε0,  thus E  between
the plates is related to the charge Q on them by

  
E =

σ
ε0

=
Q

ε0A
  ;        Q = ε0EA (6)

The current flowing into the capacitor plates is related
to the charge Q that has accumulated by

i  =  
dQ
dt (7)

Using Equation (6) in Equation (7), we get

  
i = ε0

d
dt

EA (8)

+
+
+
+
+
+

–
–
–
–
–
–

i

i

i

i

i

i

Path 1 Path 3 Path 2

Figure  5
Current flows through Paths (1)
& (2), but not through Path (3).

Figure  6
An electric field E exists between the plates.

Figure 5a
Very narrow gap
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Noting that the flux ΦE of electric field between the
plates is

  ΦE = E ⋅ dA = E A⊥ = E A (9)

and multiplying through by µ0, we can write Equation
(8) in the form

  
µ0i = µ0ε0

dΦE

dt
(10)

We get the somewhat surprising result that µ0ε0 times
the rate of change of electric flux inside the capacitor
has the same magnitude as µ0 i , where i is the current
in the wire leading to the capacitor.  Maxwell proposed
that   µ0ε0dΦE dtdΦE dt  played the same role, inside the
capacitor, as a source term  for B ⋅ dl,  that µ0 i  did
outside in the wire.

As a result, Maxwell proposed that Ampere’s law be
corrected to read

   
B ⋅ d = µ0i + µ0ε0

dΦE

dt

corrected
Ampere's
law

(11)

Applying Equation (11) to the three paths shown in
Figure (7), we have

  B ⋅ d
paths 1&2

= µ0i (ΦE = 0) (12)

  
B ⋅ d

paths 3
= µ0ε0

dΦE

dt
( i = 0 ) (13)

I.e., for Paths (1) and (2), there is no electric flux
through the path and the source of    B ⋅ d

 
is the

current.  For Path (3), no current flows through the path
and the source of    B ⋅ d   is the changing electric
flux.  But, because  µ0 i  in Equation (12) has the same
magnitude   µ0ε0dΦE dtdΦE dt in Equation (13), the term

  B ⋅ d
 
 has the same value for Path (3) as (1) and (2),

and there is no discontinuity in the magnetic field.

Example:  Magnetic Field
between the Capacitor Plates
As an example of the use of the new term in the
corrected Ampere’s law, let us calculate the magnetic
field in the region between the capacitor plates.  To do
this we draw a centered circular path of radius r smaller
than the capacitor radius R as shown in Figure (8).
There is no current through this path, but there is an
electric flux  ΦE r   =  EA r   =  Eπ r2 through the
path.  Thus we set i = 0 in Ampere’s corrected law, and
replace ΦE by the flux ΦE r  through our path to get

  
B ⋅ d = µ0ε0

dΦE r

dt
(14)

Equation (14) tells us that because we have an in-
creasing electric field between the plates, and thus an
increasing electric flux through our path, there must be
a magnetic field around the path.

Figure  8
Calculating Bin the region between the plates.Figure  7

Path (2) surrounds a changing electric flux. Inside the
gap,    µµ00εε00(dΦΦ E/dt)replaces   µµ00 i  as the source of B.
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Due to the cylindrical symmetry of the problem, the
only possible shape for the magnetic field inside the
capacitor is circular, just like the field outside.  This
circular field and our path are shown in the end view,
Figure (9).  Since B and  d  are parallel for all the steps
around the circular path, we have   B ⋅ d = Bd .  And
since B is constant in magnitude along the path, we get

  B ⋅ d = B d = B× 2πr (15)

To evaluate the right hand side of Equation (14), note
that the flux through our path ΦE r

 
is equal to the total

flux ΦE total  times the ratio of the area π r2 of our path
to the total area πR2 of the capacitor plates

ΦE r   =  ΦE total  π r2

πR2 (16)

so that the right hand side becomes

µ0ε0
dΦE r

dt
  =  µ0ε0

dΦE total
dt

 r2

R2

=  µ0i r2

R2 (17)

where in the last step we used Equation (10) to replace
µ0ε0dΦE total /dt by a term of the same magnitude,
namely µ0 i.

Finally using Equation (15) and (17) in (14) we get

  
B×2πr = µ0i

r2

R2

   
B =

µ0i

2π
r

R2

magnetic
field between
capacitor plates

(18)

Figure (10) is a graph of the magnitude of B both
inside and outside the plates.  They match up at r =
R, and the field strength decreases linearly to zero
inside the plates.

Exercise 1
Calculate the magnetic field inside the copper wires
that lead to the capacitor plates of Figure (5).  Use
Ampere’s law and a circular path of radius r inside the
copper as shown in Figure (11).  Assuming that there is
a uniform current density in the wire, you should get
Equation (18) as an answer.  Thus the magnetic field is
continuous as we go out from the copper to between the
capacitor plates.

Figure  9
End view of capacitor plate.
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Figure  10
Magnetic fields inside and outside the gap.
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MAXWELL’S EQUATIONS
Now that we have corrected Ampere’s law, we are
ready to write the four equations that completely
govern the behavior of classical electric and magnetic
fields.  They are

    

(a) E ⋅ dAclosed
surface

=
Qin

ε0

Gauss'
Law

(b) B ⋅ dAclosed
surface

= 0
No
Monopole

(c) B ⋅ d = µ0i + µ0ε0

dΦE

dt
Ampere's
Law

(d) E ⋅ d = –
dΦB

dt
Faraday's
Law

(19)

The only other thing you need for the classical theory
of electromagnetism is the Lorentz force law and
Newton’s second law to calculate the effect of electric
and magnetic fields on charged particles.

    
F = qE + qv ×B

Lorentz
Force
Law

(20)

This is a complete formal summary of everything we
have learned in the past ten chapters.

Exercise 2
This is one of the most important exercises in the text.
The four Maxwell’s equations and the Lorentz force law
represent an elegant summary of many ideas.  But
these equations are nothing but hen scratchings on a
piece of paper if you do not have a clear idea of how
each term is used.

The best way to give these equations meaning is to
know inside out at least one specific example that
illustrates the use of each term in the equations.  For
Gauss’ law, we have emphasized the calculation of the
electric field of a point and a line charge.  We have the
nonexistence of the divergent magnetic field in Figure
(2) to illustrate Gauss’ law for magnetic fields.  We have
used Ampere’s law to calculate the magnetic field of a
wire and a solenoid.  The new term in Ampere’s law was
used to calculate the magnetic field inside a parallel
plate capacitor that is being charged up.

Faraday’s law has numerous applications including the
air cart speed meter, the betatron, the AC voltage
generator, and the inductance of a solenoid.  Perhaps
the most important concept with Faraday’s law is that

  E⋅dl  is the voltage rise created by solenoidal electric
fields, which for circuits can be read directly by a
voltmeter.  This lead to the interpretation of a loop of wire
with a voltmeter attached as an    E⋅dl  meter.  We used
an    E⋅dl  meter in the design of the air cart speed
detector and experiment where we mapped the mag-
netic field of a Helmholtz coil.

Then there is the Lorentz force law with the formulas for
the electric and magnetic force on a charged particle.
As an example of an electric force we calculated the
trajectory of an electron beam between charged plates,
and for a magnetic force we studied the circular motion
of electrons in a uniform magnetic field.

The assignment of this exercise is to write out Maxwell’s
equations one by one, and with each equation write
down a fully worked out example of the use of each term.
Do this neatly, and save it for later reference.  This is what
turns the hen scratchings shown on the previous page
into a meaningful theory.  When you buy a T-shirt with
Maxwell’s equations on it, you will be able to wear it with
confidence.

We have just crossed what you might call a conti-
nental divide in our study of the theory of electricity
and magnetism.  We spent the last ten chapters
building up to Maxwell’s equations.  Now we de-
scend into applications of the theory.  We will focus
on applications and discussions that would not have
made sense until we had the complete set of equa-
tions—discussions on the symmetry of the equations
and applications like Maxwell’s theory of light.
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Equations (22) immediately demonstrate the lack of
symmetry caused by the absence of magnetic mono-
poles, and so does the Lorentz force law of Equation
(20).  If the magnetic monopole is discovered, and we
assign to it the “magnetic charge”  QB, then for ex-
ample Equation (22b) would become

  B ⋅ dAclosed
surface

= QB (22b')

If we have magnetic monopoles, a magnetic field
should exert a force  FB = QBB  and perhaps an electric
field should exert a force something like   FE = QBv × E.

Aside from Equation (22b), the other glaring asymme-
try is the presence of an electric current i in Ampere’s
law (22c) but no current term in Faraday’s law (22d).
If, however, we have magnetic monopoles we can also
have a current  iB of magnetic monopoles, and this
asymmetry can be removed.

Exercise 3
Assume that the magnetic monopole has been dis-
covered, and that we now have magnetic charge  QB

and a current iB  of magnetic charge.  Correct Maxwell’s
Equations (22) and the Lorentz force law (20) to include
the magnetic monopole.  For each new term you add to
these equations, provide a worked-out example of its
use.

In this exercise, use symmetry to guess what terms
should be added.  If you want to go beyond what we are
asking for in this exercise, you can start with the formula

 FB = QBB  for the magnetic force on a magnetic charge,
and with the kind of thought experiments we used in the
chapter on magnetism, derive the formula for the elec-
tric force on a magnetic charge  QB .  You will also end
up with a derivation of the correction to Faraday’s law
caused by a current of magnetic charge.  (This is more
of a project than an exercise.)

SYMMETRY OF
MAXWELL’S EQUATIONS
Maxwell’s Equations (19 a, b, c, and d), display consid-
erable symmetry, and a special lack of symmetry.  But
the symmetry or lack of it is clouded by our choice of
the MKS units with its historical constants µ0 and ε0
that appear, somewhat randomly, either in the numera-
tor or denominator at various places.

For this section, let us use a special set of units where
the constants µ0 and ε0 have the value 1

  
µ0 = 1 ; ε0 = 1

in a special
set of units

(21)

Because the speed of light c is related to µ0 and ε0  by
c  =  1/ µ0ε0,  we are now using a set of units where
the speed of light is 1. If we set  µ0  =  ε0  =  1 in
Equations (19) we get

  E ⋅ dAclosed
surface

= Qin (22a)

  B ⋅ dAclosed
surface

= 0 (22b)

  
B ⋅ d = i +

dΦE

dt
(22c)

  
E ⋅ d = –

dΦB

dt
(22d)

Stripping out   µ0  and  ε0  gives a clearer picture of what
Maxwell’s equations are trying to say.  Equation (22a)
tells us that electric charge is the source of divergent
electric fields.  Equation (22b) says that we haven’t
found any source for divergent magnetic fields.  Equa-
tion (22c) tells us that an electric current or a changing
electric flux is a source for solenoidal magnetic fields,
and (22d) tells us that a changing magnetic flux creates
a solenoidal electric field.
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Equations (24a, b) suggest a coupling between electric
and magnetic fields.  Let us first discuss this coupling
in a qualitative, somewhat sloppy way, and then work
out explicit examples to see precisely what is happen-
ing.

Roughly speaking, Equation (24a) tells us that a chang-
ing electric flux or field creates a magnetic field, and
(24b) tells us that a changing magnetic field creates an
electric field.  These fields interact, and in some sense
support each other.

If we were experts in integral and differential equa-
tions, we would look at Equations (24) and say, “Oh,
yes, this is just one form of the standard wave equation.
The solution is a wave of electric and magnetic fields
traveling through space.”  Maxwell was able to do this,
and solve Equations (24) for both the structure and the
speed of the wave.  The speed turns out to be c, and he
guessed that the wave was light.

Because the reader is not expected to be an expert in
integral and differential equations, we will go slower,
working out specific examples to see what kind of
structures and behavior we do get from Equations (24).
We are just beginning to touch upon the enormous
subject of electromagnetic radiation.

A Radiated Electromagnetic Pulse
We will solve Equations (24) the same way we have
been solving all equations involving derivatives or
integrals—by guessing and checking.  The rules of the
game are as follows.  Guess a solution, then apply
Equations (24) to your guess in every possible way you
can think of.  If you cannot find an inconsistency, your
guess may be correct.

In order to guess a solution, we want to pick an example
that we know as much as possible about and use every
insight we can to improve our chances of getting the
right answer.  Since we are already familiar with the
fields associated with a current in a wire, we will focus
on that situation.  Explicitly, we will consider what
happens, what kind of fields we get, when we first turn
on a current in a wire.  We will see that a structure of
magnetic and electric fields travels out from the wire,
in what will be an example of a radiated electromag-
netic pulse or wave.

MAXWELL’S EQUATIONS
IN EMPTY SPACE
In the remainder of this chapter we will discuss the
behavior of electric and magnetic fields in empty space
where there are no charges or currents.  A few chapters
ago,  there would not have been much point in such a
discussion, for electric fields were produced by charges,
magnetic fields by currents, and without charges and
currents, we had no fields.  But with Faraday’s law, we
see that a changing magnetic flux   dΦB dtdΦB dt acts as the
source of a solenoidal electric field.  And with the
correction to Ampere’s law, we see that a changing
electric flux is a source of solenoidal magnetic fields.
Even without charges and currents we have sources for
both electric and magnetic fields.

First note that if we have no electric charge (or mag-
netic monopoles), then we have no sources for either a
divergent electric or divergent magnetic field.  In
empty space diverging fields do not play an important
role and we can focus our attention on the equations for
the solenoidal magnetic and solenoidal electric field,
namely Ampere’s and Faraday’s laws.

Setting i = 0 in Equation (19c), the Equations (19c) and
(19d) for the solenoidal fields in empty space become

 
  
B ⋅ d = µ0ε0

dΦE

dt
(23a)

  
E ⋅ d = –

dΦB

dt
(23b)

We can make these equations look better if we  write
  µ0ε0  as 1/c2, where   c = 3 × 108 m/s as determined in

our LC circuit experiment.  Then Equations (23) be-
come

   
B ⋅ d =

1

c2

dΦE

dt

E ⋅ d = –
dΦB

dt

Maxwell's
equations
in empty
space

(24a)

(24b)
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A Thought Experiment
Let us picture a very long, straight, copper wire with no
current in it.  At time t = 0 we start an upward directed
current i everywhere in the wire as shown in Figure
(12).  This is the tricky part of the experiment, having
the current i start everywhere at the same time.  If we
closed a switch, the motion of charge would begin at the
switch and advance down the wire.  To avoid this,
imagine that we have many observers with synchro-
nized watches, and they all reach into the wire and start
the positive charge moving at t = 0.  However you want
to picture it, just make sure that there is no current in the
wire before t = 0, and that we have a uniform current i
afterward.

In our previous discussions, we saw that a current i in
a straight wire produced a circular magnetic field of
magnitude    B = µ0i/2πr  everywhere outside the
wire.  This cannot be the solution we need because it
implies that as soon as the current is turned on, we have
a magnetic field throughout all of space.  The existence
of the magnetic field carries the information that we
have turned on the current.  Thus the instantaneous
spread of the field throughout space carries this infor-
mation faster than the speed of light and violates the
principle of causality.  As we saw in Chapter 1, we
could get answers to questions that have not yet been
asked.

Using our knowledge of special relativity as a guide,
we suspect that the solution    B = µ0i/2πr   every-
where in space, instantaneously, is not a good guess.  A
more reasonable guess is that the magnetic field grows
at some speed v out from the wire.  Inside the growing
front, the field may be somewhat like its final form

  B = µ0i/2πr , but outside we will assume B = 0.

The pure, expanding magnetic field shown in Figure
(13) seems like a good guess.  But it is wrong, as we can
see if we apply Ampere’s law to Path (a) which has not
yet been reached by the growing magnetic field.  For
this path that lies outside the magnetic field,

  B ⋅ d = 0 , and the corrected Ampere’s law, Equa-
tion (19c), gives

  
B ⋅ d = µ0i + µ0ε0

dΦE

dt
= 0 (25)

In our picture of Figure (13) we have no electric field,
therefore    ΦE = 0  and Equation (25) implies that   µ0i  is
zero, or the current i through Path (a) is zero.  But the
current is not zero and we thus have an inconsistency.
The growing magnetic field of Figure (13) is not a
solution of Maxwell’s equations.  (This is how we play
the game.  Guess and try, and this time we failed.)

Equation (25) gives us a hint of what is wrong with our
guess.  It says that

  dΦE

dt
= -

i
ε0

(25a)

thus if we have a current i and have the growing
magnetic field shown in Figure (13) we must also have
a changing electric flux   ΦE  through Path (a).  Some-
where there must be an electric field E  to produce the
changing flux    ΦE , a field that points either up or down,
passing through the circular path of Figure (13).

Figure  12
A current i is started
all along the wire at
time t = 0.

Figure  13
As a guess, we will assume that the magnetic
field expands at a speed v out from the wire,
when the current is turned on.

B = 0B

i up at t = 0
v

v

v

v

v

v

path (a)

i



32-12 Maxwell's Equations

In our earlier discussion of inductance and induced
voltage, we saw that a changing current creates an
electric field that opposed the change.  This is what
gives an effective inertia to the current in an inductor.
Thus when we suddenly turn on the upward directed
current  as shown in Figure (12), we expect that we
should have a downward directed electric field as
indicated in Figure (14), opposing our trying to start the
current.

Initially the downward directed electric field should be
inside the wire where it can act on the current carrying
charges.  But our growing circular magnetic field
shown in Figure (13) must also have started inside the
wire.  Since a growing magnetic field alone is not a
solution of Maxwell’s equations and since there must
be an associated electric field, let us propose that both
the circular magnetic field of Figure (13), and the
downward electric field of Figure (14) grow together as
shown in Figure (15).

In Figure (15), we have sketched a field structure
consisting of a circular magnetic field and a downward
electric field that started out at the wire and is expand-
ing radially outward at a speed v as shown.  This
structure has not yet expanded out to our Path (1), so
that the line integral    B ⋅ d   is still zero and Ampere’s
law still requires that

   
0 = µ0i + µ0ε0

dΦE

dt
Path 1 of
Figure15

  dΦE

dt
= –

i
ε0

(26)

which is the same as Equation (25).

Looking at Figure (15), we see that the downward
electric field gives us a negative flux   ΦE through our
path.  (We chose the direction of the path so that by the
right hand convention, the current i is positive.)  And as
the field structure expands, we have more negative flux
through the path.  This increasing negative flux is just
what is required by Equation (26).

Figure  14
When a current starts
up, it is opposed by an
electric field.

B
path (1)

vv

EE

Figure  15
As a second guess,
we will assume
that there is a
downward directed
electric field
associated with the
expanding
magnetic field.
Again, Path (1) is
out where the
fields have not yet
arrived.

EE

iup, increasing

i
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What happens when the field structure gets to and
passes our path?  The situation suddenly changes.  Now
we have a magnetic field at the path, so that   B ⋅ d
is no longer zero.  And now the expanding front is
outside our path so that the expansion no longer con-
tributes to   –dΦE dt–dΦE dt. The sudden appearance of

  B ⋅ d   is precisely compensated by the sudden loss
of the   dΦE/dt  due to expansion of the field structure.

The alert student, who calculates   E ⋅ d  for some
paths inside the field structure of Figure (15) will
discover that we have not yet found a completely
satisfactory solution to Maxwell’s equations.  The
electric fields in close to the wire eventually die away,
and only when they have gone do we get a static
magnetic field given by   B ⋅ d = µ0i + 0.

The problems associated with the electric field dying
away can be avoided if we turn on the current at time
t = 0, and then shut it off a very short time later.  In that
case we should expect to see an expanding cylindrical
shell of electric and magnetic fields as shown in Figure
(16).  The front of the shell started out when the current
was turned on, and the back should start out when the
current is shut off.  We will guess that the front and back
should both travel radially outward at a speed v as
shown.

EE

B

vv
vv

Figure  16
Electromagnetic
pulse produced
by turning the
current on and
then quickly off.
We will see that
this structure
agrees with
Maxwell's
equations.
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Speed of an Electromagnetic Pulse
Let us use Figure (16), redrawn as Figure (17a), as our
best guess for the structure of an electromagnetic pulse.
The first step is to check that this field structure obeys
Maxwell’s equations.  If it does, then we will see if we
can solve for the speed v of the wave front.

In Figure (17a), where we have shut the current off,
there is no net charge or current and all we need to
consider is the expanding shell of electric and magnetic
fields moving through space.  We have no divergent
fields, no current, and the equations for E and B
become

  
B ⋅ d = µ0ε0

dΦE

dt
(23a)

  
E ⋅ d = –

dΦB

dt
                        (23b)

which we wrote down earlier as Maxwell’s equation
for empty space.

In order to apply Maxwell’s equations to the fields in
Figure (17a), we will  focus our attention on a small
piece of the shell on the right side that is moving to the
right at a speed v.  For this analysis, we will use the two
paths labeled Path (1) and Path (2). Path (1) has a side
parallel to the electric field, and will be used for
Equation 23b. Path (2) has a side parallel to the mag-
netic field, and will be used for Equation 23a.

Analysis of Path 1
In Figure (17b), we have a close up view of Path (1).
The path was chosen so that only the left edge of length
h was in the electric field, so that

  E ⋅ d = Eh (27)

In order to make   E ⋅ d  positive on this left edge, we
went around Path (1) in a counterclockwise direction.
By the right hand convention, any vector up through
this path is positive, therefore the downward directed
magnetic field is going through Path (1) in a negative
direction. (We will be very careful about signs in this
discussion.)

EE

B

vv
vv

path (1)

path (2)

E

v

v

h

path 1

B into paper

Figure  17b
Side view showing path (1). An increasing (negative)
magnetic flux flows down through Path (1).

Figure  17a
In order to analyze the electromagnetic pulse
produced by turning the current on and off, we
introduce the two paths shown above. Path (1)
has one side parallel to the electric field, while
Path (2) has a side parallel to the magnetic field.
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In Figure (18), we are looking at Path (1), first at a time
t  (18a) where the expanding front has reached a
position x as shown, then at a time  t + ∆t  where the front
has reached x + ∆x.  Since the front is moving at an
assumed speed v , we have

  v = ∆x
∆t

At time  t + ∆t , there is additional magnetic flux through
Path (1).  The amount of additional magnetic flux   ∆ΦB
is equal to the strength B of the field times the additional
area (   h∆x ).  Since B points down through Path (1), in
a negative direction, the additional flux is negative and
we have

  ∆ΦB = –B(∆A⊥) = –B(h∆x) (28)

Dividing Equation (28) through by ∆t, and taking the
limit that ∆t goes to dt, gives

  ∆ΦB

∆t
= –Bh

∆x
∆t

  dΦB

dt
= –Bh dx

dt
= –Bhv (29)

We now have a formula for   E ⋅ d  (Equation 27) and
for   dΦE/dt  (Equation 29) which we can substitute into
Faraday’s law (23b) to get

  
E ⋅ d = –

dΦB

dt

 Eh = – ( –Bvh) = +Bhv

The factor of h cancels and we are left with

  
E = Bv

from
Faraday's law

(30)

which is a surprisingly simple relationship between the
strengths of the electric and magnetic fields.

v path 1

at time t+∆t

b)

v

at time t

a)

x

∆xx

path 1

B(down)

additional area = h∆x

h

Figure  18
As the front expands, there is more
magnetic flux down through Path (1).
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In Figure (19), we show the expanding front at time t
(19a) and at time t + ∆t (19b).  The increase in electric
flux   ∆ΦE is  (E) times the increased area (   h∆x)

  ∆ΦE = E h∆x

Dividing through by ∆t, and taking the limit that ∆t goes
to dt, gives

  ∆ΦE

∆t
= Eh

∆x
∆t

  dΦE

dt
= Eh

dx
dt

= Ehv (33)

Using Equation 33 in 32, and then cancelling h, gives

   Bh = µ0ε0 Ehv

B = µ0ε0 Ev
From
Ampere's law

(34)

which is another simple relationship between E and B.

Analysis of Path 2
Path (2), shown in Figure (17c), is chosen to have one
side in and parallel to the magnetic field. We have gone
around clockwise so that B and  d  point in the same
direction. Integrating B around the path gives

  B ⋅d = Bh (31)

Combining Equation 31 with Ampere's law

  
B ⋅d = µ0ε0

dΦE

dt

gives

  
Bh = µ0ε0

dΦE

dt
(32)

To evaluate   dΦE dtdΦE dt, we first note that for a clockwise
path, the positive direction is down into the paper in
Figure (17c). This is the same direction as the electric
field, thus we have a positive electric flux through path
(2).

Figure  17c
An increasing (negative) electric flux
flows down through Path (2).

v

h

path 2

B

v
E into 

paper

EE

B

vv
vv

path (1)

path (2)

Figure  17a (repeated)
We will now turn our attention to path 2 which
has one side parallel to the magnetic field.
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Exercise 4
Construct paths like (1) and (2) of Figure (17), but which
include the back side, rather than the front side, of the
electromagnetic pulse.  Repeat the kind of steps used
to derive Equation (35) to show that the back of the pulse
also travels outward at a speed   v = 1/ µ0ε0 .  As a
result the pulse maintains its thickness as it expands out
through space.

Exercise 5

After a class in which we discussed the electromagnetic
pulse shown in Figure (20a), a student said she thought
that the electric field would get ahead of the magnetic
field as shown in Figure (20b).  Use Maxwell's equations
to show that this does not happen.

If we divide Equation (30)   Bv = E ,   by Equation (34)
  B = µ0ε0 Ev, both E and B cancel giving

   Bv
B

=
E

µ0ε0Ev

v2 =
1

µ0ε0

v =
1

µ0ε0

speed of
light!!!

Thus the electromagnetic pulse of Figures (16) and (17)
expands outward at the speed   1/ µ0ε0  which we have
seen is   3 × 108  meters per second.  Maxwell recog-
nized that this was the speed of light and recognized
that the electromagnetic pulse must be closely related
to light itself.

Using  v =   1/ µ0ε0  = c  in Equation (34) we get

 
B = E

c (36)

as the relative strength of the electric and magnetic
fields in an electromagnetic pulse, or as we shall see,
any light wave.  If we had used a reasonable set of units
where c = 1 (like feet and nanoseconds), then E and B
would have equal strengths in a light wave.

v path 2

at time t+∆t

b)

v

at time t

a)

x

∆xx

path 2

E(down)

additional area = h∆x

h

Figure 19
As the front expands, there is more
electric flux down through Path (2).

E

B

v

E

B

v

Path 1

Figure 20a
The radiated electromagnetic pulse we
saw in Figures (16) and (17).

Figure 20b
The student guessed that the electric fields would
get out ahead of the magnetic field. Use Path (1)
to show that this does not happen.

(35)
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ELECTROMAGNETIC WAVES
The single electromagnetic pulse shown in Figure (17)
is an example of an electromagnetic wave.  We usually
think of a wave as some kind of oscillating sinusoidal
thing, but as we saw in our discussion of waves on a
Slinky in Chapter 1, the simplest form of a wave is a
single pulse like that shown in Figure (21).  The basic
feature of the Slinky wave pulse was that it maintained
its shape while it moved down the Slinky at the wave
speed v .  Now we see that the electromagnetic pulse
maintains its structure of E  and B fields while it moves
at a speed v = c  through space.

We made a more or less sinusoidal wave on the
Slinky by shaking one end up and down to produce
a series of alternate up and down pulses that traveled
together down the Slinky.  Similarly, if we use an
alternating current in the wire of Figure (17), we will
get a series of electromagnetic pulses that travel out
from the wire.  This series of pulses will more
closely resemble what we usually think of as an
electromagnetic wave.

Figure (22a) is a graph of a rather jerky alternating
current where we turn on an upward directed current of
magnitude i0, then shut off the current for a while, then
turn on a downward directed current i0, etc.  This series
of current pulse produces the series of electromagnetic
pulses shown in Figure (22b).  Far out from the wire
where we can neglect the curvature of the magnetic
field, we see a series of pulses shown in the close-up
view, Figure (23a).  This series of flat or non-curved
pulses is called a plane wave of electromagnetic radia-
tion.

If we used a sinusoidally oscillating current in the wire
of Figure (22), then the series of electromagnetic pulses
would blend together to form the sinusoidally varying
electric and magnetic fields structure shown in Figure
(23b).  This is the wave structure one usually associates
with an electromagnetic wave.

When you think of an electromagnetic wave, picture
the fields shown in Figure (23), moving more or less as
a rigid object past you at a speed c.  The distance λ
between crests is called the wavelength of the wave.
The time T it takes one wavelength or cycle to pass you
is

  
T second

cycle
=

λ meter
cycle

c meter
second

= λ second
c cycle (37)

T is called  the period of the wave.  The frequency of
the wave, the number of wavelengths or full cycles of
the wave that pass you per second is

  
f

cycle
second

=
c meter

second
λ meter

cycle

=
λ cycle
c second (38)

In Equations (37) and (38) we gave λ  the dimensions
meters/cycle, T of seconds/cycle and f of cycles/sec-
ond so that we can use the dimensions to remember the

Figure 22
Fields produced by a series of current pulses.

B

E

0 

down

up
i

i

0 –i
–t

b) Resulting electric and magnetic fields

a) Graph of current 
     pulses in wire

cc

E

Figure 21
Slinky wave pulse.
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You can remember where the 2π goes by giving it the
dimensions 2π radians/cycle.  (Think of a full circle or
full cycle as having 2π radians.)  We will indiscrimi-
nately use the word frequency to describe either
f cycles/second or ω  radians/second, whichever is
more appropriate.  If, however, we say that something
has a frequency of so many hertz, as in 60 Hz, we will
always mean cycles/second.

λ
One wavelength l = the distance between similar crests

Electric
field

Magnetic
field

Fields move as a fixed unit
at the speed of light.

a) Electric and magnetic fields produced 
    by abruptly switching the antenna current.

b) Electric and magnetic fields produced 
    by smoothly switching the antenna current.

E

B

c c

cc

Figure 23
Structure of electric and magnetic fields in light and radio waves.

formulas T = λ /c, f = c/λ .  (It is now common to use
“hertz” or “Hz” for the dimensions of frequency.  This
is a classic example of ruining simple dimensional
analysis by using people’s names.)  Finally, the angular
frequency ω  radians per second is defined as

  
ω

radians
sec ond

= 2π
radians
cycle

× f
cycles
second

= 2πf
radians
second

(39)
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ELECTROMAGNETIC SPECTRUM
We have seen by direct calculation that the electromag-
netic pulse of Figure (17), and the series of pulses in
Figure (22) are a solution of Maxwell’s equations.  It is
not much of an extension of our work to show that the
sinusoidal wave structure of Figure (23b) is also a
solution.  The fact that all of these structures move at a
speed   c =   1/ µ0ε0    =    3 × 108 m/s  is what suggested
to Maxwell that these electromagnetic waves were
light, that he had discovered the theory of light.

But there is nothing in Maxwell’s equations that re-
stricts our sinusoidal solution in Figure (23b) to certain
values or ranges of frequency or wavelength.  One
hundred years before Maxwell it was known from
interference experiments (which we will discuss in the
next chapter) that light had a wave nature and that the
wavelengths of light ranged from about   6 × 10–5cm  in
the red part of the spectrum down to    4 × 10–5cm   in the
blue part.  With the discovery of Maxwell’s theory of
light, it became clear that there must be a complete
spectrum of electromagnetic radiation, from very long
down to very short wavelengths, and that visible light
was just a tiny piece of this spectrum.

More importantly, Maxwell’s theory provided the clue
as to how you might be able to create electromagnetic
waves at other frequencies.  We have seen that an
oscillating current in a wire produces an electromag-
netic wave whose frequency is the same as that of the
current.  If, for example, the frequency of the current is
1030 kc (1030 kilocycles) =   1.03 × 106  cycles/sec,
then the electromagnetic wave produced should have a
wavelength

  
λ meters

cycle
=

c meters
second

f
cycles

sec ond

= 3 × 108m/s
103 × 106c/s

= 297 meters

Such waves were discovered within 10 years of
Maxwell’s theory, and were called radio waves.  The
frequency 1030 kc is the frequency of radio station
WBZ in Boston, Mass.

Components of the
Electromagnetic Spectrum
Figure (24) shows the complete electromagnetic spec-
trum as we know it today.  We have labeled various
components that may be familiar to the reader.  These
components, and the corresponding range of wave-
lengths are as follows:

Radio Waves 106 m to .05 mm

AM Band 500 m to 190 m

Short Wave 60 m to 15 m

TV VHF Band 10 m to 1 m

TV UHF Band 1 m to 10 cm

Microwaves 10 cm to .05 mm

      Infrared Light .05 mm to   6×10– 5  cm

       Visible Light   6×10– 5 to 4×10– 5cm

       Ultraviolet Light   4×10– 5 cm to 10– 6cm

X Rays 10 –6 cm to 10 –9 cm

γ  Rays 10 –9 cm and shorter

infrared rays

10110 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11  -126 5 4 3 210

X-rays

wavelength, cm

light
visible ultraviolet

raysradio, television, radar gamma rays

Figure 24
The electromagnetic spectrum extends from long wavelength radio waves down to short wavelength
X rays and gamma  rays.  The visible part of the spectrum is indicated by the small box.
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In each of these ranges, the most efficient way to emit
or detect the radiation is to use antennas whose size is
comparable to the wavelength of the radiation.  For
radio waves the antennas are generally some kind of a
structure made from wire.  In the infrared and the
visible region, radiation is generally emitted by mol-
ecules and atoms.  The short wavelength x rays and γ
rays generally come from atomic nuclei or subatomic
particles.

The longest wavelength radio waves that have been
studied are the so-called “whistlers”, radio waves with
an audio frequency, that are produced by lightening
bolts and reflected back and forth around the earth by
charged particles trapped in the earth’s magnetic field.
On a shorter scale of distance are the long wavelength
radio waves which penetrate the ocean and are used for
communications with submarines.  The radio station in
Cutler, Maine, shown in Figure (25), has twenty-six
towers over 1000 feet tall to support the antenna to
produce such waves.  This station, operated by the
United States Navy, is the world’s most powerful.

As we go to shorter wavelengths and smaller antennas,
we get to the broadcast band, short wave radio, then to
the VHF and UHF television frequencies.  (FM radio
is tucked into the VHF band next to Channel 6).  The
wavelengths for VHF television are of the order of

meters, while those for UHF are of the order of a foot.
Those with separate VHF and UHF television antennas
will be familiar with the fact that the UHF antenna,
which detects the shorter wavelengths, is smaller in
size.

Adjusting the rabbit ears antenna on a television set
provides practical experience with the problems of
detecting an electromagnetic wave.  As the TV signal
strikes the antenna, the electric field in the wave acts on
the electrons in the TV antenna wire.  If the wire is
parallel to the electric field, the electrons are pushed
along in the wire producing a voltage that is detected by
the television set.  If the wire is perpendicular, the
electrons will not be pushed up and down and no
voltage will be produced.

The length of the wire is also important.  If the antenna
were one half wavelength, then the electric field at one
end would be pushing in the opposite direction from the
field at the other end, the integral E ⋅ dl down the
antenna would be zero, and you would get no net
voltage or signal.  You want the antenna long enough
to get a big voltage,  but not so long that the electric field
in one part of the antenna works against the field in
another part.  One quarter wavelength is generally the
optimum antenna length.

Figure 25
The worlds largest radio station at Cutler, Maine.  This structure, with 75 miles of antenna wire and 26 towers
over 1000 ft high, generates long wavelength low frequency, radio waves for communications with submarines.
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The microwave region, now familiar from microwave
communications and particularly microwave ovens,
lies between the television frequencies and infrared
radiation.  The fact that you heat food in a microwave
oven emphasizes the fact that electromagnetic radia-
tion carries energy.  One can derive that the energy
density in an electromagnetic wave is given by the
formula

  
energy density in an
electromagnetic
wave

=
ε0E2

2
+

B2

2µ0
(37)

We have already seen the first term  ε0E2/2, when we
calculated the energy stored in a capacitor (see
Equation 27-36 on page 27-19).  If we had calculated
the energy to start a current in an inductor, we would
have gotten the formula B2 /2µ0 for the energy
density in that device.  Equation (37) tells us the
amount of energy is associated with electric and
magnetic fields whenever we find them.

Blackbody Radiation
Atoms and molecules emit radiation in the infrared,
visible and ultraviolet part of the spectrum.  One of the
main sources of radiation in this part of the spectrum is
the so-called blackbody radiation emitted by objects
due to the thermal motion of their atoms and molecules.

If you heat an iron poker in a fire, the poker first gets
warm, then begins to glow a dull red, then a bright red
or even, orange.  At higher temperatures the poker
becomes white, like the filaments in an electric light
bulb.  At still higher temperatures, if the poker did not
melt, it would become bluish.  The name blackbody
radiation is related to the fact that an initially cold,
black object emits these colors of light when heated.

There is a well studied relationship between the tem-
perature of an object and the predominant frequency of
the blackbody radiation it emits.  Basically, the higher
the temperature, the higher the frequency.  Astrono-
mers use this relationship to determine the temperature
of stars from their color.  The infrared stars are quite
cool, our yellow sun has about the same temperature as
the yellow filament in an incandescent lamp, and the
blue stars are the hottest.

All objects emit blackbody radiation.  You,  yourself,
are like a small star emitting infrared radiation at a
wavelength corresponding to a temperature of 300K.
In an infrared photograph taken at night, you would
show up distinctly due to this radiation.  Infrared
photographs are now taken of houses at night to show
up hot spots and heat leaks in the house.

Perhaps the most famous example of blackbody radia-
tion is the 3K cosmic background radiation which is the
remnant of the big bang which created the universe.
We will say much more about this radiation in Chapter
34.

UV, X Rays, and Gamma Rays
When we get to wavelengths shorter than the visible
spectrum, and even in the visible spectrum, we begin to
run into problems with Maxwell’s theory of light.
These problems were first clearly displayed by Max
Planck who in 1900 developed a theory that explained
the blackbody spectrum of radiation.  The problem
with Planck’s theory of blackbody radiation is that it
could not be derived from Maxwell’s theory of light
and Newtonian mechanics.  His theory involved arbi-
trary assumptions that would not be understood for
another 23 years, until after the development of quan-
tum mechanics.

Despite the failure of Newton’s and Maxwell’s theo-
ries to explain all the details, the electromagnetic
spectrum continues right on up into the shorter wave-
lengths of ultraviolet (UV) light, then to x rays and
finally to γ  rays.  Ultraviolet light is most familiar from
the effect it has on us, causing tanning, sunburns, and
skin cancer depending on the intensity and duration of
the dose.  The ozone layer in the upper atmosphere, as
long as it lasts, is important because it filters out much
of the ultraviolet light emitted by the sun.

X rays are famous for their ability to penetrate flesh and
produce photographs of bones.  These rays are usually
emitted by the tightly bound electrons on the inside of
large atoms, and also by nuclear reactions.  The highest
frequency radiation, γ  rays, are emitted by the smallest
objects—nuclei and elementary particles.
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POLARIZATION
One of the immediate tests of our picture of a light or
radio wave, shown in Figure (23), is the phenomena of
polarization.  We mentioned that the reason that you
had to adjust the angle of the wires on a rabbit ears
antenna was that the electric field of the television
signal had to have a significant component parallel to
the wires in order to push the electrons up and down the
wire.  Or, in the terminology of the last few chapters, we
needed the parallel component of E   so that the voltage
V  =  E ⋅ dl  would be large enough to be detected by
the television circuitry.  (In this case, the line integral
E ⋅ dl is along the antenna wire.)  Polarization is a

phenomena that results from the fact that the electric
field E  in an electromagnetic wave can have various
orientations as the wave moves through space.

Although we have derived the structure of an electro-
magnetic wave for the specific case of a wave produced
by an alternating current in a long, straight wire, some
of the general features of electromagnetic waves are
clearly present in our solution.  The general features
that are present in all electromagnetic waves are:

1) All electromagnetic waves are a structure consist-
ing of an electric field  E  and a magnetic field  B .

2)  E  and  B  are at right angles to each other as
shown in Figure (23).

3) The wave travels in a direction perpendicular to
the plane of E  and B .

4) The speed of the wave is   c = 3××108m/s.

5) The relative strengths of  E  and B  are given by
Equation (36) as B = E/c.

Even with these restrictions, and even if we consider
only flat or plane electromagnetic waves, there are still
various possible orientations of the electric field as
shown in Figure (26).  In Figure (26a) we see a plane
wave with a vertical electrical field.  This would be
called a vertically polarized wave.  In Figure (26b),
where the electric field is horizontal, we have a hori-
zontally polarized wave.  By convention we say that the
direction of polarization is the direction of the electric
field in an electromagnetic wave.

Because E  must lie in the plane perpendicular to the
direction of motion of an electromagnetic wave, E has
only two independent components, which we can
call the vertical and horizontal polarizations, or the x
and y polarizations as shown in Figures (27a) and (27b)
respectively.  If we happen to encounter an electromag-
netic wave where  E  is neither vertical or horizontal,
but at some angle θ, we can decompose  E  into its x and
y components as shown in (27c).  Thus we can consider
a wave polarized at an arbitrary angleθ as a mixture of
the two independent polarizations.

Figure 26
Two possible polarizations of
an electromagnetic wave.
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E

E

E

a) Vertical Polarization

b) Horizontal Polarization

c) Mixture

θ

Figure 27
We define the direction
of polarization of an
electromagnetic wave as
the direction of the
electric field.

Magnetic
field

a) Vertically polarized electromagnetic wave.

b) Horizontally polarized electromagnetic wave.
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Polarizers
A polarizer is a device that lets only one of the two
possible polarizations of an electromagnetic wave pass
through.  If we are working with microwaves whose
wavelength is of the order of a few centimeters, a frame
strung with parallel copper wires, as seen in Figure
(28), makes an excellent polarizer.  If a vertically
polarized wave strikes this vertical array of wires, the
electric field E  in the wave will be parallel to the wires.
This parallel E  field will cause electrons to move up
and down in the wires, taking energy out of the incident
wave.  As a result the vertically polarized wave cannot
get through. (One can observe that the wave is actually
reflected by the parallel wires.)

If you then rotate the wires 90º, so that theEfield in the
wave is perpendicular to the wires, the electric field can
no longer move electrons along the wires and the wires
have no effect. The wave passes through without
attenuation.

If you do not happen to know the direction of po-
larization of the microwave, put the polarizer in the
beam and rotate it.  For one orientation the microwave
beam will be completely blocked.  Rotate the polarizer
by 90° and you will get a maximum transmission.

Figure 28
Microwave polarizer, made from an array of copper wires. The microwave
transmitter is seen on the other side of the wires, the detector is on this side.
When the wires are parallel to the transmitted electric field, no signal is
detected. Rotate the wires 90 degrees, and the full signal is detected.
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Light Polarizers
We can picture light from the sun as a mixture of light
waves with randomly oriented polarizations.  (The E
fields are, of course, always in the plane perpendicular
to the direction of motion of the light wave.  Only the
angle in that plane is random.)  A polarizer made of an
array of copper wires like that shown in Figure (28),
will not work for light because the wavelength of light
is so short λ  ≈  5 × 10-5 cm  that the light passes right
between the wires.  For such a polarizer to be effective,
the spacing between the wires would have to be of the
order of a wavelength of light or less.

A polarizer for light can be constructed by imbedding
long-chain molecules in a flexible plastic sheet, and
then stretching the sheet so that the molecules are
aligned parallel to each other.  The molecules act like
the wires in our copper wire array, but have a spacing
of the order of the wavelength of light.  As a result the
molecules block light waves whose electric field is
parallel to them, while allowing waves with a perpen-
dicular electric field to pass.  (The commercial name for
such a sheet of plastic is Polaroid.)

Since light from the sun or from standard electric light
bulbs consists of many randomly polarized waves, a
single sheet of Polaroid removes half of the waves no
matter how we orient the Polaroid (as long as the sheet
of Polaroid is perpendicular to the direction of motion
of the light beam).  But once the light has gone through
one sheet of Polaroid, all the surviving light waves have
the same polarization.  If we place a second sheet of
Polaroid over the first, all the light will be absorbed if
the long molecules in the second sheet are perpendicu-
lar to the long molecules in the first sheet.  If the long
molecules in the second sheet are parallel to those in the
first, most of the waves that make it through the first,
make it through the second also.  This effect is seen
clearly in Figure (29).

Figure 29
Light polarizers. Two sheets of polaroid are placed on
top of a drawing. On the left, the axes of the sheets are
parallel, so that nearly half the light passes through.  On
the right, the axes are perpendicular, so that no light
passes through.  (Photo from Halliday & Resnick)
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Magnetic Field Detector
So far, our discussion of electromagnetic radiation has
focused primarily on detecting the electric field in the
wave.  The rabbit ear antenna wire had to be partially
parallel to the electric field so that   E ⋅d  and there-
fore the voltage on the antenna would not be zero.  In
our discussion of polarization, we aligned the parallel
array of wires or molecules parallel to the electric field
when we wanted the radiation to be reflected or ab-
sorbed.

It is also fairly easy to detect the magnetic field in a
radio wave by using one of our   E ⋅d   meters to detect
a changing magnetic flux (an application of Faraday’s
law).  This is the principle behind the radio direction
finders featured in a few World War II spy pictures.

loop antenna

Figure 30b
Car driving toward radio transmitter.

Figure 30a
Car with radio direction finder
loop antenna mounted on top.

vB

circular magnetic field
radiated by the antenna

detector loop
on carvertical antenna

In a typical scene we see a car with a metal loop
mounted on top as shown in Figure (30a).  It is  chasing
another car with a hidden transmitter, or looking for a
clandestine enemy transmitter.

If the transmitter is a radio antenna with a vertical
transmitting wire as shown in Figure (30b), the mag-
netic field of the radiated wave will be concentric
circles as shown.  Objects on the ground, the ground
itself, and nearby buildings and hills can distort this
picture, but for now we will neglect the distortions.

Figure 31
In a January 1998 National Geographic
article on Amelia Earhardt, there
appeared a picture of a vintage Electra
airplane similar to the one flown by
Earhardt on her last trip in 1938. On the
top of the plane, you can see the kind of
radio direction finder we have been
discussing. (The plane is being flown by
Linda Finch.)
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Figure 32
Electromagnetic field impinging upon a loop antenna.
In (a), the magnetic field is parallel to the plane of the
loop, and therefore no magnetic flux goes through the
loop.  In (b), the magnetic flux goes through the loop.
As the wave passes by, the amount of flux changes,
inducing a voltage in the loop antenna.

V
voltmeter

metal loop

Figure 33
We can think of a wire loop connected
to a voltmeter as an    E⋅d  meter.  Any
changing magnetic flux through the
loop induces a voltage around the loop.
This voltage is read by the voltmeter.

The most sensitive way to use this radio direction finder
is to get a zero or “null” reading on the voltmeter.  Only
when the loop is oriented as in Figure (32a), with its
plane perpendicular to the direction of motion of the
radio wave, will we get a null reading.  At any other
orientation some magnetic flux will pass through the
loop and we get some voltage.

Spy pictures, set in more modern times, do not show
antenna loops like that in Figure (30) because modern
radio direction finders use so-called “ferrite” antennas
that detect the electric field in the radio wave.  We get
a voltage on a ferrite antenna when the electric field in
the radio wave has a component along the ferrite rod,
just as it needed a component along the wires of a rabbit
ears antenna.  Again these direction finders are most
accurate when detecting a null or zero voltage.  This
occurs only when the rod is parallel to the direction of
motion of the radio wave, i.e. points toward the station.
(This effect is very obvious in a small portable radio.
You will notice that the reception disappears and you
get a null detection, for some orientations of the radio.)

In Figures (32a) and (32b), we show the magnetic field
of the radio wave as it passes the detector loop mounted
on the car. A voltmeter is attached to the loop as shown
in Figure (33).   In (32a), the plane of the loop is parallel
to B, the magnetic flux ΦB through the loop is zero, and
Faraday’s law gives

  
V = E ⋅d =

dΦB

dt
= 0

In this orientation there is no voltage reading on the
voltmeter attached to the loop.

In the orientation of Figure (32b), the magnetic field
passes through the loop and we get a maximum amount
of magnetic flux ΦB.  As the radio wave passes by the
loop, this flux alternates signs at the frequency of the
wave, therefore the rate of change of flux dΦB/dt is at
a maximum.  In this orientation we get a maximum
voltmeter reading.

  E ⋅d   meter
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RADIATED ELECTRIC FIELDS
One of the best computer simulations of physical
phenomena is the series of short films about the electric
fields produced by moving and accelerated charges.
We will describe a few of the frames from these films,
but nothing replaces watching them.

Two basic ideas underlie these films.  One is Gauss’
law which requires that electric field lines not break,
do not end,  in empty space.  The other is that distur-
bances on an electric field line travel outward at the
speed of light.  No disturbance, no change in the electric
field structure, can travel faster than the speed of light
without violating causality.  (You could get answers to
questions that have not yet been asked.)

As an introduction to the computer simulations of
radiation, let us see how a simple application of these
two basic ideas leads to the picture of the electromag-
netic pulse shown back in Figure (16).  In Figure (34a)
we show the electric field of a stationary, positively
charged rod.  The electric field lines go radially out-
ward to infinity.  (It’s a long rod, and it has been at rest
for a long time.)

At time t = 0 we start moving the entire rod upward at
a speed v.  By Gauss’ law the electric field lines must
stay attached to the charges Q in the rod, so that the ends
of the electric field lines have to start moving up with
the rod.

No information about our moving the rod can travel
outward from the rod faster than the speed of light.  If
the time is now t > 0, then beyond a distance ct, the
electric field lines must still be radially outward as in
Figure (34b).  To keep the field lines radial beyond
r = ct, and keep them attached to the charges +Q in the
rod, there must be some kind of expanding kink in the
lines as indicated.

At time t = t1, we stop moving the positively charged
rod.  The information that the charged rod has stopped
moving cannot travel faster than the speed of light, thus
the displaced radial field next to the rod cannot be any
farther out than a distance c t- t1  as shown in Figure
(34c).  The effect of starting, then stopping the positive
rod is an outward traveling kink in the electric field
lines.  It is as if we had ropes attached to the positive rod,
and jerking the rod produced an outward traveling kink
or wave on the ropes.

In Figure (34d), we have added in a stationary nega-
tively charged rod and the inward directed electric field
produced by that rod.  The charge density on the
negative rod is opposite that of the positive rod, so that
there is no net charge on the two rods.  When we
combine these rods, all we have left is a positive
upward directed current during the time interval t = 0 to

 t = t1.   We have a short current pulse, and the electric
field produced by the current pulse must be the vector
sum of the electric fields of the two rods.

In Figure (34e), we add up the two electric fields.  In the
region r > ct beyond the kink, the positive and negative
fields must cancel exactly.  In the region r < t - t1  we
should also have nearly complete cancellation.  Thus
all we are left with are the fields  E+ and  E–  inside the
kink as shown in Figure (34f).  Since electric field lines
cannot end in empty space,  E+ 

and  E–  must add up to
produce the downward directed  Enet shown in Figure
(34g).  Note that this downward directed electric field
pulse was produced by an upward directed current
pulse.  As we have seen before, this induced electric
field opposes the change in current.

In Figure (34h) we added the expanding magnetic field
pulse that should be associated with the current pulse.
What we see is an expanding electromagnetic pulse
that has the structure shown in Figure (16).  Simple
arguments based on Gauss’ law and causality gave us
most of the results we worked so hard to get earlier.
What we did get earlier, however, when we applied
Ampere’s and Faraday’s law to this field structure, was
the explicit prediction that the pulse expands at the
speed 1/ µ0ε0   =  3 × 108 m/s.
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v b) At time t = 0, we
start moving the entire
rod upward at a speed
v.  The ends of the field
lines must stay
attached to the charges
in the rod.

c) We stop moving the
rod at time t = t1 .  No
information about our
having moved the rod
can travel out faster
than the speed of light.

e) When we add up the
electric fields of the
positive and negative
rods, the fields cancel
everywhere except at
the outward going
pulse.

g) Thus a short
upward directed
current pulse
produces a downward
directed electric field
that travels outward
from the wire at a
speed c.

h) Add in the magnetic
field of the current
pulse, and we have the
electromagnetic wave
structure seen in
Figure (16).

a) Electric field of a
stationary, positively
charged rod.

f) At the pulse, the
vector sum of  E+ and

 E– is a downward
directed field  Enet as
shown.

d) We have added in
the electric field of a
line of stationary
negative charges.  As a
result, the net charge
on the rod is zero and
we have only a current
pulse that lasted from
t = 0  to t = t1 .

Figure 34
Using the fact that electric field lines cannot break in empty space (Gauss' Law), and the idea that kinks
in the field lines travel at the speed of light, we can guess the structure of an electromagnetic pulse.
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Figure 35c
Field of a charge that stopped.  Assume that the
charge stopped t seconds ago.  Inside a circle of
radius ct, we have the field of a stationary charge.
Outside, where there is no information that the
charge has stopped, we still have the field of a
moving charge.  The kink that connects the two
fields is the electromagnetic radiation.

Figure 35a
Electric field of a stationary charge.

Figure 35b
Electric field of a moving charge.  If the charge has
been moving at constant speed for a long time, the field
is radial, but squeezed up at the top and bottom.

Field of a Point Charge
The computer simulations show the electric field of a
point charge under varying situations.  In the first, we
see the electric field of a point charge at rest, as shown
in Figure (35a).  Then we see a charge moving at
constant velocity v.  As the speed of the charge ap-
proaches c, the electric field scrunches up as shown in
Figure (35b).

The next film segment shows what happens when we
have a moving charge that stops.  If the charge stopped
at time t = 0, then at a distance r = ct or greater, we must
have the electric field of a moving charge, because no
information that the charge has stopped can reach
beyond this distance.  In close we have the electric field
of a static charge.  The expanding kink that connects the
two regions is the electromagnetic wave.  The result is
shown in Figure (35c).  The final film segment shows
the electric field of an oscillating charge.  Figure (36)
shows one frame of the film.  This still picture does a
serious injustice to the animated film.  There is no
substitute, or words to explain, what you see and feel
when you watch this film.

v
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Figure 36
Electric field of an oscillating charge.

Figure 35c (enlarged)
Electric field of a charge that stopped. The
dotted lines show the field structure we
would have seen had the charge not stopped.
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Figure 37a
Electric field emerging from ping pong ball.

E

Ball

B

Tube
(end view)

E

Ball

Figure 37c
Electric field emerging above ping pong ball.

Figure 37b
Magnetic field emerging from ping pong ball.

Exercise 6
Assume that we have a supply of ping pong balls and
cardboard tubes shown in Figures (37).  By looking at
the fields outside these objects decide what could be
inside producing the fields.  Explicitly do the following
for each case.

i)  Write down the Maxwell equation which you used to
decide what is inside the ball or tube, and explain how
you used the equation.

ii)   If more than one kind of source could produce the
field shown, describe both (or all) sources and show the
appropriate Maxwell equations.

iii)   If the field is impossible, explain why, using a
Maxwell equation to back up your explanation.

In each case, we have indicated whether the source is
in a ball or tube. Magnetic fields are dashed lines,
electric fields are solid lines, and the balls and tubes are
surrounded by empty space.
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Figure 37f
For this example, explain what is happening to the
fields, what is in the tube, and what happened inside.

E

B

Tube
(end view)

Figure 37g
There is only ONE object inside this tube.
What is it?  What is it doing?

E

Tube
(end view)

ETube
(end view)

Figure 37d
Electric field around tube.

Figure 37e
Electric field passing through tube.



Chapter 33
Light Waves

In the examples of wave motion we studied back in
Chapter 15, like waves on a rope and sound in a gas,
we could picture the wave motion as a consequence of
the mechanical behavior particles in the rope or
 molecules in the gas.  We used Newton's laws to predict
the speed of a rope wave and could have done the same
for a sound. When we discuss light waves, we go
beyond the Newtonian behavior.  Waves on a rope, on
water or in a gas are mechanical undulations of an
explicit medium.  Light waves travel through empty
space; there is nothing to undulate, nothing to which
we can apply Newton's laws.  Yet, in many ways, the
behavior of light waves, water waves, sound waves,
and even the waves of quantum theory, are remarkably
similar.

CHAPTER 33 LIGHT WAVES

Ripples produced by rain drops.  (Bill Jack Rodgers, Los Alamos Scientific Laboratory)

There are general rules of wave motion that transcend
the nature of the medium or type of wave.  One is the
principle of superposition that we used extensively in
Chapter 15.  It is the idea that as waves move through
each other, they produce an overall wave whose
amplitude is the sum of the amplitudes of the individual
waves.  The other is a concept we will use extensively
in this chapter called the Huygens principle, named
after its discoverer Christian Huygens, a contempo-
rary of Isaac Newton.

We will see that a straightforward application of the
principle of superposition and the Huygens principle
allows us to make detailed predictions that even can be
used as a test of the wave nature of the phenomena we
are studying.
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SUPERPOSITION OF
CIRCULAR WAVE PATTERNS
When we studied the interaction of waves on a rope, it
was a relatively simple process of adding up the
individual waves to see what the resultant wave would
be.  For example, in Figure (15-6) reproduced here, we
see that when a crest and a trough run into each other,
for an instant they add up to produce a flat rope.  At this
instant the crest and the trough cancel each other.  In
contrast two crests add to produce a big crest, and two
troughs add to produce a deeper trough.

When we extend our study of wave motion to two and
three dimensions, the principle of superposition works
the same way, but now we have to add patterns rather
than just heights along a line.  If, for example, we are
studying wave motion on the surface of water, and two
wave patterns move through each other, the resulting
wave is the sum of the heights of the individual waves
at every point on the surface.  We do the same addition
as we did for one dimensional waves, but at many more
points.

A relatively simple, but important example of the
superposition of wave patterns is the pattern we get
when concentric circular waves from two nearby
sources run into each other.  The pattern is easy to set
up in a ripple tank using two oscillating plungers.

Figure (1a) shows the circular wave pattern produced
by a single oscillating plunger.  From this picture we
can easily see the circular waves emerging from the
plunger.  The only difficulty is distinguishing crests
from troughs.  We will handle this by using a solid line
to represent the crest of a wave and a dashed line for a
trough, as illustrated in Figure (1b).

a)

b)

c)

d)

Figure 15-6
When a crest meets a trough, there is
a short time when the waves cancel.

a) b)

Figure 1a,b
Circular wave pattern
produced in a ripple tank
by a plunger. The pattern
consists of alternate
crests and troughs. To
diagram the circular
wave pattern, we will use
solid lines for crests and
dashed lines for troughs.
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In Figure (2a), we see the wave pattern produced by two
plungers oscillating side by side.  Each plunger sends
out a circular set of waves like that seen in Figure (1).
When the two sets of circular waves cross each other,
we get cancellation where crests from one set meet
troughs from the other set (where a solid line from one
set of circles meets a dashed line from the other set of
circles in Figure (2b).  This cancellation occurs along
lines called lines of nodes which are clearly seen in
Figure (2a).

Between the lines of nodes we get beams of waves.  In
each beam, crests from one plunger meet crests from
the other producing a higher crest.  And troughs from
one set meet troughs from the other producing deeper
troughs.  In our drawing of circles, Figures (2b) and
(2c), we get beams of waves along the lines where solid
circles cross solid circles and dashed circles cross
dashed circles.

Figure 2c
We get beams of waves where crests meet crests
and troughs meet troughs. The lines of nodes are
where crests meet troughs and the waves cancel.

beam

beam

beam

node

node

line of nodes

line of nodes

line of nodes

line of nodes

a) b)

Figure 2a,b
Ripple tank photograph of an interference pattern.
When two sets of circular waves move through each
other, there are lines along which crests from one
set always meet troughs from the other set. These
are called lines of nodes. Between the lines of
nodes, we get beams of waves. The resulting pattern
is called an interference pattern.
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HUYGENS PRINCIPLE
When sunlight streams in through an open kitchen
door, we see a distinct shadow on the floor.  The
shadow can be explained by assuming that the light
beams travel in straight lines from the sun through the
doorway.  The whole subject of geometrical optics and
lens design is based on the assumption that light travels
in straight lines (except at the interface of two media of
different indices of refraction).

In Figure (3) we see what happens when a wave
impinges upon a slit whose width is comparable to the
wavelength of the waves.  Instead of there being a
shadow of the slit, we see that the emerging wave
comes out in all directions.  The wave pattern on the
right side of the slit is essentially identical to the wave
pattern produced by the oscillating plunger in Figure
(1a).  We can explain Figure (3) by saying that the small
piece of wave front that gets through the slit acts as a
source of waves in much the same way that the oscil-
lating plunger acted as a source of waves.

Christian Huygens noted this phenomena and from it
developed a general principle of wave motion.  His idea
was that as a wave pattern evolved, each point of a wave
front acts as the source of a new circular or spherical
wave.  To see how this principle can be applied,

consider the relatively smooth wave front shown in
Figure (4).  To predict the position of the wave front a
short time later, we treat each point on the front of the
wave as a source of circular waves.  We can see the
effect by drawing a series of circles at closely spaced
points along the wave.  The circular waves add up to
produce a new wave front farther out.  While you can
use the same construction to figure out what is happen-
ing throughout the wave, it is much easier to see what
is happening at the front.

Exercise 1

At some instant of time, the front of a wave has a sharp,
right angle corner.  Use Huygens principle to find the
shape of the wave front at some later instant of time.
(Draw a right angle corner and use the kind of construc-
tion shown in Figure (4).)

v  wave

front edge
of wave

Figure 4
Huygen’s construction. The future position of a
wavefront can accurately be predicted by assuming that
each point on the wavefront is a source of a new wave.

Figure 3
A wave emerging from a narrow slit spreads out in all
directions, just as if the wave in the slit were a plunger.
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By using the construction of Figure (4) to predict the
future shape of a wave front, we see that if we use a slit
to block all but a small section of the wave front, as
illustrated in Figure (5), then the remaining piece of
wave front will act as a source of circular waves
emerging from the other side.  This is what we saw in
Figure (3).  Thus the Huygens construction allows us to
see not only how a smooth wave travels forward intact,
but also why circular waves emerge from a narrow slit
as we saw in Figure (3).

The Huygens construction also provides a picture of
what happens as waves go through progressively wider
slits.  If the slit is wider than a wavelength then we have
more sources in the slit and the waves from the sources
begin to interfere with each other.  In Figures (6, 7, 8)
we see the wave patterns for increasingly wide slits and
the corresponding Huygens constructions.  For the
wider slits, more of the wave goes through the center
intact, but there is always a circular wave coming out
at the edges.  For the slit of Figure (8), the circular waves
at the edges are relatively unimportant, and the edges of
the slit cast a shadow.  This is beginning to resemble our
example of sunlight coming through the kitchen door-
way.  The name diffraction is used to describe the
spreading of the waves that we see at the edges of the
slits in Figures (5) through (8).

Figure 8
When the slit is wide compared to a wavelength, we
get a distinct beam of waves. Yet no matter how wide
the slit, there are still circular waves at the edges.

Figure 7
As the slit is widened, more of the wave comes
through intact. In the center we are beginning to
get a beam of waves, yet at the edges, the wavefront
continues to act as a source of circular waves.

Figure 6
When the slit is about 2 wavelengths wide,
the wave in the slit acts as 2 point sources.

Figure 5
The small piece of wave in a narrow
slit acting as a  single point source.
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TWO SLIT
INTERFERENCE PATTERN
If a single narrow slit can produce the same wave
pattern as an oscillating plunger, as we saw in Figure
(3), then we should expect that two slits next to each
other should produce an interference pattern similar to
the one produced by two oscillating plungers seen in
Figure (2).  That this is indeed correct is demonstrated
in Figure (9).  On the left we have repeated the wave
pattern of 2 plungers. On the right we have a wave
impinging upon two narrow slits.  We see that both
have the same structure of lines of nodes, with beam of
waves coming out between the lines of nodes.  Because
the patterns are the same, we can use the same analysis
for both situations.

Sending a wave through two slits and observing the
resulting wave pattern is a convenient way to analyze
various kinds of wave motion.  But in most cases we do
not see the full interference pattern as we do for these
ripple tank photographs.  Instead, we observe only
where the waves strike some object, and from this
deduce the nature of the waves.

To illustrate what we mean, imagine a harbor with a sea
wall and two narrow entrances in the wall as shown in
Figure (10).  Waves coming in from the ocean emerge
as circular waves from each entrance and produce a two
slit interference pattern in the harbor.  Opposite the sea
wall is a beach as shown.

If we are at point A on the beach directly across from
the center of the two entrances, we are standing in the
center beam of waves in the interference pattern.  Here

Figure 9
The wave pattern emerging from 2 slits is similar to the wave pattern produced by two plungers.
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central 
maximum

first maximum

first maximum

second maximum

second maximum

A

B

C

D

E

B'

D'

E'

C'

north entrance

south entrance

N

large waves wash up on the beach.  Walking north
along the beach we cross the first line of nodes at point
B.  Here the water is calm.  Going farther up to point C
we are again in the center of a beam of waves.  We will
call this the first maximum above the central maxi-
mum.  Farther up we cross the second line of nodes at
point D and encounter the second minimum in the
height of waves striking the shore.

Going south from point A we encounter the same
alternate series of maxima and minima at points B', C',
D', etc.  If we graphed the amplitude of the waves
striking the shore, we would get the pattern shown at
the right side of Figure (10).

Now suppose that we walk along the beach on a calm
day where there are no waves, but on the previous day
there had been a storm.  During the storm, the waves

striking the shore eroded the beach.  As you walk along
the beach you notice a series of indentations, at points
A, C, C', etc. where the beach was eroded.  The sand
was not eroded at points B, B', D and D'.  If someone
asked what the ocean waves were like during the storm,
could you tell them?

By measuring the distance between the maximum
erosions and knowing the geometry of the harbor, you
can determine the wavelength of the ocean waves that
struck the sea wall during the storm.  Similar calcula-
tions can be made to determine the wavelength of any
kind of wave striking two narrow slits producing an
interference pattern on the other side.  We do not have
to see the actual wave pattern, we only have to note the
location of the maxima and minima of the waves
striking an object like the shore in Figure (10).

Figure 10
Hypothetical harbor with two entrances through the sea wall. If ocean waves
are coming straight in toward the sea wall, there will be a 2 slit interference
pattern inside the harbor, with a series of maxima and minima along the beach.
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We begin our analysis of the two slit wave pattern by
drawing a series of circles to represent the wave crests
and troughs emerging from the two slits.  The results,
which are shown in Figure (11), are essentially the
same as our analysis of the two plunger interference
pattern in Figure (2).  The maxima occur where crests
meet crests and troughs meet troughs.  The minima or
lines of nodes are where crests meet troughs.

Exercise 2

On Figure (11), sketch the lines along which crests meet
troughs, i.e., where solid and dashed circles intersect.
This should be where the lines of nodes are located.

The First Maxima
The central maximum is straight across from the center
of the two slits (if the incoming waves are parallel to the
slits as in Figure 11).  To figure out where the first
maximum is located, consider the sketch in Figure (12).
We have reduced the complexity of the sketch by
drawing only the solid circles representing wave crests.
In addition we have numbered the crests emerging

from each slit.  We see that at first maximum, the 12th
crest from the lower slit has run into the 11th crest from
the upper slit, producing a maximum crest.  The
distance from the lower slit to the first maximum is
exactly one wavelength longer than the distance from
the upper slit to the first maximum.  This is what
determines the location of the first maximum.

In Figure (13) we have repeated the sketch
of Figure (12), but now focus our attention
on the difference in the length of the two
paths from the slits to the first maximum.
Since an extra wavelength λ  fits into the
lower path, the path length difference is λ  as
shown.  The bottom path, with λ  removed,
and the upper path, both shown as dashed
lines in Figure (13), are thus the same length
and therefore form 2 sides of an isosceles
triangle.

Let us denote by   θ1  the angle from the
center of the two slits up to the first maxi-
mum.  Since this line bisects the isosceles
triangle formed by the two dashed lines, it is
perpendicular to the base of the isosceles
triangle which is the line from the center of
the upper slit down to the point (a) on the
lower path.  As a result, the base of the
isosceles triangle makes the same angle   θ1
with the plane of the slits as the line to the
first maximum does with  the horizontal line
to the central maximum.  (Picture rotating

central 
maximum

first 
maximum

1

1

2

2

3

3

4

5
6

7
8

9
10

11

4
5

6
7

8
9

10

Figure 11
Analysis of the two slit wave pattern, assuming
that circular waves emerge from each slit and
interfere with each other. The maxima are where
crests from one slit meet crests from the other.
Cancellation occurs where crests meet troughs.

central 
maximum

first 
maximum

first 
maximum

Figure 12
One more wave fits in the path from the bottom slit to
the first maxima, than in the path from the top slit.
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the isosceles triangle up around its base.  If you rotate
the isosceles triangle by an angle   θ1 , its base will rotate
by the same angle   θ1 , thus the 2 angles labeled   θ1  in
Figure (13) are the same.)

Our approximation in this analysis is that the separation
d between the slits is very small compared to the
distance over to where we are viewing the first maxi-
mum.  If this is true, then the two paths to the first
maximum are essentially parallel and the small bold
triangle in Figure (13) is very nearly a right triangle.
Assuming that this is a right triangle, we immediately
get

   
sin θ1 = λ

d
angle to first
maximum (1)

In Figure (14) we have another right triangle involving
the angle   θ1 .  If the distance from the slits to where we
are viewing the maxima is D, and if we designate by

 Ymax the distance from the central to the first maxi-
mum, then the hypotenuse of this right triangle is given
by the Pythagorean theorem as  D2 +Ymax

2 .  From this
triangle we have

  sin θ1 =
Ymax

D2 +Ymax
2

(2)

Equating  the two formulas for sin   θ1  and solving for
λ  gives

  
λ = Ymax

d
D2 +Ymax

2 (3)

An easy way to remember this derivation is to note that
the two triangles in Figures (13) and (14), drawn
separately in Figure (15), are similar triangles.  Thus the
ratios of the small sides to the hypotenuses must be
equal, giving

  λ
d

=
Ymax

D2 +Ymax
2

(3′)

The importance of Equation 3 is that it allows us to
calculate the wavelength of a wave by observing the
distance  Ymax  between maxima of the interference
pattern.  For example, in our problem of determining
the character of the waves eroding the beach in Figure
(10), we could use a map to determine the distance D
from the breakwater to the shore and the distance d
between entrances through the breakwater.  Then
pacing off the distance  Ymax  between erosions on the
beach, we could use Equation 3 to determine what the
wavelength of the waves were during the storm.

Figure 13
The path length difference to the first
maximum is one wavelength λλ .

Figure 14
The angle  θθ1  up to the first maxima is the same as
the angle in the small triangle of Figure (13).

θ
D

D
Ymax

Ymax
2

2

√ +

central 
maximum

first 
maximum

1

λ

d

θ
central 
maximum

first 
maximum

1
θ1

(a)

isosceles triangle

λ

d θ
θ

D

D
Ymax

Ymax
2

2

√ +
1

1

Figure 15
Since the two triangles are similar,
we have    λλ /d = ymax D2 + Ymax

2ymax D2 + Ymax
2
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Exercise 3
Repeat the derivation that led to Equation 3 except do
the calculation in terms of the distance  Ymin  from the
central maximum to the first minimum.  (Now the path
length difference is    λ /2 .)

Exercise 4

We will see that Equation 3 has an applicability that goes
far beyond the analysis of two slit interference patterns.
You will need this formula several times later in this
course, and quite likely in other research work.  Rather
than memorizing the formula, it is much better to memo-
rize the derivation.  The best way to do this is to treat the
derivation as a clean desk problem.  Some time, a day
or so after you have read this section, clean off your
desk, take out a blank sheet of paper, and derive
Equation 3.  The first time you try it, you may have
forgotten some steps.  If that happens, review the
derivation and try to do the clean desk problem a day or
so later.  It is worth the effort because the derivation
summarizes all the formulas used in this chapter.

TWO SLIT PATTERN FOR LIGHT
Christian Huygens discovered his principle of wave
motion in 1678, and developed a wave theory of light
that competed with Newton's particle theory of light.  It
was not until 1801, over 120 years later, that Thomas
Young first demonstrated the wave nature of light
using a two slit interference experiment.  Why did it
take so long to do this demonstration?

Two major problems arise when you try to test for the
wave nature of light.  One is the fact that the wavelength
of light is very short, on the order of one hundred
thousand times shorter than the wavelengths of the
water waves we observe in the ripple tank photographs.
A more serious problem is that individual atoms in the
sun or a light bulb emit short bursts of light that are not
coordinated with each other.  The result is a chopped
up, incoherent beam of light that may also include a
mixture of frequencies.

In our analogy of a sea wall with two entrances, it is
likely that a real storm would produce a mixture of
waves of different wavelengths heading in different
directions.  Many different interference patterns would
be superimposed on the inside of the sea wall, different
maxima and minima would overlap at the beach and
the beach would be more or less uniformly eroded.
Walking along the beach the next day, you would not
find enough evidence to prove that the damage was
done by ocean waves, let alone trying to determine the
wavelength of the waves.

The invention of the laser by Charles Townes in 1960
eliminated the experimental problems.  The laser emits
a continuous coherent beam of light that more closely
resembles the orderly ripple tank waves approaching
the slits in Figure (10) than the confused wave motion
seen in a storm.  If you send a laser beam through two
closely spaced slits, you cannot help but see a two slit
interference pattern.
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Even in a demonstration lecture, the two slit pattern
produced by a laser beam can be used to measure the
wavelength of the light in the beam.  In Figure (16) we
placed a two slit mask next to a millimeter scale on the
top of an overhead projector and projected the image on
a large screen.  You can see that the spacing between the
two slits is about 1/3 of a millimeter.  In Figure (17) we
aimed the red beam of a common helium neon laser
through the two slits of Figure (16), onto a screen 10
meters from the slits.  The resulting two slit pattern
consisting of the alternate maxima and minima are
easily seen by the class.  Marking the separation of two
maxima on a piece of paper and measuring the distance
we found that the separation  Ymax  between maxima
was about 2.3 cm.

In using Equation 3,   λ = Ymaxd/ D2 + Ymax
2  to calculate

the wavelength λ , we note that the 10 meter distance
D is much greater than the 2.3 cm  Ymax .  Thus we can

neglect the  Ymax
2  in the square root and we get the

simpler formula

   λ ≈ Ymax
d
D

if D > > Ymax (3a)

Putting in the numbers obtained from Figures (16) and
(17), we get

  λ = 2.3 cm × .3 × 10– 3m
10m = 7 × 10– 5cm (4)

While this demonstration experiment gives fairly ap-
proximate results, accurate to about one significant
figure, it may be somewhat surprising that a piece of
apparatus as crude as the two slits seen in Figure (16)
even allows us to measure something as small as

  7 × 10– 5cm .

Figure 16
The two slits and a plastic ruler are placed on an overhead
projector and projected onto a screen 10 meters away. This
is a photograph of the screen.

Figure 17
The 2 slit laser pattern is then projected on the screen. Below
is a centimeter scale, showing that the maxima are about 2.3
centimeters apart.

Shows that d = .3mm

Shows that  Ymax  = 2.3mm for  D = 10 m.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 cm
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THE DIFFRACTION GRATING
The crudeness of our measurement of the wavelength
of the laser light in our two slit experiment could be
improved somewhat by a more accurate measurement
of the separation of the two slits, but the improvement
would not be great.  There is, however, a simple way to
make far more accurate measurements of the wave-
length of a beam of light.  The trick is simply add more
slits.

To see why adding more slits gives more accurate
results, we show in Figure (18) the wave patterns we get
when the laser beam is sent through two slits, three slits,
four slits, five slits, and seven slits.  We created the slits
using a Macintosh computer using the Adobe Photoshop
program and a Linatronic printer to produce the film
images of the slits.  The Linatronic printer can draw
precise lines one micron wide (  10– 6meters); thus we

had excellent control over the slit width and spacing.
For these images, the slits are 50 microns (50µ) wide
and spaced 150 microns apart on centers.

The photographs of the interference patterns produced
by the slits of Figure (18) are all enlarged to the same
scale.  The important point to notice is that while the
maxima become sharper as we increase the number of
slits, the spacing between maxima remains the same.
Adding more identical slits sharpens the maxima but
does not change their spacing!  As a result the two slit
formula, Equation 3, can be applied to any number of
slits as long as the spacing d between slits remains
constant.

If there are many slits, the device is called a diffraction
grating and Equation 3, which we repeat below, is
known as the diffraction grating formula.

1 slit

2 slits

7 slits

3 slits

4 slits

5 slits

w=50µ d=150µ 3 slits 4 slits 5 slits 7 slits

Figure 18
Interference patterns for various slit structures. If we keep the spacing between slits the same, then there is
no change in the location of the maxima, no matter how many slits the laser beam passes through. Thus an
analysis of the location of the maxima for 2 slits applies to any number of slits. Also note that the single slit
pattern acts as an envelope for the multiple slit patterns.

1 slit

7 slits

2 slits

3 slits

4 slits

5 slits
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λ = Ymax

d

D2 +Ymax
2

diffraction
grating
formula

(3 repeat)

Exercise 5
In Figure (18) the separation of the slits is 150 microns
and the separation of 10 maxima is 26.4 cm.  The screen
is a distance of 6.00 meters from the slits.  From this
determine the wavelength of the light in the laser beam

(a) using the exact formula, Equation 3.

(b) using the approximate formula, Equation 3a.

How many significant figures are meaningful in your
result?  To this accuracy, did it make any difference
whether you used the exact Equation 3 or the approxi-
mate Equation 3a.

Figure (18) demonstrates that the more slits you use, the
sharper the maxima and the more accurately you can
determine the wavelength of the light passing through
the slits.  In the latter part of the 1800s, the diffraction
grating was recognized as an excellent tool for scien-
tific research, and a great effort was put into producing
gratings with as many closely spaced lines as possible.
Fine ruling machines were developed that produced
gratings on the order of 6000 lines or slits per centime-
ter.  With so many lines, very sharp maxima are

produced and very precise wavelength measurements
can be made.  It is possible to make inexpensive plastic
replicas of fine diffraction gratings for use in all kinds
of laboratory work, or even for making jewelry.  It turns
out that compact disks (CDs)  also make superb diffrac-
tion gratings.  We will not tell you the spacing of the
lines on a CD for it is a nice project to figure that out for
yourself.  (All you need is a common helium neon laser.
The wavelength of the laser beam can be gotten from
Exercise 6.)

Exercise 6
In Figure (19), a laser beam is sent through a smoke
filled box with a diffraction grating at the center of the
box as shown in the sketch (19a).  The smoke allows you
to see and photograph the central laser beam and two
maxima on each side.  You also see maxima reflected
from the back side of the grating.  (When you shine a
laser beam on a CD  you get only the reflected maxima,
no light goes through the record.)

The grating used in Figure (19) had 15,000 lines per
inch (1 inch = 2.54 cm).  From this information and the
photograph of Figure (19b), determine the wavelength
of the laser beam used.  Try both the exact Equation 3
and the approximate Equation 3a.  Explain why Equa-
tion 3a does not work well for this case.

smoke filled box with glass top

second maximum

first maximum

central maximum

white
screen

laser
beam

grating

reflected
maxima

Figure 19
Laser beam passing through a diffraction grating. The beam
is made visible by placing the grating in a smoke filled box.
Because the lines are so close together, the maxima are widely
separated. You can also see reflected maxima on the back side.

a)

b)
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More About Diffraction Gratings
The results of Figure (18) demonstrated that the maxima
got sharper but remained in the same place as we added
slits.  Let us now see why this happens.

The maxima of a diffraction grating occur at those
points on the screen where the waves from every slit
add up constructively.  This can happen only when the
path length difference between neighboring maxima is
0 (central maximum), λ  (first maxima),   2λ  (second
maxima), etc.  In Figure (20) we are looking at a small
section of a diffraction grating where we have drawn in
the paths to the first maxima.  The path length differ-
ences between neighboring slits are all λ  and the angle

  θ1  to the first maxima is given by   θ1 = λ/d , the same
results we had for the two slit problem in Figure (13).
This angle does not depend upon the number of slits,
thus the position of the maxima do not change when we
add slits as in Figure (18).

To see why the maxima become narrower as we add
slits, let us consider the example of a 1000 slit grating
illustrated in Figure (21).  We have numbered the slits
from 1 to 1000, and are showing the paths to a point just
below the first maximum where the path length differ-
ence between neighboring slits is (   λ – λ/1000 ) in-
stead of λ .

On the figure we are indicating, not the path length
difference between neighboring slits, but instead, the
path length difference between the first slit and the
others.  This difference is (   λ – λ/1000 ) for slit #2,
(   2λ – 2λ/1000 ) for slit #3, (   3λ – 3λ/1000 ) for slit
#4, etc.

When we get down to slit # 501, just over half way
down, the path length difference is

  500λ – 500λ/1000 = 500λ – λ/2 .  In other words,
the waves from slit 1 and slit 501 are precisely one half
a wavelength out of phase, crests exactly meet troughs,
and there is precise cancellation.  A similar argument
shows that waves from slits #2 and #502 are   λ/2  out of
phase and cancel exactly.  The same goes for the pairs
#3 and #503, #4 and #504, all the way down to 500 and
1000.  In other words, the waves all cancel in pairs and
we have a minimum, complete cancellation at the point
just below the first maximum where the path length
difference is   λ – λ/1000  instead of λ .  With two slits
we got complete cancellation half way between maxima.
With 1000 slits, we only have to go approximately
1/1000 the way toward the next maxima before we get
complete cancellation.  The maxima are roughly 500
times sharper.  You can see that with n slits, the maxima
will be about n/2 times sharper than for the two slit
example.

λ

λ

θ
d

paths
to
first
maxima1

θ1

Figure 20
When the path length difference between
neighboring paths is λλ , then the waves from all
slits add constructively and we get the first
maxima.

(λ − λ/1000)

(2λ − 2λ/1000)

(3λ − 3λ/1000)

(500λ − 500λ/1000)
= (500λ − λ/2)

1

2

3

500

501

502

998

999

1000

4

Figure 21
In a thousand slit grating, we get complete cancellation
when the path length difference between neighboring
slits is reduced from λλ  to   λλ – λλ /1000 .
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The maxima will also be much more intense because
the light is coming in from more slits.  If we have n slits,
the amplitude of the wave at the center of a maxima will
be n times as great as the amplitude from a single slit.
It turns out that the amount of energy in a wave, the
intensity, or, for light, the brightness, is proportional to
the square of the amplitude of the wave.  Thus the
brightness at the center of the maxima for an n slit
grating is  n2  times as bright at the brightness we would
have for a single slit.  The maxima for the 1000 slit
grating illustrated in Figure (21) would be one million
times brighter than if we let light go through only one
of the slits.  (To see how the total energy works out,
consider the following argument.  Compared to one
slit, when you have n slits, you have n times as much
light energy that is compressed into a maxima that is
only 1/n as wide. You get one factor of n in brightness
due to the compression, and the other factor of n due to
there being n slits.)

The Visible Spectrum
Thus far we have been using a laser beam to study the
operation of a diffraction grating.  Now we will reverse
the process and use diffraction gratings to study the
nature of beams of light.

If you send a beam of white light through a diffraction
grating, you get a series of maxima.  In all but the central
maxima light is spread out into a rainbow of colors
illustrated in Figure (22).  In each maxima the red light
is bent the most, and blue the least.  As we saw from
Equation 1,    sin θ1 = λ /d,  the longer the wavelength
the greater the angle the wave is bent or diffracted.
Thus red light has the longest wavelength and blue the
shortest in the mixture of wavelengths that make up
white light.

The longest wavelength that the human eye can see is
about   7.0 × 10– 5 cm , a deep red light, and the shortest
is about   4.0 × 10– 5 cm , a deep purple.  All other
visible wavelengths, the entire spectrum of visible
light, lies in the range between   4.0 × 10– 5 cm  to

  7.0 × 10– 5 cm .  Yellow light, for example, has a
wavelength around   5.7 × 10– 5 cm , and green light is
near   5.0 × 10– 5 cm .

As we saw in Chapter 32, visible light is just a part of
the complete electromagnetic spectrum.  A surpris-
ingly small part.  As radio, television, microwave
ovens, infra red sensors, ultraviolet sunscreens, x ray
photographs, and γ  ray bursts in the sky have entered
our experience of the world, we have become familiar
with a much greater range of the electromagnetic
spectrum.  As indicated in Figure (23), AM radio waves
have wavelengths in the range of 10 to 100 meters,
VHF television a few meters, VHF from around 10 cm
to a meter, microwaves from around a millimeter to 10
cm, infra red from less than a millimeter down to visible
red light at   7.0 × 10– 5 cm .  At shorter wavelengths

Figure 23
Visible light is a tiny piece of the electromagnetic spectrum.

AM radio   FM,TV    microwaves    infra red         ultra violet    x rays   γ rays

red  yellow  green  blue

white
light

white
light

red
yellow
green
blue

red
yellow
green
blue

first maximum
second maximum

Figure 22
When white light passes through a diffraction grating,
the maxima for different colors emerge at different
angles. Since red light has the longest wavelength of
the visible colors, it emerges at the greatest angle.
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than deep blue we have ultraviolet, then x rays, and the
very shortest wavelengths are called γ (gamma) rays.

To study the electromagnetic spectrum, different de-
vices are used at different wavelengths.  In Chapter 32
we used a loop of wire and Faraday's law to detect the
magnetic fields of a radio wave.  This required the use
of an oscilloscope that could display radio wave fre-
quencies, typically of the order of a megacycle for AM
radio.  For visible light the frequencies are too high, the
wavelengths too short for light to be studied by similar
techniques.  Instead the diffraction grating will be our
main tool for studying the electromagnetic waves in the
visible spectrum.

Exercise 7

What are the lowest and highest frequencies of the
waves in the visible spectrum?  What is the color of the
lowest frequency?  What is the color of the highest?
What is the frequency of yellow light?

Atomic Spectra
Our main application of the diffraction grating will be
to study the spectrum of light emitted by atoms.  It has
long been known that if you have a gas of a particular
kind of atom, like nitrogen, oxygen, helium, or hydro-
gen, a special kind of light is emitted.  You do not get
the continuous blend of wavelengths seen in white
light.  Instead the light consists of a mixture of distinct
wavelengths.  Which wavelengths are involved de-
pends upon the kind of atom emitting the light.  The
mixture of wavelengths provide a unique signature of
that atom, better than a fingerprint, for identifying the
presence of an atom in a gas.  In fact, the element helium
(named after the Greek word helios for sun) was first
identified in the sun by a study of the spectrum of light
from the sun.  Only later was helium found here on
earth.

The subject of modern astronomy is based on the study
of the spectrum of light emitted by stars.  Some stars
consist mostly of hydrogen gas, others a mixture of
hydrogen and helium, while still others contain various
amounts of heavier elements.  We learn the composi-
tion of the star by studying the spectrum of light
emitted, and from the composition we can deduce

something about the age of the star and the environ-
ment in which it was formed.

Our main reason for studying the spectrum of light
emitted by atoms will be to learn something about the
atoms themselves.  Since Rutherford's discovery of the
atomic nucleus in 1912, it has been known that atoms
consist of a positively charged nucleus surrounded by
negatively charged electrons.  If we apply Newtonian
mechanics to predict the motion of the electrons, and
Maxwell's equations to predict the kind of electromag-
netic radiation the moving electrons should radiate, we
get the wrong answer.  There is no way that we can
explain the spectrum of light emitted by atoms from
Maxwell's equations and Newtonian mechanics.  The
existence of detailed atomic spectra is a clue that
something is wrong with this classical picture of the
atom.  It is also the evidence upon which to test new
theories.

We do not have to study many kinds of atoms to find
something wrong with the predictions of classical
theory.  The simplest of all atoms, the hydrogen atom
consisting of one proton for a nucleus, surrounded by
one electron, is all we need.  Heated hydrogen gas emits
a distinct, orderly, spectrum of light that provides the
essential clues of what is going on inside a hydrogen
atom.  In this chapter we will focus on using a diffrac-
tion grating to learn what the spectrum of hydrogen is.
In the following chapters we use the hydrogen spec-
trum to study the atom itself.

Figure 24
Apparatus to measure hydrogen spectrum.
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THE HYDROGEN SPECTRUM
The apparatus required for studying the hydrogen
spectrum can be as simple as the hydrogen source,
meter stick and diffraction grating shown in the photo-
graph of Figure (24).  The hydrogen source consists of
a narrow glass tube filled with hydrogen gas, with
metal electrodes at the ends of the tube.  When a high
voltage is applied to the electrodes, an electric current
flows through the gas, heating it and causing it to emit
light.  The diffraction grating is placed in front of the
hydrogen tube, and the meter stick is used to measure
the location of the maxima.

The setup of the apparatus is illustrated in Figure (25)
and the resulting spectrum in Figure (26).  In this
spectrum we are looking at the first maxima on the left
side of the meter stick as shown in Figure (25).  The
leftmost line, the one bent the farthest is a deep red line
which is called the hydrogen αα  line, and labeled by α
in the photograph.  The next line is a spurious line
caused by impurities in the hydrogen tube.  More to the
right is a bright, swimming-pool blue line called hydro-
gen ββ . Much harder to see is the third line called
hydrogen γγ , a deep violet line near the short wave-
length end of the visible spectrum.  The three lines  α ,

β  and γ  are the only lines emitted by pure hydrogen
gas in the visible part of the electromagnetic spectrum.
Their wavelengths are

  λα = 6.56 × 10– 5cm

  λβ = 4.86 × 10– 5cm

  λγ = 4.34 × 10– 5cm (5)

When actually performing the experiment shown in
Figure (24), there are some steps one should take to
improve the accuracy of the results.  As shown in
Figure (27), a small arrowhead is placed on the grating
itself.  You then place your eye behind the meter stick
and move your head and the slider on the meter stick
until the point on the slider lines up with the arrowhead
on the grating and with the spectral line you are trying
to measure.

Ymax

gliding pointer

diffraction grating

hydrogen tube
(top view)

meter stick

central maximum

D

eye

Figure 25
To determine the wavelength of light using a diffraction
grating, you need to measure the distance  Ymax  to the
first maximum, and the distance D shown. To measure

 Ymax , slide the pointer along the meter stick until it lines
up with the first maximum.

Figure 26
Photograph of the αα , ββ  and γγ  lines
in the hydrogen spectrum.

α β γ

Figure 27
Looking through the grating, move your eye so that the
spectral line is centered over the pointer as shown.
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Rather than trying to measure the distance  Ymax  from
the central maximum to the spectral line, it is more
accurate to measure the distance  2Ymax from the first
maximum on the left to the first maximum on the right,
and then divide by 2.  The wavelength of the line under
study is then given by the diffraction grating formula,
Equation 3

  λ = Ymax
d

D2 +Ymax
2

(3 repeated)

where d is the separation of the slits in the grating and
D the distance from the grating to the meter stick.

(When you first perform this experiment you may be
confused by where the central maximum is.  If you look
straight through the grating at the tube, all you see is the
tube.  But that is the central maximum.  It looks like the
tube because all the colors go straight through the
grating.  There is no separation of colors or distortion
of the image.  To see a spectrum you have to look
through the grating but far off to the side from the tube.)

Exercise 8

Derive a formula for the wavelength λ  of a spectral line
in terms of the distance  Y2 max  from the central maximum
to the second maxima of the line.  The second maxima
of the bright lines of an atomic spectra are quite easily
seen using the apparatus of Figure (24).

The Experiment on Hydrogen Spectra
You should carry out the following steps when doing
the hydrogen spectrum experiment shown in Figure
(25).

(1) Determine the wavelength of all the spectral lines
you can see, and compare your results with those given
in Equation 5.  Measure distances between first maxima,
not to the central maxima.

(2) Measure the distances to the second maxima for the
lines you can see out there and compute the corre-
sponding wavelengths using our results from Exercise
8.  Compare these wavelengths with those you get
using the first maxima.



33-19

It was the Swiss school teacher Johann Balmer who in
1885 discovered a formula for the wavelengths of the
spectral lines seen in Figure (28).  The wavelength of
the m th line (m=3 for H3, m=4 for H4, etc.) is given by
the formula

  
λm = 3.6456 × 10– 5 cm × m2

m2 – 4
(6)

Equation 6 is known as the Balmer formula.

For m=3 we get from the Balmer formula

  λ H3 = 3.6456 × 10– 5 cm × 9
9 – 4

= 6.56 × 10– 5 cm
(6a)

which agrees with Equation 5 for hydrogen α .  Each
higher value of m gives us the wavelength of a new line.
At large values of m the factor  m2/ m2 – 4  ap-
proaches 1, and the lines get closer and closer together
as seen in Figure (28).  The end is at   3.65 × 10– 5cm
where m is very large.

Exercise 9
(a) Use Equation 6 to calculate the wavelengths of the
β  and γ  lines of the hydrogen spectrum and compare
the results with Equation 5.

(b) Calculate the wavelength of H40 and compare your
results with Figure (28).

The Balmer Series
There are many spectral lines emitted by the hydrogen
atom.  Only three, however, are in the visible part of the
spectrum.  The complete spectrum consists of a num-
ber of series of lines, and the three visible lines belong
to the series called the Balmer series.  The red line,
hydrogen α , is the longest wavelength line in the
Balmer series, next comes the blue hydrogen β , then
the violet hydrogen γ .  Then there are many lines of the
Balmer series out in the ultraviolet, which we cannot
see by eye, but which we can record on photographic
film.

Figure (28) shows part of the spectrum of light from a
hydrogen star.  These lines are in the ultraviolet and are
all part of the Balmer series.  Slightly different naming
is used here.  In the notation of Figure (28), we should
call the red hydrogen α line H3, the blue β  line H4, and
the violet γ  line H5.  In Figure (28), the first 6 Balmer
lines are missing.  Here we see lines H9 through H40.
As the lines increase in number they get closer and
closer together.  The whole series ends with very many,
very closely spaced lines near   3.65 × 10– 5 cm .  It is
called a series because the lines converge to a final
wavelength in much the same way that many math-
ematical series converge to a final value.

3.65   10   3.70   10   3.75   10   3.80   10   

H9   H10   H11   H12   H13   H14   H15   H20   H30   H40   

wavelength 3.85   10   –5 –5 –5 –5 –5

Figure 28
Spectrum of the star HD193182, showing ultra violet hydrogen lines near the limit of the Balmer
series. This series of lines begins in the visible part of the spectrum with the lines we have called

   αα , ββ, and γγ , (which would be called H3, H4, and H5 in this diagram), and goes on to the ultra
violet. The lines get closer and closer together, until the end just beyond the point labeled H40. The
Swiss school teacher Johann Balmer discovered a formula for the wavelengths of these lines.
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d = 300µ

d = 250µ

d = 150µ

As a result the wavelengths in front and back of the
source are

  
λfront = λ0 – ∆λ = λ0 1 –

vsource
vwave

(9a)

  
λback = λ0 + ∆λ = λ0 1+

vsource
vwave

(9b)

If we are in front of the moving source, the wave period
 Tfront  we observe is the time it takes the shortened

wavelength   λfront  to pass us at a speed  vwave, which is

  
Tfront =

λfront
vwave

=
λ0

vwave
1 –

vsource
vwave

 

Tfront = T0 1 –
vsource
vwave

(10a)

where we now replaced   λ0 vwaveλ0 vwave by  T0 .  In the back,
the period is extended to

 

Tback = T0 1 +
vsource
vwave

(10b)

THE DOPPLER EFFECT
One phenomena of wave motion that is particularly
easy to visualize is the Doppler effect.  As you can see
in Figure (29), if the wave source is moving, the
wavelength of the waves is compressed in front of the
source and stretched out behind.  This result, which is
obvious for water waves, also applies to sound waves
in air and to light waves moving through space.

To analyze the effect, we first note that if the source is
at rest, then the waves all travel out from the source at
a speed  vwave, have a wavelength   λ0  and a period  T0
given by

  
T0

sec
cycle =

λ0 cm / cycle

vwave cm/sec =
λ0

vwave

sec
cycle (7)

If the source is moving forward at a speed  vsource , then
during one period  T0  the source will move forward a
distance  x = vsourceT0 .  But this is just the amount   ∆λ
by which the wavelength is shortened in front and
stretched out in back. Thus

  
∆λ = vsourceT0 = vsource

λ0
vwave

(8)

where we used Equation 7 to replace  T0  by   λ0 vwaveλ0 vwave.

Figure 29
When the source of the wave is moving, the
wavelengths are compressed in front and
stretched out behind.

Figure 30
When the source is moving faster than the waves,
the waves build up on the front edge to create a
shock wave. For supersonic flight, this shock wave
produces the sonic boom.
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If the speed of the source approaches the speed of the
wave, as in the case of a jet airplane approaching the
speed of sound, the wavelength in front goes to zero.  At
speeds greater than the speed of the wave, as in super-
sonic flight, there are no waves ahead of the source;
instead, the leading edge of the waves pile up as shown
in Figure (30) to create what is called a shock wave.
This shock wave is responsible for the sonic boom we
hear when a jet passes overhead at supersonic speeds.

Exercise 10
There is a simple experiment you can perform to ob-
serve the Doppler effect.  Stand beside a road and have
a friend drive by at about 40 mi/hr while blowing the car
horn. As the car passes, the pitch of the horn will
suddenly drop because the wavelength of the sound
waves, which was shortened as the car approached, is
lengthened after it passes.  The shorter, higher-pitched
sound waves change to longer, lower-pitched waves.

For this exercise, assume the car is owned by a musi-
cian, and the car horn plays the musical note A at a
frequency of 440 cycles per second.

a)   What is the wavelength of a 440 cycle/sec note, if the
speed of sound is 1000 ft/sec?

b)   What is the wavelength of the note we hear if the car
is approaching at a speed of 40 miles/hr?

c)   What is the frequency we hear if the car is approach-
ing at 40 miles/hr?

d)   What is the frequency we hear when the car is going
away from us at 40 miles/hr?

Stationary Source
and Moving Observer
If the source is at rest but we, the observer, are moving,
there is also a Doppler effect.  In the case of water or
sound waves, if we are moving through the medium
toward the source, then the wave crests pass by us at an
increased relative speed  vrel = vwave + vus.  Even
though the wavelength is unchanged, the increased
speed of the wave will carry the crests by faster, giving
us an apparently shorter period and higher frequency.

If our velocity through the medium is small compared
to the wave speed, then we observe essentially the same
decrease in period and increase in frequency as in the
case when the source was moving.  In particular,
Equation 10 is approximately correct.

On the other hand, when the waves are in water or air
and the relative speed of the source and observer
approaches or exceeds the wave speed, there can be a
considerable difference between a moving source and
a moving observer.  As illustrated in Figure (31a), if the
source is moving faster than the wave speed, there is a
shock wave and the observer detects no waves until the
source passes.  But if the source is at rest as in Figure
(31b), there is no shock front and the observer moves
through waves before getting to the source, even if the
observer is moving faster than the wave speed.

Figure 31
For waves in water or air, there can be a significant difference between a moving
source with a stationary observer, and a moving observer with a stationary source,
even though the source and observer have the same relative velocity in the two cases.
For light, the principle of relativity requires that the two cases be identical.

a) moving source b) moving observer
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Equations 9  and 10, modified this way, are correct as
long as the source is not moving too fast. However if the
source is moving relative to us at a speed approaching
the speed of light, there is one more relativistic effect
that we have to take into account .  Remember that a
moving clock  runs slow by a factor of  1 – v2/c2 . If the
source is radiating a light wave of period  T0 , then that
period can be used in the construction of a clock. If we
observe the source go by at a speed  vsource  , the period

 T0  must appear to us to increase to   T0′  given by

  
T0′ =

T0

1 – vsource
2 /c2

(see Eq 1-11)

From our point of view, the source is radiating light of
period   T0′ . This is the light whose wavelength is
stretched or compressed, depending on whether the
source is moving away from or towards us. Thus we
should use   T0′  instead of  T0  in Equation 10.

Replacing  T0  by   T0′   in Equation 10 gives

 

Tfront =
T0

1 – vsource
2 /c2

1 –
vsource

c (11a)

 

Tback =
T0

1 – vsource
2 /c2

1 +
vsource

c (11b)

where  vsource is the speed of the source relative to us,
and we have set  vwave= c. Equations (11) are the
relativistic Doppler effect equations for light. They are
applicable for any source speed, even if the source is
moving relative to us at speeds approaching the speed
of light. The corresponding wavelengths are

  λfront = c cm
sec × Tfront

sec
cycle

= cTfront
cm

cycle

  λfront = cTfront

λback = cTback

(12)

Doppler Effect for Light
When a source of light waves is moving toward or
away from us, there is also a Doppler effect.  If the
source is moving toward us, the wavelengths we see are
shortened. This means that the color of the light is
shifted toward the blue.  If the source is moving away,
the wavelengths are stretched out, become longer, and
the color shifts toward the red.  When the speed of the
source is considerably less than the speed of light,
Equations 9 and 10 correctly give the observed wave-
length λ  and period T in terms of the source’s wave-
length   λ0  and period and  T0 .

Principle of Relativity
There is one fundamental difference, however, be-
tween the Doppler effect for water and sound waves,
and the Doppler effect for light waves.  For water and
sound waves we could distinguish between a source at
rest with a moving observer and an observer at rest with
a moving source.  If the source were at rest, it was at rest
relative to the medium through which the wave moves.
We got different results depending on whether it was
the source or the observer that was at rest.

In the case of light, the medium through which light
moves is space.  According to the principle of relativ-
ity, one cannot detect uniform motion relative to space.
Since it is not possible to determine which one is at rest
and which one is moving, we must have exactly the
same Doppler effect formula for the case of a stationary
source and a moving observer, or vice versa. The
Doppler effect formula can depend only on the relative
velocity of the source and observer.

One way to use the principle of relativity is to always
assume that you yourself are at rest relative to space.
(No one can prove you are wrong.) This suggests that
we should start from Equations 9  and 10, which were
derived for a stationary observer, and replace  vwave by
the speed of light c, and interpret  vsource  as the relative
velocity between the source and the observer.
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Exercise 11
Using Equations (12), express   λfront and   λback in
terms of   λ0,  vsource and c.

Exercise 12

In Figure 31b, where we picture a stationary source and
a moving observer, the waves pass by the observer at
a speed  vwave + vobserver. Why can’t this picture be
applied to light, simply replacing  vwave by c and letting

 vobserver be the relative velocity between the source
and observer.

Doppler Effect in Astronomy
The Doppler effect has become one of the most pow-
erful tools astronomers use in the study of the universe.
Assuming that distant stars and galaxies are made up of
the same matter as nearby stars, we can compare the
spectral lines emitted by distant galaxies with the
corresponding spectral lines radiated by elements here
on earth.  A general shift in the wavelengths to the blue
or the red, indicates that the source of the waves is
moving either toward or away from us.  Using Equa-
tions 12 we can then quite accurately determine how
fast this motion toward or away from us is.

Until the 1960s astronomers did not have much need
for the relativistic Doppler shift equations.  The non
relativistic Equations 10 were generally adequate be-
cause we did not observe stars or galaxies moving
relative to us at speeds greater than 10 to 20% the speed
of light.  But that changed dramatically with the discov-
ery of quasars in 1963.  Quasars are now thought to be
brilliant galaxies in the early stages of formation.  They
can be seen from great distances and are observed to
move away from us at speeds as great as 95% the speed
of light.  To analyze such motion, the relativistic
formulas, Equations 11 and 12 are clearly needed.

Exercise 13
The most rapidly receding galaxy observed by the
spring of 1995 is the galaxy named 8C 1435 + 63  shown
in the photograph of Figure (32) taken by the Keck
telescope in Hawaii.  Much of the light from this galaxy
is radiated by hydrogen gas.  This galaxy is moving
away from us at a speed  vsource = .95c.

(a) Assuming that the hydrogen in this galaxy
radiates the same spectrum of light as the hydrogen
gas in our discharge tube of Figure (24), what are the
wavelengths of the first three Balmer series lines  λα ,  λβ ,
and  λγ , by the time these waves reach us.  (They will be
greatly stretched out by the motion of the galaxy.)

(b) Astronomers use the letter z to denote the relative
shift of the wavelength of light due to the Doppler effect.
I.e.,

    
z = ∆λ

λ0
= λ – λ0

λ0

astronomers
notation for
the red shift

(13)

where  λ0  is the wavelength of the unshifted spectral
line, and λ  is the Doppler shifted wavelength we see.
What is z for galaxy 8C 1435 + 63?

Figure 32
The most distant galaxy observed as of January
1995. This galaxy, given the romantic name 8C
1435+63, was photographed by the Keck telescope
in Hawaii. The two halves of the distant galaxy are
indicated by the white bracket. The galaxy is
moving away from us at 95% the speed of light.
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The Red Shift and the
Expanding Universe
In 1917 Albert Einstein published his relativistic theory
of gravity, known as General Relativity.  In applying
his theory of gravity to the behavior of the stars and
galaxies in the universe, he encountered what he thought
was a serious problem with the theory.  Any model of
the universe he constructed was unstable.  The galaxies
tended either to collapse in upon themselves or fly
apart.  He could not find a solution to his equations that
represented the stable unchanging universe everyone
knew was out there.

Einstein then discovered that he could add a new term
to his gravitational equations.  By properly adjusting
the value of this term, he could construct a model of the
universe that neither collapsed or blew up.  This term,
that allowed Einstein to create a static model of the
universe, became known as the cosmological con-
stant.

In later life, Einstein said that his introduction of the
cosmological constant was the greatest mistake he ever
made.  The reason is that the universe is not static.
Instead it is expanding.  The galaxies are all flying apart
like the debris from some gigantic explosion.  The
expansion, or at least instability of the universe, could
have been considered one of the predictions of Einstein’s
theory of gravity, had Einstein not found his cosmo-
logical constant.  (Later analysis showed that the static
model, obtained using the cosmological constant, was
not stable.  The slightest perturbation would cause it to
either expand or contract.)

That the universe is not static was discovered by
Doppler shift measurements.  In the 1920s, the astrono-
mer Edwin Hubble observed that spectral lines from
distant galaxies were all shifted toward the red, and that
the farther away the galaxy was, the greater the red
shift.  Interpreting the red shift as being due to the
Doppler effect meant that the distant galaxies were
moving away from us, and the farther away a galaxy
was, the faster it was moving.

Hubble was the first astronomer to develop a way to
measure the distance out to other galaxies.  Thus he
could compare the red shift or recessional velocity to
the distance the galaxy is away from us.  He found a
simple rule known as Hubble’s law.  If you look at
galaxies twice as far away, they will be receding from
us twice as fast.  Roughly speaking, he found that a
galaxy .1 billion light years away would be receding at
1% the speed of light; a galaxy .2 billion light years
away at 2% the speed of light, etc.  In the 1930s,
construction of the 200 inch Mt. Palomar telescope was
started.  It was hoped that this telescope (completed in
1946) would be able to observe galaxies as far away as
2 billion light years.  Such galaxies should be receding
at the enormous speeds of approximately 20% the
speed of light.

With the discovery of quasars, we have been able to
observe much more distant galaxies, with far greater
recessional velocities.  As we have just seen, the galaxy
8C 1435 + 63, photographed by the 10 meter (400 inch)
telescope in Hawaii, is receding from us at a speed of
95% the speed of light.  To analyze the Doppler effect
for such a galaxy, the fully relativistic Doppler effect
formula, Equation 12 is needed; non relativistic ap-
proximations will not do.

Hubble’s law raises several interesting questions.  First,
it sounds as if we must be at the center of everything,
since the galaxies in the universe appear to all be
moving away from us.  But this is simply a conse-
quence of a uniform expansion.  Someone in a distant
galaxy will also observe the same Hubble law.
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To see how a uniform expansion works, mark a number
of equally spaced dots on a partially blown up balloon.
Select any one of the dots to represent our galaxy, and
then start blowing up the balloon to represent the
expansion of the universe.  You will notice that dots
twice as far away move away twice as fast, no matter
which dot you selected.  Hubble’s law is obeyed from
the point of view of any of the dots on the balloon. (You
can see this expansion in Figure (33), where we started
with an array of light colored dots, and uniformly
expanded the array to get the black dots.)

Another interesting question is related to nature’s
speed limit c.  We cannot keep looking out twice as far
to see galaxies receding twice as fast, because we
cannot have galaxies receding faster than the speed of
light.  Something special has to happen when the
recessional speeds approach the speed of light, as they
have in the case of 8C 1435 + 63.  This appears to place
a limit on the size of the universe we can observe.

One of the things to remember when we look at distant
galaxies is that we are not only looking far away, but we
are also looking back in time.  When we look at a galaxy
10 billion light years away, we are looking at light
emitted 10 billion years ago, when the universe was 10
billion years younger.  Recent studies have clearly
shown that galaxies 10 billion years away look differ-
ent than nearby galaxies.  Over the past 10 billion years
the universe has evolved; galaxies have aged, becom-
ing more symmetric and less violent.

To predict what we will find as we look back in time,
look at ever more distant galaxies, imagine that we take
a moving picture of the universe and run the moving
picture backwards.

If we reverse the moving picture of expanding galaxies,
we see contracting galaxies.  They are all contracting
back to one point in space and time.  Go back to that
point and run the movie forward, and we see all of the
universe rushing out of that point, apparently the
consequence of a gigantic explosion.  This explosion
has become known as the Big Bang.  (The name Big
Bang was a derisive expression coined by the astrono-
mer Fred Hoyle who had a competing theory of the
origin of the universe.)

The idea that the universe started in a big bang,  pro-
vides a simple picture of the Hubble law.  From our
point of view, galaxies emerged at various speeds in all
directions from the Big Bang.  Those that were moving
away from us the fastest just after the explosion are now
the farthest away from us.  Galaxies moving away
twice as fast are now twice as far away.

In the next chapter we will have more to say about the
origin of the universe and evidence for the Big Bang.
We will also introduce another way to interpret the
Doppler effect and its relationship to the expansion of
the universe.

d 2d 3d

Figure 33
During a uniform expansion, neighboring galaxies
move a certain distance away (d), galaxies twice as
far away move twice as far (2d), etc. This is
Hubble’s law for the expanding universe.
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A CLOSER LOOK AT
INTERFERENCE PATTERNS
Our focus so far in this chapter has been on the
application of the wave properties of light to the study
of physical phenomena such as atomic spectra and the
expansion of the universe.  We now wish to turn our
attention to a more detailed study of the wave phenom-
ena itself.  We will first take a closer look at the single
slit diffraction pattern that serves as the envelope of the
multiple slit patterns we saw back in Figure (18).  We
will then discuss an experimental technique for accu-
rately recording various interference patterns produced
by laser beams.  We will then end the chapter with a
demonstration of how Fourier analysis can be used to
predict the structure of the interference patterns we
observe.

The reason for these studies is to strengthen intuition
about the behavior of waves.  The remainder of the text
deals with the inherent wave nature of matter, and here
we wish to develop the conceptual and experimental
tools to study this wave nature.

Single Slit Diffraction Pattern
In the 1600s, Francesco Maria Grinaldi discovered that
light going through a fine slit cannot be prevented from
spreading on the other side.  He named this phenom-
enon diffraction.  Independently Robert Hook, of
Hook’s law fame, made the same observation and
provided a wave like explanation.  The clearest expla-
nation comes from the Huygens construction illus-
trated in Figures (3) through (8).

In Figure (3) reproduced here,  we have a deceptively
simple picture of the single slit diffraction pattern.  In
the photograph a wave is impinging upon a slit whose
width is less than one wavelength, with the result that
we get a simple circular wave emerging on the other
side.  In Figures (6), (7) and (8) we look at what happens
when the slit becomes wider than a wavelength.  These
are all views of the wave pattern close to the slit.  We
see that as the slit becomes wider, more of the wave
passes through undisturbed, creating a more or less
distinct shadow effect.  Nevertheless we always see
circular waves at the edge of the shadow. If you
carefully look at Figure (6), reproduced below, you can
see lines of nodes coming out of the slit that is about 2
wavelengths wide.

In Figure (34), we have the diffraction pattern pro-
duced by a laser beam passing through a 50 micron
wide single slit and striking a screen 10 meters away.
This is a reproduction of the single slit pattern that acts
as an envelope for the multiple slit patterns seen in
Figure (18).  A 50 micron slit is   50 × 10– 6meters or

  500 × 10– 5cm wide.  This is nearly a hundred times
greater than the   6.4 × 10– 5 cm wavelength of the laser
light passing through the slit.  Thus we are dealing with
slits that are about 100 wavelengths wide.

Figure 3 (repeated)
The simple diffraction pattern you get when the
slit is narrow compared to a wavelength.

Figure 6 (repeated)
The pattern becomes more complex when the slit is
wider than a wavelength. Here you can begin to
see lines of nodes emerging from the slit.
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The fact that the diffraction pattern was photographed
10 meters from the slits means that we are looking at the
pattern nearly 20 million wavelengths away from the
slits.  Thus the ripple tank photographs of Figures (5)
through (8), showing diffraction patterns within a few
wavelengths of the slits, are not a particularly relevant
guide as to what we could expect to see 20 million
wavelengths away.

The general features of the diffraction pattern in Figure
(34) is that we have a relatively broad central maxi-
mum,  with nodes on either side.  Then there are dimmer
and narrower maxima on either side.  There is a series
of these side maxima that extend out beyond the
photograph of Figure (34).

If the slit were narrow compared to a wavelength, if the
wave spread out as in Figures (3), then we would get
just one broad central maxima.  Only when the slit is
wider than a wavelength do we get the minima we see
in Figure (34).  These minima result from the interfer-
ence and cancellation of waves from different parts of
the slit.  What we wish to do now is to show how this
cancellation occurs and predicts where the minima will
be located.

Analysis of the Single Slit Pattern
In our discussion of diffraction gratings, we estimated
the width of the maxima by determining how far from
the center of the maxima the intensity first went to zero,
where we first got complete cancellation.  This oc-
curred where light from pairs of slits cancelled.  In our
example of Figure (21), light from slit 1 cancelled that
from slit 501, from slit 2 with slit 502, etc., all the way
down to slits 500 and 1000.

We can use a similar analysis for the single slit pattern,
except the one big slit is broken up, conceptually, into
many narrow slits, as illustrated in Figure (35).  Sup-
pose, for example, we think of the one wide slit of width
w as being broken up into 1000 neighboring individual
slits.  The individual slits are so narrow that each piece
of wave front in them should act as a source of a pure
circular wave as shown back in Figure (3).

Now consider the light heading out in such a direction
that the wave from the first conceptual slit is half a
wavelength   λ/2 , in front of the wave from the middle
slit, number 501.  When the waves from these two
"slits" strike the screen they will cancel.  Similarly
waves from slits 2 and 502 will cancel, as will those
from 3 and 503, etc., down to 500 and 1000.  Thus is the
direction where the path length difference from the
edge to the center of the opening is half a wavelength

  λ/2 .  Between the two edges of the opening, the path
length difference to this minimum is λ ,as shown.

w

1
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4

500
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499

998
999

1000

5
6

λ/2

λ

to firs
t minimum

Figure 35
Conceptually break
the single slit up into
many individual slits.
We get a minimum
when light from the
conceptual slits
cancels in pairs.

w

D

Ymin

Figure 34
For this single slit laser beam diffraction
pattern, the slit was about 100 wavelengths
wide (w), and the screen was about 20
million wavelengths away (D).

 w = 50 microns
D = 10 meters
Ymin = 13 cm
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V  = iRR
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Figure 37
The photoresistor circuit. By making  R2  considerably
bigger than the photoresistor resistance  Rp , the current
i stays relatively constant. As a result, the voltage

  Vp = i Rp  is nearly proportional to  Rp . (We used
   Rp = 6.8KΩ  and the EG&G opto VT30N4

photoresistor.)

From Figure (36), we can calculate the height of the
first minimum using the familiar similar triangles we
have seen in previous analysis.  The small right triangle
near the slit has a short side of length λ  and a hypot-
enuse equal to the slit width w.  The big triangle has a
short side equal to  Ymin  and a hypotenuse given by the
Pythagorean theorem as  D2 +Ymin

2 .  Usually  Ymin
will be much smaller than the distance D, so that we can
replace  D2 +Ymin

2  by D, to get

  λ
w =

Ymin

D2 + Ymin
2

≈
Ymin

D

or

   
Ymin ≈ λD

w

distance to the
first minima of
a single slit
diffraction pattern

(14)

Exercise 14

To obtain the single slit diffraction pattern seen in Figure
(34), we used a slit 50 microns wide located 10 meters
from the screen.  The distance  Ymin to the first minimum
was about 13 cm. Use this result to determine the
wavelength of the laser light used.  Compare your
answer with your results from Exercises 5 and 6, where
the same wavelength light was used.

w
D

λ

D  +  Y
Ymin

min
2

2

Figure 36
Similar triangles for calculating the distance to the
first minimum of a single slit diffraction pattern.

RECORDING DIFFRACTION
GRATING PATTERNS
Another way to record the diffraction pattern is to use
a device called a photoresistor.  A photoresistor is an
inexpensive resistor whose resistance  Rp  varies de-
pending upon the intensity of the light striking the
resistor.  If you place the photoresistor in the circuit
shown in Figure (37), along with a fixed resistance  R2,
a battery of voltage  Vb , and an oscilloscope, you can
measure with the oscilloscope the intensity of light
striking the photoresistor.

The analysis of the circuit in Figure (37) is as follows.
The resistors  Rp  and  R1  are in series and thus have an
effective resistance  R = Rp + R1 .  The current i in the
circuit is thus  i = Vb/R = Vb/ Rp + R1 .  Thus as the
photoresistor's resistance  Rp  changes with changes in
light intensity, the current  i will also change.  Finally
the voltage  V1  that the oscilloscope sees across the
fixed resistor  R1  is given by Ohm's law as  V1 = iR1 .
Thus as i changes,  V1  changes and we see the change
on the oscilloscope.
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Figure 38
The rotating mirror. (We were careful to make sure
that the axis of rotation was accurately perpendicular
to the base. If it isn’t, the laser beam wobbles up and
down.)

For a number of years we tried various ways of moving
the photoresistor through the diffraction pattern in
order to record the intensity of the light in the diffrac-
tion pattern.  We tried mounting the photoresistor on xy
recorders and various home-built devices, but there
was always some jitter and the results were only fair.
The solution, as it turns out, is not to move the photo-
resistor, but move the diffraction pattern across a fixed
photoresistor instead. This is easily done using a rotat-
ing mirror, a mirror attached to a clock motor as shown
in Figure (38).  We have found that if you use a motor
with a speed of 1/2 revolutions per minute, you have
plenty of time to make a stable noise-free recording of
the bottom.  Using the recording oscilloscope
MacScope, we recorded the single slit diffraction pat-
tern seen in Figure (39).

A photoresistor is sensitive to the intensity or energy
density of the light striking it.  And the intensity is
proportional to the square of the amplitude of the waves
in the beam.  Thus in Figure (39) we are looking at a
graph of the square of the wave amplitude in a single slit
diffraction pattern.  It is reasonable that the intensity
should be proportional to the square of the amplitude,
because amplitudes can be positive or negative, but
intensities are always positive.  You cannot have a
negative intensity, and you do not get one if you square
the amplitude since squares of real numbers are always
positive.

Figure 39 a,b
Single slit diffraction pattern. Data from
the project by Cham, Cole, and Layang.

Figure 39c
Single slit diffraction pattern with the amplitude
of the voltage amplified so that we can see the
side lobes. Data from the project by Cham,
Cole, and Layang.
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laser

mirror rotating at 
1/2 revolution/hour

3 slits

beam rotating at 
1 revolution/hour

photo resistor 
behind slit

3 slits

line thickness = 53µ

spacing between line 
centers = 160µ

Figure 40
Recording the 3 slit interference pattern

c)  3 slit diffraction pattern

b)  The slits. (    1µµ = 10– 6m = 10– 4cm )

d)  Voltage recording on photoresistor

a)  Experimental setup

Exercise 15
In Figure (40) we study the interference pattern pro-
duced by a laser beam  passing through three equally
spaced slits.  Figure (40a) shows the experimental
setup and (40b) the shape of the slits through which the
laser beam went.  Figure (40c) is a photograph of the
interference pattern, and Figure (40d) is a recording in
which the voltage is proportional to the intensity of the
light striking a stationary photoresistor.  The beam
rotated at a rate of 1 revolution per hour, sweeping the
beam past the photo resistor. (The mirror only turned at
.5 revolutions per hour, but the reflected beam rotates
twice as fast as the mirror. You can see this by the fact
that when the mirror turns   45° the beam rotates    90°. )

To Calculate the wavelength of the laser light from the
experimental data in Figure 40, first note that the beam
is sweeping past the photoresistor at a speed

  vbeam = 2π r (cm/ revolution)
3600 (sec / revolution)

= 2π r
3600

cm
sec

where r is the distance from the axis of the mirror to the
photoresistor. If it takes a time T for two maxima to
sweep past the photoresistor, then the distance  Ymax

between the maxima is

  Ymax = vbeam×T = 2π r
3600 ×T

If the slits are close to the mirror, then r is also equal to
the distance D from the slits to the photoresistor (screen).
The wavelength is then given by Equation 3a as

  λ = Ymax× d
D ≈ Ymax× d

r

= 2π r
3600 ×T × d

r

The factors of r cancel, and we are left with

  λ = 2π d
3600 ×T (15)

Thus if the slits are close to the mirror, we do not need
to know the distance to the photoresistor. (You can see
that if the rotating beam is twice as long, the end travels
twice as fast. But the maxima are twice as far apart, thus
it takes the same length of time for the maxima to pass
the photoresistor.)

Use the results of Figure 40d to determine the wave-
length of the laser beam. (In this experiment, the slits
were close to the mirror.)

(More to come on the use of Fourier analysis to predict
diffraction patterns.)
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CHAPTER 34 PHOTONS

The effort to determine the true nature of light has been
a fitful process in the history of physics.  Newton and
Huygens did not agree on whether light was a wave or
consisted of beams of particles.  That issue was appar-
ently settled by Thomas Young's two-slit experiment
performed in 1801, nearly three quarters of a century
after Newton's death.  Young's experiment still did not
indicate what light was a wave of.  That insight had to
come from Maxwell's theory of 1860 which showed
that light was a wave of electric and magnetic fields.

In the late 1800s there were dramatic confirmations of
Maxwell's theory.  In 1888 Heinrich Hertz observed
radio waves, the expected low frequency component of
the electromagnetic spectrum.  As we have seen from
our own experiments, the electric and magnetic fields
in a radio wave can be measured directly.

But as the nineteenth century was ending, not all
predictions of Maxwell's theory were as successful.
Applications of Maxwell's equations to explain the
light radiated by matter were not working well.  No one
understood why a heated gas emitted sharp spectral
lines, and scientists like Boltzman were unable to
explain important features of light radiated by hot solid
objects.  The fact that Boltzman could get some features
right, but not others, made the problem more vexing.
Even harder to understand was the way beams of light
could eject electrons from the surface of a piece of
metal, a phenomenon discovered in 1897 by Hertz.

Many of these problems were cleared up by  a picture
developed by Max Planck and Einstein, a picture in
which light consisted of beams of particles which
became known as photons.  The photon picture imme-
diately explained the ejection of electrons from a metal
surface and the spectrum of radiation from a heated
solid object.  In the past few years the observation of
photons coming in uniformly from all directions in
space has led to a new and surprisingly well confirmed
picture of the origin of the universe.

In this chapter we will discuss the properties of photons
and how discovering the particle nature of light solved
some outstanding problems of the late nineteenth cen-
tury.  We will finish with a discussion of what photons
have told us about the early universe.

What we will not discuss in this chapter is how to
reconcile the two points of view about light.  How could
light behave as a wave in Thomas Young's experiment,
and as a particle in experiments explained by Einstein.
How could Maxwell's theory work so well in some
cases and fail completely in others?  These questions,
which puzzled physicists for over a quarter of a cen-
tury, will be the topic of discussion in the chapter on
quantum mechanics.
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BLACKBODY RADIATION
When we studied the spectrum of hydrogen, we saw
that heated hydrogen gas emits definite spectral lines,
the red hydrogen  α , the blue hydrogen β  and violet
hydrogen γ .  Other gases emit definite but different
spectral lines.  But when we look through a diffraction
grating at the heated tungsten filament of a light bulb,
we see something quite different.  Instead of sharp
spectral lines we see a continuous rainbow of all the
colors of the visible spectrum.  Another difference is
that the color of the light emitted by the filament
changes as you change the temperature of the filament.
If you turn on the light bulb slowly, you first see a dull
red, then a brighter red, and finally the filament be-
comes white hot, emitting the full spectrum seen in
white light.   In contrast, if you heat hydrogen gas, you
see either no light, or you see all three spectral lines at
definite unchanging wave lengths.

Some complications have to be dealt with when study-
ing light from solid objects.  The heated burner on an
electric stove and a ripe McIntosh apple both look red,
but for obviously different reasons.  The skin of the
McIntosh apple absorbs all frequencies of visible light
except red, which it reflects.  A stove burner, when it is
cool, looks black because it absorbs all wavelengths of
light equally.  When the black stove burner is heated,
the spectrum of light is not complicated by selective
absorption or emission properties of the surface that
might enhance the radiation at some frequencies.  The
light emitted by a heated black object has universal
characteristic properties that do not depend upon what
kind of black substance is doing the radiating.  The light
from such objects is blackbody radiation.

One reason for studying blackbody radiation is that you
can determine the temperature of an object from the
light it emits.  For example, Figure (1) shows the
intensity of light radiated at different wavelengths by a
tungsten filament at a temperature of 5800 kelvins.  The
greatest intensity is at a wavelength of   5 × 10– 5cm ,
the middle of the visible spectrum at the color yellow.
If we plot intensities of the various wavelengths radi-
ated by the sun, you get essentially the same curve.  As
a result we can conclude that the temperature of the
surface of the sun is 5800 kelvins.  It would be hard to
make this measurement any other way.

There are a few simple rules governing blackbody
radiation.  One is that the wavelength of the most
intense radiation, indicated by   λmax  in Figure (1), is
inversely proportional to the temperature.  The explicit
formula, known as Wein's displacement law turns out
to be

  λmax = 2.898
T mmK (1)

where   λmax  is in millimeters and the temperature T is
in kelvins.  For T= 5800K, Equation 1 gives

  λmax 5800K = 2.898mmK
5800K

= 5 × 10– 4mm

= 5.0 × 10– 5cm

which is the expected result.

While   λmax  changes with temperature, the relative
shape of the spectrum of radiated intensities does not.
Figure (1) is a general sketch of the blackbody radiation
spectrum.  To determine the blackbody spectrum for
another temperature, first calculate the new value of

  λmax  using Equation 1 then shift the horizontal scale in
Figure (1) so that   λmax has this new value.
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Figure 1
Blackbody spectrum at 5800 degrees on the kelvin
scale. The solid line is the experimental curve, the
dotted line represents the prediction of Newtonian
mechanics combined with Maxwell’s equations. The
classical theory agrees with the experimental curve
only at long wavelengths.
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Knowledge of the blackbody spectrum is particularly
useful in astronomy.  Most stars radiate a blackbody
spectrum of radiation.  Thus a measurement of the
value of   λmax  determines the temperature of the sur-
face of the star.  There happens to be quite a variation
in the surface temperature and color of stars.  This may
seem surprising at first, because most stars look white.
But this is due to the fact that our eyes are not color
sensitive in dim light.  The variation in the color of the
stars can show up much better in a color photograph.

As an example of the use of Equation 1, suppose you
observe a red star that is radiating a blackbody spec-
trum with   λmax = 7.0 × 10– 5cm .  The surface tem-
perature should then be given by

  T = 2.898mmK
7.0 × 10– 4mm

= 4140 kelvin

Exercise 1
(a) What is the surface temperature of a blue star whose
most intense wavelength is    λmax = 4 × 10– 5cm?

(b) What is the wavelength   λmax  of the most intense
radiation emitted by an electric stove burner that is at a
temperature of 600° C (873K)?

Another feature of blackbody radiation is that the
intensity of the radiation increases rapidly with tem-
perature.  You see this when you turn up the voltage on
the filament of a light bulb.  Not only does the color
change from red to white, the bulb also becomes much
brighter.

The net amount of radiation you get from a hot object
is the difference between the amount of radiation
emitted and the amount absorbed from the surround-
ings.  If the object is at the same temperature as its
surroundings, it absorbs just as much radiation as it
emits, with the result that there is no net  radiation.  This
is why you cannot feel any heat from an electric stove
burner before it is turned on.  But after the burner is
turned on and its temperature rises above the room
temperature, you begin to feel heat.  Even if you do not

touch the burner you feel infrared radiation which is
being emitted faster than it is being absorbed.  By the
time the burner becomes red hot, the amount of radia-
tion it emits greatly exceeds the amount being ab-
sorbed.

In 1879, Joseph Stefan discovered that the total inten-
sity, the total energy emitted per second in blackbody
radiation was proportional to the fourth power of the
temperature, to  T4  where T is in kelvins.  Five years
later Ludwig Boltzman explained the result theoreti-
cally.  This result is thus known as the Stefan-Boltzman
law.

As an example of the use of the Stefan-Boltzman law,
suppose that two stars are of the same size, the same
surface area, but one is a red star at a temperature of
4,000K while the other is a blue star at a temperature of
10,000K.  How much more rapidly is the hot blue star
radiating energy than the cool red star?

The ratio of the rates of energy radiation is equal to the
ratio of the fourth power of the temperatures.  Thus

  energy radiated
by blue star

energy radiated
by red star

=
Tblue

4

Tred
4 = 10,000K

4,000K

4

= 2.54 ≈ 40

We see that the blue star must be burning its nuclear fuel
40 times faster than the red star.
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Planck Blackbody Radiation Law
Boltzman used a combination of Maxwell's equations,
Newtonian mechanics, and the theory of statistics to
show that the intensity of blackbody radiation in-
creased as the fourth power of intensity.  But neither he
nor anyone else was able to derive the blackbody
radiation spectrum shown in Figure (1).  There was
some success in predicting the long wavelength side of
the curve, but no one could explain why the intensity
curve dropped off again at short wavelengths.

In 1900 Max Planck tried a different approach.  He first
found an empirical formula for a curve that matched the
blackbody spectrum.  Then he searched for a derivation
that would lead to his formula.  The idea was to see if
the laws of physics, as they were then known, could be
modified in some way to explain his empirical black-
body radiation curve.

Planck succeeded in the following way.  According to
Maxwell's theory of light, the amount of radiation
emitted or absorbed by a charged particle was related
to the acceleration of the particle, and that could vary
continuously.  Planck found that he could get his
empirical formula if he assumed that the electrons in a
solid emitted or absorbed radiation only in discrete
packets.  The energy in each packet had to be propor-
tional to the frequency of the radiation being emitted
and absorbed.  Planck wrote the formula for the energy
of the packets in the form

E  =  hf (2)

where f is the frequency of the radiation.  The propor-
tionality constant h became known as Planck's con-
stant.

For over two decades physicists had suspected that
something was wrong either with Newtonian mechan-
ics, Maxwell's equations, or both.  Maxwell was unable
to derive a formula that explained the specific heat of
gases (except the monatomic noble gases), and no one
had the slightest idea why heated gases emitted sharp
spectral lines.  Planck's derivation of the blackbody
radiation formula was the first successful derivation of
a phenomena that could not be explained by Newtonian
mechanics and Maxwell's equations.

But what did it mean that radiation could be emitted or
absorbed only in discrete packets or quanta as Planck
called them?  What peculiar mechanism lead to this
quantization of the emission and absorption process?
Planck did not know.
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THE PHOTOELECTRIC EFFECT
1905 was the year in which Einstein cleared up several
outstanding problems in physics.  We have seen how
his focus on the basic idea of the principle of relativity
lead to his theory of special relativity and a new
understanding of the structure of space and time.
Another clear picture allowed Einstein to explain why
light was emitted and absorbed in discrete quanta in
blackbody radiation.  The same idea also explained a
process called the photoelectric effect, a phenomenon
first encountered in 1887 by Heinrich Hertz.

In the photoelectric effect, a beam of light ejects
electrons from the surface of a piece of metal.  This
phenomenon can be easily demonstrated in a lecture,
using the kind of equipment that was available to Hertz.
You start with a gold leaf electrometer like that shown
in Figure (2), an old but effective device for measuring
the presence of electric charge. (This is the apparatus
we used in our initial discussion of capacitors.) If a
charged object is placed upon the platform at the top of
the electrometer, some of the charge will flow down to
the gold leaves that are protected from air currents by
a glass sided container.  The gold leaves, each receiving
the same sign of charge, repel each other and spread
apart as shown.  Very small amounts of charge can be
detected by the spreading of the gold leaves.

To perform the photoelectric effect experiment, clean
the surface of a piece of zinc metal by scrubbing it with
steel wool, and charge the zinc with a negative charge.
We can be sure that the charge is negative by going
back to Ben Franklin's definition.  If you rub a rubber
rod with cat fur, a negative charge will remain on the
rubber rod.  Then touch the rubber rod to the piece of
zinc, and the zinc will become negatively charged. The
presence of charge will be detected by the spreading of
the gold leaves.

Now shine a beam of light at the charged piece of zinc.
For a source of light use a carbon arc that is generated
when an electric current jumps the narrow gap between
two carbon electrodes.  The arc is so bright that you do
not need to use a lens to focus the light on the zinc.  The
setup is shown in Figure (3).

When the light is shining on the zinc, the gold leaves
start to fall toward each other.  Shut off or block the light
and the leaves stop falling.  You can turn on and off the
light several times and observe that the gold leaves fall
only when the light is shining on the zinc.  Clearly it is
the light from the carbon arc that is discharging the zinc.

Figure 3
Photoelectric effect experiment.

carbon arc
light source

Figure 2
The gold leaf electrometer.
This is the same apparatus we
used back in Figure 26-28 in
our study of capacitors.
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A simple extension to the experiment is to see what
happens if the zinc is given a positive charge.  Follow-
ing Ben Franklin's prescription, we can obtain a posi-
tive charge by rubbing a glass rod with a silk cloth.
Then touch the positively charged glass rod to the zinc
and again you see the gold leaves separate indicating
the presence of charge.  Now shine the light from the
carbon arc on the zinc and nothing happens.  The leaves
stay spread apart, and the zinc is not discharged by the
light.

When we charge the zinc with a negative charge, we are
placing an excess of electrons on the zinc. From
Gauss's law we know that there cannot be any net
charge inside a conductor, thus the excess negative
charge, the extra electrons, must be residing in the
surface of the metal.  The light from the carbon arc,
which discharges the zinc, must therefore be knocking
these extra electrons out of the metal surface.  When we
charged the zinc positively, we created a deficiency of
electrons in the surface, and no electrons were knocked
out.

In the context of Maxwell's equations, it is not particu-
larly surprising that a beam of light should be able to
knock electrons out of the surface of a piece of metal.
According to Maxwell's theory, light consists of a wave
of electric and magnetic fields.  An electron, residing
on the surface of the zinc, should experience an oscil-
lating electric force when the light shines on the zinc.
The frequency of oscillation should be equal to the
frequency of the light wave, and the strength of the
electric field should be directly related to the intensity
of the light.  (We saw earlier that the intensity of the
light should be proportional to the square of the mag-
nitude of the electric field.)

The question is whether the electric force is capable of
ejecting an electron from the metal surface.  A certain
amount of energy is required to do this.  For example,
in our electron gun experiment we had to heat the
filament in order to get an electron beam.  It was the
thermal energy that allowed electrons to escape from
the filament.  We now want to know whether the
oscillating electric force of the light wave can supply
enough energy to an electron for the electron to escape.

There are two obvious conclusions we should reach.
One is that we do not want the frequency of oscillation
to be too high, because the direction of the electric field
reverses on each half cycle of the oscillation.  The
electron is pushed one way, and then back again.  The
longer the time it is pushed in one direction, the lower
the frequency of the oscillation, the more time the
electron has to pick up speed and gain kinetic energy.
If the frequency is too high, just as the electron starts to
move one way, it is pushed back the other way, and it
does not have time to gain much kinetic energy.

The second obvious conclusion is that we have a better
chance of ejecting electrons if we use a more intense
beam of light.  With a more intense beam, we have a
stronger electric field which should exert a stronger
force on the electron, producing a greater acceleration
and giving the electron more kinetic energy.  An
intense enough beam might supply enough kinetic
energy for the electrons to escape.

In summary, we expect that light might be able to eject
electrons from the surface of a piece of metal if we use
a low enough frequency and an intense enough beam
of light.  An intense beam of red light should give the
best results.

These predictions, based on Maxwell's equations
and Newtonian mechanics, are completely wrong!
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Let us return to our photoelectric effect demonstration.
During a lecture, a student suggested that we make the
light from the carbon arc more intense by using a
magnifying glass to focus more of the arc light onto the
zinc.  The more intense beam of light should discharge
the zinc faster.

When you use a magnifying glass, you can make the
light striking the zinc look brighter.  But something
surprising happens.  The zinc stops discharging.  The
gold leaves stop falling.  Remove the magnifying glass
and the leaves start to fall again.  The magnifying glass
prevents the discharge.

You do not have to use a magnifying glass to stop the
discharge.  A pane of window glass will do just as well.
Insert the window glass and the discharge stops.  Re-
move it, and the gold leaves start to fall again.

How could the window glass stop the discharge?  The
window glass appears to have no effect on the light
striking the zinc.  The light appears just as bright.  It was
brighter when we used the magnifying glass, but still no
electrons were ejected.  The prediction from Maxwell's
theory that we should use a more intense beam of light
does not work for this experiment.

What the window glass does is block ultraviolet  radia-
tion.  It is ultraviolet radiation that tans your skin (and
can lead to skin cancer).  It is difficult to get a tan indoors
from sunlight that has gone through a window because
the glass has blocked the ultraviolet component of the
sun's radiation.  Similarly the pane of window glass, or
the glass in the magnifying lens, used in the photoelec-
tric effect experiment, prevents ultraviolet radiation
from the carbon arc from reaching the zinc.  It is the high
frequency ultraviolet radiation that is ejecting electrons
from the zinc, not the lower frequency visible light.
This is in direct contradiction to the prediction of
Maxwell's theory and Newton's laws.

Einstein's explanation of the photoelectric effect is
simple.  He assumed that Newton was right after all, in
that light actually consisted of beams of particles.  The

photoelectric effect occurred when a particle of light, a
photon, struck an electron in the surface of the metal.
All the energy of the photon would be completely
absorbed by the electron.  If this were enough energy
the electron could escape, if not, it could not.

The idea that light actually consisted of particles ex-
plains why Planck had to assume that in blackbody
radiation, light could only be emitted or absorbed in
quantum units.  What was happening in blackbody
radiation, photons, particles of light, were being emit-
ted or absorbed.  As a result, Planck's formula for the
energy of the quanta of emitted and absorbed radiation,
must also be the formula for the energy of a photon.
Thus Einstein concluded that a photon's energy is given
by the equation

  
Ephoton = hf Einstein's photoelectric

effect formula (3)

where again f is the frequency of the light and h is
Planck's constant.  Equation 3 is known as Einstein's
photoelectric effect formula.

With Equation 3, we can begin to understand our
photoelectric effect demonstration.  It turns out that
visible photons do not have enough energy to knock an
electron out of the surface of zinc.  There are other
metals that require less energy and for these metals
visible light will produce a photoelectric effect.  But for
zinc, visible photons do not have enough energy.  Even
making the visible light more intense using a magnify-
ing glass does not help.  It is only the higher frequency,
more energetic, ultraviolet photons that have enough
energy to kick an electron out of the surface of zinc.  We
blocked these energetic photons with the window glass
and the magnifying glass.

In 1921, Einstein received the Nobel prize, not for the
special theory of relativity which was still controver-
sial, nor for general relativity, but for his explanation of
the photoelectric effect.
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PLANCK'S CONSTANT h
Planck's constant h, the proportionality constant in
Einstein's photoelectric effect formula, appears no-
where in Newtonian mechanics or Maxwell's theory of
electricity and magnetism.  As physicists were to
discover in the early part of the twentieth century,
Planck's constant appears just when Newtonian me-
chanics and Maxwell's equations began to fail.  Some-
thing was wrong with the nineteenth century physics,
and Planck's constant seemed to be a sign of this failure.

The value of Planck's constant is

  h = 6.63 × 10– 34joule sec (4)

where the dimensions of h have to be an energy times
a time, as we can see from the photoelectric formula

  
Ejoules = h joule sec × f

cycles
sec (3a)

The dimensions check because cycles are dimension-
less.

It is not hard to see that Planck's constant also has the
dimensions of angular momentum.  Recall that the
angular momentum L of an object is equal to the
object's linear momentum  p  =  mv  times its lever arm

 r⊥  about some point.  Thus the formula for angular
momentum is

  L = pr⊥ = m kg v meter
sec × r⊥ meter

= mvr⊥ kg m2

sec

We get the same dimensions if we write Planck's
constant in the form

  
h joule sec = h kg m2

sec2 × sec

= h kg m2

sec (5)

where we used the fact that the dimensions of energy
are a mass times a velocity squared.

A fundamental constant of nature with the dimensions
of angular momentum is not something to be expected
in Newtonian mechanics.  It suggests that there is
something special about this amount of angular mo-
mentum,   6.63 × 10– 34 kg m2/sec  of  it, and
 nowhere in Newtonian mechanics is there any reason
for any special amount.  It would be Neils Bohr in 1913
who first appreciated the significance of this amount of
angular momentum.
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PHOTON ENERGIES
Up to a point we have been describing the electromag-
netic spectrum in terms of the frequency or the wave-
length of the light.  Now with Einstein's photoelectric
formula, we can also describe the radiation in terms of
the energy of the photons in the radiation.  This can be
convenient, for we often want to know how much
energy photons have.  For example, do the photons in
a particular beam of light have enough energy to kick
an electron out of the surface of a given piece of metal,
or to break a certain chemical bond?

For visible light and nearby infrared light, the frequen-
cies are so high that describing the light in terms of
frequency is not particularly convenient.  We are more
likely to work in terms of the light's wavelength and the
photon's energy, and want to go back and forth between
the two.  Using the formula

  f
cycles

sec = c meters/sec
λ meters/cycle

which we can get from dimensions, we can write the
photoelectric formula in the form

  E = hf = hc
λ (6)

Using MKS units in Equation 6 for h, c, and λ , we end
up with the photon energy expressed in joules.  But a
joule, a huge unit of energy compared to the energy of
a visible photon, is also inconvenient to use.  A far more
convenient unit is the electron volt.  To see why, let us
calculate the energy of the photons in the red hydrogen

 α  line, whose wavelength was   6.56 × 10– 5cm  or
  6.56 × 10– 7m .  First calculating the energy in joules,

we have

  E Hα line = hc
λα

=
6.63 × 10– 34joule sec × 3 × 108m / sec

6.56– 7 × 10– 7m

= 3.03 × 10– 19joules

Converting this to electron volts, we get

  
E Hα line =

3.03 × 10– 19joules

1.6 × 10– 19joules/eV

  E Hα line = 1.89 eV (7)

That is a convenient result.  It turns out that the visible
spectrum ranges from about  1.8 eV  for the long wave-
length red light to about  3.1 eV  for the shortest wave-
length blue photons we can see.  It requires 3.1 eV to
remove an electron from the surface of zinc.  You can
see immediately that visible photons do not quite have
enough energy.  You need ultraviolet photons with an
energy greater than 3.1 eV.

Exercise 2
The blackbody spectrum of the sun corresponds to an
object whose temperature is 5800 kelvin.  The predomi-
nant wavelength   λmax  for this temperature is

  5.0 × 10– 5cm as we saw in the calculation following
Equation 1.  What is the energy, in electron volts, of the
photons of this wavelength?

Exercise 3

The rest energy of an electron is   .51MeV= 5.1 × 105 eV .
What is the wavelength, in centimeters, of a photon
whose energy is equal to the rest energy of an electron?
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We will often want to convert directly from a photon’s
wavelength λ  in centimeters to its energy E in electron
volts.  This is most easily done by starting with the
formula   E = hc/λ  and using conversion factors until E
is in electron volts when λ  is in centimeters.  We get

  E = hc
λ

=
6.63 × 10– 34joule sec × 3 × 1010 cm

sec
λ cm

= 1.989
λ cm

× 10– 23joule cm × 1

1.6 × 10– 19 joule
eV

The desired formula is thus

  
Ephoton in eV = 12.4 × 10– 5eV ⋅ cm

λ in cm
(8)

As an example in the use of Equation 8, let us recalcu-
late the energy of the   Hα  photons whose wavelength
is   6.56 × 10– 5cm .  We get immediately

  
EHα = 12.4 × 10– 5eV cm

6.56 × 10– 5cm
= 1.89eV

which is our previous result.

Exercise 4
The range of wavelengths of light in the visible spectrum
is from   7 × 10– 5cm  in the red down to   4 × 10– 5cm  in the
blue.  What is the corresponding range of photon
energies?

Exercise 5
(a) It requires 2.20 eV to eject an electron from the
surface of potassium.  What is the longest wavelength
light that can eject electrons from potassium?

(b) You shine blue light of wavelength   4 × 10– 5cm  at
potassium.  What is the maximum kinetic energy of the
ejected electrons?

Exercise 6

The human skin radiates blackbody radiation corre-
sponding to a temperature of 32°C.  (Skin temperature
is slightly lower than the 37°C internal temperature.)
What is the predominant energy, in eV of the photons
radiated by a human?  (This is the energy correspond-
ing to   λmax  for this temperature.)

Exercise 7
A 100 watt bulb uses 100 joules of energy per second.
For this problem, assume that all this energy went into
emitting yellow photons at a wavelength of

   λ = 5.88 × 10– 5cm .

(a) What is the energy, in eV and joules, of one of these
photons?

(b) How many of these photons would the bulb radiate
in one second?

(c) From the results of part (b), explain why it is difficult
to detect individual photons in a beam of light.

Exercise 8
Radio station WBZ in Boston broadcasts at a frequency
of 1050 kilocycles at a power of 50,000 watts.

(a) How many photons per second does this radio
station emit?

(b) Should these photons be hard to detect individually?

Exercise 9
In what part of the electromagnetic spectrum will pho-
tons of the following energies be found?

(a) 1 eV (e) 5 eV

(b) 2.1 eV (f) 1000 eV

(c) 2.5 eV (g)   .51 × 106eV .51 MeV

(d) 3 eV (h)   4.34 × 10– 9eV

(The rest energy of the electron is .51 MeV.)

Exercise 10
(a) Calculate the energy, in eV, of the photons in the
three visible spectral lines in hydrogen

   λα red = 6.56 × 10– 5cm

λβ blue = 4.86 × 10– 5cm

λγ violet = 4.34 × 10– 5cm

It requires 2.28 eV to eject electrons from sodium.

(b) The red   Hα light does not eject electrons from
sodium.  Explain why.

(c) The   Hβ  and   Hγ  lines do eject electrons.  What is the
maximum kinetic energy of the ejected electrons for
these two spectral lines?
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PARTICLES AND WAVES
We gain two different perspectives when we think of
the electromagnetic spectrum in terms of wavelengths
and in terms of photon energies.  The wavelength
picture brings to mind Young's two slit experiment and
Maxwell's theory of electromagnetic radiation.  In the
photon picture we think of electrons being knocked out
of metals and chemical bonds being broken.  These
pictures are so different that it seems nearly impossible
to reconcile them.  Reconciling these two pictures will,
in fact, be the main focus of the remainder of the text.

For now we seek to answer a more modest question.
How can the two pictures coexist?  How could some
experiments, like our demonstration of the photoelec-
tric effect exhibit only the particle nature and com-
pletely violate the predictions of Maxwell's equations,
while other experiments, like our measurements of the
magnetic field of a radio wave, support Maxwell's
equations and give no hint of a particle nature?

In Figure (4) we show the electromagnetic spectrum
both in terms of wavelengths and photon energies.  It is
in the low energy, long wavelength region, from radio
waves to light waves, that the wave nature of the
radiation tends to dominate.  At shorter wavelengths
and higher photon energies, from visible light through
γ  rays, the particle nature tends to dominate.  The
reason for this was well illustrated in Exercise 8.

In Exercise 8 you were asked to calculate how many
photons were radiated per second by radio station
WBZ in Boston.  The station radiates 50,000 watts of
power at a frequency of 1.05 megacycles.  To solve the

problem, you first had to calculate the energy of a 1.05
megacycle photon using Einstein's formula

 Ephoton = hf .  This turns out to be about
  7 × 10– 28 joules.  The radio station is radiating 50,000

joules of energy every second, and thus emitting
  7 × 10 31  photons per second.  It is hard to imagine an

experiment in which we can detect individual photons
when so many are being radiated at once.  Any experi-
ments should detect some kind of average effect, and
that average effect is given by Maxwell's equations.

When we get up to visible photons, whose energies are
in the 2—3 eV range and wavelengths of the order of

  5 × 10– 5cm , it is reasonably easy to find experiments
that can detect either the particle or the wave nature of
light.  With a diffraction grating we have no problem
measuring wavelengths in the range of  10– 5cm .  With
the photoelectric effect, we can easily detect individual
photons in the 2-3 eV range.

As we go to shorter wavelengths, individual photons
have more energy and the particle nature begins to
dominate.  To detect the wave nature of X rays, we need
something like a diffraction grating with line spacing of
the order of the X ray wavelength.  It turns out that the
regular lines and planes of atoms in crystalline materi-
als act as diffraction gratings allowing us to observe the
wave nature of X ray photons.  But when we get up into
the γ  ray region, where photons have energies compa-
rable to the rest energies of electrons and protons, all we
observe experimentally are particle reactions.  At these
high energies, the wave nature of the photon is basically
a theoretical concept used to understand the particle
reactions.

infrared rays

10110 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11  -126 5 4 3 210

10110-1-2-5 -4 -3 2 3 4 5 6 7  8-10 -9 -8 -7 -610

X-rays

wavelength, cm

energy, eV

light
visible ultraviolet

raysradio, television, radar, microwaves gamma rays

Figure 4
The electromagnetic spectrum.
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PHOTON MASS
The basic idea behind Einstein's famous formula

 E = mc2  is that energy is mass.  The factor  c2  is a
conversion factor to go between energy measured in
grams and energy measured in ergs.  If we had used a
different set of units, for example,  measuring distances
in feet, and time in nanoseconds, then the numerical
value of c would be 1, and Einstein's equation would be
E = m, the more revealing statement.

Photons have energy, thus they have mass.  If we
combine the photoelectric formula  E = hf  with

 E = mc2 , we can solve for the mass m of a photon of
frequency f.  The result is

 E = hf =mphotonc2

 mphoton = hf
c2 (10)

We can also express the photon mass in terms of the
wavelength λ , using   f /c = 1 / λ

  mphoton = h
c

f
c = h

cλ (11)

The idea that photons have mass presents a certain
problem.  In our earliest discussions of mass in Chapter
6, we saw that the mass increased with velocity,
increasing without bounds as the speed of the object
approached the speed of light.  The formula that
described this increase in mass was

 m =
m0

1 – v2/c2
(6-14)

where  m0  is the mass of the particle at rest and m its
mass when traveling at a speed v.

The obvious problems with photons is that they are
light—and therefore travel at the speed of light.  Ap-
plying Equation 6-14 to photons gives

 mphoton =
m0

1 – c2/c2
=

m0

1 – 1
=

m0
0 (12)

a rather embarrassing result.  The divisor in Equation
12 is exactly zero, not approximately zero.  Usually
division by 0 is a mathematical disaster.

While it is a rule of thumb that at wavelengths longer
than visible light, the wave nature of electromagnetic
radiation dominates, there are important exceptions.
The individual photons in the WBZ radio wave can be
detected!  You might ask, what kind of experiment can
detect an object whose energy is only   7 × 10– 28

joules.  This, however, happens to be the amount of
energy required to flip the spin of an electron or a
nucleus in a reasonably sized magnetic field.  This spin
flip process for electrons is called electron spin reso-
nance and for nuclei, nuclear spin resonance.  In
Chapter 38 we will discuss an electron spin resonance
experiment that is easily performed in the lab.  Nuclear
spin resonance, as you may be aware, is the basis of
magnetic resonance imaging, an increasingly impor-
tant medical diagnostic tool.

The truly amazing feature of the magnetic resonance
experiments is that Maxwell's equations and Einstein's
photoelectric effect formula make the same predic-
tions!  Einstein's photoelectric effect formula is easier
to use and will be the way we analyze the electron spin
resonance experiment.  Maxwell's equations and the
classical pictures of angular momentum and gyro-
scopes facilitate the more detailed analysis needed for
the imaging apparatus.  Texts describing the imaging
apparatus use the classical approach.  For this discus-
sion the important point is that the two points of view
come together in this low energy, long wavelength
limit.
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There is only one way Equation 12 can be salvaged.
The numerator  m0  must also be identically zero.  Then
Equation 12 gives m = 0/0, an undefined, but not
disastrous result.  The numerical value of 0/0 can be
anything -1, 5,  10– 17 , anything you want.  In other
words if the rest mass  m0  of a photon is zero, Equation
12 says nothing about what the actual mass  mphoton  is.
Equation 12 only tells us that the rest mass of a photon
must be zero.

Stop a photon and what do you have left?  Heat!  In the
daytime many billions of photons strike your skin
every second.  But after they hit nothing is left except
the warmth of the sunlight.  When a photon is stopped
it no longer exists—only its energy is left behind.  That
is what is remarkable about photons.  Only if they are
moving at the speed of light do they exist, carry energy
and have mass.  This distinguishes them from all the
particles that have rest mass and cannot get up to the
speed of light.

An interesting particle is the neutrino.  We are not sure
whether a neutrino (there are actually 3 different kinds
of neutrinos) has a rest mass or not.  If neutrinos have
no rest mass, then they must travel at the speed of light,
and obey the same mechanics as a photon.  The
evidence is highly suggestive of this interpretation.  We
saw, for example, that neutrinos from the 1987 super-
nova explosion raced photons for some 100,000 years,
and took within an hour of the same amount of time to
get here.  That is very close to the speed of light.  If the
neutrinos took a tiny bit longer to reach us, if they
moved at slightly less than the speed of light, then they
would have to have some rest mass.  The rest mass of
an individual neutrino would have to be extremely
small, but there are so many neutrinos in the universe
that their total mass could make up a significant frac-
tion of the mass in the universe.  This might help
explain some of the missing mass in the universe that
astronomers are worrying about.  At the present time,
however, all experiments are consistent with the idea
that a neutrino's rest mass is exactly zero.

For particles with rest mass, we used the formulas
 E = mc2 ,  m = m0/ 1 – v2/c2  to get the formulas for

the rest energy and the kinetic energy of the particle.  In
particular we got the approximate formula  1/2m0v2

for the kinetic energy of a slowly moving particle.  For
photons, the formula  m0 / 1 – v2/c2  does not apply,
there is no such thing as a slowly moving photon, and
the kinetic energy formula  1/2 mv2  is completely
wrong!  For photons, all the energy is kinetic energy,
and the formula for the photon's kinetic energy is given
by Einstein's photoelectric effect formula

  E = hf = hc/λ .  The energy of a photon is determined
by its frequency, not its speed.

Photon Momentum
While photons have no rest mass, and do not obey
Newton's second law, they do obey what turns out to be
a quite simple set of rules of mechanics.  Like their
massive counterparts, photons carry energy, linear
momentum, and angular momentum all of which are
conserved in interactions between particles.  The for-
mulas for these quantities can all be obtained straight-
forwardly from Einstein's photoelectric formula E = hf
and energy formula  E = mc2 .

We have already combined these two equations to
obtain Equation 11 for the mass of a photon

  mphoton = h
λc

(11a)

To find the momentum of the photon, we multiply its
mass by its velocity.  Since all photons move at the
same speed c, the photon momentum  pphoton  is given
by

  
pphoton = mphotonc = h

λ (13)

In the next few chapters, we will find that Equation 13
applies to more than just photons.  It turns out to be one
of the most important equations in physics.
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In our discussion of systems of particles in Chapter 11,
we had an exercise where a boy washing a car, was
squirting the hose at the door of the car.  The water
striking the door carried a certain amount of momen-
tum per second, and as a result exerted a force  F = dp/dt
on the door.  The exercise was to calculate this force.

When you shine a beam of light at an object, if the
photons in the beam actually carry momentum   p = h/λ
then the beam should exert a force equal to the rate at
which momentum is being absorbed by the object.  If
the object absorbs the photon, like a black surface
would, the momentum delivered is just the momentum
of the photons.  If it is a reflecting surface, then we have
to include the photon recoil, and the momentum trans-
ferred is twice as great.

There is a common toy called a radiometer that has 4
vane structures balanced on the tip of a needle as shown
in Figure (5).  One side of each vane is painted black,
while the other side is reflecting.  If you shine a beam
of light at the vanes, they start to rotate.  If, however,
you look at the apparatus for a while, you will notice
that the vanes rotate the wrong way.  They move as if
the black side were being pushed harder by the beam of
light than the reflecting side.

In the toy radiometers, it is not the force exerted by the
light, but the fact that there are some air molecules
remaining inside the radiometer, that causes the vanes
to rotate.  When the light strikes the vanes, it heats the

black side more than the reflecting side.  Air molecules
striking the black side are heated, gain thermal energy,
and bounce off or recoil from the vane with more speed
than molecules bouncing off the cooler reflecting side.
It is the extra speed of the recoil of the air molecules
from the black side that turns the vane.  This thermal
effect is stronger than the force exerted by the light
beam itself.

We can see from the example of the radiometer that the
measurement of the force exerted by a beam of light,
measuring the so-called pressure of light, must be done
in a good vacuum during a carefully controlled experi-
ment.  That measurement was first made by Nichols
and Hull at Dartmouth College in 1901.  While
Maxwell's theory of light also predicts that a beam of
light should exert a force, we can now interpret the
Nichols and Hull experiment as the first experimental
measurement of the momentum carried by photons.

The first experiments to demonstrate that individual
photons carried momentum were carried out by Arthur
Compton in 1923.  In what is now known as the
Compton scattering or the Compton effect, X ray
photons are aimed at a thin foil of metal.  In many cases
the X ray photons collide with and scatter an electron
rather than being absorbed as in the photoelectric
effect.  Both the struck electron and the scattered
photon emerge from the back side of the foil as illus-
trated in Figure (6).

The collision of the photon with the electron in the
metal foil is in many ways similar to the collision of the
two steel balls studied in Chapter 7, Figures (1) and (2).
The energy of the X ray photons used by Compton were
of the order of 10,000 eV while the energy of the
electron in the metal is of the order of 1 or 2 eV.  Thus
the X ray photon is essentially striking an electron at
rest, much as the moving steel ball struck a steel ball at
rest in Figure (7-2).

In both the collision of the steel balls and in the
Compton scattering, both energy and linear momen-
tum are conserved.  In particular the momentum carried
in by the incoming X ray photon is shared between the
scattered X ray and the excited electron.  This means

Figure 5
The radiometer.
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that the X ray photon loses momentum in the scattering
process.  Since the photon's momentum is related to its
wavelength by   p = h/λ , a loss in momentum means an
increase in wavelength.  Thus, if the photon mechanics
we have developed applies to X ray photons, then the
scattered X rays should have a slightly longer wave-
length than the incident X rays, a result which Compton
observed.

According to Maxwell's theory, if a light wave im-
pinges on a metal, it should start the electrons oscillat-
ing at the frequency of the incident wave.  The oscillat-
ing electrons should then radiate light at the same
frequency.  This radiated light would appear as the
scattered light in Compton's experiments.  Thus
Maxwell's theory predicts that the scattered X rays
should have the same wavelength as the incident wave,
a result which is not in agreement with experiment.

While the experiments we have just discussed involved
delicate measurements in order to detect the photon
momentum, in astronomy the momentum of photons
and the pressure of light can have dramatic effects.  In
about 5 billion years our sun will finish burning the
hydrogen in its core.  The core will then cool and start
to collapse.  In one of the contradictory features of
stellar evolution, the contracting core releases gravita-
tional potential energy at a greater rate than energy was
released by burning hydrogen.  As a result the core
becomes hotter and much brighter than it was before.

The core will become so bright, emit so much light, that
the pressure of the escaping light will lift the surface of
the sun out into space.  As a result the sun will expand
until it engulfs the orbit of the earth.  At this point the
sun will have become what astronomers call a red giant
star.  Because of its huge surface area it will become
thousands of times brighter than it is now.

The red giant phase does not last long, only a few
million years.  If the sun were bigger than it is, the
released gravitational potential energy would be enough
to ignite helium and nuclear fusion would continue.
But the red giant phase for the sun will be near the end
of the road.  The sun will gradually cool and shrink,
becoming a white dwarf star about the size of the earth,
and finally a black ember of about the same size.

The pressure of light played an even more important
role in the evolution of the early universe.  The light
from the big bang explosion that created the universe
was so intense that for the first 1/3 of a million years, it
knocked the particles of matter around and prevented
the formation of stars, and galaxies.  But a dramatic
event occurred when the universe reached an age of
1/3 of a million years.  That was the point where the
universe had cooled enough to become transparent.  At
that point the light from the big bang decoupled from
matter and stars and galaxies began to form.  We will
discuss this event in more detail shortly.

slab of matter

beam of X rays

(a) (b)

X rays which have collided with electrons in 
the slab are scattered out of the main beam.
These X rays lose momentum, with the 
result that their wavelength is longer than 
those that were not scattered.

electron
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electron
after collision

incoming
photon

scattered
photon

scattered
electrons

observation of Compton scattering collision of photon and electron
resulting in Compton scattering

.Figure 6
Compton scattering.
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ANTIMATTER
The fact that photons have no rest mass and travel only
at the speed of light makes them seem quite different
from particles like an electron or proton that have rest
mass and make up the atoms and molecules.  The
distinction fades somewhat when we consider a pro-
cess in which a photon is transformed into two particles
with rest mass.  The two particles can be any particle-
antiparticle pair.  Figure (7) is a bubble chamber
photograph of the creation of an electron-positron pair
by a photon.

In 1926 Erwin Schrödinger developed a wave equation
to describe the behavior of electrons in atoms.  The first
equation he tried had a serious problem; it was a
relativistic wave equation that appeared to have two
solutions.  One solution represented the ordinary elec-
trons he was trying to describe, but the other solution
appeared to represent a particle with a negative rest
mass.  Schrödinger found that if he went to the non
relativistic limit, and developed an equation that ap-
plied only to particles moving at speeds much less than
the speed of light, then the negative rest mass solutions
did not appear.  The non relativistic equation was
adequate to describe most chemical phenomena, and is
the famous Schrödinger equation.

A year later, Paul Dirac developed another relativistic
wave equation for electrons.  The equation was specifi-
cally designed to avoid the negative mass solutions, but
the techniques used did not work.  Dirac's equation
correctly predicted some important relativistic phe-
nomena, but as Dirac soon found out, the negative mass
solutions were still present.

Usually one ignores undesirable solutions to math-
ematical equations.  For example, if you want to solve
for the hypotenuse of a triangle, the Pythagorean
theorem tells you that  c2 = a2 + b2 .  This equation has
two solutions,  c = a2 + b2  and  c = – a2 + b2 .
Clearly you want the positive solution, the negative
solution in this case is irrelevant.

The problem Dirac faced was that he could not ignore
the negative mass solution.  If he started with a collec-
tion of positive mass particles and let them interact, the
equation predicted that negative mass particles would
appear, would be created.  He could not avoid them.

Through a rather incredible trick, Dirac was able to
reinterpret the negative mass solutions as positive mass
solutions of another kind of matter—antimatter.  In this
interpretation, every elementary particle has a corre-
sponding antiparticle.  The antiparticle had the same
rest mass but opposite charge from its corresponding
particle.  Thus a particle-antiparticle pair could be
created or annihilated without violating the law of
conservation of electric charge.

In 1927 when Dirac proposed his theory, no one had
seen any form of antimatter, and no one was sure of
exactly what to look for.  The proton had the opposite
charge from the electron, but its mass was much
greater, and therefore it could not be the electron's anti-
particle.  If the electron antiparticle existed, it would
have to have the same positive charge as the proton, but
the same mass as an electron.  In 1932 Carl Anderson
at Caltech found just such a particle among the cosmic
rays that rain down through the earth's atmosphere.
That particle is the positron which is shown being
created in the bubble chamber photograph of
Figure (7).

(In the muon lifetime moving picture, discussed in
Chapter 1, positively charged muons were stopped in
the block of plastic, emitting the first pulse of light.
When a positive muon decays, it decays into a positron
and a neutrino.  It was the positron that made the second
flash of light that was used to measure the muon's
lifetime.)

In the early 1950s, the synchrotron at Berkeley, the one
shown in Figure (28-27b) was built just large enough
to create antiprotons, and succeeded in doing so.  Since
then we have created antineutrons, and have observed
antiparticles corresponding to all the known elemen-
tary particles.  Nature really has two solutions—matter
and antimatter.
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The main question we have now concerning antimatter
is why there is so little of it around at the present time.
In the very early universe, temperatures were so high
that there was a continual creation and annihilation of
particles and antiparticles, with roughly equal but not
exactly equal, numbers of particles and antiparticles.
There probably was an excess of particles over antipar-
ticles in the order of about one part in 10 billion.  In a
short while the universe cooled to the point where
annihilation became more likely than creation, and the
particle-antiparticle pairs annihilated.  What was left
behind was the slight excess of matter particles, the
particles that now form the stars and galaxies of the
current universe.

In 1964, James Cronin and Val Fitch, while working on
particle accelerator experiments, discovered interac-
tions that lead to an excess of particles over antipar-
ticles.  It could be that these interactions were active in
the very early universe, creating the slight excess of
matter over antimatter.  But on the other hand, there
may not have been time for known processes to create
the observed imbalance.  We do not yet have a clear
picture of how the excess of matter over antimatter
came about.

Exercise 11
Since an electron and a positron have opposite charge,
they attract each other via the Coulomb electric force.
They can go into orbit forming a small atom like object
called positronium.  It is like a hydrogen atom except
that the two particles have equal mass and thus move
about each other rather than having one particle sit at
the center.   The positronium atom lasts for about a
microsecond, whereupon the positron and electron
annihilate each other, giving off their rest mass energy
in the form of photons.  The rest mass energy of the
electron and positron is so much greater than their
orbital kinetic energy, that one can assume that the
positron and electron were essentially at rest when they
annihilated.  In the annihilation both momentum and
energy are conserved.

(a) Explain why the positron and electron cannot anni-
hilate, forming only one photon.  (What conservation law
would be violated by a one photon annihilation?)

(b) Suppose the positronium annihilated forming two
photons.  What must be the energy of each photon in
eV?  What must be the relative direction of motion of the
two photons?

The answer to part (b) is that each photon must have an
energy of .51 MeV and the photons must come out in
exactly opposite directions.  By detecting the emerging
photons you can tell precisely where the positronium
annihilated.  This phenomenon is used in the medical
imaging process called positron emission tomography
or PET scans.electron

e

positron

photon
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Figure 7
Creation of positron-electron pair.  A photon enters from the bottom
of the chamber and collides with a hydrogen nucleus.  The nucleus
absorbs some of the photon’s momentum, allowing the photon’s
energy to be converted into a positron-electron pair.  Since a photon
is uncharged, it leaves no track in the bubble chamber; the photon’s
path is shown by a dotted line.  (Photograph copyright The Ealing
Corporation, Cambridge, Mass.)
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INTERACTION OF PHOTONS
AND GRAVITY
Because photons have mass, we should expect that
photons should interact with gravity.  But we should be
careful about applying the laws of Newtonian gravity
to photons, because Newtonian gravity is a non relativ-
istic theory, while photons are completely relativistic
particles.

If we apply the ideas of Newtonian gravity to photons,
which we will do shortly, we will find that we get
agreement with experiment if the photons are moving
parallel to the gravitational force, for example, falling
toward the earth.  But if we do a Newtonian type of
calculation of the deflection of a photon as it passes a
star, we get half the deflection predicted by Einstein's
general theory of relativity.  It was in Eddington's
famous eclipse expedition of 1917 where the full
deflection predicted by Einstein's theory was observed.
This observation, along with measurements of the
precession of Mercury's orbit, were the first experi-
mental evidence that Newton's theory of gravity was
not exactly right.

In 1960, R. V. Pound and G.A. Rebka performed an
experiment at Harvard that consisted  essentially of
dropping photons down a well.  What they did was to
aim a beam of light of precisely known frequency down
a vertical shaft about 22 meters long, and observed that
the photons at the bottom of the shaft had a slightly
higher frequency, i.e., had slightly more energy than
when they were emitted at the top of the shaft.

The way you can use Newtonian gravity to explain
their results is the following.  If you drop a rock of mass
m down a shaft of height h, the rock's gravitational
potential energy mgh at the top of the shaft is converted
to kinetic energy at the bottom.  For a rock, the kinetic

energy shows up in the form of increased velocity, and
is given by the formula  1/2 mv2 .  For a photon, all of
whose energy is kinetic energy anyway, the kinetic
energy gained from the fall shows up as an increased
frequency of the photon.

Using Einstein's formula E = hf for the kinetic energy
of a photon, we predict that the photon energy at the
bottom is given by

 Ebottom = hfbottom = hftop + mphotongy (14)

where we are assuming that the same formula mgy for
gravitational potential energy applies to both rocks and
photons.

Since  mphoton = hf/c2 , the mass of the photon changes
slightly as the photon falls.  But for a 22 meter deep
shaft, the change in frequency is very small and we can
quite accurately use  hftop/c2  for the mass of the photon
in Equation 14.  This gives

 
hfbottom = hftop +

hftop

c2 gy

Cancelling the h's, we get

 fbottom = ftop 1 +
gy
c2 (15)

as the formula for the increase in the frequency of the
photon.  This is in agreement with the results found by
Pound and Rebka.

Exercise 12
(a) Show that the quantity  gy/c2 is dimensionless.

(b) What is the percentage increase in the frequency of
the photons in the Pound-Rebka experiment?  (Answer:

  2.4 × 10– 13%.  This indicates how extremely precise the
experiment had to be.)



34-19

It was hard to believe that something not much bigger
than a star could be as bright as a galaxy.  There were
suggestions that the red shift detected by Maarten
Schmidt was due to something other than the expan-
sion of the universe.  Perhaps quasars were close by
objects that just happened to be moving away from us
at incredible speeds.  Perhaps they were very massive
objects so massive that the photons escaping from the
object lost a lot of their energy and emerged with lower
frequencies and longer wavelengths.  (This would be
the opposite effect than that seen in the Pound-Rebka
experiment where photons falling toward the earth
gained kinetic energy and increased in frequency.)

Over the years, no explanation other than the expansion
of the universe satisfactorily explained the huge red
shifts seen in quasars, but there was this nagging doubt
about whether the quasars were really that far away.
Everything seemed to fit with the model that red shifts
were caused by an expanding universe, but it would be
nice to have direct proof.

The direct proof was supplied by gravitational lensing,
a consequence of the sideways deflection of photons as
they pass a massive object.  In 1979, a photograph
revealed two quasars that were unusually close to each
other.  Further investigation showed that the two qua-
sars had identical red shifts and emitted identical
spectral lines.  This was too much of a coincidence.  The
two quasars had to be two images of the same quasar.

To calculate the sideways deflection of a photon pass-
ing a star, we could use Newton's second law in the
form  F = dp/dt  to calculate the rate at which a side-
ways gravitational force added a sideways component
to the momentum of the photon.  The gravitational
force would be  Fg = mphotong , with  mphoton = hf/c2.
The result, as we have mentioned, is half the deflection
predicted by Einstein's theory of gravity and half that
observed during Eddington's eclipse expedition.

The gravitational deflection of photons, while difficult
to detect in 1917, has recently become a useful tool in
astronomy.  In 1961, Allen Sandage at Mt. Palomar
Observatory discovered a peculiar kind of object that
seemed to be about the size of a star but which emitted
radio waves like a radio galaxy.  In 1963 Maarten
Schmidt photographed the spectral lines of a second
radio star and discovered that the spectral lines were all
shifted far to the red.  If this red shift were caused by the
Doppler effect, then the radio star would be moving
away from the earth at a speed of 16% the speed of light.

If the motion were due to the expansion of the universe,
then the radio star would have to be between one and
two billion light years away.  An object that far away,
and still visible from the earth, would have to be as
bright as an entire galaxy.

The problem was the size of the object.  The intensity
of the radiation emitted by these radio stars was ob-
served to vary significantly over times as short as
weeks to months.  This virtually guarantees that the
object is no bigger than light weeks or light months
across, because the information required to coordinate
a major change in intensity cannot travel faster than the
speed of light.  Thus Schmidt had found an object, not
much bigger than a star,  radiating as much energy as
the billions of stars in a galaxy.  These rather dramatic
objects, many more of which were soon found, became
known as quasars, which is an abbreviation for quasi
stellar objects.
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How could two images of a single quasar appear side
by side on a photographic plate?  The answer is
illustrated in Figure (8).  Suppose the quasar were
directly behind a massive galaxy, so that the light from
the quasar to the earth is deflected sideways as shown.
Here on earth we could see light coming from the
quasar from 2 or more different directions.  The tele-
scope forms images as if the light came in a straight line.
Thus in Figure (8), light that came around the top side
of the galaxy would look like it came from a quasar
located above the actual quasar, while light that came
around the bottom side would look as if it came from
another quasar located below the actual quasar.

This gravitational lensing turned out to be a more
common phenomena than one might have expected.
More than a dozen examples of gravitational lensing
have been discovered in the past decade.  Figure (9), an
image produced by the repaired Hubble telescope,
shows a quasar surrounded by four images of itself.
The four images were formed by the gravitational
lensing of an intermediate galaxy.

The importance of gravitational lensing is that it pro-
vides definite proof that the imaged objects are more
distant than the objects doing the imaging.  The quasar
in Figure (9) must be farther away from us than the

galaxy that is deflecting the quasar's light.  This proved
that the quasars are distant objects and that the red shift
is definitely due to the expansion of the universe.

Evidence over the years has indicted that quasars are
the cores of newly formed galaxies.  Quasars tend to be
distant because most galaxies were formed when the
universe was relatively young.  If all quasars we see are
very far away, the light from them has taken a long time
to reach us, thus they must have formed a long time ago.
The fact that we see very few nearby quasars means that
most galaxy formation has already ceased.

Although we have photographed galaxies for over a
hundred years, we know surprisingly little about them,
especially what is at the core of galaxies.  Recent
evidence indicates that at the core of the galaxy M87
there is a black hole whose mass is of the order of
millions of suns.  The formation of such a black hole
would produce brilliant radiation from a very small
region of space, the kind of intense localized radiation
seen in quasars.  At this point we only have proof for
one black hole at the center of one galaxy, but the pieces
are beginning to fit together.  Something quite spec-
tacular may be at the center of most galaxies, and
quasars are probably giving us a view of the formation
of these centers.

quasar

image

massive 
galaxy

observer

Figure 9
Hubble telescope photograph of a distant quasar
surrounded by 4 images of the quasar. This is
known as the Einstein cross.

Figure 8
A galaxy, acting as a lens, can
produce multiple images of a
distant quasar.
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EVOLUTION OF THE UNIVERSE
The two basic physical ideas involved in understand-
ing the early universe are its expansion, and the idea
that the universe was in thermal equilibrium.  Before
we see how these concepts are applied, we wish to
develop a slightly different perspective of these two
concepts.  First we will see how the red shift of light can
be interpreted in terms of the expansion of the universe.
Then we will see that blackbody radiation can be
viewed as a gas of photons in thermal equilibrium.
With these two points of view, we can more easily
follow the evolution of the universe.

Red Shift and the
Expansion of the Universe
The original clue that we live in an expanding universe
was from the red shift of light from distant galaxies.  We
have explained this red shift as being caused by the
Doppler effect.  The distant galaxies are moving away
from us, and it is the recessional motion that stretches
the wavelengths of the radiated waves, as seen in the
ripple tank photograph back in Figure (33-29) repro-
duced here.

There is another way to view the red shift that gives the
same results but provides a more comprehensive pic-
ture of the evolution of the universe.  Consider a galaxy
that is, for example, receding from us at 10% the speed
of light.  According to the Doppler effect, the wave-
length of the light from that galaxy will be lengthened
by a factor of 10%.

Where is that galaxy now?  If the galaxy were moving
away from us at 10% the speed of light, it has traveled
away from us 1/10th as far as the light has traveled in
reaching us.  In other words the galaxy is 10% farther
away now than when it emitted the light. If the reces-
sional motion of the galaxy is due to the expansion of
the universe, then the universe is now 10% bigger than
it was when the galaxy emitted the light.

In this example, the universe is now 10% bigger and the
wavelength of the emitted light is 10% longer.  We can
take the point of view that the wavelength of the light
was stretched 10% by the expansion of the universe.

In other words it makes no difference whether we say
that the red shift was caused by the 10% recessional
velocity of the galaxy, or the 10% expansion of the
universe.  Both arguments give the same answer.
When we are studying the evolution of the universe, it
is easier to use the idea that the universe's expansion
stretches the photon wavelengths.  This is especially
true for discussions of the early universe where reces-
sional velocities are close to the speed of light and
relativistic Doppler calculations would be required.

Figure 33-29
The doppler effect
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Another View of Blackbody Radiation
The surface of the sun provides an example of a hot gas
more or less in thermal equilibrium.  Not only are the
ordinary particles, the electrons, the protons, and other
nuclei in thermal equilibrium, so are the photons, and
this is why the sun emits a blackbody spectrum of
radiation.  Blackbody radiation at a temperature T can
be viewed as a gas of photons in thermal equilibrium at
that temperature.

In our derivation of the ideal gas law, we were surpris-
ingly successful using the idea that the average gas
molecule had a thermal kinetic energy 3/2 kT.  In a
similar and equally naive derivation, we can explain
one of the main features of blackbody radiation from
the assumption that the average or typical photon in
blackbody radiation also has a kinetic energy 3/2 kT.

The main feature of blackbody radiation, that could not
be explained using Maxwell's theory of light, was the
fact that there was a peak in the blackbody spectrum.
There is a predominant wavelength which we have
called   λmax  that is inversely proportional to the tem-
perature T.  The precise relationship given by Wein's
displacement law is

  λmax = 2.898
T mmK (1) repeated

a result we stated earlier.  The blackbody radiation
peaks around   λmax  as seen in Figure (1) reproduced
here.

If blackbody radiation consists of a gas of photons in
thermal equilibrium at a temperature T, we can assume
that the average photon should have a kinetic energy
like 3/2 kT. (The factor 3/2 is not quite right for
relativistic particles, but close enough for this discus-
sion.)  Some photons should have more energy, some
less, but there should be a peak in the distribution of
photons around this energy.  Using Einstein's photo-
electric effect formula we can relate the most likely
photon energy to a most likely wavelength   λmax .  We
have

 Ephoton = 3
2 kT

  Ephoton = hc
λmax

Combining these equations gives

  hc
λmax

= 3
2 kT

  λmax = 2hc
3kT

Putting in numbers gives

  
λmax =

2 × 6.63 × 10– 34joule sec × 3 × 108m
s

3 × 1.38 × 10– 23 joule
K × T

= .0096 meter ⋅ K
T

Converting from meters to millimeters gives

   λmax = 9.60 mm ⋅ K
T

our estimate
for λmax

(16)

While this is not the exact result, it gives us the picture
that there should be a peak in the blackbody spectrum
around   λmax . The formula gives the correct tempera-
ture dependence, and the constant is only off by a factor
of 3.3.  Not too bad a result considering that we did not
deal with relativistic effects and the distribution of
energies in thermal equilibrium.  None of these results
can be understood without the photon picture of light.
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Figure 34-1 (reproduced)
Blackbody radiation spectrum showing the peak at    λλmax .
(The classical curve goes up to infinity at λλ  = 0.)
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MODELS OF THE UNIVERSE
As we saw in Chapter 33, Hubble was able to combine
his new distance scale for stars and galaxies with
Doppler shift measurements to discover that the uni-
verse is expanding, that the farther a galaxy is away
from us, the faster it is moving away from us. Another
property of the interaction of light with matter, the
blackbody spectrum discussed at the beginning of this
chapter, provided a critical clue to the role of this
expansion in the history of the universe.  To see why,
it is instructive to look at the evolution of our picture of
the universe, to see what led us to support or reject
different models of its large scale structure.

Powering the Sun
In the 1860s, Lord Kelvin, for whom the absolute
temperature scale is named, did a calculation of the age
of the sun.  Following a suggestion by Helmholtz,
Kelvin assumed that the most powerful source of
energy available to the sun was its gravitational poten-
tial energy.  Noting the rate at which the sun was
radiating energy, Kelvin estimated that the sun was no
older than half a billion years.  This was a serious
problem for Darwin, whose theory of evolution re-
quired considerably longer times for the processes of
evolution to have taken place.  During their lifetimes
neither Darwin or Kelvin could explain the apparent
discrepancy of having fossils older than the sun.

This problem was overcome by the discovery that the
main source of energy of the sun was not gravitational
potential energy, but instead the nuclear energy re-
leased by the fusion of  hydrogen nuclei to form helium
nuclei.  In 1938 Hans Beta worked out the details of
how this process worked.  The reaction begins when
two protons collide with sufficient energy to overcome
the Coulomb repulsion and get close enough to feel the

very strong, but short range, attractive nuclear force.
Such a strong collision is required to overcome the
Coulomb barrier, that fusion is a rare event in the
lifetime of any particular solar proton. On the average,
a solar proton can bounce around about  30 million
years before fusing.  There are, of course, many protons
in the sun, so that many such fusions are occurring at
any one time.

Just after two protons fuse, electric potential energy is
released when one of the protons decays via the weak
interaction into a neutron, electron, and a neutrino.  The
electron and neutrino are ejected, leaving behind a
deuterium nucleus consisting of a proton and a neutron.
This reaction is the source of the neutrinos radiated by
the sun.

Within a few seconds of its creation, the deuterium
nucleus absorbs another proton to become a helium 3
nucleus.  Since helium 3 nuclei in the sun are quite rare,
it is on the average several million years before the
helium 3 nucleus collides with another helium 3 nucleus.
The result of this collision is the very stable helium 4
nucleus and the ejection of 2 protons.  The net result of
all these steps is the conversion of 4 protons into a
helium 4 nucleus with the release of .6% of the proton’s
rest mass energy in the form of neutrinos and photons.

Not only did Beta’s theory provide an explanation for
the source of the sun’s energy, it also demonstrated
how elements can be created inside of a star.  It raised
the question of whether all the elements could be
created inside stars.  Could you start with stars initially
containing only hydrogen gas and end up with all the
elements we see around us?
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Abundance of the Elements
From studies of minerals in the earth and in meteorites,
and as a result of astronomical observations, we know
considerable detail about the abundances of the ele-
ments around us.  As seen in the chart of Figure (9),
hydrogen and helium are the most abundant elements,
followed by peaks at carbon, oxygen, iron and lead.
There is a noticeable lack of lithium, beryllium and
boron, and a general trailing off of the heavier ele-
ments.  Is it possible to explain not only how elements
could be created in stars, but also explain these ob-
served abundances as being the natural result of the
nuclear reactions inside stars?

The first problem is the fact that there are no stable
nuclei with 5 or 8 nucleons.  This means you cannot
form a stable nucleus either by adding one proton to a
helium 4 nucleus or fusing two helium 4 nuclei.  How,
then, would the next heavier element be formed in a star
that consisted of only hydrogen and helium 4?  The

answer was supplied by E. E. Salpeter in 1952 who
showed that two helium 4 nuclei could produce an
unstable beryllium 8 nucleus.  In a dense helium rich
stellar core, the beryllium 8 nucleus could, before
decaying, collide with another helium 4 nucleus form-
ing a stable carbon 12 nucleus.  One result is that
elements between helium and carbon are skipped over
in the element formation process, explaining the ex-
ceptionally low cosmic abundances of lithium, beryl-
lium and boron seen in Figure (10).

The biggest barrier to explaining element formation in
stars is the fact that the iron 56 nucleus is the most stable
of all nuclei.  Energy is released if the small nuclei fuse
together to create larger ones, but energy is also re-
leased if the very largest nuclei split up (as in the case
of the fission of uranium in an atomic bomb or nuclear
reactor).  To put it another way, energy is released
making nuclei up to iron, but it costs energy to build
nuclei larger than iron.  Iron is the ultimate ash of
nuclear reactions.  How then could elements heavier
than iron be created in the nuclear furnaces of stars?
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In 1956 the element technetium 99 was identified in the
spectra of a certain class of stars. Technetium 99,
heavier than iron, is an unstable element with a half life
of only two hundred thousand years.  On a cosmic time
scale, this element had to have been made quite re-
cently.  Thus elements heavier than iron are now being
created in some kind of a process.

Soon after the observation of technetium, the British
astronomer Geoffrey Burbidge, looking over recently
declassified data from the Bikini Atoll hydrogen bomb
tests, noticed that one of the elements created in the
explosion, californium 254, had a half life of 55 days.
Burbidge realized that this was also the half life of the
intensity of a recently observed supernova explosion.
This suggested that the light from the supernova was
powered by decaying californium 254.  That meant that
it was the supernova explosion itself that created the
very heavy californium 254, and probably all the other
elements heavier than iron.

In 1957 Geoffrey and Margaret Burbidge, along with
the nuclear physicist William Fowler at Caltech and the
British astronomer Fred Hoyle, published a famous
paper showing how the fusion process in stars could
explain the abundances of elements up to iron, and how
supernova explosions could explain the formation of
elements heavier than iron.  This was one of the
important steps in the use of our knowledge of the
behavior of matter on a small scale, namely nuclear
physics, to explain what we see on a large scale—the
cosmic abundance of the elements.

The Steady State
Model of the Universe
A model of the universe, proposed in 1948 by Fred
Hoyle, Herman Bondi and Thomas Gold, fit very well
with the idea that all the elements in the universe
heavier than hydrogen, were created as a result of
nuclear reactions inside stars.  This was the so-called
steady state model.

Knowing that the universe is expanding, it seems to be
a contradiction to propose that the universe is steady
state—i.e., that on the average, it is unchanging.  If the
universe is expanding and galaxies are flying apart,
then in a few billion years the galaxies will be farther
separated from each other than they are today. This is
hardly a steady state picture.

The steady state theory got around this problem by
proposing that matter was continually being created to
replace that being lost due to the expansion.  Consider,
for example, a sphere a billion light years in diameter,
centered on the earth.  Over the next million years a
certain number of stars will leave the sphere due to the
expansion. To replace this matter flowing out of the
sphere, the steady state theory assumed that hydrogen
atoms were continually being created inside the sphere.
All that was needed was about one hydrogen atom to be
created in each cubic kilometer of space every year.

The advantage of constructing a model like the steady
state theory is that the model makes certain definite
predictions that can be tested.  One prediction is that all
the matter around us originated in the form of the
hydrogen atoms that are assumed to be continually
created.  This implies that the heavier elements we see
around us must be created by ongoing processes such
as nuclear reactions inside stars.  This provided a strong
incentive for Hoyle and others to see if nuclear synthe-
sis inside stars, starting from hydrogen, could explain
the observed abundance of elements.

Another prediction of the steady state model is that
galaxies far away must look much like nearby galaxies.
When you look far away, you are also looking back in
time.  If you look at a galaxy one billion light years
away, you are seeing light that started out a billion years
ago.  Light reaching us from a galaxy 10 billion light
years away started out 10 billion light years ago.  If the
universe is really in a steady state, then galaxies 10
billion years ago should look much like galaxies do
today.
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as big as it is now, wavelengths of light would contract
to 1/10 their original size.

In the Einstein photoelectric effect formula,
  Ephoton = hf = hc/λ , the shorter the photon wavelength,

the more energetic the photons become.  This suggests
that as we compress the universe in the time reversal
moving picture, photon energies increase.  If there is no
limit to the compression, then there is no limit to how
much the photon energies increase.

Now introduce the idea of thermal equilibrium.  If we go
back to a very small universe, we have very energetic
photons.  If these photons are in thermal equilibrium
with other forms of matter, as they are inside of stars,
then all of the matter has enormous thermal energy, and
the temperature is very high.  Going back to a zero sized
universe means going back to a universe that started out
at an infinite temperature.  Fred Hoyle thought that this
picture was so ridiculous that he gave the explosion
model of the universe the derisive name the “Big Bang”
model.  The name has stuck.

The Helium Abundance
In the mid 1950s the cosmological theory taken seri-
ously by most physicists was the steady state theory.  In
the late 1940s George Gamov had suggested that the
elements  had been created in the big bang when the
universe was very small, dense and hot.  But the work
of Hoyle and Fowler was showing that the abundance of
the elements could much more satisfactorily be ex-
plained in terms of nuclear synthesis inside of stars.
This nuclear synthesis also explained the energy source
in stars and the various stages of stellar evolution.  What
need was there to propose some gigantic, cataclysmic
explosion?

Hoyle soon found a need.  Most of the energy released
in nuclear synthesis in stars results from the burning of
hydrogen to form helium.  By observing how much
energy is released by stars, you can estimate how much
helium should be produced.  By the early 1960s Hoyle
began to realize that nuclear synthesis could not pro-
duce enough helium to explain the observed cosmic
abundance of 25%.  In a 1964 paper with R. J. Taylor,
Hoyle himself suggested that perhaps much of the
helium was created in an initial explosion of the uni-
verse.

THE BIG BANG MODEL
The discovery of the expansion of the universe sug-
gests another model of the universe, namely that the
universe started in one gigantic explosion, and that the
expansion we now see is the result of the pieces from
that explosion flying apart.

To see why you are led to the idea of an explosion,
imagine that you take a motion picture of the expanding
universe and then run the motion picture backwards.  If
the expansion is uniform, then in the reversed motion
picture we see a uniform contraction.  The particles in
this picture are the galaxies which are getting closer and
closer together.  There is a time, call it  t = 0, when all
the galaxies come together at a point.  Now run the
motion picture forward and the galaxies all move out as
if there were an explosion at that point.

The explosion of the universe was first proposed by the
Belgian priest and mathematician Georges Lemaître in
the late 1920s.  It was, in fact, Lemaître who explained
Hubble’s red shift versus distance data as evidence for
the expansion of the universe.  In the late 1920s not
much was known about nuclear physics, even the
neutron had not yet been discovered.  But in the 1940s
after the development of the atomic fission bomb and
during the design of the hydrogen fusion bomb, physi-
cists gained considerable experience with nuclear reac-
tions in hot, dense media, and some, George Gamov in
particular, began to explore the consequences of the
idea that the universe started in an initial gigantic
explosion.

A rough picture of the early universe in the explosion
model can be constructed using the concepts of the
Doppler effect and thermal equilibrium.  Let us see how
this works.

We have seen that the red shift of the spectral lines of
light from distant galaxies can be interpreted as being
caused by the stretching of the wavelengths of the light
due to the expansion of the universe.  In a reverse
motion picture of the universe, distant galaxies would
be coming toward us and the wavelengths of the
spectral lines would be blue shifted.  We would say that
the universe was contracting, shrinking the wavelength
of the spectral lines.  The amount of contraction would
depend upon how far back toward the t = 0 origin we
went.  If we went back to when the universe was 1/10



34-27

Cosmic Radiation
In a talk given at Johns Hopkins in early 1965,
Princeton theoretician P. J. E. Peebles suggested that
the early universe must have contained a considerable
amount of radiation if the big bang model were
correct.  If there were little radiation, any hydrogen
present in the early universe would have quickly fused
to form heavier elements, and no hydrogen would be
left today.  This directly contradicts the observation
that about 75% of the matter we see today consists of
hydrogen.  If, however, there were a large amount of
radiation present in the early universe, the energetic
photons would bust up the larger nuclei as they
formed, leaving behind hydrogen.

Peebles proposed that this radiation, the cosmic pho-
tons which prevented the fusion of hydrogen in the
early universe still exist today but in a very altered
form.  There should have been little change in the
number of photons, but a great change in their energy.
As the universe expanded, the wavelength of the
cosmic photons should be stretched by the expansion,
greatly reducing their energy.  If the photons were in
thermal equilibrium with very hot matter in the early
universe, they should still have a thermal black body
spectrum, but at a much lower temperature.  He
predicted that the temperature of the cosmic radiation
should have dropped to around 10 kelvin.  His col-
leagues at Princeton, P. G. Roll and D .T. Wilkinson
were constructing a special antenna to detect such
radiation.  All of this work had been suggested by R.
H. Dicke, inventor of the key microwave techniques
needed to detect ten degree photons.

Peebles was not the first to suggest that there should be
radiation left over from the big bang.  That was first
suggested in a 1948 paper by George Gamov and
colleagues Ralph Alpher and Robert Herman in a
model where all elements were to be created in the big
bang.  A more realistic model of the big bang proposed
by Alpher and Herman in 1953 also led to the same
prediction of cosmic radiation.  In both cases, it was
estimated that the thermal radiation should now have
a temperature of 5 kelvin.  In the early 1950s, Gamov,
Alpher and Herman were told by radio astronomers
that such radiation could not be detected by equipment
then available, and the effort to detect it was not
pursued.  Peebles was unaware of these earlier predic-
tions.

THE THREE DEGREE RADIATION
In 1964, two radio astronomers working for Bell Labs,
Arno Penzias and Robert Wilson, began a study of the
radio waves emitted from parts of our galaxy that are
away from the galactic plane.  They expected a faint
diffuse radiation from this part of the galaxy and
planned to use a sensitive low noise radio antenna
shown in Figure (11), an antenna left over from the
Echo satellite experiment.  (In that early experiment
on satellite communication, a reflecting balloon was
placed in orbit.  The low noise antenna was built to
detect the faint radio signals that bounced off the
balloon.)

Since the kind of signals Penzias and Wilson expected
to detect would look a lot like radio noise, they had to
be careful that the signals they recorded were coming
from the galaxy rather than from noise generated by
the antenna or by electronics.  To test the system, they
looked for signals at a wavelength of 7.35 cm, a
wavelength where the galaxy was not expected to
produce much radiation.  They found, however, a
stronger signal than expected. After removing a pair of
pigeons that were living in the antenna throat, cleaning
out the nest and other debris which Wilson referred to
as “a white dielectric material”, and taking other steps
to eliminate noise, the extra signal persisted.

Figure 11
Penzias and Wilson, and the Holmdel radio telescope.
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various balloon and rocket based experiments, which
lifted antennas above the earth’s atmosphere, verified
that the radiation detected by Penzias and Wilson was
part of a complete blackbody spectrum of radiation at
a temperature of 2.74 kelvin.

In 1989, NASA orbited the COBE (Cosmic Back-
ground Explorer) satellite to make a detailed study of
the cosmic background radiation.  The results from this
satellite verified that this radiation has the most perfect
blackbody spectrum ever seen by mankind.  The
temperature is 2.735 kelvin with variations of the order
of one part in 100,000.  The questions we have to deal
with now are not whether there is light left over from the
big bang, but why it is such a nearly perfect blackbody
spectrum.

Thermal Equilibrium of the Universe
That the cosmic background radiation has nearly a
perfect blackbody spectrum tells us that at some point
in its history, the universe was in nearly perfect thermal
equilibrium, with everything at one uniform tempera-
ture.  That is certainly not the case today.  The cosmic
radiation is at a temperature of 2.735 kelvin, Hawaii has
an average temperature of 295 kelvin, and the tempera-
ture inside of stars ranges up to billions of degrees.
There must have been a dramatic change in the nature
of the universe sometime in the past.  That change
occurred when the universe suddenly became transpar-
ent at an age of about 700,000 years.

To see why the universe suddenly became transparent,
and why this was such an important event, it is instruc-
tive to reconstruct what the universe must have been
like at still earlier times.

If the 7.35 cm wavelength signal were coming from the
galaxy, there should be regions of the galaxy that
produced a stronger signal than other regions.  And the
neighboring galaxy Andromeda should also be a local-
ized source of this signal.  However Penzias and
Wilson found that the 7.35 cm signal was coming in
uniformly from all directions.  The radiation had to be
coming in from a much larger region of space than our
galaxy.

Studies of the signal at still shorter wavelengths showed
that if the signal were produced by a blackbody spec-
trum of radiation, the effective temperature would be
about 3.5 kelvin.  Penzias talked with a colleague who
had talked with another colleague who had attended
Peebles’ talk at Johns Hopkins on the possibility of
radiation left over from the big bang.  Penzias and
Wilson immediately suspected that the signal they
were detecting might be from this radiation.

Penzias and Wilson could detect only the long wave-
length tail and of the three degree radiation.  Three
degree radiation should have a maximum intensity at a
wavelength given by the Wein formula, Equation 1,

  λmax = 2.898 mm K
T

= 2.898 mm K
3K

≈ 1mm
(17)

Radiation with wavelengths in the 1 mm region cannot
get through the earth’s atmosphere.  As a result Penzias
and Wilson, and others using ground based antennas,
could not verify that the radiation had a complete
blackbody spectrum.  From 1965 to the late 1980s,
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THE EARLY UNIVERSE
Imagine that we have a videotape recording of the
evolution of the universe.  We put the tape in our VCR
and see that the tape has not been rewound.  It is
showing our current universe with stars, galaxies and
the cosmic radiation at a temperature of 2.735 k.  You
can calculate the density of photons in the cosmic
radiation, and compare that with the average density of
protons and neutrons (nucleons) in the stars and galax-
ies.  You find that the photons outnumber the nucleons
by a factor of about 10 billion to 1.  Although there are
many more photons than nucleons, the rest energy of a
proton or neutron is so much greater than the energy of
a three degree photon that the total rest energy of the
stars and galaxies is about 100 times greater than the
total energy in the cosmic radiation.

Leaving the VCR on play, we press the rewind button.
The picture is not too clear, but we can see general
features of the contracting universe.  The galaxies are
moving together and the wavelength of the cosmic
radiation is shrinking.  Since the energy of the cosmic

photons is given by Einstein’s formula   E = hc λhc λ , the
shrinking of the photon wavelengths increases their
energy.  On the other hand the rest mass energy of the
stars and galaxies is essentially unaffected by the
contraction of the universe.  As a result the energy of the
cosmic photons is becoming a greater and greater share
of the total energy of the universe.  When the universe
has contracted to about 1/100th of its present size, when
the universe is about 1/2 million years old, the cosmic
photons have caught up to the matter particles.  At
earlier times, the cosmic photons have more energy
than other forms of matter.

The Early Universe
As the tape rewinds our attention is diverted.  When we
look again at the screen, we see that the tape is showing
a very early universe.  The time indicated is .01
seconds!  The temperature has risen to 100 billion
degrees, and the thermal photons have an average
energy of 40 million electron volts!  We obviously
missed a lot in the rewind.  Stopping the tape, we then
run it forward to see what the universe looks like at this
very early stage.

There is essentially the same number of nucleons in this
early universe as there are today.  Since the thermal
energy of 40 MeV is much greater than the 1.3 MeV
mass difference between neutrons and protons, there is
enough thermal energy to freely convert protons into
neutrons, and vice versa.  As a result there are about
equal numbers of protons and neutrons.  There is also
about the same number of thermal photons in this early
universe as there are today, about 100 billion photons
for each nucleon.

While there is not much change from today in the
number of nucleons or photons in our .01 second
universe, there is a vastly different number of electrons.
The thermal photons, with an average energy of 40
MeV, can freely create positron and electron pairs.  The
rest energy of a positron or an electron is only .5 MeV,
thus only 1 MeV is required to create a pair.  The result
is that the universe at this time is a thermal soup of
photons, positrons and electrons—about equal num-
bers.  There are also many neutrinos left over from an
earlier time.  All of those species outnumber the few
nucleons by a factor of about 100 billion to one.

Excess of Matter over Antimatter
If you look closely and patiently count the number of
positrons and electrons in some region of space, you
will find that for every 100,000,000,000 positrons,
there are 100,000,000,001 electrons.  The electrons
outnumber the positrons by 1 in 100 billion.  In fact, the
excess number of negative electrons is just equal to the
number of positive protons, with the result that the
universe is electrically neutral.

The tiny excess of electrons over positrons represents
an excess of matter over antimatter.  In most particle
reactions we study today, if particles are created, they
are created in particle, antiparticle pairs.  The question
is then, why does this early universe have a tiny excess
of matter particles over antimatter particles?  What in
the still earlier universe created this tiny imbalance?
There is a particle reaction, caused by the weak inter-
action, that does not treat matter and antimatter sym-
metrically.  This reaction, discovered by Val Fitch in
1964, could possibly explain how this tiny imbalance
came about.  It is not clear whether there was enough
time in the very early universe for Fitch’s reaction to
create the observed imbalance.
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An excellent guidebook for our video tape is Steven
Weinberg’s The First Three Minutes.  Weinberg was
one of the physicists who discovered the connection
between the weak interaction and electromagnetism.
Weinberg breaks up the first three minutes of the life of
the universe into five frames.  We happened to have
stopped the tape recording at Weinberg’s frame #1.  To
see what we missed in our fast rewind, we will now run
the tape forward, picking up the other four frames in the
first three minutes as well as important later events.

Frame #2  (.11 seconds)
As we run the tape forward, the universe is now
expanding, the wavelength of the thermal photons is
getting longer, and their temperature is dropping.  When
the time counter gets up to t = .11 seconds, the tempera-
ture has dropped to 30 billion kelvin and the average
energy of the thermal photons has dropped to 10 MeV.
Back at frame #1, when the thermal energy was 40
MeV, there were roughly equal numbers of protons and
neutrons.  However, the lower thermal energy of 10
MeV is not sufficiently greater than the 1.3 MeV
proton-neutron mass difference to maintain the equal-
ity.

In the many rapid collisions where protons are being
converted into neutrons and vice versa (via the weak
interaction), there is a slightly greater chance that the
heavier neutron will decay into a lighter proton rather
than the other way around.  As a result the percentage
of neutrons has dropped to 38% by the time t = .11
seconds.

Frame #3  (1.09 seconds)
Aside from the drop in temperature and slight decrease
in the percentage of neutrons, not much else happened
as we went from frame #1 at .01 seconds to frame #2 at
.11 seconds.  Starting up the tape player again, we go
forward to t = 1.09 seconds, Weinberg’s third frame.
The temperature has dropped to 10 billion kelvin,
which corresponds to a thermal energy of 4 MeV.  This
is not too far above the 1 MeV threshold for creating
positron electron pairs.  As a result the positron electron
pairs are beginning to annihilate faster than they are
being created.  Also by this time the percentage of
neutrons has dropped to 24%.

Frame #4  (13.82 seconds)
At a time of 13.82 seconds, Weinberg’s fourth frame,
the temperature has dropped to 3 billion kelvin, corre-
sponding to an average thermal energy of 1 MeV per
particle.  With any further drop in temperature, the
average thermal photon will not have enough energy to
create positron electron pairs.  The result is that vast
numbers of positrons and electrons are beginning to
annihilate each other.  Soon there will be equal num-
bers of electrons and protons, and the only particles
remaining in very large numbers will be neutrinos and
thermal photons.

By this fourth frame, the percentage of neutrons has
dropped to 17%.  The temperature of 3 billion degrees
is low enough for helium nuclei to survive, but helium
nuclei do not form because of the deuterium bottle-
neck.  When a proton and neutron collide, they can
easily form a deuterium nucleus.  Although deuterium
is stable, it is weakly bound.  At a temperature of 3
billion kelvin, the thermal protons quickly break up any
deuterium that forms.  Without deuterium, it is not
possible to build up still larger nuclei.

Frame #5  (3 minutes and 2 seconds)
Going forward to a time of 3 minutes and 2 seconds, the
universe has cooled to a billion kelvin, the positrons
and most electrons have disappeared, and the only
abundant particles are photons, neutrinos and antineutri-
nos.  The neutron proton balance has dropped to 14%
neutrons.  While tritium (one proton and two neutrons)
and helium 4 are stable at this temperature, deuterium
is not, thus no heavier nuclei can form.

A short time later, the temperature drops to the point
where deuterium is stable.  When this happens, neu-
trons can combine with protons to form deuterium and
tritium, and these then combine to form helium 4.
Almost immediately the remaining nearly 13% neu-
trons combine with an equal number of protons to form
most of the 25% abundance of cosmic helium we see
today.  This is where the helium came from that Hoyle
could not explain in terms of nuclear synthesis inside of
stars.
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Because there are no stable nuclei with 5 or 8 nucleons,
there is no simple route to the formation of still heavier
elements.  At a temperature of a billion degrees, the
universe is only about 70 times hotter than the core of
our sun, cooler than the core of hot stars around today
that are fusing the heavier elements.  As a result, nuclear
synthesis in the early universe stops at helium 4 with a
trace of lithium 7.  One of the best tests of the big bang
theory is a rather precise prediction of the relative
abundances of hydrogen, deuterium, helium 4 and
lithium 7, all left over from the early universe.  When
the formation of these elements is complete, the uni-
verse is 3 minutes and 46 seconds old.

Decoupling  (700,000 years)
Continue running the tape forward, and nothing of
much interest happens for a long time.  The thermal
photons still outnumber the nucleons and electrons by
a factor of about 10 billion to one, and the constant
collisions between these particles prevent the forma-
tion of atoms.  What we see is a hot, ionized, nearly
uniform plasma consisting of photons, charged nuclei
and separate electrons.  As time goes on, the plasma is
expanding and cooling.

When you look at the sun, you see a round ball with an
apparently sharp edge.  But the sun is not a solid object
with a well defined surface.  Instead, it is a bag of mostly
hydrogen gas held together by gravity.  It is hottest at
the center and cools off as you go out from the center.
At what appears to us to be the surface, the temperature
has dropped to about 3,000 kelvin.

At a temperature above 3,000 kelvin, hydrogen gas
becomes ionized, a state where an appreciable fraction
of the electrons are torn free from the proton nuclei.
When the gas is ionized, it is opaque because photons
can interact directly with the free charges present in the
gas.  Below a temperature of 3,000 kelvin, hydrogen
consists essentially of neutral atoms which are unaf-
fected by visible light.  As a result the cooler hydrogen
gas is transparent.  The apparent surface of the sun
marks the abrupt transition from an opaque plasma, at
temperatures above 3,000K, to a transparent gas at
temperatures below 3,000K.

A similar transition takes place in the early universe.
By the age of about 700,000 years, the universe cools
to a temperature of 3,000K.  Before that the universe is
an opaque plasma like the inside of the sun.  The
photons in thermal equilibrium with the matter par-
ticles have enough energy to bust up any complete
atoms and any gravitational clumps that are trying to
form.

When the universe drops to a temperature below 3,000
kelvin, the hydrogen gas forms neutral atoms and
becomes transparent.  (The 25% helium had already
become neutral some time earlier).  As a result the
universe suddenly becomes transparent, and the ther-
mal photons decouple from matter.

From this decoupling on, there is essentially no inter-
action between the thermal photons and any form of
matter.  All that happens to the photons is that their
wavelength is stretched by the expansion of the uni-
verse.  This stretching preserves the blackbody spec-
trum of the photons while lowering the effective black-
body temperature.  This blackbody spectrum is now at
the temperature of 2.735K, as observed by the COBE
satellite.

When the matter particles are decoupled, freed from
the constant bombardment of the cosmic photons,
gravity can begin the work of clumping up matter to
form stars, globular clusters, black holes and galaxies.
All these structures start to form after the decoupling,
after the universe is 700,000 years old.  It is this
formation of stars and galaxies that we see as we run the
tape forward to our present day.

Looking out with ever more powerful telescopes is
essentially equivalent to running our videotape back-
wards.  The farther out we look, the farther back in time
we see.  Images from the Hubble telescope are giving
us a view back toward the early universe when galaxies
were very much younger and quite different than they
are today.  The most distant galaxy we have identified
so far emitted light when the universe was 5% of its
current size.
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What happens when we build still more powerful
telescopes and look still farther back?  When we look
out so far that the universe is only 700,000 years old, we
are looking at the universe that has just become trans-
parent.  We can see no farther!   To look farther is like
trying to look down inside the surface of the sun.

In fact we do not need a more powerful telescope to see
this far back.  The three degree cosmic background
radiation gives us a fantastically clear, detailed photo-
graph of the universe at the instant it went transparent.

The horn antenna used by Penzias and Wilson was the
first device to look at a small piece of this photograph.
The COBE satellite looked at the whole photograph,
but with rather limited resolution.  COBE detected
some very tiny lumpiness, temperature variations of
about one part in 100,000.  This lumpiness may have
been what gravity needed to start forming galaxies.  A
higher resolution photograph will be needed to tell for
sure.

Guidebooks
We ran the videotape quite rapidly without looking at
many details.  Our focus has been on the formation of
the elements and the three degree radiation, two of the
main pieces of evidence for the existence of a big bang.
We have omitted a number of fascinating details such
as how dense was the early universe, when did the
neutrinos decouple from matter, and what happened
before the first frame?   There are excellent guidebooks
that accompany this tape where you can find these
details.  There is Weinberg’s The First Three Minutes
which we have mentioned.  The 1993 edition has an
addendum that introduces some ideas about the very,
very early universe, when the universe was millions of
times younger and hotter than the first frame.  Perhaps
the best guidebook to how mankind came to our current
picture of the universe is the book by Timothy Ferris
Coming of Age in the Milky Way.  Despite the title, this
is one of the most fascinating and readable accounts
available.  In our discussion we have drawn much from
Weinberg and Ferris.
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CHAPTER 35 BOHR THEORY OF
HYDROGEN

The hydrogen atom played a special role in the history
of physics by providing the key that unlocked the new
mechanics that replaced Newtonian mechanics.  It
started with Johann Balmer's discovery in 1884 of a
mathematical formula for the wavelengths of some of
the spectral lines emitted by hydrogen.   The simplicity
of the formula suggested that some understandable
mechanisms were producing these lines.

The next step was Rutherford's discovery of the atomic
nucleus in 1912.  After that, one knew the basic
structure of atoms—a positive nucleus surrounded by
negative electrons.  Within a year Neils Bohr had a
model of the hydrogen atom that "explained" the
spectral lines.  Bohr introduced a new concept, the
energy level.  The electron in hydrogen had certain
allowed energy levels, and the sharp spectral lines
were emitted when the electron jumped from one
energy level to another.  To explain the energy levels,
Bohr developed a model in which the electron had
certain allowed orbits and the jump between energy
levels corresponded to the electron moving from one
allowed orbit to another.

Bohr's allowed orbits followed from Newtonian me-
chanics and the Coulomb force law, with one small but
crucial modification of Newtonian mechanics.  The
angular momentum of the electron could not vary

continuously, it had to have special values, be quan-
tized in units of Planck's constant divided by   2π ,   h/2π .
In Bohr's theory, the different allowed orbits corre-
sponded to orbits with different allowed values of
angular momentum.

Again we see Planck's constant appearing at just the
point where Newtonian mechanics is breaking down.
There is no way one can explain from Newtonian
mechanics why the electrons in the hydrogen atom
could have only specific quantized values of angular
momentum.  While Bohr's model of hydrogen repre-
sented only a slight modification of Newtonian me-
chanics, it represented a major philosophical shift.
Newtonian mechanics could no longer be considered
the basic theory governing the behavior of particles
and matter.  Something had to replace Newtonian
mechanics, but from the time of Bohr's theory in 1913
until 1924, no one knew what the new theory would be.

In 1924, a French graduate student, Louis de Broglie,
made a crucial suggestion that was the key that led to
the new mechanics.  This suggestion was quickly
followed up by Schrödinger and Heisenberg who de-
veloped the new mechanics called quantum mechan-
ics.  In this chapter our focus will be on the develop-
ments leading to de Broglie's idea.
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For an electron in a circular orbit, predicting the motion
is quite easy.  If an electron is in an orbit of radius r,
moving at a speed v, then its acceleration a  is directed
toward the center of the circle and has a magnitude

 a = v2

r (2)

Using Equation 1 for the electric force and Equation 2
for the acceleration, and noting that the force is in the
same direction as the acceleration, as indicated in
Figure (2), Newton's second law gives

 F = m a

 e2

r2 = mv2

r (3)

One factor of r cancels and we can immediately solve
for the electron's speed v to get   v2 = e2/mr,  or

 velectron = e
mr

(4)

The period of the electron's orbit should be the distance
  2πr travelled, divided by the speed v, or   2πr/v  sec-

onds per cycle, and the frequency should be the inverse
of that, or   v/2πr  cycles per second.  Using Equation 4
for v, we get

  frequency of
electron in orbit

= v
2πr

= e
2πr mr

(5)

According to Maxwell's theory, this should also be the
frequency of the radiation emitted by the electron.

THE CLASSICAL HYDROGEN ATOM
With Rutherford's discovery of the atomic nucleus, it
became clear that atoms consisted of a positively
charged nucleus surrounded by negatively charged
electrons that were held to the nucleus by an electric
force.  The simplest atom would be hydrogen consist-
ing of one proton and one electron held together by a
Coulomb force of magnitude

 Fe = e2

r2          
p

r

FeFe e
(1)

(For simplicity we will use CGS units in describing the
hydrogen atom.  We do not need the engineering units,
and we avoid the complicating factor of   1/4πε0  in the
electric force formula.)  As shown in Equation 1, both the
proton and the electron attract each other, but since the
proton is 1836 times more massive than the electron, the
proton should sit nearly at rest while the electron orbits
around it.

Thus the hydrogen atom is such a simple system, with
known masses and known forces, that it should be a
straightforward matter to make detailed predictions about
the nature of the atom.  We could use the orbit program
of Chapter 8, replacing the gravitational force  GMm/r2

by  e2/r2 .  We would predict that the electron moved in
an elliptical orbit about the proton, obeying all of Kepler's
laws for orbital motion.

There is one important point we would have to take into
account in our analysis of the hydrogen atom that we did
not have to worry about in our study of satellite motion.
The electron is a charged particle, and accelerated charged
particles radiate electromagnetic waves.  Suppose, for
example, that the electron were in a circular orbit moving
at an angular velocity  ω  as shown in Figure (1a).  If we
were looking at the orbit from the side, as shown in Figure
(1b), we would see an electron oscillating up and down
with a velocity given by   v = v0sin ωt .

In our discussion of radio antennas in Chapter 32, we saw
that radio waves could be produced by moving electrons
up and down in an antenna wire.  If electrons oscillated up
and down at a frequency ω , they produced radio waves
of the same frequency.  Thus it is a prediction of Maxwell's
equations that the electron in the hydrogen atom should
emit electromagnetic radiation, and the frequency of the
radiation should be the frequency at which the electron
orbits the proton.

Figure 1
The side view of circular motion
is an up and down oscillation.

p

v0 v = v  sin(ωt)

a) electron in 
    circular orbit

b) side view of 
    circular orbit

0e e

p
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Electromagnetic radiation carries energy.  Thus, to see
what effect this has on the electron’s orbit, let us look
at the formula for the energy of an orbiting electron.

From Equation 3 we can immediately solve for the
electron's kinetic energy.  The result is

  1
2

mv2 = e2

2r

electron
kinetic
energy

(6)

The electron also has electric potential energy just as an
earth satellite had gravitational potential energy.  The
formula for the gravitational potential energy of a
satellite was

 potential energy
of an earth satellite

= – GMm
r (10-50a)

where M and m are the masses of the earth and the
satellite respectively.  This is the result we used in
Chapter 8 to test for conservation of energy (Equations
8-29 and 8-31) and in Chapter 10 where we calculated
the potential energy (Equations 10-50a and 10-51).
The minus sign indicated that the gravitational force is
attractive, that the satellite starts with zero potential
energy when   r = ∞  and loses potential energy as it falls
in toward the earth.

We can convert the formula for gravitational potential
energy to a formula for electrical potential energy by
comparing formulas for the gravitational and electric
forces on the two orbiting objects.  The forces are

 Fgravity = GMm
r2 ; Felectric = e2

r2

Since both are  1/r2  forces, we can go from the gravi-
tational to the electric force formula by replacing the

constant GMm by  e2.  Making this same substitution
in the potential energy formula gives

  
PE = – e2

r

electrical potential energy
of the electron in the
hydrogenatom

(7)

Again the potential energy is zero when the particles
are infinitely far apart, and the electron loses potential
energy as it falls toward the proton.  (We used this result
in the analysis of the binding energy of the hydrogen
molecule ion, explicitly in Equation 18-15.)

The formula for the total energy  Etotal of the electron in
hydrogen should be the sum of the kinetic energy,
Equation 6, and the potential energy, Equation 7.

 
Etotal = kinetic

energy +
potential
energy

= e2

2r – e2

r

  
Etotal = – e2

2r
total energy
of electron (8)

The significance of the minus (–) sign is that the
electron is bound.  Energy is required to pull the
electron out, to ionize the atom.  For an electron to
escape, its total energy must be brought up to zero.

We are now ready to look at the predictions that follow
from Equations 5 and 8.  As the electron radiates light
it must lose energy and its total energy must become
more negative.  From Equation 8 we see that for the
electron's energy to become more negative, the radius
r must become smaller.  Then Equation 5 tells us that
as the radius becomes smaller, the frequency of the
radiation increases.  We are lead to the picture of the
electron spiraling in toward the proton, radiating even
higher frequency light.  There is nothing to stop the
process until the electron crashes into the proton.  It is
an unambiguous prediction of Newtonian mechanics
and Maxwell's equations that the hydrogen atom is
unstable.  It should emit a continuously increasing
frequency of light until it collapses.

p

v

a

r

Fe

e

Figure 2
For a circular orbit, both the acceleration a  and the
force F  point toward the center of the circle. Thus we
can equate the magnitudes of F and ma.
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Energy Levels
By 1913, when Neils Bohr was trying to understand the
behavior of the electron in hydrogen, it was no surprise
that Maxwell's equations did not work at an atomic
scale.  To explain blackbody radiation and the photo-
electric effect, Planck and Einstein were led to the
picture that light consists of photons rather than
Maxwell's waves of electric and magnetic force.

To construct a theory of hydrogen, Bohr knew the
following fact.  Hydrogen gas at room temperature
emits no light.  To get radiation, it has to be heated to
rather high temperatures.  Then you get distinct spectral
lines rather than the continuous radiation spectrum
expected classically.  The visible spectral lines are the

  Hα ,   Hβ  and   Hγ  lines we saw in the hydrogen spec-
trum experiment.  These and many infra red lines we
saw in the spectrum of the hydrogen star, Figure (33-
28) reproduced below, make up the Balmer series of
lines.  Something must be going on inside the hydrogen
atom to produce these sharp spectral lines.

Viewing the light radiated by hydrogen in terms of
Einstein's photon picture, we see that the hydrogen
atom emits photons with certain precise energies.  As
an exercise in the last chapter you were asked to
calculate, in eV, the energies of the photons in the   Hα ,

  Hβ  and   Hγ  spectral lines.  The answers are

  EHα
= 1.89 eV

  EHβ
= 2.55 eV

  EHγ
= 2.86 eV (9)

The question is, why does the electron in hydrogen emit
only certain energy photons?  The answer is Bohr's
main contribution to physics.  Bohr assumed that the
electron had, for some reason, only certain allowed
energies in the hydrogen atom.  He called these allowed
energy levels.  When an electron jumped from one
energy level to another, it emitted a photon whose
energy was equal to the difference in the energy of the
two levels.    The red 1.89 eV photon, for example, was
radiated when the electron fell from one energy level to
another level 1.89 eV lower.  There was a bottom,
lowest energy level below which the electron could not
fall.  In cold hydrogen, all the electrons were in the
bottom energy level and therefore emitted no light.

When the hydrogen atom is viewed in terms of Bohr’s
energy levels, the whole picture becomes extremely
simple.  The lowest energy level is at -13.6 eV.  This is
the total energy of the electron in any cold hydrogen
atom.  It requires 13.6 eV to ionize hydrogen to rip an
electron out.

Figure 33-28
Spectrum of a hydrogen star

–13.6

–3.40

–1.51

–.850
–.544
     0

n = 1

n = 2

n = 3

n = 4
n = 5
 

Hα Hβ Hγ

3.65   10   3.70   10   3.75   10   3.80   10   

H9   H10   H11   H12   H13   H14   H15   H20   H30   H40   

wavelength 3.85   10   –5 –5 –5 –5 –5

Figure 3
Energy level
diagram for the
hydrogen atom.
All the energy
levels are given by
the simple formula

  En = – 13.6/n2 eV.
All Balmer series
lines result from
jumps down to the
n = 2 level. The 3
jumps shown give
rise to the three
visible hydrogen
lines.
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The first energy level above the bottom is at –3.40 eV
which turns out to be (–13.6/4) eV.  The next level is at
–1.51 eV which is (–13.6/9) eV.  All of the energy
levels needed to explain every spectral line emitted by
hydrogen are given by the formula

 En = – 13.6 eV
n2 (10)

where n takes on the integer values 1, 2, 3, ....  These
energy levels are shown in Figure (3).

Exercise 1

Use Equation 10 to calculate the lowest 5 energy levels
and compare your answer with Figure 3.

Let us see explicitly how Bohr's energy level diagram
explains the spectrum of light emitted by hydrogen.  If,
for example, an electron fell from the n=3 to the n=2
level, the amount of energy  E3–2  it would lose and
therefore the energy it would radiate would be

 E3–2 = E3 – E2

= – 1.51 eV – ( – 3.40 eV)

= 1.89 eV

=
energy lost in falling
from n = 3 to n = 2 level

(11)

which is the energy of the red photons in the   Hα  line.

Exercise 2

Show that the   Hβ and   Hγ  lines correspond to jumps to
the n = 2 level from the n = 4 and the n = 5 levels
respectively.

From Exercise 2 we see that the first three lines in the
Balmer series result from the electron falling from the
third, fourth and fifth levels down to the second level,
as indicated by the arrows in Figure (3).

All of the lines in the Balmer result from jumps down
to the second energy level.  For historical interest, let us
see how Balmer's formula for the wavelengths in this
series follows from Bohr's formula for the energy
levels.  For Balmer's formula, the lines we have been
calling   Hα ,   Hβ  and   Hγ  are  H3 ,  H4 ,  H5 .  An arbitrary
line in the series is denoted by  Hn , where n takes on the
values starting from 3 on up.  The Balmer formula for
the wavelength of the  Hn  line is from Equation 33-6

  
λn = 3.65 × 10– 5cm × n2

n2 – 4
(33-6)

Referring to Bohr's energy level diagram in Figure (3),
consider a drop from the nth energy level to the second.
The energy lost by the electron is (  En – E2) which has
the value

  
En – E 2 = 13.6 eV

n2 – 13.6 eV
22

energy lost by
electron going
from nth to
second level

This must be the energy  E Hn  carried out by the
photon in the  Hn  spectral line.  Thus

 
E Hn = 13.6 eV

1
4

–
1

n2

= 13.6 eV
n2 – 4

4n2

(12)

We now use the formula

  λ = 12.4 × 10– 5cm ⋅ eV
Ephoton in eV

(34-8)

relating the photon's energy to its wavelength.  Using
Equation 12 for the photon energy gives

  
λn = 12.4 × 10– 5cm ⋅ eV

13.6 eV
4n2

n2 – 4

  
λn = 3.65 × 10– 5cm n2

n2 – 4
which is Balmer's formula.
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It does not take great intuition to suspect that there are
other series of spectral lines beyond the Balmer series.
The photons emitted when the electron falls down to
the lowest level, down to -13.6 eV as indicated in
Figure (4), form what is called the Lyman series.  In this
series the least energy photon, resulting from a fall from
-3.40 eV down to -13.6 eV, has an energy of 10.2 eV,
well out in the ultraviolet part of the spectrum.  All the
other photons in the Lyman series have more energy,
and therefore are farther out in the ultraviolet.

It is interesting to note that when you heat hydrogen and
see a Balmer series photon like   Hα ,   Hβ  or   Hγ ,
eventually a 10.2 eV Lyman series photon must be
emitted before the hydrogen can get back down to its
ground state.  With telescopes on earth we see many
hydrogen stars radiating Balmer series lines.  We do not
see the Lyman series lines because these ultraviolet
photons do not make it down through the earth's
atmosphere.  But the Lyman series lines are all visible
using orbiting telescopes like the Ultraviolet Explorer
and the Hubble telescope.

Another series, all of whose lines lie in the infra red, is
the Paschen series, representing jumps down to the
n = 3 energy level at -1.55 eV, as indicated in Figure (5).
There are other infra red series, representing jumps
down to the n = 4 level, n = 5 level, etc.  There are many
series, each containing many spectral lines.  And all
these lines are explained by Bohr's conjecture that the
hydrogen atom has certain allowed energy levels, all
given by the simple formula  En = (– 13.6/n2) eV.
This one simple formula explains a huge amount of
experimental data on the spectrum of hydrogen.

Exercise 3
Calculate the energies (in eV) and wavelengths of the 5
longest wavelength lines in

(a) the Lyman series

(b) the Paschen series

On a Bohr energy level diagram show the electron
jumps corresponding to each line.

Exercise 4

In Figure (33-28), repeated 2 pages back, we showed
the spectrum of light emitted by a hydrogen star.  The
lines get closer and closer together as we get to   H40  and
just beyond.  Explain why the lines get closer together
and calculate the limiting wavelength.

–13.6

–3.40

–1.51

–.850
–.544
     0

n = 1

n = 2

n = 3

n = 4
n = 5
 

Figure 4
The Lyman series
consists of all jumps
down to the –13.6eV
level. (Since this is as
far down as the
electron can go, this
level is called the
“ground state”.)

Figure 5
The Paschen series
consists of all jumps
down to the n = 3
level. These are all in
the infra red. –1.51

–.850
–.544

0

n = 3

n = 4
n = 5

–.378 n = 6
–.278 n = 7
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Lyman series
Balm
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P
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THE BOHR MODEL
Where do Bohr's energy levels come from?  Certainly
not from Newtonian mechanics.  There is no excuse in
Newtonian mechanics for a set of allowed energy
levels.  But did Newtonian mechanics have to be
rejected altogether?  Planck was able to explain the
blackbody radiation formula by patching up classical
physics, by assuming that, for some reason, light was
emitted and absorbed in quanta whose energy was
proportional to the light's frequency.  The reason why
Planck's trick worked was understood later, with
Einstein's proposal that light actually consisted of
particles whose energy was proportional to frequency.
Blackbody radiation had to be emitted and absorbed in
quanta because light itself was made up of these quanta.

By 1913 it had become respectable, frustrating per-
haps, but respectable to modify classical physics in
order to explain atomic phenomena.  The hope was that
a deeper theory would come along and naturally ex-
plain the modifications.

What kind of a theory do we construct to explain the
allowed energy levels in hydrogen?  In the classical
picture we have a miniature solar system with the
proton at the center and the electron in orbit.  This can
be simplified by restricting the discussion to circular
orbits.  From our earlier work with the classical model

of hydrogen, we saw that an electron in an orbit of
radius r had a total energy E(r) given by

  
E(r) = – e2

2r

total energy of
an electron in
a circular orbit
of radius r

(8 repeated)

If the electron can have only certain allowed energies
 En = –13.6/n2 eV, then if Equation (8) holds, the

electron orbits can have only certain allowed orbits of
radius  rn  given by

 En = – e2

2rn
(13)

The  rn  are the radii of the famous Bohr orbits.  This
leads to the rather peculiar picture that the electron can
exist in only certain allowed orbits, and when the
electron jumps from one allowed orbit to another, it
emits a photon whose energy is equal to the difference
in energy between the two orbits.  This model is
indicated schematically in Figure (6).

Exercise 5

From Equation 13 and the fact that  E1 = – 13.6 eV,
calculate the radius of the first Bohr orbit r1. [Hint: first
convert eV to ergs.]  This is known as the Bohr radius
and is in fact a good measure of the actual radius of a
cold hydrogen atom.    [The answer is

  r1 = .529 × 10– 8cm= .529A° .]  Then show that  rn = n2r1 .

Figure 6
The Bohr orbits are determined by
equating the allowed energy

   En = – 13.6 n2– 13.6 n2  to the energy   En = – e2 2rn– e2 2rn
for an electron in an orbit of radius  rn.
The Lyman series represents all jumps
down to the smallest orbit, the Balmer
series to the second orbit, the Paschen
series to the third orbit, etc. (The radii in
this diagram are not to scale, the radii  rn
increase in size as   n2, as you can easily
show by equating the two values for   En.)
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Angular Momentum in the Bohr Model
Nothing in Newtonian mechanics gives the slightest
hint as to why the electron in hydrogen should have
only certain allowed orbits.  In the classical picture
there is nothing special about these particular radii.

But ever since the time of Max Planck, there was a
special unit of angular momentum, the amount given
by Planck's constant h.  Since Planck's constant keeps
appearing whenever Newtonian mechanics fails, and
since Planck's constant has the dimensions of angular
momentum, perhaps there was something special about
the electron's angular momentum when it was in one of
the allowed orbits.

We can check this idea by re expressing the electron's
total energy not in terms of the orbital radius r, but in
terms of its angular momentum L.

We first need the formula for the electron's angular
momentum when in a circular orbit of radius r.  Back
in Equation 4, we found that the speed v of the electron
was given by

 v = e
mr (4 repeated)

Multiplying this through by m gives us the electron's
linear momentum mv

 mv = me
mr = e m

r (14)

The electron's angular momentum about the center of
the circle is its linear momentum mv times the lever
arm  r, as indicated in the sketch of Figure (7).  The result
is

 L = mv r = e m
r r

= e mr
(15)

where we used Equation 14 for mv.

The next step is to express r in terms of the angular
momentum L.  Squaring Equation 13 gives

 L2 = e2mr
or

 
r = L2

e2m
(16)

Finally we can eliminate the variable r in favor of the
angular momentum L in our formula for the electron's
total energy.  We get

  total energy
of the electron E = – e2

2r

= – e2

2 L2 e2mL2 e2m

= – e2

2
e2m
L2

= – e4m
2L2

(17)

In the formula  – e4m/2L2  for the electron's energy,
only the angular momentum L changes from one orbit
to another.  If the energy of the nth orbit is  En , then
there must be a corresponding value  Ln  for the angular
momentum of the orbit.  Thus we should write

 En = – e4m
2Ln

2
(18)

v

L = mvr

r

m

Figure 7
Angular momentum of a particle
moving in a circle of radius r.
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At this point, Bohr had the clue as to how to modify
Newtonian mechanics in order to get his allowed
energy levels.  Suppose that angular momentum is
quantized in units of some quantity we will call  L0.  In
the smallest orbit, suppose it has one unit, i.e.,

  L1 = 1 × L0.  In the second orbit assume it has twice as
much angular momentum,  L2 = 2 L0 .  In the nth orbit
it would have n units

  
Ln = nL0

quantization
of angular
momentum

(19)

Substituting Equation 19 into Equation 18 gives

 
En = – e4m

2L2
0

1
n2 (20)

as the total energy of an electron with n units of angular
momentum.  Comparing Equation 20 with Bohr's
energy level formula

 En = –13.6 eV 1
n2 (10 repeated)

we see that we can explain the energy levels by
assuming that the electron in the nth energy level has n
units of quantized angular momentum   L0.  We can also
evaluate the size of  L0 by equating the constant factors
in Equations 10 and 20.  We get

 e4m
2L0

2 = 13.6 eV (21)

Converting 13.6 eV to ergs, and solving for  L0 gives

  e4m
2L0

2 = 13.6 eV × 1.6 × 10– 12ergs
eV

With   e = 4.8 × 10– 10esu and   m = .911 × 10– 27gm
in CGS units, we get

  
L0 = 1.05 × 10– 27gm cm2

sec (22)

which turns out to be Planck's constant divided by   2π .

  
L0 = h

2π =
6.63 × 10– 27gm cm/sec

2π

= 1.05 × 10– 27gm cm
sec

This quantity, Planck's constant divided by 2π , ap-
pears so often in physics and chemistry that it is given
the special name “h bar” and is written h

   h ≡ h
2π "h bar" (23)

Using h  for  L0 in the formula for  En , we get Bohr's
formula

 
En = – e4m

2h2
1
n2 (24)

where  e4m/2h2, expressed in electron volts, is 13.6 eV.
This quantity is known as the Rydberg constant.
[Remember that we are using CGS units, where e is in
esu, m in grams, and h is erg-sec.]

Exercise 6
Use Equation 21 to evaluate  L0 .

Exercise 7
What is the formula for the first Bohr radius in terms of the
electron mass m, charge e, and Planck's constant h.
Evaluate your result and show that

  r1 = .51 × 10– 8cm= .51A° .  (Answer:   r1 = h2/e2m.)

Exercise 8
Starting from Newtonian mechanics and the Coulomb
force law  F = e2/r2, write out a clear and concise deriva-
tion of the formula

 En = – e4m
2h2

1
n2

Explain the crucial steps of the derivation.

A day or so later, on an empty piece of paper and a clean
desk, see if you can repeat the derivation without
looking at notes.  When you can, you have a secure
knowledge of the Bohr theory.
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Exercise 9
An ionized helium atom consists of a single electron
orbiting a nucleus containing two protons as shown in
Figure (8).  Thus the Coulomb force on the electron has
a magnitude

 
Fe =

e 2e

r2 = 2e2

r2

                                                

–e

2e

a) Using Newtonian mechanics, calculate the total
energy of the electron.  (Your answer should be  – e2/r .
Note that the r is not squared.)

b)   Express this energy in terms of the electron's angular
momentum L.  (First calculate L in terms of  r, solve for
r, and substitute as we did in going from Equations 16
to 17.)

c)   Find the formula for the energy levels of the electron
in ionized helium, assuming that the electron's angular
momentum is quantized in units of h.

d)   Figure out whether ionized helium emits any visible
spectral lines (lines with photon energies between 1.8
eV and 3.1 eV.)  How many visible lines are there and
what are their wavelengths?)

Exercise 10

You can handle all single electron atoms in one calcu-
lation by assuming that there are z protons in the
nucleus. (z = 1 for hydrogen, z = 2 for ionized helium,
z = 3 for doubly ionized lithium, etc.) Repeat parts a), b),
and c) of Exercise 9 for a single electron atom with z
protons in the nucleus. (There is no simple formula for
multi electron atoms because of the repulsive force
between the electrons.)

DE BROGLIE'S HYPOTHESIS
Despite its spectacular success describing the spectra
of hydrogen and other one-electron atoms, Bohr's
theory represented more of a problem than a solution.
It worked only for one electron atoms, and it pointed to
an explicit failure of Newtonian mechanics.  The idea
of correcting Newtonian mechanics by requiring the
angular momentum of the electron be quantized in
units of h , while successful, represented a bandaid
treatment.  It simply covered a deeper wound in the
theory.  For two centuries Newtonian mechanics had
represented a complete, consistent scheme, applicable
without exception.  Special relativity did not harm the
integrity of Newtonian mechanics—relativistic New-
tonian mechanics is a consistent theory compatible
with the principle of relativity.  Even general relativity,
with its concepts of curved space, left Newtonian
mechanics intact, and consistent, in a slightly altered
form.

The framework of Newtonian mechanics could not be
altered to include the concept of quantized angular
momentum.  Bohr, Sommerfield, and others tried
during the decade following the introduction of Bohr's
model, but there was little success.

In Paris, in 1923, a graduate student Louis de Broglie,
had an idea.  He noted that light had a wave nature, seen
in the 2-slit experiment and Maxwell's theory, and a
particle nature seen in Einstein's explanation of the
photoelectric effect.  Physicists could not explain how
light could behave as a particle in some experiments,
and a wave in others.  This problem seemed so incon-
gruous that it was put on the back burner, more or less
ignored for nearly 20 years.

De Broglie's idea was that, if light can have both a
particle and a wave nature, perhaps electrons can too!
Perhaps the quantization of the angular momentum of
an electron in the hydrogen atom was due to the wave
nature of the electron.

The main question de Broglie had to answer was how
do you determine the wavelength of an electron wave?

Figure 8
Ionized helium has a
nucleus with two protons,
surrounded by one electron.
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 An analogy with photons might help. There is, how-
ever, a significant difference between electrons and
photons.  Electrons have a rest mass energy and pho-
tons do not, thus there can be no direct analogy between
the total energies of the two particles.  But both particles
have mass and carry linear momentum, and the amount
of momentum can vary from zero on up for both
particles.  Thus photons and electrons could have
similar formulas for linear momentum.

Back in Equation 34-13 we saw that the linear momen-
tum p of a photon was related to its wavelength λ  by the
simple equation

   

λ = h
p

de Broglie
wavelength (34-13)

De Broglie assumed that this same relationship also
applied to electrons.  An electron with a linear momen-
tum p would have a wavelength   λ = h/p .  This is now
called the de Broglie wavelength.  This relationship
applies not only to photons and electrons, but as far as
we know, to all particles!

With a formula for the electron wavelength, de Broglie
was able to construct a simple model explaining the
quantization of angular momentum in the hydrogen
atom.  In de Broglie's model, one pictures an electron
wave chasing itself around a circle in the hydrogen
atom.  If the circumference of the circle,   2πr  did not
have an exact integral number of wavelengths, then the
wave, after going around many times, would eventu-
ally cancel itself out as illustrated in Figure (9).

But if the circumference of the circle were an exact
integral number of wavelengths as illustrated in Figure
(10), there would be no cancellation.  This would
therefore be one of Bohr's allowed orbits shown in
Figure (6).

Suppose (n) wavelengths fit around a particular circle
of radius  rn .  Then we have

  nλ = 2πrn (25)

Using the de Broglie formula   λ = h/p  for the electron
wavelength, we get

  n h
p = 2πrn (26)

Multiplying both sides by p and dividing through by
  2π  gives

  n h
2π = prn (27)

Now   h/2π  is just h , and  prn  is the angular momentum
 Ln  (momentum times lever arm) of the electron.  Thus

Equation 27 gives

 nh = prn = Ln (28)

Equation 28 tells us that for the allowed orbits, the
orbits in which the electron wave does not cancel, the
angular momentum comes in integer amounts of the
angular momentum h .  The quantization of angular
momentum is thus due to the wave nature of the
electron, a concept completely foreign to Newtonian
mechanics.

r

Figure 9
De Broglie picture of an
electron wave cancelling
itself out.

Figure 10
If the circumference of the orbit is
an integer number of wavelengths,
the electron wave will go around
without any cancellation.

Figure 10a--Movie
The standing waves on a
circular metal band nicely
illustrate de Broglie’s waves
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When a graduate student does a thesis project, typically
the student does a lot of work under the supervision of
a thesis advisor, and comes up with some new, hope-
fully verifiable, results.  What do you do with a student
that comes up with a strange idea, completely unveri-
fied, that can be explained in a few pages of algebra?
Einstein happened to be passing through Paris in the
summer of 1924 and was asked if de Broglie's thesis
should be accepted.  Although doubtful himself about
a wave nature of the electron, Einstein recommended
that the thesis be accepted, for de Broglie  just might be
right.

In 1925, two physicists at Bell Telephone Laboratories,
C. J. Davisson and L. H. Germer were studying the
surface of nickel by scattering electrons from the
surface.  The point of the research was to learn more
about metal surfaces in order to improve the quality of
switches used in telephone communication.  After
heating the metal target to remove an oxide layer that
accumulated following a break in the vacuum line, they
discovered that the electrons scattered differently.  The

metal had crystallized during the heating, and the
peculiar scattering had occurred as a result of the
crystallization.  Davisson and Germer then prepared a
target consisting of a single crystal, and studied the
peculiar scattering phenomena extensively.  Their ap-
paratus is illustrated schematically in Figure (11), and
their experimental results are shown in Figure (12).  For
their experiment, there was a marked peak in the
scattering when the detector was located at an angle of
50° from the incident beam.

Davisson presented these results at a meeting in Lon-
don in the summer of 1927.  At that time there was a
considerable discussion about de Broglie's hypothesis
that electrons have a wave nature.  Hearing of this idea,
Davisson recognized the reason for the scattering peak.
The atoms of the crystal were diffracting electron
waves.  The enhanced scattering at 50° was a diffrac-
tion peak, a maximum similar to the reflected maxima
we saw back in Figure (33-19) when light goes through
a diffraction grating.  Davisson had the experimental
evidence that de Broglie's idea about electron waves
was correct after all.

electron gun

detector

θ

nickel crystal

electron 
beam

θ = 50°

Figure 11
Scattering electrons from the
surface of a nickel crystal.

Figure 12
Plot of intensity vs. angle for electrons scattered by a
nickel crystal, as measured by Davisson and Germer.
The peak in intensity at 50° was a diffraction peak
like the ones produced by diffraction gratings. (The
intensity is proportional to the distance out from the
origin.)

Reflected
maximum

transmitted
maximum

Figure 33-19
Laser beam
impinging on
a diffraction
grating.



Chapter 36
Scattering of Waves

CHAPTER 36 SCATTERING OF
WAVES
We will briefly interrupt our discussion of the hydrogen
atom and study the scattering of waves by atoms.  It was
the scattering of electron waves from the surface of a
nickel crystal that provided the first experimental
evidence of the wave nature of electrons.  Earlier
experiments involving the scattering of x rays had
begun to yield detailed information about the atomic
structure of crystals.

Our main focus in this chapter will be an experiment
developed in the early 1960s by Harry Meiners at R .P.
I., that makes it easy for students to study electron
waves and work with de Broglie's formula    λ = h/p .
The apparatus involves the scattering of electrons from
a graphite crystal.  The analysis of the resulting diffrac-
tion pattern requires nothing more than a combination
of the de Broglie formula with the diffraction grating
formula discussed in Chapter 33.  We will use Meiner's
experiment as our main demonstration of the wave
nature of the electron.
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SCATTERING OF A WAVE
BY A SMALL OBJECT
The first step in studying the scattering of waves by
atoms is to see what happens when a wave strikes a
small object, an object smaller in size than the wave-
length of the wave.  The result can be seen in the ripple
tank photographs shown in Figure (1).  In (1a), an
incident wave is passing over a small object. You can
see scattered waves emerging from the object. In (1b),
the incident wave has passed, and you can see that the
scattered waves are a series of circular waves, the same
pattern you get when you drop a stone into a quiet pool
of water.

If the scattering object is smaller in size than the
wavelength of the wave, as in Figure (1), the scattered
waves contain essentially no information about the
shape of the object. For this reason, you cannot study
the structure of something that is much smaller than the
wavelength of the wave you are using for the study.
Optical microscopes, for example, cannot be used to
study viruses, because most viruses are smaller than the
wavelength of visible light. (Very clever work with
optical microscopes allows one to see down to about
1/10th of the wavelength of visible light, to see objects
like microtubules.)

a) Incident and scattered wave together. b) After the incident wave has passed.

Figure 1
If the scattering object is smaller than a wavelength,
we get circular scattered waves that contain little or
no information about the shape of the object.

incident wave incident wave
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REFLECTION OF LIGHT
Using the picture of scattering provided by Figure (1),
we can begin to understand the reflection of visible
light from a smooth metal surface.  Suppose we have a
long wavelength wave impinging on a metal surface
represented by a regular array of atoms, as illustrated in
Figure (2).  As the wave passes over the array of atoms,
circular scattered waves emerge.  As seen in Figure
(2a), the scattered waves add up to produce a reflected
wave coming back out of the surface.  The angles
labeled  θi  and  θr  in Figure (2b) are what are called the
angle of incidence and angle of reflection , respec-
tively.  Since the scattered waves emerge at the same
speed as the incident wave enters, it is clear from the
geometry that the angle of incidence is equal to the
angle of reflection.  That is the main rule governing the
reflection of light.

What happens inside the material depends upon details
of the scattering process.  Note that the reflected
wavefront inside the material coincides with the inci-
dent wave.  For a metal surface, the phases of the
scattered waves are such that the reflected wave inside
just cancels the incident wave and there is no wave
inside.  All the radiation is reflected.  For other types of
material that are not opaque, the incident and scattered

waves do not cancel.  Instead they add up to produce a
new, transmitted wave whose crests move slower than
the speed of light.  This apparent slowing of the speed
of light, due to the interference of transmitted and
scattered waves, leads to the bending of a beam of light
as it enters or leaves a transparent medium.  It is this
bending that  allows one to construct lenses and
optical instruments.

Exercise 1

Using Figure (2), prove that the angle of incidence
equals the angle of reflection.

angle of
incidence

mirror

angle of
reflection

θi θr

Figure 2b
When light reflects from a mirror, the angle
of incidence equals the angle of reflection.

reflected wave

incident wave

angle of
incidence

angle of
reflection

θi θr

Figure 2a
A reflected wave is produced when the incident wave is
scattered by many atoms. From this diagram, you can see
why the angle of incidence equals the angle of reflection.
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X RAY DIFFRACTION
If the wavelength of the light striking a crystal becomes
comparable to the spacing between atoms, we get a
new effect.  The scattered waves from adjacent atoms
begin to interfere with each other and we get diffraction
patterns.

The spacing between atoms in a crystal is of the order
of a few angstroms.  (An angstrom, abbreviated  A

o

, is
 10– 8cm . An angstrom is essentially the diameter of a

hydrogen atom.)  Light with this wavelength is in the x
ray region.  Using Einstein's formula   E = hf = hc/λ ,
but in the form

   
E (in eV) = 12.4 × 10– 5 eV⋅cm

λ in cm

we see that photons with a wavelength of  A
o

2 have an
energy

   
E photon with 2A°

wavelength = 12.4 × 10– 5eV⋅cm
2 × 10– 8cm

= 6,200 eV (1)

This is a considerably greater energy than the 2 to 3 eV
of visible photon.

When a beam of x rays is sent through a crystal
structure, the x rays will reflect from the planes of
atoms within the crystal.  The process,  called Bragg
reflection, is illustrated for the example of a cubic
lattice in Figure (3).  The dotted lines connect lines of
atoms, which are actually planes of atoms if you
consider the depth of the crystal.  An incident wave
coming into the crystal can be reflected at various
angles by various planes, with the angle of incidence
equal to the angle of reflection in each case.

When the wavelength of the incident radiation is
comparable to the spacing between atoms, we get a
strong reflected beam when the reflected waves from
one plane of atoms are an integral number of wave-
lengths behind the reflected waves from the plane
above as illustrated in Figure (4).  If it is an exact
integral wavelength, then the reflected light from all the
parallel planes will interfere constructively giving us
an intense reflected wave.  If, instead, there is a slight
mismatch, then light from relatively distant planes will
cancel in pairs and we will not get constructive interfer-
ence.  The argument is similar to the one used to find the
maxima in a diffraction grating.

incident  X rays

reflected  X rays

Planes of atoms

incident  X rays

reflected  X rays

Figure 3
Planes of atoms act like mirrors reflecting X rays.

Figure 4
When the incident X ray wavelength equals the spacing
between one of the sets of planes, the reflected waves
add up to produce a maxima.
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Thus with Bragg reflection you get an intense reflec-
tion only from planes of atoms, and only if the wave-
length of the x ray is just right to produce the construc-
tive interference described above.  As a result, if you
send an x ray beam through a crystal, you get  diffrac-
tion pattern consisting of a series of dots surrounding
the central beam, like those seen in Figure (5).  Figure
(5a) is a sketch of the setup and (5b) the resulting
diffraction pattern for x rays passing through a silver
bromide crystal whose structure is shown in (5c).

The main use of x ray diffraction has been to determine
the structure of crystals.  From the location of the dots
in the x rays' diffraction photograph, and a knowledge
of the wavelength of the x rays, you can figure out the
orientation of and spacing between the planes of atoms.
By using various wavelength x rays, striking the crystal
at different angles, it is possible to decipher complex
crystal structures.  Figure (6) is one of many x ray
diffraction photographs taken by J. C. Kendrew of a
crystalline form of myoglobin.  Kendrew used these x
ray diffraction pictures to determine the structure of the
myoglobin molecule shown in Figure (17-3).  Kendrew
was awarded the 1962 Nobel prize in chemistry for this
work.

crystal

incident X ray
reflected rays

film

Figure 5
X ray diffraction study of a silver bromide crystal.

Figure 6
One of the X ray diffraction photographs used by
Kendrew to determine the structure of the
Myoglobin molecule.

c) The silver
bromide crystal is
a cubic array with
alternating silver
and bromine
atoms.

b)  X ray diffraction pattern produced by a silver
bromide crystal. (Photograph courtesy of R. W.
Christy.)

a)  An incident beam of X rays is diffracted
by the atoms of the crystal.

Figure 17-3
The Myoglobin molecule, whose structure
was determined by X ray diffraction studies.
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Diffraction by Thin Crystals
The diffraction of waves passing through relatively
thin crystals can also be analyzed using the diffraction
grating concepts discussed in Chapter 33.  Suppose for
example, we had a thin crystal consisting of a rectangu-
lar array of atoms as shown in Figure (7a).  The edge
view of the array is shown in (7b).  Here each dot
represents the end view of a line of atoms.

Now suppose a beam of waves is impinging upon the
crystal as indicated in Figure (7b).  The impinging
waves will scatter from the lines of atoms, producing
an array of circular waves as shown.

Compare this with Figure (8), a sketch of waves
emerging from a diffraction grating.  The scattered
waves from the lines of atoms, and the waves emerg-
ing from the narrow slits have a similar structure and
therefore should produce similar diffraction patterns.

edge

view

lines of
atoms

incident
wave

lines of atoms

scattered waves

incident
wave

diffraction grating

emerging waves

Figure 7a
Front view of a rectangular array
of atoms in a thin crystal.

Figure 8
The waves emerging from a diffraction grating have a
similar structure as waves scattered by a line of atoms.

Figure 7b
Edge view with an incident wave. Each dot now
represents one of the line of atoms in Figure (7a).

alternate
lines of
atoms

Figure 9
Various lines of atoms can imitate
slits in a diffraction grating.

Figure 10a
A laser beam sent through a
single grating. The lines of the
grating were 25 microns wide,
spaced 150 microns apart.
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There is one major difference between the array of
atoms in Figure (7) and the diffraction grating of Figure
(8).  In the crystal structure there are numerous sets of
lines of atoms, some of which are indicated in Figure
(9).  Each of these sets of lines of atoms should act as
an independent diffraction grating, producing its own
diffraction pattern.  The main sets of lines are horizon-
tal and vertical, thus the main diffraction pattern we
should see should look like that produced by two
diffraction gratings crossed at right angles.  Sending a
laser beam through two crossed diffraction gratings
produces the image shown in Figure (10).  In Figure
(10a), the laser beam is sent through a single grating.  In
(10b) we see the effect of adding another grating
crossed at right angles.

Exercise 2
In Figure (10a) the maxima seen in the photograph are
1.68 cm apart and the distance from the grating to the
screen is 4.00 meters.  The wavelength of the laser
beam is   6.3 × 10– 5cm. What is the spacing between the
slits of the diffraction grating?

Exercise 3

In Figure (11), a laser beam is sent through two crossed
diffraction gratings of different spacing.  Which image,
(a) or (b) is oriented correctly?  (What happens to the
spacing of the maxima when you make the grating lines
closer together?)

Figure 10b
A laser beam sent through
crossed diffraction gratings.
Again the lines of the grating
were 25 microns wide, spaced
150 microns apart.

Figure 11
Two diffraction gratings with
different spacing are crossed. As
shown, the vertical lines are
farther apart than the horizontal
ones. Which of the two images of
the resulting diffraction pattern
has the correct orientation?

a)

b)
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THE ELECTRON
DIFFRACTION EXPERIMENT
One of the main differences between the scattering of
x rays and of electrons is that x ray photons interact less
strongly with atoms, with the result that x rays can
penetrate deeply into matter.  This enables doctors to
photograph through flesh to observe broken bones, or
engineers to photograph through metal looking for
hidden flaws.  Electrons interact strongly with atoms,
do not penetrate nearly as deeply, and therefore are well
suited for the study of the structure of surfaces or thin
crystals where you get considerable scattering from a
few layers of atoms.

The Graphite Crystal
Graphite makes an ideal substance to study by electron
scattering because graphite crystals come in thin sheets.
A graphite crystal consists of a series of planes of
carbon atoms.  Within one plane the atoms have the
hexagonal structure shown in Figure (12), reminiscent
of the tiles often seen on bathroom floors.  The spacing
between neighboring atoms in each hexagon is 1.42  A

o

as indicated at the bottom of Figure (12).

The atoms within a plane are very tightly bound
together.  The hexagonal array forms a very strong
framework.  The planes themselves are stacked on top
of each other at the considerable distance of 3.63  A

o

 as
indicated in Figure (13).  The forces between these
planes are weak, allowing the planes to easily slide over
each other.  The result is that graphite is a slippery
substance, making an excellent dry lubricant.  In con-
trast, the strength within a plane makes graphite an
excellent strengthening agent for epoxy.  The resulting
carbon filament epoxies, used for constructing racing
boat hulls, light airplanes and stayless sailboat masts, is
one of the strongest plastics available.

d
1

d  =2.13
A

1

1.42A

effective gratings

o

o

Figure 12
The hexagonal array of atoms in one layer of a
graphite crystal. Lines of atoms in this crystal
act as crossed diffraction gratings.

plane
separation
= 3.63A

o

Figure 13
Edge view of the graphite crystal, showing the
planes of atoms. The planes can easily slide over
each other, making the substance slippery.
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The Electron Diffraction Tube
The electron diffraction experiment where we sent a
beam of electrons through a graphite crystal, can be
viewed either as an experiment to demonstrate the
wave nature of electrons or as an experiment to study
the structure of a graphite crystal.  Perhaps both.

The apparatus, shown in Figure (14), consists of an
evacuated tube with an electron gun at one end, a
graphite target in the middle, and a phosphor screen at
the other end.  A finely collimated electron beam can be
aimed to strike an individual flake of graphite, produc-
ing a single crystal diffraction pattern on the phosphor
screen.  Usually you hit more than one crystal and get
a multiple image on the screen, but with some adjust-
ment you can usually obtain a single crystal image.

Electron Wavelength
The accelerating voltage required to produce a good
diffraction pattern is in the range of 6,000 volts.  As our
first step in the analysis, let us use the de Broglie
wavelength formula to calculate the wavelength of
6,000 eV electrons.

The rest energy of an electron is .51 MeV, or 510,000
eV, far greater than the 6,000 eV we are using in this
experiment.  Since the 6,000 eV kinetic energy is much
less than the rest energy, we can use the nonrelativistic
formula  1/2 mv2  for kinetic energy.  First converting
6,000 eV to ergs, we can equate that to  1/2 mv2  to
calculate the speed v of the electron.  We get

  6000 eV × 1.6 × 10– 12ergs
eV = 1/2 mev

2 (2)

With the electron mass   me = .911 × 10– 27gm , we get

  
v2 =

2 × 6000 × 1.6 × 10– 12ergs

.911 × 10– 27gm

= 21.1 × 1018cm2

sec2

  v = 4.59 × 109cm/sec (3)

which is slightly greater than 10% the speed of light.

The next step is to calculate the momentum of the
electron for use in de Broglie's formula.  We have

  p = mv

= .911 × 10– 27gm × 4.59 × 109cm
sec

= 4.18 × 10– 18gm cm
sec

(4)

Finally using de Broglie's formula we have

  
λ = h

p =
6.63 × 10– 27gm cm2/sec
4.18 × 10– 18gm cm/sec

  λelectron = 1.59 × 10– 9cm = .159 °A (5)

Thus the wavelength of the electrons we are using in
this experiment is about one tenth the spacing between
atoms in the hexagonal array.

Exercise 4

Calculate the wavelength of a 6000 eV photon.  What
would cause such a difference in the wavelengths of a
photon and an electron of the same energy?

graphite crystal
phosphor
screen

electron gun

electron beam

diffracted
electrons

18 cm

Figure 14
Electron diffraction apparatus. An electron beam,
produced by an electron gun, strikes a graphite
crystal located near the center of the evacuated tube.
The original beam and the scattered electrons strike
a phosphor screen located at the end of the tube.



36-10  Scattering of Waves

The Diffraction Pattern
What should we see when a beam of waves is diffracted
by the hexagonal array of atoms in a graphite crystal?
Looking back at the drawing of the graphite crystal,
Figure (12), we see that there are prominent sets of lines
of atoms in the hexagonal array.  To make an effective
diffraction grating, the lines of atoms have to be equally
spaced.  We have marked three sets of equally-spaced
lines of atoms, each set being at an angle of 60° from each
other.  We expect that these lines of atoms should
produce a diffraction pattern similar to three crossed
diffraction gratings.

In Figure (15), we are looking at the diffraction we get
when a laser beam is sent through three crossed diffrac-
tion gratings.  In (15a), we have 1 diffraction grating.  In
(15b) a second grating at an angle of 60° has been added.
In (15c) we have all three gratings, and see a hexagonal
array of dots surrounding the central beam, the central
maximum.

Figure (16) is the electron diffraction pattern photo-
graphed from the face of the electron diffraction tube
shown in Figure (14).  We clearly see an hexagonal array
of dots expected from our diffraction grating analysis.
On the photograph we have superimposed a centimeter
scale so that measurements may be made from this
photograph.

0 1 2 3 4 cm

d
1

effective gratings

Figure 15a
Single grating
diffraction
pattern.

Figure 15b
Two grating
diffraction
pattern.

Figure 15c
Diffraction
pattern from
three crossed
gratings.

Figure 12 (section)
Three sets of lines of atoms act as three crossed
diffraction gratings with 2.13 angstrom spacing.

Figure 16
Diffraction pattern produced by a beam of electrons
passing through a single graphite crystal. The energy
of the electrons was 6000 eV.

d  =2.13
A

1

1.42A

o

o
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The electron diffraction apparatus allows us to move
the beam around, so that we can hit different parts of the
target. In Figure (16), we have essentially hit a single
crystal. When the electron beam strikes several graph-
ite crystals at the same time, we get the more complex
pattern seen in Figure (17).

Analysis of the Diffraction Pattern
Let us begin our analysis of the diffraction pattern by
selecting one set of dots in the pattern that would be
produced by one set of lines of atoms in the crystal.  The
dots and the corresponding lines of atoms are shown in
Figure (18).  In (18a) we see that the spacing  Ymax
between the dots on the screen is 1.33 cm. These
horizontal dots correspond to the maxima for a vertical
set of lines of atoms indicated in (18c). In (18b) we are
reminded that the distance from the target to the screen
is 18 cm.  Using the diffraction grating formula, we can
calculate the wavelength of the electron waves that
produce this set of maxima.

Figure 17
Diffraction pattern produced by a beam of electrons
passing through multiple graphite crystals.

Using the diffraction formula, Equation 33-3, and
noting that  Ymax << D, we have

  λ = Ymax
d

D2 + Ymax
2

≈ Ymax
d
D

= 1.33 cm × 2.13 × 10– 8cm
18 cm

λ = 1.57 × 10– 9cm (6)

which agrees well with Equation 5, the calculation of
the electron wavelength using the de Broglie wave-
length formula.

0 1 2 3 4 cm

d1

d  =
2.13 A

1 o

graphite 
crystal

diffraction
grating
maxima

diffracted
electrons

18 cm

Figure 18a
The diffraction grating maxima from one set of lines in
the graphite crystal. You can see that  3ymax = 4cm, so
that  ymax = 1.33 cm.

Figure 18b
Top view of the electron diffraction apparatus..

Figure 18c
The vertical lines of atoms in the graphite crystal that
produce the horizontal row of dots seen in (a).
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Other Sets of Lines
With a careful analysis of the lines of atoms in the
hexagonal ray of atoms, one can explain all the dots of
the diffraction pattern of Figure (16).  For example, in
Figure (19) we  see that there is another set of lines that
are rotated at an angle of 30° and more closely spaced
than our original set.  In Figure (20), we have high-
lighted a set of dots in the diffraction pattern that are
rotated by an angle of 30° and more widely spaced than
the dots we have been analyzing. Since more closely
spaced lines in a grating produce more widely spaced
maxima, we should suspect that the highlighted maxima
result from this new set of lines. The point of Exercise
5 is to see if this is true.

Exercise 5
(a) Explain why more closely spaced atoms should
produce more widely spaced dots in the diffraction
pattern.

(b) Assuming that the dots highlighted  in Figure (20) are
produced by the lines of atoms shown by dotted lines in
set 2 of the effective gratings, calculate the wavelength
of the waves producing the dots.  Compare your results
with our previous analysis.

Exercise 6

Suppose that a beam of neutrons rather than electrons
were fired at the graphite crystal.  Assuming that neu-
trons also obey the de Broglie relationship   λ = h/p, what
should be the kinetic energy, in eV, of the neutrons in
order to produce the same diffraction pattern with the
same spacing between dots?

d
1

d  =2.13
A

1

d
2

d  =
1.22A

1.42A

2

effective gratings
set 1

effective gratings
set 2

o

o

o

0 1 2 3 4 cm

Figure 19
It is easy to find a second set of effective
gratings, rotated 30° from the first set,
and with a narrower spacing.

Figure 20
We have highlighted the
maxima produced by this
set of lines. Note that the
more narrowly spaced
lines produce more
widely spaced maxima.
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Figure 21
Microphotograph of the three crossed diffraction
gratings. The lines are 25 microns wide and 100
microns apart, on centers. (Student project by Brady
Beale and Amy Coughlin.)

Figure 15c
Diffraction pattern produced by a laser beam going
through the three crossed gratings of Figure 21.

Figure 22
Microphotograph of a hexagonal dot pattern. The dots
are 25 microns in diameter and 100 microns apart.
(Student project by Brady Beale and Amy Coughlin.)

Figure 23
Diffraction pattern produced by a laser beam going
through the hexagonal dot pattern of Figure 22.

Student Projects
The crossed diffraction gratings used to obtain the
various laser diffraction patterns in this chapter, were
created using the Adobe Illustrator program, and then
printed on film using a Linatronic imagesetter at a local
desktop publishing company.  The one micron resolu-
tion of the imagesetter allowed us to construct various
grating and dot patterns that produced reasonable
diffraction patterns with a laser.

Several students doing project work with these gratings
and dot patterns suspected that some patterns were not
as good as they should be and took microscope photo-
graphs of them.  They found that lines or dots as small
as 10 microns wide tended to be filled in and blotchy,
but lines or dots 25 microns wide came out fairly well
as can be seen in Figures (21) and (22).  Figure (23) is
the laser diffraction pattern produced by a laser beam
passing through the hexagonal dot pattern of Figure
(22).
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incident
wave

lines of atoms

scattered waves

incident
wave

diffraction grating

emerging waves

Student project by Gwendylin Chen
In our discussion of the diffraction of waves by the
atoms of a crystal, we pointed out that waves should
emerge from a line of atoms in much the same wah that
they do from the slits of a diffraction grating. The two
situations were illustrated in Figures (7b and 8) repro-
duced below.

That a slit and a line produce similar diffraction pat-
terns was clearly illustrated in a project by Gwendylin
Chen. While working with a laser, she observed that
when the beam passed over a strand of hair it produced
a single slit diffraction pattern superimposed on the
image of the beam itself. Here we have reproduced
Gwendylin’s experiment. Figure (24) is a photograph
of a slit made from two scapel blades, and a strand of
Gwendylin’s hair. We tried to make the width of the slit
the same as the width of the hair. The two circles
indicate where we aimed the laser for the two diffrac-
tion patterns.

The results are seen in Figure (25).The diffraction
patterns are almost identical.  The only difference is
that when the beam passes over the hair, it continues on
landing in the center of the diffraction pattern.

a)  single slit diffraction pattern

b)  diffraction pattern produced by strand of hair

Figure 8
The waves emerging from
a diffraction grating have
a structure similar to the
waves scattered by a line of
atoms.

Figure 7b
Edge view of a thin
crystal with an incident
wave. Each dot now
represents one of the line
of atoms in the crystal.

Figure 24
Slit and hair used to produce diffractiopn patterns.
The circles indicate where we aimed the laser.

Figure 25
Comparason of diffeaction patterns.

incident laser beam

strand of hair

slit formed by two scapels

laser through slit

laser past hair
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Chapter 37
Lasers, a Model Atom
and Zero Point Energy

“Once at the end of a colloquium I heard Debye saying
something like: ‘Schrödinger, you are not working
right now on very important problems...why don’t you
tell us some time about that thesis of de Broglie, which
seems to have attracted some attention?’ So in one of
the next colloquia, Schrödinger gave a beautifully clear
account of how de Broglie associated a wave with a
particle, and how he could obtain the quantization
rules ... by demanding that an integer number of waves
should be fitted along a stationary orbit. When he had
finished, Debye casually remarked that he thought this
way of talking was rather childish ... To deal properly
with waves, one had to have a wave equation.”

FELIX BLOCK, in an address to the American Physi-
cal Society in 1976.

Schrödinger took Debye’s advice, and in the following
months devised a wave equation for the electron wave,
an equation from which one could calculate the elec-
tron energy levels.  The structure of the hydrogen atom
was a prediction of the equation without arbitrary
assumptions like those needed for the Bohr theory.  The
wave nature of the electron turned out to be the key to
the new mechanics that was to replace Newtonian
mechanics as the fundamental theory.

In the next chapter we will take a look at some of the
electron wave patterns determined by Schrödinger’s
equation, and see how these patterns, when combined
with the Pauli exclusion principle and the concept of
electron spin, begin to explain the chemical properties
of atoms and the structure of the periodic table.

The problem one encounters when discussing the
application of Schrödinger’s equation to the hydrogen
atom, is that  relatively complex mathematical steps
are required in order to obtain the solutions.  These
steps are usually beyond the mathematical level of most

introductory physics and chemistry texts, with the
result that students must simply be shown the solutions
without being told how to get them.  We will have to do
the same in the next chapter.

In this chapter we will study a model atom, one in which
we can see how the particle-wave nature of the electron
leads directly to quantized energy levels and atomic
spectra.  The basic idea, which we illustrate with the
model atom, is that whenever you have a wave confined
to some region of space, there will be a set of allowed
standing wave patterns for that wave.  Whether the
patterns are complex or simple depends upon the way
the wave is confined.  If the wave is also a particle, like
an electron or photon, you can then use the particle
wave nature to calculate the energy of the particle in
each of the allowed standing wave patterns.  These
energy values are the quantized energy levels of the
particle.

An example of a set of simple standing waves that are
easily analyzed is found in the laser.  It is essentially the
laser standing wave patterns that we use for our model
atom. For this reason we begin the chapter with a
discussion of the laser and how the photon standing
waves are established.  In the model atom the photon
standing waves of the laser are replaced by electron
standing waves.

An analysis of the model atom shows why any particle,
when confined to some region of space, must have a
non zero kinetic energy.  The smaller the region of
space, the greater this so called zero point kinetic
energy.  When these ideas are applied to the atoms in
liquid helium, we see why helium does not freeze even
at absolute zero.  We also see why the entropy definition
of temperature must be used at these low temperatures.
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The purity of the light in a laser beam depends upon the
standing light wave pattern created by the two mirrors,
and upon a quantum mechanical effect discovered by
Einstein in 1915.

Einstein found that there were two distinct ways an
excited atom could radiate light, either by spontaneous
emission  or stimulated emission.  An example of
spontaneous emission is when an excited atom is all by
itself and eventually drops down to a lower energy
level.  The emitted photon can come out in any direc-
tion and can be Doppler shifted.

If, however, a photon with the right energy passes by
the excited atom, there is some chance that the atom
will emit a photon exactly like the one passing by.  This
is called stimulated emission. (The energy of the pass-
ing photon has to be close to the energy the atom would
naturally radiate.)

It is the process of stimulated emission that can lead to
a laser beam.  Suppose we have a gas of excited atoms
located between parallel mirrors.  At first the atoms
radiate spontaneously in all directions.  (We assume
that there is some mechanism to excite the atoms).
After a while one of the photons hits a mirror straight
on and starts reflecting back and forth between the
parallel mirrors.  As the photon moves back and forth,
it passes by an excited atom, stimulating that atom to
emit an identical photon.

Now there are two identical photons bouncing back
and forth.  Each is likely to stimulate another atom to
emit an identical photon, and we have four identical
photons, etc.  Soon there are so many identical photons
moving through the excited atoms that there is little
chance that an atom can radiate spontaneously.  All the
radiation is stimulated and all the photons are identical
to the one that started bouncing back and forth between
the mirrors.

The mirrors on the ends of the laser are not perfect
reflectors, a few percent of the photons striking the
mirror pass through, forming the beam produced by the
laser.  The photons lost to the laser beam are continually
replaced by new identical photons being emitted by
stimulated emission.  One of the tricky technical parts
of constructing a laser is to maintain a continuous
supply of excited atoms.  There are various ways of
doing this that we need not discuss here.

Figure 1
Laser consisting of two parallel mirrors with
standing light waves trapped between the mirrors

THE LASER AND
STANDING LIGHT WAVES
The laser, the device that is at the heart of your CD
player and fiber optics communications, provides a
common example of a standing light wave.  In most
cases a laser consists of two parallel mirrors with
standing light waves trapped between the mirrors as
illustrated in Figure (1).  The light comes from radiation
emitted by excited atoms that are located within the
standing wave.

How the light radiated by the excited atoms ends up in
a standing wave is a story in itself.  An atom excited to
a high energy level can drop down to a lower level by
emitting a photon whose energy is the difference in
energy of the two levels.  This photon will have the
wavelength of the spectral line associated with those
two levels.

Spectral lines are not absolutely sharp.  For example,
due to the Doppler effect, thermal motion slightly shifts
the wavelength of the emitted radiation.  If the atom is
moving toward you when it radiates, the wavelength is
shifted slightly towards the blue.  If moving away, the
shift is toward the red.  In addition the photons are
radiated in all directions, and waves from different
photons have different phases.  Even in a sharp spectral
line the light is a jumble of directions and phases, giving
what is called incoherent light.

In contrast the light in a laser beam travels in one
direction, the phases of the waves are lined up and there
is almost no spread in photon energies.  This is the beam
of coherent light which made it so easy for us to study
interference effects like those we saw in the two slit and
multiple slit diffraction patterns. These patterns would
be much more difficult to observe if we had to use
incoherent light.

optically 
flat mirror

excited
gas atoms

standing 
light wave

partially reflecting 
optically flat mirror

laser beam
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Photon Standing Waves
The photons bouncing back and forth between the
mirrors in a laser are in an allowed standing wave
pattern.  Back in Chapter 15 in our discussion of
standing waves on a guitar string, we saw that only
certain standing wave patterns were allowed, those
shown in Figure (15-15) reproduced here which had an
integral or half integral number of wavelengths be-
tween the ends of the string.  For photons trapped
between two mirrors, the allowed standing wave pat-
terns are also those with an integral or half integral
number of wavelengths between the mirrors, as indi-
cated schematically in Figure (2).

Because of the simple geometry, we do not need to
solve a wave equation to determine the shape of these
standing light waves.  The waves are sinusoidal, and the
allowed wavelength are given by the same formula as
for the allowed waves on a guitar string, namely

   λn = 2D
n

wavelength of the
nth standing wave (1)

where D is the separation between the mirrors.

Figure 15-15  (reproduced)
On a guitar string only certain standing wave patterns
which have an integral or half intergral number of
wavelengths between the ends of the string are allowed.

Figure 2
Three longest wavelength standing wave patterns
for a light beam trapped between two mirrors.
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mirrors is D, then from Equation 1 (   λn = 2D n2D n), and
Equation 2 (   En = hc λnhc λn ), we find that the quantized
values of  En  are

  En = hc
λn

= hc
2D
n

 
En = n hc

2D
(3)

From Equation 3 we can construct an energy level
diagram for the photons trapped between the mirrors.
In contrast to the energy level diagram for the hydrogen
atom, the photon energies start at zero because there is
no potential energy.  We see that the levels are equally
spaced, a distance hc/2D apart.

Exercise 1

If you could have two mirrors   1A
o

 apart (the size of a
hydrogen atom) what would be the energy, in eV, of the
lowest 5 energy levels for a photon trapped between the
mirrors?

A MODEL ATOM
Now imagine that we replace the photons trapped
between two mirrors with an electron between parallel
walls located a distance D apart, as shown in Figure (4).
For this model, the allowed standing wave patterns are
again similar to the guitar string standing waves. The
allowed electron wavelengths are

   
λn = 2D

n
allowed wavelength
of an electron trapped
between two walls

(1a)

The difference between having a photon trapped be-
tween mirrors and an electron between walls, is the
formula for the energy of the particle.  If the energy of
the electron is non relativistic, then the formula for its

E  = 1(hc/2D) 1

E  = hc/λ n n

E  = 2(hc/2D) 2

E = 0

photon energy levels

E  = 3(hc/2D) 3

E  = 4(hc/2D) 4

D 

Photon Energy Levels
The special feature of the standing light wave is that the
light has both a wave and a particle nature.  Equation 1,
which tells us the allowed wavelengths, is all we need
to know about the wave nature of the light.  The particle
nature is described by Einstein’s photoelectric effect
formula   E = hf = hc λhc λ .  Applying this formula to the
photons in the standing wave, we find that a photon
with an allowed wavelength   λn  has a corresponding
energy  En  given by

  En = hc
λn

(2)

Because only certain wavelengths   λn  are allowed,
only certain energy photons, those with an energy  En
are allowed between the mirrors.  We can say that the
photon energies are quantized.  If the separation of the

Figure 3
Energy level diagram for a photon
trapped between two mirrors.
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��
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�
�
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electron

D 

Figure 4
Electron trapped between two walls
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kinetic energy is  1/2 mv2 , not the Einstein formula
  E = hc/λ  that applies to photons.  The difference arises

because the electron has a rest mass while the photon
does not.

For the electron trapped between walls, there is no
electric potential energy like there was in the hydrogen
atom.  Thus we can take  1/2 mv2  as the formula for the
electron’s total energy, ignoring the electron’s rest
mass energy as we usually do in non relativistic calcu-
lations.

To relate the kinetic energy to the electron’s allowed
wavelength    λn , we use de Broglie’s formula   p = h/λ .
The easy way to do this is to express the energy

 1/2 mv2  in terms of the electron’s momentum p = mv.
We get

 E = 1/2 mv2 = 1
2m mv 2

 
E =

p2

2m                                                      (4)

Next use the de Broglie formula   p = h/λ  to give us

  
En =

h/λn
2

2m = h2

2mλn
2 (5)

as the formula for the energy of an electron of wave-
length   λn .

Finally use Equation 1,   λn = 2D/n , for allowed elec-
tron wavelengths to get

 
En = h2

2m 2D
n

2

 
En = n2 h2

8mD2                                      (6)

This is our equation for the energy levels of an electron
trapped between two plates separated by a distance D.
The corresponding energy level diagram is shown in
Figure (5).  The energy levels go up as  n2  instead of
being equally spaced as they were in the case of a
photon trapped between two mirrors.

If the electron is in one of the higher levels and falls to
a lower one, it will get rid of its energy by emitting a
photon whose energy is equal to the difference in the
energy of the two levels.  Thus the trapped electron
should emit a spectrum of radiation with sharp spectral
lines, where the lines correspond to energy jumps
between levels just as in the hydrogen atom.  Thus the
electron trapped between plates is effectively a model
atom, complete with an energy level diagram and
spectral lines.

E  = h
1

E  = n En 1

E  = 4E2

2

2

1

E = 0

electron energy levels

E  = 9E 3 1

E  = 16E 4

2

1

D 

8mD

Figure 5
Energy level diagram for an electron
trapped between two walls.
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Our model atom is not just a fantasy.  With the
techniques used to fabricate microchips, it has been
possible to construct tiny boxes, the order of a few
angstroms across, and trap electrons inside.  An elec-
tron microscope photograph of these quantum dots as
they are called, is shown in Figure (6).  The allowed
standing wave patterns are reasonably well represented
by the sine wave patterns of Figure (5), where D is the
smallest dimension of the box.  Thus we predict that
electrons trapped in these boxes should have allowed
energies  En close to those given by Equation (6), and
emit discrete line spectra like an atom. This is precisely
what they do. (Some of the low energy jumps are
shown in Figure 7.)

In calculating with the model atom we have not fudged
in any way by modifying Newtonian mechanics or
even picturing a wave chasing itself around in a circle.
We see a spectrum resulting purely from a combination
of the particle nature and the wave nature of electrons
and photons, where the connection between the two
points of view is de Broglie’s formula   p = h λh λ .

Exercise 2
Assume that an electron is trapped between two walls
a distance D apart.  The distance D has been adjusted
so that the lowest energy level is  E1 = 0.375eV.

(a)  What is D?

(b)  What are the energies, in eV, of the photons in the
six longest wavelength spectral lines radiated by this
system?  Draw the energy level diagram for this system
and show the electron jumps corresponding to each
spectral line.

(c)  What are the corresponding wavelengths, in cm, of
these six spectral lines?

(d)  Where in the electromagnetic spectrum (infra red,
visible, or ultra violet) do each of these spectral lines lie?
If any of these lines are visible, what color are they?
(Partial answer:  the photon energies are 1.125, 1.875,
2.625, 3.00, 3.375, and 4.125 eV)

Exercise 3

Explain why an electron, confined in a box, cannot sit at
rest.  This is an important result whose consequences
will be discussed next.  Try to answer it now.

Figure 6
Grid of quantum dots. These cells are made on a
silicon wafer with the same technology used in
making electronic chips. An electron trapped in
one of these cells has energy levels similar to
those of our model atom. (See Scientific
American, Jan. 1993, p118.)

E  = h
1

E  = n En

1

1

1

12

3

4

E  = 4E

2

2
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some electron transitions

E  = 9E 

E  = 16E 

2

8mD

Figure 7
When an electron falls from one energy level to
another, the energy of the photon it emits equals
the energy lost by the photon.
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ZERO POINT ENERGY
One of the immediate consequences of the particle-
wave nature of the electron is that a confined electron
can never be at rest.  The smaller the confinement, the
greater the kinetic energy the electron must have.  This
follows from the fact that at least half a wavelength of
the electron’s wave must fit within the confining
region.  If D is the length of the smallest dimension of
the confining region, then the electron’s wavelength
cannot be greater than 2D.  But the smaller D is, the
shorter the electron’s wavelength is, the greater its
kinetic energy.

The de Broglie wavelength formula   λ = h/p  applies
not only to photons and electrons, but to any particle,
even an entire atom.  As a result, an atom confined to
a region of size D should have a wavelength no greater
than   λ1 = 2D , and thus a minimum kinetic energy

 
Emin = h2

8matomD2                                      (7)

where we simply replaced the electron's mass by the
atom' mass in Equation 7.  Equation 7 is somewhat
approximate if the atom is confined on all sides in a
three dimensional box, but it is reasonably accurate if
D is the smallest dimension of the box.

An atom in a solid or a liquid is an example of a particle
confined in a box.  The atom is confined by its neigh-
boring atoms as illustrated in Figure (8).  We may think
of its neighbors as forming a box of size D where D is
the average spacing between atoms.  Thus atoms in
solids or liquids have a minimum kinetic energy given
by Equation 7, and the atoms must be in continual
motion no matter how low the temperature!  Cooling
the solid cannot get rid of this so-called zero point
energy.

Exercise 4

In liquid helium, the helium atoms are about   3A
o

 apart
and the atoms have a mass essentially equal to 4 times
the mass of a proton.

(a) what is the zero point energy, in ergs, of helium
atoms in liquid helium?

(b) at what temperature T is the helium atom's thermal
kinetic energy 3/2 kT equal to the zero point energy
calculated in part (a)?  [Answer: (a)   9.1 × 10– 16ergs,
(b) 4.42 kelvin.]

Helium is an especially interesting substance to study
at low temperatures because it is the only substance that
remains a liquid all the way down to absolute zero.  The
only way you can freeze helium is to take it down to
very low temperatures, and then squeeze it at relatively
high pressure.

In all other substances, at low enough temperatures the
atoms settle down to a solid array.  To melt the solid,
you have to add enough thermal energy to disrupt the
molecular bonds that hold the atoms in a more or less
fixed array.

Why can't helium atoms be cooled to the point where
molecular forces dominate and the atoms form a solid
array?  Part of the answer is that the molecular forces
between helium atoms are very weak, the weakest
there is between any atoms.  Consequently you have to
go to very low temperatures before helium gas even
becomes a liquid.  At atmospheric pressure, helium
becomes a liquid at 4.5 kelvins.  To turn liquid helium
into a solid you should have to go to still lower
temperatures.

From Exercise 4, you saw that, in one sense, you cannot
get helium to a lower temperature, at least as far as the
kinetic energy of the atoms is concerned.  The zero
point energy of the atoms is as big as the thermal energy
that the atoms would have at a few kelvin-- 4.4 kelvin
by our rough estimate in Exercise 4. As a result, cooling
the helium further cannot remove enough kinetic en-
ergy to allow the helium liquid to freeze.  Helium thus
remains a liquid all the way down to absolute zero.

our
atom

neighboring atoms

Figure 8
A helium atom in liquid
helium is confined by its
neighbors. As a result it
has a zero point energy
like an electron
confined between walls.
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Definition of Temperature
This discussion raises interesting questions about the
very concept of temperature.  Our initial experimental
definition of temperature was the ideal gas thermom-
eter, which, as we saw from the derivation of the ideal
gas law, is based on the thermal kinetic energy of the
particles.  The simple idea of absolute zero was the
point where all the thermal kinetic energy was gone and
the atoms were at rest.  Now we see that no matter how
much thermal kinetic energy we try to remove, zero
point or "quantum kinetic energy"  remains.  This is not
a problem at ordinary temperatures, but it can signifi-
cantly affect the behavior of matter at temperatures
close to absolute zero.

At low temperatures, the ideal gas thermometer is not
adequate, and a new definition of temperature is needed.
That new definition is provided by the efficiency of
Carnot's heat engine.  As we suggested in Chapter 17,
this gives us a definition of temperature based, not on
the kinetic energy of the molecules, but upon the degree
of randomness or disorder.  A system at absolute zero
is as perfectly ordered as it can be.  If zero point energy
is required by the particle wave nature of the atoms, if
it cannot be removed, then the most organized, least
disordered state of the system must include this zero
point energy.  Helium can go to its most ordered state
at absolute zero, retain its zero point energy, and remain
a liquid.

TWO DIMENSIONAL
STANDING WAVES
In our discussion of percussion instruments in Chapter
16, we saw that a drumhead has a set of allowed
standing wave patterns or normal modes, in some ways
like the standing waves or normal modes on a guitar
string. On a guitar string we have one dimensional
waves, while the drumhead has the two dimensional
wave patterns. The six lowest frequency patterns are
shown in Figure (16-41) repeated here. We could
excite and observe individual standing waves using the
apparatus shown in Figure (16-40) also shown again
here.

That we get the same kind of standing wave patterns on
an atomic scale is seen in Figure (9), which is a recent
tunneling microscope image of an electron standing
wave on the surface of a copper crystal. The standing
wave, which is formed inside a corral of 48 iron atoms,
has the same shape as one of the allowed standing
waves on a drumhead. (This particular standing wave
pattern is excited because the average wavelength in
the standing wave is closest to the wavelength of the
conduction electrons at the surface of the copper.)

A colleague Geoff Nunes, who works with scanning
microscopes, describes the image: “The incredible
power of today’s personal computers has been made
possible by our ability to make smaller  and smaller
transistors.  The smallest transistor one could imagine
building would be made up of single atoms.  In a
dramatic series of experiments at IBM, Don Eigler and
his co-workers have shown how to use a tunneling
microscope to move and arrange single atoms.”

Figure 16-41 (reproduced)
Standing waves on a drumhead.
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Figure 9
Conduction electrons on the surface of a copper crystal, forming a standing wave
inside a corral of 48 iron atoms. The shape is the same as one of the symmetric
standing waves on a drumhead.   (Photo credits:  Crommie and Eigler/IBM.)

“This picture (Figure 9) shows a ridge of 48 iron atoms
arranged in a circle on the surface of a copper crystal.
Electrons in the copper are reflected from these iron
atoms much as the waves on the surface of a pond are
reflected from anything at the surface:  rocks, weeds,
the shoreline.  Inside the ring, the electron waves form

a beautifully symmetric pattern.  This pattern occurs
often in the physical world.  For example it is the shape
that the head of a drum forms when struck.  You can
easily observe a similar pattern by gently skidding the
base of a Styrofoam cup full of coffee across the surface
of a table.”

Figure 16-40 (reproduced)
Exciting and observing the standing waves on a drumhead.
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Chapter 38
Atoms

The focus of this chapter will be on the allowed electron
standing wave patterns in hydrogen, as calculated by
Schrödinger’s wave equation.  We will not work with
Schrödinger’s equation itself, which involves deriva-
tives in both space and time, and requires fairly ad-
vanced mathematical techniques to handle.  But this is
not a terrible loss, because the resulting wave patterns
are well known, and are all we need in order to
understand much of the structure and behavior of
atoms.

As we saw at the end of the last chapter, when we go to
two dimensions, the standing wave patterns become
more complex.  For example, to find the drumhead
standing wave patterns, we either had to do an experi-
ment to observe the patterns, or solve a wave equation
to calculate them.

To determine electron waves in hydrogen, our only
option is to rely on Schrödinger’s equation.  The
resulting standing waves are three dimensional in
shape, and do not have sharp edges like the drumhead
waves.  The electron in hydrogen is confined by the
electric force of the nucleus, in what physicist Jay
Orear called a “fuzzy walled box”.  Even though the
walls are not rigid, the standing waves have precise
shapes.

Although the standing wave patterns we will discuss
were calculated for the hydrogen atom, the general
features of these patterns apply to the electrons in
larger atoms.  We will find that when we include Pauli’s
exclusion principle and the concept of electron spin, we
can begin to see how the electron wave patterns
determine the chemical properties of atoms and the
structure of the periodic table.
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SOLUTIONS OF SCHRÖDINGER’S
EQUATION FOR HYDROGEN
In the Bohr theory, the energy levels for hydrogen were
determined by the assumption that the electron’s angu-
lar momentum L was quantized in units of h.  The
electron’s angular momentum was  L1 = h  in the low-
est energy level,  L2 = 2h in the second level, etc.
Assuming circular orbits, and applying classical me-
chanics, this led to the set of energy levels  En given by

 E1 = – e4m
2h2 = – 13.6 eV

 
En =

E1

n2 (1)

which gave us the values  E1 = –13.6 eV ,
 E2 = – 3.40 eV,  etc., that explained the hydrogen

spectra.

De Broglie’s contribution was to show that one could
understand the reason for quantization of angular mo-
mentum by assuming that the electron had a wave
nature, with the electron’s wavelength λ  related to its
momentum p by the formula

    λ = h
p de Broglie formula (2)

The quantization of angular momentum came from the
picture that an integral number of wavelengths fit around
one of the allowed circular orbits.

Following Debye’s suggestion (see the introduction to
Chapter 37), Schrödinger developed a wave equation
with which he was able to solve for the allowed standing
wave patterns of the electron in a hydrogen atom.  Doing
this required no arbitrary assumptions like circular orbits
or the quantization of angular momentum.  The wave
patterns are simply solutions of the wave equation.

Schrödinger’s equation has a surprisingly large number
of solutions for the allowed standing waves of an electron
in hydrogen.  These waves are characterized by three
numbers commonly given the names “n”, “ ”, and “m”.
It turns out that for the wave to be an acceptable solution,
a solution that does not have an infinite value at some
point, the numbers n, , and m have to have integer
values.  These integer numbers have become known as
quantum numbers.

Each of the allowed standing wave patterns in hydrogen
has a distinct set of values of the quantum numbers n, ,
and m.  Figure (1) shows six of the allowed patterns.
What we have drawn is the intensity of the wave pattern
as it would be seen if we looked through the wave.  When
the side and top view are different we show both to help
visualize the three dimensional structure of the wave.

The pattern on the bottom row labeled by the quantum
numbers (n = 1,  = 0, m = 0) is a spherical ball with a
fuzzy edge.  The radius of the ball is about equal to the
Bohr radius of .529 angstroms.  Schrödinger’s equation
allows us to calculate the energy of the electron in this
pattern and the result is -13.6 eV, the same as the lowest
energy state of the electron in the Bohr theory.  This is the
standing wave pattern for an electron in the ground state
– cool, transparent hydrogen.

On the second row in Figure (1) there are four distinct
patterns, all with n = 2 but with different values of  and
m.  Schrödinger’s equation predicts that the energy of
an electron in hydrogen is given, in general, by the
formula

 
En =

E1

n2 ;         
 E1 = – e4m

2h2 (3)

where n is the “n” quantum number we have been
discussing.  Since these are the same values we got from
the Bohr theory, Schrödinger’s equation predicts all the
energy levels needed to explain the entire spectrum of
light radiated by hydrogen.  Because of Equation 3, it is
reasonable to call n the energy quantum number for
hydrogen.

The first big surprise from Schrödinger’s equation is that
we can have several standing wave patterns all represent-
ing an electron with the same energy.  In the n = 2 energy
level, there are four distinct patterns representing an
electron with the energy  E2 = –3.40eV.  One of these
patterns has quantum numbers  = 0 ,
m = 0.  The other three have quantum numbers  = 1 , m
= 1, m = 0, and m = –1.

When we get up to the third energy level, n = 3, there are
nine patterns all with an energy of -1.51 eV.  There is one
pattern with  = 0 , m = 0; three patterns with  = 1 , m =
(1, 0, –1); and five patterns with  = 2 ,
m = (2, 1, 0, –1, –2).  As we go up in energy, we get an
ever increasing number of patterns.  The general rule is
that  can range from zero up to n –1, and the m values
can range from  +  to  – .
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Figure 1
The lowest energy standing wave patterns in hydrogen. The intensity
is what you would see looking through the wave.
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Exercise 1
a) For the n = 4 energy level, where  E4 = –.85eV, there
are 16 allowed standing wave patterns.  What are the
values of the quantum numbers  and m for these
patterns?

b) How many allowed patterns are there, what are the
values of  and m, and what is the energy, for the n = 5
standing wave patterns?

The  = 0 Patterns
For each energy level n, there is one wave pattern with

 = 0 .  We have shown the first three  = 0  patterns in
Figure (1).  All  = 0  wave patterns are spherically
symmetric.  The n = 1,   = 0  pattern, for the ground
state electron,  is a fuzzy spherical ball with a diameter
of about one angstrom.  The n = 2,  = 0  pattern is a
spherical ball surrounded by a spherical shell.  Between
the ball and the shell, at a radius r = 1.06 angstroms, the
wave has  value of zero.  We can call this a spherical
node.

In the n = 3,  = 0  pattern we have a spherical ball
surrounded by two spherical shells.  There are now two
spherical nodes, the inner one located at r = 1.00
angstroms and the outer one at r = 3.75 angstroms.  As
we go up higher in energy, we get one more spherical
node for each step up in energy level.  In Figure (2), we
compare the three lowest energy  = 0  wave patterns
with the three lowest frequency standing wave patterns
on a guitar string.  While the patterns look quite
different, both have the feature that as we go up one step
in energy or frequency, we get one more node in the
wave pattern.  The first harmonic (n = 1) has no nodes
between the ends of the string.  The second harmonic
(n = 2) has one node, while the third harmonic (n = 3)
has two nodes, etc.

One of the key features of angular momentum is that it
represents a rotation about an axis.  In Newtonian
mechanics, we defined the direction of the angular
momentum vector L  as being the direction of the axis
of rotation.  Because all the hydrogen wave patterns
with  = 0  are spherically symmetric, they have no
preferred axis about which the electron could have
angular momentum.

first 
harmonic or 
fundamental

second 
harmonic

third 
harmonic

n = 1        = 0

n = 2        = 0

n = 3        = 0

node

nodes

Figure 2
Comparison of the L = 0 electron standing
wave patterns with the guitar standing
waves. Each step up in energy level or
harmonic introduces one more node.
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The  ≠ 0 Patterns
In all the  ≠ 0 patterns, like the three n = 1,  = 1  patterns
shown in the middle row of Figure (1), there is a special
axis about which the electron can have angular momen-
tum.  This suggests that the  quantum number is related
to the electron’s angular momentum, and that when

 = 0 , the electron has no angular momentum.  This is
different from the Bohr picture where the electron’s
angular momentum started with one unit  L = h  in the
lowest energy level, two units  L = 2h  in the second level,
etc.  The Bohr theory did not allow for zero orbital angular
momentum orbits while Schrödinger’s equation tells us
that there is a zero angular momentum wave pattern in
each energy level.

Intensity at the Origin
Another general feature of the hydrogen wave patterns is
that all   = 0  patterns have a maximum intensity at the
origin, at the nucleus, while all the   ≠ 0  patterns have a
node there.  The node at the origin for   ≠ 0  patterns has
a simple classical explanation.  The classical formula for
angular momentum is the linear momentum p times the
lever arm r⊥⊥ . In order for the electron to have non zero
angular momentum about the nucleus, it must have a non
zero lever arm  r⊥  and therefore cannot be at the nucleus.
(One has to be careful applying Newtonian arguments to
atomic phenomena.  In the next chapter we will see a
similar argument fail when we discuss electron spin).

Later in this chapter we will see that the fact that   = 0
patterns have a maximum at the nucleus while the   ≠ 0
patterns have a node there, plays an important role in
the electron structure and chemical properties of atoms.

Quantized Projections
of Angular Momentum
A clue to understanding the   ≠ 0  wave patterns can be
obtained from a more detailed look at the two doughnut
shaped patterns in Figure (1), the patterns labeled by the
quantum numbers n = 2,  = 1 , m = +1 and m = –1.
While the m = +1 and m = –1 patterns look the same,
a more detailed calculation with the Schrödinger equa-
tion shows in the m = +1 pattern the electron is traveling
around the doughnut in a counterclockwise direction,
while in the m = –1 pattern the electron is traveling
clockwise.

These two patterns have an axis of symmetry which we
have labeled the z axis, that passes up through the center
of the doughnut.  (These axes are shown as white dotted
lines in the side views of these patterns, Figures 1d and
1h.)  Further calculation with Schrödinger’s equation
shows that the electron in the  = 1 , m = 1 pattern
(counterclockwise motion), the electron has a z compo-
nent of angular momentum precisely equal to one unit
h.

 
Lz

for the = 1
m = 1 pattern

= h (4a)

For the clockwise motion, the  = 1 , m = –1 pattern, the
z component of angular momentum is minus one unit
h

 
Lz

for the = 1
m = –1 pattern

= –h (4b)

The pattern in between, the one that looks like two
tennis balls, one on top of the other, described by the
quantum numbers  = 1 , m = 0 turns out to have no
angular momentum in the z direction.

 
Lz

for the = 1
m = 0 pattern

= 0 (4c)

We see that the “m” quantum number tells us how
many units of angular momentum the electron has in
the z direction.

z z

n = 2,   = 1,  m = 1 n = 2,   = 1,  m = –1

side view side view

top viewtop view

(d)

(c)

(h)

(g)

Figures 1c,d,g, and h repeated
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There is somewhat of an analogy between the three
n = 2,  = 1  patterns in Figure (1) and the bicycle wheel
demonstration we discussed in Chapter 7 (Figures 7-15
and 7-16).  In Figure (3) we compare the m = 1 pattern
with a bicycle wheel whose angular momentum L
points in the + z direction, the m = –1 pattern with a
bicycle wheel whose angular momentum points in the
– z direction, and the m = 0 pattern with a bicycle wheel
that has no component of angular momentum in the z
direction.

The analogy shown in Figure (3) actually demonstrates
how different angular momentum is on an atomic scale
from what we are familiar with on a human scale.  The
most striking difference is that you can point a bicycle
wheel in any direction you want.  By turning the wheel

over, you can change the z component  Lz from +L
when it is pointing up to any value down to –L when the
wheel is pointing down.  Any value between +L and –
L is allowed.

For the hydrogen atom, an electron in the second
energy level has only three  = 1  wave patterns, only
three distinct z projections of angular momentum, each
differing by one unit of angular momentum h.  There
is no wave pattern for  Lz equal to some fractional value
of h—the projections of angular momentum are
quantized!  There is absolutely nothing in Newtonian
mechanics that prepares us for understanding how
projections of angular momentum can be quantized.  It
is strictly a consequence of the wave nature of the
electron, and the fact that a confined wave has only
certain allowed standing wave patterns.

Figure 3
There are three
standing wave
patterns for a second
energy level, unit
angular momentum
electron.
Schrödinger’s
equation tells us that
the z axis projection
of angular
momentum in the
three patterns are 1
unit, 0 units, and –1
units . There are no
intermediate values,
because there are no
other wave patterns.
In comparison, a
bicycle wheel has not
only the three
projections of
angular momentum
shown, but also
many intermediate
values.

top toptop

side sideside

n = 2,   = 1,  m = 1 n = 2,   = 1,  m = –1n = 2,   = 1,  m = 0

z zz

z L z

L z

L
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The Angular Momentum
Quantum Number
In Figure (3) we showed the different orientations of a
bicycle wheel with a total angular momentum of
magnitude L.  The z component of the bicycle wheel’s
angular momentum ranges from +L when the axis is
pointing up to –L when the axis is pointing down.  For
the hydrogen electron in Figure (3),  = 1  for all the
patterns, and the z projection of the electron’s angular
momentum ranges from +1 unit for the m = 1 pattern
down to –1 unit for the m = –1 pattern.  This suggests
that the quantum number  represents the total angular
momentum of the electron while m represents the
allowed z projections.

This interpretation is almost right.  The  quantum
number is related to the electron’s total angular mo-
mentum, but the value of the total angular momentum
is not quite equal to  units of angular momentum as
one might expect.  Solving Schrödinger’s equation for
the magnitude L of the electron’s orbital angular mo-
mentum about the proton gives the result

  
L = + 1 h

total angular
momentum of
the electron (5)

For large values of , the difference between  and
 + 1  is slight and the z projections of angular

momentum can range essentially from  + h to  – h  as
one would expect from the bicycle wheel analogy.  But
for small (non zero) values of , the total angular
momentum is significantly larger than the maximum z
projection.  For  = 1 , the maximum z projection is h,
while the total angular momentum is

 L = 1 1 + 1 h = 2 h .

There was no guarantee that angular momentum had to
behave on an atomic scale, just the way we expected it
to from our experience with large scale phenomena.
All we need to do is understand the transition from large
to small scale phenomena.  In the case of angular
momentum, we can picture the bicycle wheel as having
a huge angular momentum quantum number .  As a
result there are a huge number of allowed projections,
with m ranging from  +  to  – , which allows us to
rotate the bicycle wheel axis in an apparently continu-
ous fashion.  And there is essentially no difference
between  and  + 1 , thus the maximum z projec-
tion of angular momentum essentially equals the total
angular momentum L.

Other notation
Further notation that some readers may have encoun-
tered, are the names (s waves) for the  = 0  patterns,
(p waves) for  = 1  patterns and (d waves) for  = 2
patterns.  These names, which are fairly common, have
a rather obscure historical origin. Using this notation,
one can, for example, refer to an electron in an  n = 3,

 = 2  pattern as  a 3d wave. The ground state of
hydrogen is a 1s wave.

Exercise 2

Using the s,p,d notation, what would we call the waves
shown in Figure (3) ?
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An Expanded Energy Level Diagram
In our discussion of the Bohr theory, we drew an energy
level diagram so that we could study transitions from
one level to another in order to predict the energy of the
photons the atom could emit.  The diagram, like the one
in Figure (35-3), is quite simple with one line for each
energy level.

With the Schrödinger equation we discover that there
are numerous standing wave patterns for each energy
level.  The simple energy level diagram of Figure (35-
3) does not give a hint of the multiple wave patterns.
Only the energy quantum number n is shown, there
being no indication of the  and m quantum numbers
(which were unknown when Bohr developed his theory).

It is traditional (and convenient) to expand the energy
level diagram as we have done in Figure (4), to distin-
guish not only the energy quantum numbers n, but also
the angular momentum quantum numbers .  We might
be tempted to expand the diagram further and
display the separate projections m, but this
would make the diagram too complex.  (In
Figure (4) we indicated the z projections by
including some sketches of the lower energy
wave patterns.  Such sketches are not usually
included in energy level diagrams.)

One advantage of the expanded energy level
diagram is that it illustrates graphically that the
maximum value of  goes up only to n–1.  It
shows that there is one  = 0  pattern for n = 1, an

 = 0 and an  = 1 pattern  for  n = 2, etc.  When
you look at this diagram, you have to remember
that for each line, the z projections m can range
from  m = +  down to  m = –  in unit steps.

Another advantage of the energy level diagram of
Figure (4) is related to the fact that when an electron in
an atom radiates a photon, the electron’s  value almost
always changes by one unit.  This is because a photon
carries out angular momentum, and to conserve angu-
lar momentum, the electron’s angular momentum has
to change.  The common transitions represent not only
steps up and down, but one step sideways.

(It is not impossible for an electron to emit a photon and
not change its angular momentum , it just a much less
likely event.  We only see such   ∆ = 0  transitions,
called “forbidden transitions”, when the electron has
no where to jump and change its  value by one unit.
For example, if the electron, for some reason, ends up
in the n = 2,  = 0  state, the only lower energy state is
the n = 1,  = 0  state.  The electron cannot fall there and
change  by one unit.  As a result the electron hangs up
in the n = 2,  = 0  state for a much longer time than it
would if a  ∆  = 1 transition were available.)

    = 0     = 1      = 2      = 3

m = 1
m = 0

m = –1

n = 1

n = 2

n = 3

n = 4
n = 5
 

3 patterns 5  patterns

E  = –13.6eV1

E  = –3.40eV2

E  = –1.51eV3

Figure 4
An expanded hydrogen energy
level diagram, including some
sketches of the lower energy
standing wave patterns..
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MULTI ELECTRON ATOMS
Straightforward techniques can be used to solve
Schrödinger’s equation for one electron atoms like hydro-
gen.  To deal with a two electron atom like helium, we
have to take into account not only the attraction between
the electrons and the nucleus, but also the repulsion
between electrons.  This makes Schrödinger’s equation
more difficult to solve.  One has to either use approxima-
tion techniques or a computer.

However, for all atoms, there are certain properties that
can be understood in terms of the general structure of the
hydrogen standing wave patterns, rather than from de-
tailed calculations.  We can learn enough from these
general properties to begin to see why atoms behave as
they do in chemical reactions.

To study multi electron atoms, imagine that we start with
hydrogen and add electrons one at a time (also increasing
the number of protons and neutrons in the nucleus to keep
the atom electrically neutral and the nucleus stable).  We
will assume that as we add each electron, it falls down to
the lowest energy wave pattern available.

If we start with a nucleus with one proton, and drop in one
electron, the electron eventually falls down to the  E1 ,

  = 0  standing wave pattern shown in Figure (1a).

Add a proton to form a helium nucleus, drop in another
electron, and we can expect the electron to also fall down
to the lowest energy  E1  standing wave pattern.  The extra
Coulomb attractive force of the two protons in the nucleus
strengthens the binding of the electrons, but the repulsive
force between the two electrons weakens it.  Experimen-
tally, it takes 24.6 eV to remove an electron from helium,
while only 13.6 eV are needed for hydrogen.  Thus the
electrons are more tightly bound in helium, and we see
that the extra Coulomb attraction to the nucleus is more
important than the repulsion between electrons.

Using helium as a guide, we should expect that when we
go to lithium with 3 protons in the nucleus, the increased
Coulomb attraction to the nucleus should cause lithium’s
three electrons to be even more tightly bound than helium’s
two.  This would lead us to predict that it takes even more
than 24.6 eV to pull one of the electrons out of lithium.

This is not a good prediction.  Experimentally, the amounts
of energy needed to remove electrons from lithium one at
a time are  5.39 eV,  75.26 eV  and  121.8 eV.  While two
of lithium’s electrons are tightly bound, one is very
loosely bound, requiring less than half the energy to
remove than the hydrogen electron.  A possible explana-
tion for the loose binding of lithium’s third electron is that,
for some reason, that electron did not fall down to the
lowest energy  E1  type of standing wave pattern.  It
appears to be hung up in the much higher energy, less
tightly bound  E2  type of standing wave, one of the four

 E2  patterns seen in Figure (1).

Pauli Exclusion Principle
But why couldn’t the third lithium electron fall down to
the low energy  E1  pattern?  In 1925, two separate ideas
provided the explanation.  Wolfgang Pauli proposed that
no two electrons were allowed to be in exactly the same
state.  This is known as the Pauli exclusion principle.  But
the exclusion principle seems to go too far, because in
helium, both electrons are in the same  E1 ,   = 0  standing
wave pattern.  If you cannot have two electrons in exactly
the same state in an atom, then something must be
different about the two electrons in helium.

Electron Spin
To explain what the difference between the two electrons
might be, two graduate students, Samuel Goudsmit and
George Uhlenbeck, proposed that the electron was like a
spinning top with its own internal angular momentum.
This became known as spin angular momentum.  The
special feature of the electron’s spin is that it has two
allowed projections, which we call spin up and spin
down.  In helium you could have two electrons in the same

 E1  wave pattern if they had different spin projections, for
then they would not be in identical states.

Because the electron spin has only two allowed projec-
tions, we cannot add a third electron to the  E1  wave
pattern.  Lithium’s third electron must stop at one of the
higher energy  E2  standing wave patterns.  Its energy is
much less negative and therefore this electron is much less
tightly bound than the first two electrons that went down
to the  E1  wave pattern.
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THE PERIODIC TABLE
As we go to larger atoms, adding electrons one at a time,
the  E2  standing wave patterns begin to fill up.  Since
there are four  E2  patterns, each with two allowed spin
states, up to 8 electrons can fit there.  When the  E2
patterns are full, when we get to the element neon with
two  E1  electrons and eight  E2  electrons, we have an
inert noble gas that is chemically similar to helium.
Adding one more electron by going to sodium, the
eleventh electron has to go up into the  E3  energy level
since both the  E1  and  E2  patterns are full.  This
eleventh electron in sodium is loosely bound like the
third electron in lithium, with the result that both
lithium and sodium have similar chemical properties.
They are both strongly reactive metals.

Table 1 shows the electron structure and the binding
energy of the last electron for the first 36 elements in the
periodic table.  The general features of this table are that
the lowest energy levels fill up first, and there is a large
drop in binding energy when we start filling a new
energy level.  We see these drops when we go from the
inert gases helium, neon, and argon to the reactive
metals lithium, sodium and potassium.  We can see that
this sudden change in binding energy leads to a signifi-
cant change in the chemical properties of the atom.

A closer look at Table 1 shows that there is a relatively
steady uniform increase in the electron binding as the
energy level fills up.  The binding energy goes from
5.39 eV for lithium in fairly equal steps up to 21.56 eV
for neon as the  E2  energy level fills.  The pattern is
more or less repeated as we go from 5.14 eV for sodium
up to 15.76 eV for argon while filling the  E3  energy
level.  It repeats again in going from 4.34 eV for
potassium up to the 14.00 eV for krypton.

A closer look also uncovers some exceptions to the rule
that the lower energy levels fill first.  The most notable
exception is at potassium, where the  E4  patterns with

  = 0  begin to fill before the  E3  patterns with   = 2 .

To understand why the binding energy gradually in-
creases as an energy level fill up, and why the  E3 ,   = 2
patterns fill up late, we have to take a closer look at the
structure of the electron wave patterns and see how this
structure affects the binding energy.  To do this it is
useful to introduce the concepts of electron screening
and effective nuclear charge.

Electron Screening
In our discussion of the binding energy of the two
electrons in helium, we pointed out that there was a
competition between the increased Coulomb attractive
force to the nucleus and the repulsion between the
electrons.  We could see that the increased attraction
was more important because helium’s two electrons
are each more tightly bound to the nucleus than
hydrogen’s one.  It requires 24.5 eV to remove an
electron from helium and only 13.6 eV from hydrogen.

The following argument provides an explanation of
this increased binding of helium’s electron.  Since the
two electrons are in the same  E1  wave pattern, half the
time a given electron is closer to the nucleus than its
partner and feels the full force of the nuclear charge
+2e.  But half the time it is farther away, and the net
charge attracting it toward the nucleus is +2e reduced
by the other electron’s charge –1e for a total +1e.  Thus,
on the average the electron sees an effective charge of
approximately 1.5 e.  This is greater than the charge +1e
seen by the single electron in hydrogen, and thus results
in a stronger binding energy.  What we have done is to
account for the repulsion of the other electron by saying
that the other electron screens the nucleus, reducing the
nuclear charge from +2e to an effective value of
approximately 1.5e.
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1 H Hydrogen 13.60 1
2 He Helium 24.58 2

3 Li Lithium 5.39 1
4 Be Beryllium 9.32 2
5 B Boron 8.30 2 1
6 C Carbon 11.26 2 2
7 N Nitrogen 14.54 2 3
8 O Oxygen 13.61 2 4
9 F Fluorine 17.42 2 5
10 Ne Neon 21.56 2 6

11 Na Sodium 5.14 1
12 Mg Magnesium 7.64 2
13 Al Aluminum 5.98 2 1
14 Si Silicon 8.15 2 2
15 P Phosphorus 10.55 2 3
16 S Sulfur 10.36 2 4
17 Cl Chlorine 13.01 2 5
18 A Argon 15.76 2 6

19 K Potassium 4.34 1
20 Ca Calcium 6.11 2
21 Sc Scandium 6.56 1 2
22 Ti Titanium 6.83 2 2
23 V Vanadium 6.74 3 2
24 Cr Chromium 6.76 5 1
25 Mn Manganese 7.43 5 2
26 Fe Iron 7.90 6 2
27 Co Cobalt 7.86 7 2
28 Ni Nickel 7.63 8 2
29 Cu Copper 7.72 10 1
30 Zn Zinc 9.39 10 2
31 Ga Gallium 6.00 10 2 1
32 Ge Germanium 7.88 10 2 2
33 As Arsenic 9.81 10 2 3
34 Se Selenium 9.75 10 2 4
35 Br Bromide 11.84 10 2 5
36 Kr Krypton 14.00 10 2 6

H
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 c
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e

Neon core

Argon core

Binding
energy
of last
electron
in eVZ       Element

Energy level  En

Angular momentum
quantum number 

 E1  E2  E3  E4

0         0       1         0       1        2       0       1

Table 1
Electron binding energies. Adapted from Charlotte E Moore,
Atomic Energy Levels, Vol II, National Bureau of Standards
Circular 467, Washington, D.C.,1952.
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Effective Nuclear Charge
To see what effect changing the nuclear charge has on
the binding energy, we can go back to our Bohr theory
calculations for different one electron atoms.  In Exer-
cises 9 and 10 of Chapter 35 we found that the ground
state energy of a single electron in an atom where the
nucleus had z protons was

   
E1 = z2 × –13.6 eV

ground state
energy in a single
electron atom

(6)

While Equation 6 was derived from the Bohr theory, it
gave results in excellent agreement with experiment as
one can easily see from working Exercise 3.

Exercise 3
Table 2 lists the binding energy for the last electron for
the elements hydrogen through boron.  This is the
binding energy when all the other electrons have al-
ready been removed.  For each element, check the
prediction that the binding energy is given by
Equation 6.

Binding energy
z Element of last electron

1 Hydrogen 13.6 eV
2 Helium 54.14 eV
3 Lithium 121.8 eV
4 Beryllium 216.6 eV
5 Boron 338.5 eV
                  Table 2

Equation 6 suggests that if an electron in a multi electron
atom sees an effective nuclear charge  zeff e ,  the
electron binding energy should be approximately  zeff

2

times the energy the electron would have in the same
energy level in hydrogen.  Trying out this idea on
helium, where we estimated  zeff  to be about 1.5e, we get

   E1
neutral
helium = zeff

2 × –13.6 eV

= 1.5 2 × –13.6 eV

= – 30.6 eV

=
estimated
bindingenergy
of helium

(7)

This estimate of 30.6 eV is about 25% too high since the
experimental value is only 24.6 eV.  We can take this
to imply that our estimate of  zeff = 1.5 e  for helium
was a bit too crude.  Our simple arguments about
screening are not a substitute for an accurate calcula-
tion using Schrödinger’s equation.

What we can do, however, is to turn our approach
around and use the experimental values of the binding
energy to calculate an effective nuclear charge  zeff .
Doing this for helium gives

   E1
neutral
helium = zeff

2 × –13.6 eV

– 24.6 eV = zeff
2 × –13.6 eV

zeff = 24.6
13.6

= 1.34 (8)

The value of 1.34 is not too far off our original guess of
1.5.  The result tells us that the electron screening is a
bit more effective than we had predicted.

Lithium
We will now see that various features of the periodic
table begin to make sense when viewed in terms of
electron screening and the structure of the electron
wave patterns.  Let us start off with lithium where the
last electron is in the  E2 ,  = 0  pattern and has a
binding energy of 5.39 eV.  Since this electron is in an

 E2  energy level, our formula for  zeff  should be

   E1 lithium = zeff
2 × –3.40 eV

– 5.39 eV = zeff
2 × –3.40 eV

zeff = 5.39
3.40 = 1.26 (9)

where we used - 3.40 eV rather than - 13.6 eV because
we are discussing an  E2  electron.
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In a nucleus with 3 protons, why does the  E2  electron
only see an effective charge of 1.26e?  The answer lies
in the shape of the  E1  and  E2  wave patterns.  The first
two electrons in lithium are in the  E1  pattern of Figure
(1a) reproduced below.  It consists of a small spherical
ball centered on the nucleus.  The third electron, the one
whose binding energy we are discussing, is in the  E2 ,

 = 0  pattern of Figure (1b).  This pattern consists of a
larger spherical ball surrounded by a spherical shell.
The electron in this pattern spends a considerable
amount of the time outside the smaller spherical ball of
the two  E1  electrons.  Thus much of the time the third
electron sees only an effective nuclear charge of about
(1.0e).  Some of the time, however, the third electron
is also down at the nucleus feeling the full nuclear
charge of (3e).  That the average nuclear charge seen by
the third electron is (1.26e) is not too difficult to believe.

Beryllium
When we went from one  E1  electron in hydrogen to
two  E1  electrons in helium, the binding energy about
doubled, from 13.6 eV to 24.6 eV.  In going from one

 E2  electron in lithium to two  E2  electrons in beryl-
lium, the binding energy increases from 5.39 eV to 9.32
eV.  Again the electron binding energy almost doubled
as we went from one to two electrons in the same
energy level.

Boron
When we go from beryllium to boron, we add a third
electron to the  E2  energy level.  From our experience
with beryllium, we expect another significant increase
in binding energy, up to perhaps 13 eV or 14 eV.  But
instead the binding energy drops from 9.32 eV down to
8.30 eV.  Something broke the pattern and caused this
drop.

At boron, both the  E2 ,  = 0  wave patterns are already
full and the electron has to go into one of the  E2 ,  = 1
patterns.  All the electron standing wave patterns with a
non zero amount of angular momentum have a node at
the origin.  The more the angular momentum, the more
spread out the node and the farther the electron is kept
away from the nucleus.  An electron in an   ≠ 0  wave
pattern will thus be effectively screened by electrons in

 = 0  wave patterns where the electron spends a lot of
time right down at the nucleus.  Thus we expect that
electrons in   ≠ 0  patterns to be less tightly bound than
those in the  = 0  pattern of the same energy level.  This
shows up with the drop in binding energy in going from
beryllium to boron.

Up to Neon
For all atoms beyond helium, there is a core consisting
of the nucleus and the two tightly bound  E1  electrons.
As the charge on the nucleus increases, the size of the

 E1  patterns shrink, and are penetrated less and less by
the outer electrons.  We can think of this helium core as
acting as the effective nucleus for the larger atoms.

As we go from boron to neon, the charge on the helium
core increases from 3e to 8e as the  E2 ,  = 1  patterns fill
up.  This increase in the charge of the core causes a more
or less gradual increase in the binding energy, from 8.30
eV up to 21.56 eV.  The one exception is the slight drop
in binding energy as we go from nitrogen to oxygen.
The arguments we have made so far are not detailed
enough to explain this drop.

Sodium to Argon
We get the expected large drop in binding energy as we
go from neon to sodium and start filling the  E3  patterns.
The  E3 ,  = 0  patterns are full at magnesium and we get
a small drop in binding energy as the non zero angular
momentum patterns  E3 ,  = 1  start to fill at aluminum.
Again the angular momentum keeps the electrons away
from the nucleus and increases the screening.  As the

 E3 ,  = 1  patterns fill up, they are building a structure
on the ever shrinking neon core.  The charge on the neon
core increases from (3e) at aluminum to (8e) at argon,
again causing a gradual buildup of the electron binding
energy from 5.98 eV to 15.76 eV.  There is even the
slight glitch going from phosphorous to sulfur that
mirrors the glitch from nitrogen to oxygen.

Figure 1a

 E1 ,  = 0

Figure 1b

 E2 ,  = 0
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Potassium to Krypton
The first major break in the pattern of filling the lower
energy levels first occurs at potassium.  At potassium
the  E3 ,  = 2  levels remain unfilled while the last
electron goes into the higher energy level  E4 ,  = 0
pattern.  At this point the screening due to angular
momentum has become more important than the en-
ergy level.  The  = 2  patterns have such a big fat node
at the nucleus that an  = 2  electron cannot get near the
nucleus to feel the now large nuclear charge.  Even
though an  E4 ,  = 0  electron is in a higher energy level,
its wave pattern has a non zero value right down at the
nucleus.  Some of the time this electron feels the full
charge of (19e) for potassium, and this increases the
binding beyond that of the  E3 ,  = 2  patterns.

At calcium, the  E4 ,  = 0  pattern is full, and now the
five  E3 ,  = 2 ,  m  =  +2, +1 , 0, -1. -2 patterns begin to
fill up.  There is room for 10 electrons in these 5
patterns, and that takes us down to zinc.  As the  E3 ,

 = 2  patterns fill up underneath the  E4 ,  = 0  pattern,
there is little change in the outer electron structure and
the binding energy increases slowly.  The result is that
the 10 elements from scandium to zinc have similar
chemical properties—all are metals.  In some periodic
tables, these elements are shown as the first set of
transition elements.

As we go from gallium to krypton we have the familiar
pattern of the  E4 ,  = 1  states filling up.  There is a
gradual increase in binding energy from 6.00 eV at
gallium to 14.00 eV at the noble gas krypton.  There is
even the slight glitch in binding energy going from
arsenic to selenium that mirrors the glitches from
phosphorus to sulfur, and from nitrogen to oxygen.

Summary
At this point it should be clear that the structure of the
periodic table of the elements arises from the allowed
electron standing wave patterns.  Because of the exclu-
sion principle, no two electrons can be in the same state.
But because electron spin has two allowed states, up to
two electrons can fit into each standing wave pattern.

In general, as we go to atoms with more electrons, the
lowest energy patterns fill up first, and there is a
significant change in chemical properties when a new
energy level begins to fill.  But the angular momentum
of the wave pattern also plays a significant role.  The

 = 0  patterns can penetrate down to the nucleus,
where the electron feels the full strength of the nuclear
charge.  The   ≠ 0  patterns have a node at the nucleus,
and the full nuclear charge is screened by  = 0  elec-
trons.

The effect of angular momentum shows up most
noticeably at potassium and calcium, where the two

 E4 ,  = 0  patterns fill before the  E3 ,  = 2  patterns.
Because of the extra angular momentum of the  = 2
electrons, the  = 2  patterns have an extra large node at
the nucleus, keeping these electrons farther away and
more effectively screened.

As we get to the heavier elements in the periodic table,
those beyond krypton, the energy levels get closer
together and the binding energy depends more on the
detailed structure of the wave patterns.  As a result it
becomes more difficult to predict how the wave pat-
terns will be filled and to estimate what the binding
energies should be.  But despite this, we have been able
to go a long way in explaining the structure of the
periodic table from a few simple arguments about the
shape of the electron standing waves in hydrogen, and
the idea of electron screening.
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IONIC BONDING
In 1871 the Russian chemist Dimitri Mendeleyev
worked out the periodic table of the elements from an
analysis of the atomic weights and chemical reactions
of the elements.  Here we will reverse Mendeleyev’s
approach and use Table 1, our shortened version of the
periodic table, to explain some of the typical chemical
reactions and chemical compounds.

As an example, suppose we placed a sodium atom next
to a chlorine atom, what would happen?  The sodium
atom has one loosely bound electron in the  E2 ,  = 0
wave pattern.  The binding energy of this electron is
5.14 eV.  The chlorine atom has seven  E2  electrons all
tightly bound because of the increase in the effective
nuclear charge seen by these electrons.  It requires
13.01 eV to remove an electron from chlorine.

If the sodium and the chlorine atom are brought close
enough together, the loosely bound outer sodium elec-
tron can lose energy by moving into the remaining  E2
wave pattern in the chlorine atom.  We end up with a
negative chlorine ion  Cl– , where all the  E2  patterns
are full, and a positively charged sodium ion  Na+

which has lost its outer electron.  These charged ions
then attract each other electrically to form a sodium
chloride molecule  NaCl  which is common table salt.

Sodium chloride is a typical example of ionic bonding.
The class of elements like lithium, sodium, magne-
sium, aluminum, etc. that have one, two, or even three
loosely bound electrons, tend to give up these electrons
in a chemical reaction.  These are called metals.  Those
elements like oxygen, fluorine and chlorine, which
have nearly full wave patterns and tightly bound elec-
trons, tend to take up electrons in a chemical reaction
and are called non metals.  When metals and non
metals combine, held together by ionic bonding, you
get a compound called a salt.

By looking at the number of loosely bound electrons in
a metal, or the number of empty slots in a non metal (the
number of electrons required to get to the next noble
gas), you can predict the kind of compounds an element
can form.  For example, sodium, magnesium, and
aluminum have one, two and three loosely bound
electrons respectively, while oxygen has two empty
slots.  (Oxygen has six  E2  electrons, and needs two
more to fill up the  E2  standing wave patterns).  When
you completely burn the three metals, the oxides you
end up with are  Na2O ,  MgO  and  Al2O3 .  In  Na2O ,
two sodium atoms each contribute one electron to fill
oxygen’s two slots.  In  MgO  magnesium’s two loosely
bound electrons are taken up by one oxygen atom.  In

 Al2O3 , two aluminum atoms each supply three elec-
trons, these six electrons are then taken up by three
oxygen atoms.  There is no simpler way for all the
aluminum’s loosely bound electrons to completely fill
all of oxygen’s empty slots.

Hydrogen has one moderately bound electron which it
can give up in some  chemical reaction and act like a
metal. An example is hydrochloric acid, HCl, where
the chlorine ion has grabbed the hydrogen electron.

Hydrogen can also behave as a non metal. When it
combines with active metals like lithium and sodium,
hydrogen grabs the metal’s loosely bound electron to
complete its  E1  standing wave pattern.  The results are
the compounds  lithium and sodium hydride, LiH and
NaH.

More important to life are the bonds like those between
hydrogen and carbon atoms which are not ionic in
nature.  Neither atom has a strong preference to give up
or grab electrons.  Instead the bonding results from the
sharing of electrons.  This is the covalent bonding that
we described in our discussion of the hydrogen mol-
ecule in Chapter 18.
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Chapter 39
Spin

In the last chapter we saw that the basic structure of the
periodic table follows from the idea that up to two
electrons can fit into any given standing electron wave
pattern.  If you consider the Pauli exclusion principle
which says that two electrons cannot be in exactly the
same state, then you have to find some difference
between the two electrons that can occupy the same
wave pattern.  Gaudsmit and Uhlenbeck introduced
the concept of electron spin to explain this difference.
They proposed that the electron had an inherent angu-
lar momentum or spin that had two allowed projec-
tions, and that the difference between the two electrons
in one wave pattern was their spin projections.  We
commonly call these two allowed projections spin up
and spin down.

In this chapter we take a more detailed look at electron
and nuclear spin and the interaction of spin with a
magnetic field.  An electron with its spin projection
parallel to the magnetic field gains magnetic energy,
while the opposite projection  loses it.  The amount of
energy gained or lost is proportional to the strength of
the magnetic field.

The most accurate way to measure the spin magnetic
energy, is to start with an electron in the low energy
state and strike it with a photon.  If the energy of the
photon is precisely equal to the energy required to raise
the electron from the low energy spin projection to the
high energy spin projection, the photon can be ab-
sorbed.  We say that the photon flips the spin of the



39-2  Spin

electron.  Since the energy of a photon is proportional
to its frequency according to Einstein's photoelectric
effect formula E=hf, measuring the frequency of the
electromagnetic radiation that causes a spin flip tells
you how big the magnetic energy is.

The energy required to flip the spin of an electron is
usually not very large.  If the electron is in a magnetic
field of around 10 gauss, typical fields produced by the
Helmholtz coils used in several of our laboratory
experiments, then photons in radio waves whose fre-
quency is of the order of 30 megacycles have enough
energy to flip the electron spin.  Since it is not hard to
generate electromagnetic waves of this frequency, we
can observe electron spin flip using much of our
standard laboratory equipment.

When we talk of electromagnetic waves with frequen-
cies of the order of 30 megacycles, we are talking about
radio waves between the AM and FM broadcast bands.
It is such a low frequency that individual photons
should be very hard to detect.  Yet the spin flip experi-
ment does just that.

At radio wave frequencies, Maxwell's theory and the
ideas of classical electric and magnetic fields should
work as well as the photon picture.  If we treat the
spinning electron as a classical gyroscope with a
magnetic moment, we find that a magnetic field can
exert a torque on the gyroscope, causing the gyroscope
to precess.  If we add an oscillating magnetic field,

oscillating at the frequency of precession, essentially
pushing on the gyroscope once each time it comes
around, the gyroscope can gain energy from the oscil-
lating field.  This is a resonance phenomena; it is like
pushing a kid on a swing.  You have to push the kid in
time with the swing in order to increase the amplitude
of the motion.

It turns out that the frequency with which we have to
oscillate the magnetic field is the same as the frequency
of the photon that can cause the electron spin to flip.
The quantum picture of a photon flipping a spin, and
the classical picture of a precessing gyroscope in
resonance with an oscillating magnetic field, gives the
same results.  Thus it is a matter of convenience
whether you use the classical or quantum picture.

Because the classical picture involves a resonance,
this spin flip process is called electron spin resonance.
In this chapter we discuss an electron spin resonance
experiment.

For a given magnetic field, much less energy is re-
quired to flip the spin of a nucleus than of an electron.
Measurements of nuclear spin flip energies, in the so-
called nuclear magnetic resonance experiments, can
be done so accurately that one can study not only the
spin of the nucleus but also the magnetic environment
in which the nucleus sits.  Nuclear magnetic resonance
forms the basis of magnetic resonance imaging which
has become such an important diagnostic tool in
medicine.
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THE CONCEPT OF SPIN
A spinning top has an inherent angular momentum, but
if you try to picture an electron as a spinning top, you
run into conceptual problems.  First of all, if you have
a spinning top, you can orient the top in any direction
you please.  The top's angular momentum vector can
point up, down, sideways to the left, sideways to the
right.  But when we describe the electron's spin, we
have only two orientations, up and down.  We ran into
the puzzling idea of quantized projections of angular
momentum in our interpretation of the allowed stand-
ing wave patterns of the hydrogen atom.  But the idea
of the electron's spin or rotational axis only pointing up
or down seems even more counter intuitive.

Another blow at our classical intuition for angular
momentum is our current theoretical picture of the
electron as a point particle. No experiment has demon-
strated any finite size to the electron, and the theory that
treats the electron as a point particle, quantum electro-
dynamics, is the most accurately tested theory in all of
physics.  (String theory allows for some size for an
electron, radii of the order of  10– 72  cm, but there are
no experimental tests of string theory.)

If an electron has no radius, how can it have an inherent
angular momentum?  Angular momentum is linear
momentum times a lever arm.  How can there be
angular momentum if the particle has no radius, no
lever arm?  The classical picture of electron spin
resembling that of a spinning tops leaves a lot to be
desired.  However, despite the problems one encoun-
ters, this picture does lead to some useful insights
which we will mention shortly.

Perhaps the best way to view electron spin is to realize
that we are dealing with a wave equation, and wave
equations have specific allowed standing waves as
solutions.  While electron spin does not come from
Schrödinger's wave equation, it does from Dirac's
more accurate relativistic wave equation.  From Dirac's
equation, we find that the electron has an inherent
angular momentum of  h/2 , with two possible projec-
tions along the z axis,  +h/2  and  – h/2 .  These are the
two allowed states of the electron.  They are not
different standing wave shapes like the hydrogen stand-
ing waves of Figure (1) of the last chapter, but they are
different solutions to Dirac's wave equation.

One of the surprises is that the spin angular momentum
of the electron is half a unit  h/2 .  The quantity h  is not
the smallest amount of quantized angular momentum,

 h/2  is.  The standard terminology is to say that the
electron has half a unit of angular momentum, that it is
a "spin 1/2" particle.  The orbital angular momentum,
representing the motion of the electron around a nucleus,
is quantized in units of h .  Only spin angular momen-
tum can come in half integer units.

While the electron's spin has a half integer value, its
projection along the z axis changes by an integer value.
In our discussion of the angular momentum of the
hydrogen standing waves, we saw that an electron in a
certain energy level  En , with a total angular momen-
tum , could have z projections ranging from ,  – 1 ,

 – 2  down to  – .  The allowed projections changed in
units.  The same is true for the electron spin, the allowed
projections are  +1/2  and  –1/2 , a change of one unit.
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INTERACTION OF THE
MAGNETIC FIELD WITH SPIN
One of the predictions of the Dirac equation for elec-
trons is that the electron spin interacts with a magnetic
field.  The state with the spin parallel to the magnetic
field gains magnetic energy while the other state loses
it.  The amount of energy gained or lost is proportional
to the strength B of the magnetic field, and the propor-
tionality constant turns out to be a quantity called the
Bohr magneton, designated by the symbol   µB .

   magnetic
energy of
electron
spin

Emag =
+µBB spin parallel to B

– µBB spin opposite to B
(1)

   µB = eh/2m Bohr magneton

= 5.79 × 10– 5eV/tesla (2)

The amount of energy required to flip an electron from
its low energy state to the high energy state is thus

   
∆Emag = 2µBB

energy required to
flip the electron spin
in a magnetic field

(3)

Since a Bohr magneton is   5.79 × 10– 5eV/tesla we
can express Equation 3 numerically as

  ∆Emag = 11.6 × 10– 5B eV (4)

where B has to be expressed in tesla.

If you wish to measure magnetic fields in gauss, then
convert   µB to eV/gauss:

  µB = 5.79 × 10– 5 eV
tesla

× 1
104 gauss

tesla

µB = 5.79 × 10– 9 eV
gauss (5)

Magnetic Moments
and the Bohr Magneton
The formula for the Bohr magneton has its origin in a
combination of classical physics with the Bohr theory.
Back in Chapter 31 we observed that if you place a loop
of wire in a magnetic field B, and then run an electric
current i through the wire, the magnetic field can exert
a torque on the loop.  We found that if you curled the
fingers of your right hand in the direction the current is
going around the loop, then the magnetic torque tended
to orient the loop so that your thumb pointed parallel to
the magnetic field.  We called this the low energy
orientation of the loop.  To turn the loop over to the high
energy orientation required an amount of work that was
proportional to the current i, the strength of the mag-
netic field B, and to the area A of the loop.  The explicit
formula for the amount of work required was

 energy required
to turn loop over

= 2(iA) B

We defined the product of the current i times the area
A as the magnetic moment µ of the current loop.

  µ ≡ iA (see 31-34)

which gave us the formula

  energy required
to turn loop over

= 2µB (31-36a)

Later in the chapter we considered a special kind of
current loop consisting of a charge q moving at a speed
v in a circular orbit of radius r.  We found that the
magnetic moment µ = iA of this special current loop
could be written in the form

  µ =
q

2m mvr (31-38a)

However  mvr  is the angular momentum L (we called
it  J  back there because we were using L for induc-
tance).  Thus the formula for the magnetic moment µ
of an orbiting charge can be written

  µ =
q

2m L (31-39)
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The above result is strictly classical.  If we jump ahead
to the Bohr picture where we are dealing with an
electron whose charge is q = –e, and angular momen-
tum L is quantized in units of h , then we find that the
magnetic moment is quantized in units of

  µB = e
2m h (6)

where this unit of magnetic moment   µB is called a Bohr
magneton.  This is where the name and formula for the
Bohr magneton originated.  The same constant ap-
peared in Dirac’s equation for the energy required to
flip the spin of the electron.

The minus sign of the electron charge means that the
high energy orientation of the electron is when the spin
is parallel to the magnetic field.

Exercise 1
The formulas

  Emagnetic = 2µB B

µB = e
2m h

came mostly from Chapter 31 where we were working
in MKS units.  As a result, we need to use MKS units to
evaluate   µB .  (The constant   µB has a different formula
in CGS units.)

We can get the dimensions of   µB  from the equation

  Emagnetic = 2µB B, or

  µB =
Emagnetic

2B
joules
tesla

Thus when you use MKS units to evaluate   µB = eh 2meh 2m,
your answer comes out in joules/tesla rather than
eV/tesla.  To get the final answer in eV/tesla, you then
use the conversion factor   1.6 × 10– 19 joules/eV.

With this background, show that

  µB = 5.79 × 10– 5 eV
tesla

(You will get a value of   µB = 5.82 × 10– 5 eV/tesla, which
differs slightly due to the way we have rounded off the
constants.)

Electron Spin Resonance Experiment
The basic idea of the electron spin resonance experi-
ment is to flip the spin of an electron by striking the
electron with a photon. The electron’s spin will flip
only if the photon’s energy hf is equal to the magnetic
spin flip energy   2µBB. Thus we wish to test the rela-
tionship

   hf = 2µBB spin flip requirement (7)

where f is the frequency of the photon.

Exercise 2
a)   An electron is placed in a 10 gauss magnetic field.
How much energy, in eV, is required to flip the electron
from its low energy to its high energy state?  (Answer:

  1.15 × 10– 7 eV ).

b)    You wish to flip the spin of the electron in part (a) by
striking it with a photon.  Assume that the photon is
absorbed by the electron, and that all the photon's
energy goes into flipping the electron's spin.  What
wavelength photon should you use?  (Answer:

  λ = 1071cm)

c)   What is the frequency of the photon in part (b)?
(Answer: 28 megacycles).

Exercise 3

The student FM radio station at Dartmouth College
broadcasts on a frequency of 99.4 megacycles.  If you
wished to use this frequency radiation to flip the spin of
an electron in a magnetic field B, what should be the
strength of B?  Give the answer in gauss.

In our discussion of the particle nature of light, we
pointed out that because a radio wave consists of so
many photons of such low energy, it would be difficult
to detect individual photons, and thus the wave nature
of radio waves should predominate.  However the spin
of the electron is just the right detector for these low
energy photons.  An electron spin flip experiment can
be viewed as an experimental detection of the indi-
vidual photons in a radio wave.
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Nuclear Magnetic Moments
Both the proton and neutron are spin 1/2 particles,
which means that they each have a spin angular mo-
mentum with two allowed spin states, spin up and spin
down.  If you place either of these particles in a
magnetic field, one of the projections will gain mag-
netic energy while the other loses it.

For an electron, the high magnetic energy state was
when the spin pointed parallel to the magnetic field.
Because the proton has the opposite charge from the
electron,  the opposite orientation is the high magnetic
energy state.

If the Dirac equation is applied accurately to a proton,
then the formula for the proton’s magnetic moment
would be one nuclear magneton   µN  defined by the
equation

   
µN = eh

2mproton

definition of the
nuclear magneton (8)

which is the Bohr magneton formula with the electron
mass replaced by the proton mass.  Since the proton is
1836 times heavier than an electron, a nuclear magne-
ton is 1/1836 times smaller than a Bohr magneton.

The Dirac equation, however, does not give the correct
value for the proton’s magnetic moment   µp.  The
experimental value is

  µp = 2.79 µN (9)

The fact that the Dirac equation is off by a factor of 2.79
is one indication that the proton is a more complex
object than the electron.

(The Dirac equation is not exact even for the electron.
The experimental value for the electron’s magnetic
moment is 1.00114 Bohr magnetons.  The correction of
.00114 Bohr magnetons is accurately explained by the
theory of quantum electrodynamics.)

Sign Conventions
To handle the fact that the electrons and protons have
opposite charges and therefore opposite magnetic
moments, the following sign conventions are generally
used

  magnetic
energy
of spin

Emagnetic = – µ ⋅ B

=
–µB spin parallel to B

+µB spin opposite to B
(10)

where the electron, proton and neutron have the follow-
ing magnetic moments

   µe = – 1.00114 µB
electron
magnetic moment (11)

   µp = 2.79 µN
proton
magnetic moment (9)

   µn = – 1.19 µN
neutron
magnetic moment (12)

where the Bohr magneton   µBis

  
µB = eh

2melectron
= 5.79 × 10– 5 eV

tesla (13a)

and the nuclear magneton   µN is

  
µN = eh

2mproton
= 3.15 × 10– 8 eV

tesla (13b)

Note that by putting a – (minus) sign in the formula for
 Emagnetic, and making the electron’s magnetic mo-

ment negative, we still have the result that the electron’s
spin magnetic energy is positive when the electron’s
spin is parallel to B.
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Where the Dirac equation completely fails is in the case
of the neutron.  If the neutron were a simple uncharged
particle, it would have no magnetic moment.  The fact
that it does have a magnetic moment suggests that,
while it has no net charge, it must be some kind of
composite object with charged particles inside.  We
now know that this suggestion is correct.  The neutron
is made up of three quarks, one up quark with a charge
+2/3 e and two down quarks with a charge -1/3 e.
While there is no net charge, the quarks contribute to
magnetic energy.  (The proton, which consists of two
up quarks and one down quark, has a total charge of -
2/3e + 2/3e - 1/3e = +e.)

As we mentioned, the difference between the Bohr
magneton   µB and the nuclear magneton   µN is due to
the mass difference between the electron and the
proton.  Since a proton is 1836 times as massive as an
electron, the nuclear magneton is 1836 times smaller
than the Bohr magneton.  The result is that the magnetic
moments of protons, neutrons, and nuclei in general are
typically an order of a thousand times smaller than the
electron magnetic moment.  To get the same  magnetic
spin energies as you do for electrons, you thus need
magnetic fields of the order of a thousand times stron-
ger when working with nuclei.

Exercise 4
(a) Express the magnetic moment of the proton in

 eV/tesla.

(b) A proton is in a 1 tesla magnetic field.  How much
energy, in eV, is required to flip the spin of the proton?

(c) What is the wavelength and frequency of a photon
that can flip the spin of the proton in part (b)?  (Answer:
(a)   8.79 × 10– 8 eV/tesla , (b)   17.6 × 10– 8 eV , (c) 706 cm
and 42.5 megacycles.)

Exercise 5

What strength magnetic field should you use so that
photons from the student FM radio station (99.4 mega-
cycles) can flip the spin of the proton?  (Answer: 2.34
tesla.)
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Classical Picture of
Magnetic Resonance
In the appendix to this chapter we work out the
classical picture of the interaction of the electron's spin
with a magnetic field.  One pictures the spinning
electron as acting as a tiny current loop with a mag-
netic moment µ  as described at the end of Chapter 31.
The current loop also has an angular momentum  L
which makes it act like a gyroscope.  If you place the
current loop in a magnetic field, as shown in Figure
(1), the magnetic field exerts a torque and one predicts
that the current loop should precess about the mag-
netic field lines.  The precession is analogous to the
precession of the bicycle wheel gyroscope studied in
Chapter 12.

In this classical picture, if you subject the precessing
current loop to the electromagnetic field of a radio
wave, whose frequency f is equal to the precessional
frequency  fp  of the loop, the loop can gain energy
from the radio wave.  This is a resonance phenomena,
where the push of the fields of the radio wave have to
match the timing of the precession of the loop.  It is
analogous to pushing a child on a swing, where you
have to time your pushes with the motion of the child
in order to add energy to the motion.

The classical picture of a precessing current loop
gradually gaining energy from a radio wave, and the
quantum picture of an electron spin being flipped by
a photon, happen to lead to nearly the same predic-
tions.  If we start with the condition   hf = 2µBB  for the
photon energy to match the spin flip energy, then
replace   µB  by   eh/2m = e h/2π /2m = eh /4πm , we
get

  hf = 2µBB = 2 eh
4πmB (14)

In Equation 14, Planck's constant h cancels and we get

   
f = e

2πmB
frequency of radio wave
photon that can flip
an electron spin

(15)

as the relationship between the frequency f of the radio
wave and the strength of the magnetic field B.

The fact that Planck's constant cancelled in Equation 15
suggests that a classical analysis might give similar
results.  In the appendix, we analyze the behavior of a
current loop consisting of a particle of charge q and
mass m, travelling in a circular orbit.  The magnetic
moment µ of the loop points along the axis of the orbit.
If the loop is placed in a magnetic field  B  oriented
perpendicular to µ, then the loop will precess around
the magnetic field line at a precessional frequency
given by the formula

   
f = e

2πmB
precessional frequency
of a current loop in
a magnetic field

(16)

which is the same formula as Equation 15 for the
frequency of a radio wave photon that can flip the spin
of an electron.  In the classical picture, if we superim-
pose a radio wave at this frequency, we get a resonance
between the frequency of the radio wave and the
precessional frequency of the current loop, enabling
the radio wave to add energy to the current loop.

The classical calculations have certain errors that have
to be corrected on an ad hoc basis.  The current loop
model leads to a relationship between the loop's angu-
lar momentum L and its magnetic moment µ.  If we
evaluate µ  experimentally from the relationship

  Emag = – µ ⋅ B , and set  L = h/2  for a spin one half
particle, the classical relationship is off by a factor of 2
for electrons and 2 x 2.79 for protons.  These errors are
accounted for by introducing a fudge factor called the
Laudé g factor to correct the value of µ.  Since the
classical picture has fundamental problems, such as no
hint of quantization of angular momentum, and no
explanation of how a particle of zero radius can have
angular momentum, it is surprising that the semi clas-
sical picture works as well as it does.µ

ω

B

i

p
Figure 1
Current loop in a
magnetic field.
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ELECTRON SPIN
RESONANCE EXPERIMENT
The point of the electron spin resonance experiment is
to detect the electron spin flip energy   ∆E = 2µBB
predicted by the Dirac equation using photons of
energy E = hf.  You might try to do this by placing a
container of hydrogen in a magnetic field B and radi-
ating the hydrogen with a radio wave.  If the frequency
f of the radio wave were such that the photon energies
hf  equalled the spin flip energy   2µBB, then perhaps we
could detect radio wave energy being absorbed as
hydrogen atom electrons in the low energy spin state
were flipped over to the high energy spin state.

Such an experiment will not work because of an
interesting quantum mechanical effect.  Hydrogen
atoms form hydrogen molecules consisting of 2 pro-
tons surrounded by 2 electrons.  In the ground state of
the hydrogen molecule, both electrons are in the lowest
energy standing wave pattern allowed for the mol-
ecule.  This is the electron cloud we sketched in Figure
(19-8) in our discussion of the molecular forces be-
tween hydrogen atoms.

The Pauli exclusion principle requires that no two
electrons be in exactly the same state.  If the two
electrons in the hydrogen molecule are in the same
standing wave pattern, then they must have opposite
spins in order to satisfy the exclusion principle.

If we try to flip one of the electron spins with a radio
wave, the spin flipped electron cannot stay in the low
energy standing wave pattern, for then we would have
two electrons with the same spin in the same wave
pattern.  In order to flip the spin of one of the electrons,
we must supply not only the spin flip energy   2µBB , but
also enough energy to raise the electron into a higher
energy standing wave pattern.  Going to a higher
energy standing wave requires much more energy than
flipping a spin, thus photons with an energy hf equal to

  2µBB  will have no effect on hydrogen molecules.

When two electrons are in the same standing wave, we
say that the electrons are paired.   In order to see the spin
flip energy, we need a substance with an unpaired
electron, a substance where the electron spin can be
flipped without otherwise disturbing the structure of
the substance.  Such unpaired electrons can be quite
chemically active and are known as free radicals.  An
example of a substance with such an unpaired electron
is the crystalline organic chemical diphenyl-picryl-
hydrazyl or DPPH for short.  Since free radicals cause
cancer, when we use this substance in our electron spin
resonance experiment, we seal it in a small glass vial to
keep from coming in contact with it.

To perform the magnetic resonance experiment, we
need to both create the radio waves and detect the
energy lost to the electrons being flipped.  Both of these
steps can be accomplished by placing the glass vial
containing the DPPH inside the coil of a resonant LC
circuit.  The circuit, oscillating at its resonant frequency
(f) is the source of the photons of energy hf.  Detecting
the drain of energy from the coil when hf equals   2µBB
is the way we detect the spin flips.

The easiest way to perform the experiment is to get the
LC circuit oscillating at some frequency (f), and then
change the magnetic field strength B until   2µBB = hf.
To detect the loss of energy at this point, we use a
specially designed LC circuit that is barely oscillating.
The circuit is designed to stop oscillating if any energy
is being drained from the circuit.  To detect whether or
not the circuit is oscillating, another circuit detects the
amplitude of the oscillation and puts out a DC voltage
proportional to that amplitude.  The DC voltage can
then be displayed on an oscilloscope.
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With this arrangement we can sweep the magnitude of
B through the value   2µBB = hf  and watch on an
oscilloscope the amplitude of the oscillation of the
circuit.  The result is shown in the solid curve of Figure
(2). We see six peaks because the conditions   2µBB = hf
was met six times during the 40 milliseconds shown in
the diagram.

To produce the magnetic field B, the probe containing
the vial of DPPH was placed at the center of our familiar
Helmholtz coils as shown in Figure (4). As in our
magnetic field mapping experiment [Figure (24) on
page 30-24], we power the helmholtz coils with a 60Hz
current i(t) to produce a sinusoidally varying magnetic
field. This current passes through a 0.1Ω resistor so that
we can measure the strength of the magnetic field by
plotting the voltage V(t) across the resistor. The result
is the dashed curve seen in Figure (2). We can estimate
the strength of B by using i(t) = V(t)/0.1Ω and then
remembering that for these coils the magnetic field B
in gauss is about equal to 8i(t).

As the magnetic field went through somewhat more
than one cycle in Figure (2), the condition   2µBB = hf

was met six times producing the six resonant peaks. To
see how the condition was met, consider the detailed
diagram of the center peaks shown in Figure (3). The
first peak, at the time of 18.7 milliseconds,  occurred
when the magnetic field had a magnitude of 8.4 gauss.
[We calculated this from   105× 10– 3volts 0.1Ω105× 10– 3volts 0.1Ω
= 1.05 amps,  and then B(gauss) = 8i(t) =   8× 1.05amps
= 8.4 gauss.]  At time t = 20.1 milliseconds, the
magnitude of B goes down through zero, and then
reaches a magnitude of –8.4 gauss at a time t = 21.5
milliseconds. We get a peak at both +8.4 gauss and –8.4
gauss because the resonance does not depend upon
which of the two ways the magnetic field was pointing.
Looking back at Figure (2), we see that B had a
magnitude of + or – 8.4 gauss six times, which is why
we got the six peaks.

For the experiment shown in Figures (2) and (3), the
photons in the resonant LC circuit, the photons flipping
the spin of the DPPH electrons, had a frequency f = 28
megacycles. We can use the fact that these photons
flipped the spins when the magnetic field was about 8.4
gauss to calculate our value of the electron magnetic
moment   µB.We have

Figure 2
The solid curve shows the resonant peaks while the dashed
curve is proportional to the strength of the magnetic field.
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Figure 4
Electron spin resonance apparatus. The coil containing
the vial of DPPH is at the tip of the probe, which is at
the center of the Helmholtz coils. The capacitor of the
LC circuit, and the controls, are at the other end of the
probe. The Helmholtz coils are being driven by a 60Hz
alternating current. As a result, the magnitude of the
magnetic field sweeps back and forth through the
resonant value.

  2µBB = hf

  µB = hf
2B

Using the values

   
h =

6.63 ×10– 34joule sec

1.6 ×10–19 joules
eV

= 4.14 ×10– 15 eV sec

  f = 28×106 1
sec

  B = 8.4 gauss×10–4 tesla
gauss = 8.4 ×10–4tesla

we get

  
µB =

4.14 × 10– 15 eV sec×28×106 1
sec

2×8.4 ×10–4tesla

   µB. = 6.9 ×10– 5 eV
tesla

our
result (17)

This result is nearly 20% above the known value

   µB. = 5.79 ×10– 5 eV
tesla

accepted
value (5)

Figure 3
We get a resonant peak for both orientations of the magnetic field.

105 millivolts
= 8.4 gauss

–105 millivolts
= 8.4 gauss
pointing the 
other way



39-12  Spin

Exercise 6
In our electron spin resonance experiment, we saw that
an electron in a magnetic field had two energy states,
and that the difference in the energy between the states
was proportional to the strength B of the magnetic field.
We measured this energy by placing the electrons in an
oscillating electromagnetic field of a given frequency
(around 30 megacycles) and observing at what values
of the magnetic field we got a transition between the two
states.

In Figure (6) we have a somewhat similar situation
except the object being studied is a HD (Hydrogen-
Deuterium) molecule.  In this molecule the Hydrogen
nucleus (a proton) weakly interacts with the Deuterium
nucleus (a proton and a neutron).  These two nuclei form
a system with several energy states or levels.  If you
apply a magnetic field B to the HD molecule, the
difference in the energy between the states is related to
the strength of B.  The energy difference between the
states can be measured by applying an oscillating
electromagnetic field of a given frequency and observ-
ing at what values  of  the magnetic field we get a
transition between states.

H(mG)

  –20       –10                 10       20

0

H. Benoit and P. Piejus,Compt. Rend. 265B, 101 (1967).

"Spectre de R.M.N. de HD á une Fréquence de 54 Hz."
Transition from the 3/2,1/2 to the 3/2,3/2 states of the
nuclei in an HD molecules at 20 kelvins. The nuclei 
were pre alligned (polarized) in an 8 killogauss field.

Figure 6
NMR data on liquid Hydrogen-Deuterium.

The source of this error is in our measurement of the
strength of the magnetic field. We have relied on the
accuracy of the value of the 0.1Ω resistor through
which the helmholtz coil current i(t) passes, and then
used the approximate formula  B(gauss) = 8i(t). One
can obtain much more accurate results using the preci-
sion search coil shown in Figure (5). This is a 100 turn
coil wound on a 1 inch (2.54cm) plastic rod. Using the
techniques discussed in the magnetic mapping experi-
ment, one can accurately relate the voltage  VR  mea-
sured across the 0.1Ω resistor to the actual value of B.
We have encouraged students who wish to do a project
involving electron spin resonance to see how accurate
a value of    µB they can obtain using this precision
search coil.

Figure 5
100 turn search coil for accurately
determining the magnetic field.
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Figure (6) is a nuclear magnetic resonance scan of the
HD molecules.  As in our electron spin resonance
experiment, the molecules are placed in an oscillating
electromagnetic field of a given frequency, and the
strength of a uniform magnetic field B is varied.  Two
resonance peaks are observed, but they represent the
same transition between the energy levels, since the
transition does not depend upon the sign of the mag-
netic field.

One of the main differences between the electron
system we studied in the lab and the HD molecule, is
that the energy level splitting is really really small in the
HD molecule experiment compared to the splitting we
observed in the electron experiment.  Instead of fields
of tens of gauss and frequencies of around 30 Mega-
cycles, in the HD experiment of Figure (6) , the fre-
quency was 54 cycles per second and the field B was
just under  20 milligauss (.020 gauss or .000002 tesla)!
This example demonstrates the enormous range of
applicability of the magnetic resonance experiments.

For this exercise, we want you to calculate the splitting
between the two energy levels involved in the reso-
nance transitions seen in Figure (6).  Give the answer in
ergs or joules, and in electron volts.  Comment on the
reasonableness of your answer—do you think your
result is too big, too small, or perhaps OK.
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APPENDIX
CLASSICAL PICTURE OF
MAGNETIC INTERACTIONS
At the end of Chapter 31, we discussed the magnetic
moment of a current loop, deriving the formulas

 A  =  area of current loop

  µ ≡ iA                     magnetic moment (31-34)

  τ = µ × B              magnetic torque (31-35)

  Emag = – µ ⋅ B     magnetic energy (31-37)

These equations applied to a current loop whose cur-
rent i and area  A  were unaffected by the magnetic
field.  We only allowed the magnetic field to change the
orientation of the loop via the torque τ .

We then treated a charged particle in a circular orbit as
a current loop.  Using the definition   µ = iA, we found
that the orbiting particle had a magnetic moment µ
related to its angular momentum  L  by

  µ =
q

2m L (31-39)

where q is the charge and m the mass of the particle.

To use the magnetic energy formula   Emag = –µ ⋅ B,
we have to make the same assumptions about the
orbiting particle as we did about the current loop.
Namely we have to assume that the magnetic field
alters only the orientation of the orbit and not the
particle's speed v or orbital radius r.  Since  L = mvr,
we are thus assuming that the magnetic field does not
affect the magnitude of the particle's angular momen-
tum.

For a classical particle, such an argument is not reason-
able.  If we turn on a magnetic field, we change the
magnetic flux through the orbit and thus by Faraday's
law induce a voltage around the orbit.  This induced
voltage should affect both the particle's speed and
orbital radius.

But if the angular momentum of the particle is quan-
tized, if the magnitude of   Emag = –µ ⋅ B cannot change,
then our current loop analysis and magnetic energy
formula   Emag = –µ ⋅ B has a better chance of working.
There is no reason to expect any classical formulas to
apply to atomic or subatomic systems.  What we are
looking for are those that do.

To apply classical formulas to particle spins, we have
to fudge the relationship between the particle's mag-
netic moment µ and its spin angular momentum.  As a
general relationship between magnetic moment µ and
angular momentum  L , we will rewrite Equation 31-39
in the form

  µ = g
q

2m L (A-1)

where g is our fudge factor.  It is the factor we have to
introduce to make classical calculations give the cor-
rect results.

The value of g depends upon the kind of system we are
talking about.   If we are talking about the angular
momentum of an electron in orbit about a nucleus, then
g=1 and the classical equations work.  If we are talking
about the spin angular momentum of an electron, then
g=2.  For electron spin, the classical formulas are off by
a factor of 2.  For the proton, g has to have the value

  2×2.79  in order to get the proton magnetic moment
given in Equation 9.  Since protons and neutrons are
composite particles made from quarks it should not be
surprising that g should have a peculiar value.  This
factor g is called either the gyromagnetic ratio or
Landé g factor.  Fudge factors sound better if you give
them impressive names.

Combining our modified Equation A-1 for µ with 31-
37 for E, we get

  Emag = – µ ⋅ B = g
q

2m L⋅B (A-2)

as the semi classical formula for the magnetic energy of
a particle in a magnetic field.  We say semi classical
because of the correction factor g.
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If the particle has an angular momentum  L  and the
magnetic field exerts a torque τ , the particle should
precess like a gyroscope.  Thus we can compare a
bicycle wheel gyroscope subject to a gravitational
torque to a current loop of magnetic moment µ  subject
to a magnetic torque.  To simplify the analysis, we are
assuming that the magnetic moment µ lies in the plane
perpendicular to  B  so the magnetic torque   τ = µ × B
has a magnitude   µB.

Following the standard analysis of a gyroscope, we
predict that the magnetic moment vector µ should
precess about the magnetic field vector  B  at a rate

  ωprecession  given by

  ωprecession = τ
L =

µB
L (12-58)

a result we derived back in Chapter 12.  Using our semi
classical formula A1 for µ , we get

  
ωprecession = g

qL
2m

B
L

The L’s cancel, and we are left with

  ωprecession = g
q

2m B (A-3)

The quantity   ωprecession  is the precessional frequency
in radians per second.  To convert this to cycles per
second, we divide by   2π  radians/cycle to get

  
fprecession =

ωprecession

2π =
g

2π
q

2m B (A-4)

as the precessional frequency of a charged orbiting or
spinning particle in a magnetic field.

Applying Equation A-4 to the spin of a particle, we
predict classically that if the particle is subject to an
alternating electric and magnetic fields of frequency f,
there will be a resonance and the particle can gain
magnetic energy if the frequency f equals the preces-
sional frequency  fprecession .

To go to the quantum picture, multiply Equation A-4
through by Planck's constant h, to get

  hfprecession = g h
2π

q
2m B

= g
qh
2m B (A-5)

Applying this to an electron  spin, setting q and m to the
charge and mass of an electron, we get

   
hfprecession = gµBB classical theory

with factor g (A-6)

where   µB = eh/2m  is the Bohr magneton.

In the quantum picture, the electron gains magnetic
energy if the photons in the radio wave have the right
amount of energy to flip the spin of the electron.  The
Dirac equation gave the spin flip energy as

   
∆E = 2µBB

energy required
to flip the
electron spin

(3 repeated)

In Equation 7, we equated this energy to the photon
energy to get

   
hf = 2µBB

set spin flip
energy equal to
photon energy

(7 repeated)

as the formula giving the frequency of the radio wave
that can add magnetic energy to the electron.  Compar-
ing Equation (7) with the semi classical result (A-6), we
see that the Landé g factor, the gyromagnetic ratio g,
has to be set equal to 2 for the semi classical theory to
agree with the Dirac equation

  
g = 2 gyromagneticratio

for the electron spin (A-7)



CHAPTER 40 QUANTUM MECHANICS

Chapter 40
Quantum
Mechanics

That light had both a particle and a wave nature
became apparent with Einstein’s explanation of the
photoelectric effect in 1905.  One might expect that
such a discovery would lead to a flood of publications
speculating on how light could behave both as a
particle and a wave.  But no such response occurred.
The particle wave nature was not looked at seriously
for another 18 years, when de Broglie proposed that
the particle wave nature of the electron was respon-
sible for the quantized energy levels in hydrogen.  Even
then there was great reluctance to accept de Broglie’s
proposal as a satisfactory thesis topic.

Why the reluctance?  Why did it take so long to deal
with the particle-wave nature, first of photons then of
electrons?  What conceptual problems do we encoun-
ter when something behaves both as a particle and as
a wave?  How are these problems handled?  That is the
subject of this chapter.
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TWO SLIT EXPERIMENT
Of all the experiments in physics, it is perhaps the 2 slit
experiment that most clearly, most starkly, brings out
the problems encountered with the particle-wave na-
ture of matter.  For this reason we will use the 2 slit
experiment as the basis for much of the discussion of
this chapter.

Let us begin with a review of the 2 slit experiment for
water and light waves.  Figure (1) shows the wave
pattern that results when water waves emerge from 2
slits.  The lines of nodes are the lines along which the
waves from one slit just cancel the waves coming from
the other.  Figure (2) shows our analysis of the 2 slit
pattern.  The path length difference to the first mini-
mum must be half a wavelength   λ/2 .  This gives us the
two similar triangles shown in Figure (2).  If  ymin  is

much less than D, which it is for most 2 slit experi-
ments, then the hypotenuse of the big triangle is ap-
proximately D and equating corresponding sides of the
similar triangles gives us the familiar relationship

  λ/2
d

=
ymin
D

  
λ =

2ymind
D (1)

Figure (3a) is the pattern we get on a screen if we shine
a laser beam through 2 slits.  To prove that the dark
bands are where the light from one slit cancels the light
from the other, we have in Figure (3b) moved a razor
blade in front of one of the slits.  We see that the dark
bands disappear, and we are left with a one slit pattern.
The dark bands disappear because there is no longer
any cancellation of the waves from the 2 slits.

Figure 1
Water waves emerging from two slits.

min

d

λ/2 (path length difference)

D

y
θ

θ

Figure 3a
Two slit interference pattern for light. The closely
spaced dark bands are where the light from one slit
cancels the light from the other.

Figure 2
Analysis of the two slit pattern. We get a minimum
when the path length difference is half a wavelength.

Figure 3b
Move a razor blade in front of one of the
slits, and the closely spaced dark bands
disappear. There is no more cancellation.

razor blade
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In 1961, Claus Jönsson did the 2 slit experiment using
electrons instead of light, with the results shown in
Figure (4).  Assuming that the electron wavelength is
given by the de Broglie formula   p = h/λ , the dark
bands are located where one would expect waves from
the 2 slits to cancel.  The 2 slit experiment gives the
same result for light and electron waves.

The Two Slit Experiment
from a Particle Point of View
In Figure (3a), the laser interference patterns were
recorded on a photographic film.  The pattern is re-
corded when individual photons of the laser light strike
individual silver halide crystals in the film, producing
a dark spot where the photon landed.  Where the image
shows up white in the positive print, many photons
have landed close together exposing many crystal
grains.

In a more modern version of the experiment one could
use an array of photo detectors to count the number of
photons landing in each small element of the array.  The
number of counts per second in each detector could
then be sent to a computer and the image reconstructed
on the computer screen.  The result would look essen-
tially the same as the photograph in Figure (3a).

The point is that the image of the two slit wave pattern
for light is obtained by counting particles, not by
measuring some kind of a wave height.  When we look
at the two slit experiment from the point of view of
counting particles, the experiment takes on a new
perspective.

Imagine yourself shrunk down in size so that you could
stand in front of a small section of the photographic
screen in Figure (3a).  Small enough that you want to
avoid being hit by one of the photons on the laser beam.
As you stand at the screen and look back at the slits, you
see photons being sprayed out of both slits as if two
machine guns were firing bullets at you, but you
discover that there is a safe place to stand.  There are
these dark bands where the particles fired from one slit
cancel the particles coming from the other.

Then one of the slits is closed, there is no more
cancellation, the dark bands disappear as seen in Figure
(3b).  There is no safe place to stand when particles are
being fired at you from only one slit.  It is hard to
imagine in our large scale world how it would be safe
to have two machine guns firing bullets at you, but be
lethal if only one is firing.  It is hard to visualize how
machine gun bullets could cancel each other.  But the
particle wave nature of light seems to require us to do
so.  No wonder the particle nature of light remained an
enigma for nearly 20 years.

Two Slit Experiment—One Particle
at a Time
You might object to our discussion of the problems
involved in interpreting the two slit experiment.  After
all, Figure (1) shows water waves going through two
slits and producing an interference pattern.  The waves
from one slit cancel the waves from the other at the lines
of nodes.  Yet water consists of particles—water
molecules.  If we can get a two slit pattern for water
molecules, what is the big deal about getting a two slit
pattern for photons ?  Couldn’t the photons somehow
interact with each other the way water molecules do,
and produce an interference pattern?

Photons do not interact with each other the way water
molecules do.  Two laser beams can cross each other
with no detectable interaction, while two streams of
water will splash off of each other.  But one still might
suspect that the cancellation in the two slit experiment
for light is caused by some kind of interaction between
the photons.  This is even more likely in the case of
electrons, which are strongly interacting charged par-
ticles.

Figure 4
Two slit experiment using electrons. (By C. Jönsson)
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In an earlier text, we discussed the possibility of an
experiment in which electrons would be sent through a
two slit array, one electron at a time.  The idea was to
eliminate any possibility that the electrons could pro-
duce the two slit pattern by bouncing into each other or
interacting in any way.  Since the experiment had not
yet been done, we drew a sketch of what the results
should look like.  That sketch now appears in a number
of introductory physics texts.

When he saw the sketch, Lawrence Campbell of the
Los Alamos Scientific Laboratories did a computer
simulation of the experiment.  We will first discuss
Campbell’s simulation, and then compare the simula-
tion with the results of the actual experiment which was
performed in 1991.

It is not too hard to guess some of the results of sending
electrons through two slits, one at a time.  After the first
electron goes through you end up with one dot on the
screen showing where the electron hit.  The single dot
is not a wave pattern.  After two electrons, two dots; you
cannot make much of a wave pattern out of two dots.

If, after many thousands of electrons have hit the
screen, you end up with a two slit pattern like that
shown in Figure (4), that means that none of the
electrons land where there will eventually be a dark
band.  You know where the first dot, and the second dot
cannot be located.  Although two dots do not suggest a
wave pattern, some aspects of the wave have already
imposed themselves by preventing the dots from being
located in a dark band.

To get a better idea of what is happening, let us look at
Campbell’s simulation in Figure (5).  In (5a), and (5b)
we see 10 dots and 100 dots respectively. In neither is
there an apparent wave pattern, both look like a fairly
random scatter of dots. But by the time there are 1000
dots seen in (5c), a fairly distinctive interference pattern
is emerging. With 10,000 dots of (5d), we see a fairly
close resemblance between Campbell’s simulation
and Jönsson’s experimental results. Figure (5e) shows
the wave pattern used for the computer simulation.

Although the early images in Figure (5) show nearly
random patterns, there must be some order.  Not only
do the electrons not land where there will be a dark
band, but they must also accumulate in greater numbers

a) 10 dots

b) 100 dots

c) 1000 dots

d) 10000 dots

Predicted pattern

Experimental results by C. Jönsson

Figure 5
Computer simulation of the 2 slit
electron diffraction experiment, as if the
electrons had landed one at a time.
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where the brightest bands will eventually be.  If this
were a roulette type of game in Las Vegas, you should
put your money on the center of the brightest band as
being the location most likely to be hit by the next
electron.

Campbell’s simulation was done as follows.  Each
point on the screen was assigned a probability.  The
probability was set to zero at the dark bands and to the
greatest value in the brightest band.  Where each
electron landed was randomly chosen, but a random-
ness governed by the assigned probability.

How to assign a probability to a random event is
illustrated by a roulette wheel.  On the wheel, there are
100 slots, of which 49 are red, 49 black and 2 green.
Thus where the ball lands, although random, has a 49%
chance of being on red, 49% on black, 2% on green, and
0% on blue, there being no blue slots.

In the two slit simulation, the probability of the electron
landing at some point was proportional to the intensity
of the two slit wave pattern at that point.  Where the
wave was most intense, the electron is most likely to
land.  Initially the pattern looks random because the
electrons can land with roughly equal probability in
any of the bright bands.  But after many thousands of
electrons have landed, you see the details of the two slit
wave pattern.  The dim bands are dimmer than the
bright ones because there was a lower probability that
the electron could land there.

Figure (6) shows the two slit experiment performed in
1991 by Akira Tonomura and colleagues. The experi-
ment involved a novel use of a superconductor for the
two slits, and the incident beam contained so few
electrons per second that no more than one electron was
between the slits and the screen at any one time.  The
screen consisted of an array of electron detectors which
recorded the time of arrival of each electron in each
detector.  From this data the researchers could recon-
struct the electron patterns after 10 electrons (6a), 100
electrons (6b), 3000 electrons (6c), 20,000 electrons
(6d) and finally after 70,000 electrons in Figure (6e).
Just as in Campbell’s simulation, the initially random
looking patterns emerge into the full two slit pattern
when enough electrons have hit the detectors.

Figure 6
Experiment in which the 2 slit electron interference
pattern is built up one electron at a time. ( A.
Tonomura, J. Endo, T. Matsuda, T. Kawasaki,
American Journal of Physics, Feb. 1989. See also
Physics Today, April 1990, Page 22.)
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Born’s Interpretation
of the Particle Wave
In 1926, while calculating the scattering of electron
waves, Max Born discovered an interpretation of the
electron wave that we still use today.  In Born’s picture,
the electron is actually a particle, but it is the electron
wave that governs the behavior of the particle.  The
electron wave is a probability wave governing the
probability of where you will find the electron.

To apply Born’s interpretation to the two slit electron
experiment, we do what Campbell did in the simulation
of Figure (5).  We first calculate what the wave pattern
at the screen would be for a wave passing through the
two slits.  It is the two slit interference pattern we have
seen for water waves, light waves and electron waves.
We then interpret the intensity of the pattern at some
point on the screen as being proportional to the
probability that the electron will land at that point.  We
cannot predict where any given electron will actually
land, any more than we can predict where the ball will
end up on the roulette wheel.  But we can predict what
the pattern will look like after many electrons have
landed.  If we repeat the experiment, the electrons will
not land in the same places, but eventually the same two
slit pattern will result.

Exercise 1

Figure (36-16) reproduced here, shows the diffraction
pattern produced when a beam of electrons is scat-
tered by the atoms of a graphite crystal.  Explain what
you would expect to see if the electrons went through
the graphite crystal one at a time and you could watch
the pattern build up on the screen.  Could you market
this apparatus in Las Vegas, and if so, how would you
use it?

Photon Waves
Both electrons and photons have a particle-wave nature
related by the de Broglie formula   p = h/λ , and both
produce a two slit interference pattern.  Thus one would
expect that the same probability interpretation should
apply to electron waves and light waves.

We have seen, however, that a light wave, according to
Maxwell’s equations, consists of a wave of electric and
magnetic fields  E  and  B .  These are vector fields that
at each point in space have both a magnitude and a
direction.  Since probabilities do not point anywhere,
we cannot directly equate  E and  B  to some kind of
probability.

To see how to interpret the wave nature of a photon, let
us first consider something like a radio wave or a laser
beam that contains many billions of photons. In our
discussion of capacitors in Chapter 27, we saw that the
energy density in a classical electric field was given by

   Energy
density

=
ε0E2

2
energy density in
an electric field (27-36)

where   E2 = E ⋅ E . In an electromagnetic wave there
are equal amounts of energy in the electric and the
magnetic fields. Thus the energy density in a classical
electromagnetic field is twice as large as that given y
Equation 27-36, and we have

   
E

joules
meter3 = ε0E2 energy density in an

electricomagneticwave

If we now picture the electromagnetic wave as consist-
ing of photons whose energy is given by Einstein’s
photoelectric formula

 Ephoton = hf
joules
photon

then the density of photons in the wave is given by

  
n =

ε0E2 joules meter3joules meter3

hf joules photonjoules photon

   
n =

ε0E2

hf
photons
meter3

densityof photons
in an electromagnetic
wave of frequency f

(1)

where f is the frequency of the wave.

Figure 36-16
Diffraction
pattern
produced by
electrons
passing
through a
graphite
crystal.
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In Exercise 2, we have you estimate the density of
photons one kilometer from the antenna of the student
AM radio station at Dartmouth College.  The answer
turns out to be around .25 billion photons/cc, so many
photons that it would be hard to detect them individu-
ally.

Exercise 2
To estimate the density of photons in a radio wave, we
can, instead of calculating E for the wave, simply use
the fact that we know the power radiated by the station.
As an example, suppose that we are one kilometer away
from a 1000 watt radio station whose frequency is

  1.4 × 106Hz .  A 1000 watt station radiates 1000 joules
of energy per second or  10– 6  joules in a nanosecond.
In one nanosecond the radiated wave moves out one
foot or about 1/3 of a meter.  If we ignore spatial
distortions of the wave, like reflections from the ground,
etc., then we can picture this  10– 6  joules of energy as
being located in a spherical shell 1/3 of a meter thick,
expanding out from the antenna.

(a) What is the total volume of a spherical shell 1/3 of a
meter thick and 1 kilometer in radius?

(b) What is the average density of energy, in joules/  m3

of the radio wave 1 kilometer from the antenna

(c) What is the energy, in joules, of one photon of
frequency   1.4 × 106Hz?

(d) What is the average density of photons in the radio
wave 1 kilometer from the station?  Give the answer first
in photons/  m3  and then photons per cubic centimeter.
(The answer should be about .25 billion photons/  cm3.)

Now imagine that instead of being one kilometer from
the radio station, you were a million kilometers away.
Since the volume of a spherical shell 1/3 of a meter
thick increases as  r2 , (the volume being   1/3 × 4πr2 )
the density of photons would decrease as  1/r2 .  Thus
if you were  106  times as far away, the density of
photons would be  10– 12  times smaller.  At one million
kilometers, the average density of photons in the radio
wave would be

  number ofphotons
per cubic centimeter
at 1 million kilometers

= number at 1km
1012

= .25 × 109

1012

= .00025
photons

cm3 (2)

In the classical picture of Maxwell’s equations, the
radio wave has a continuous electric and magnetic field
even out at 1 million kilometers.  You could calculate
the value of  E  and  B  out at this distance, and the result
would be sinusoidally oscillating fields whose struc-
ture is that shown back in Figure (32-23).  But if you
went out there and tried to observe something, all you
would find is a few photons, on the order of .25 per liter
(about one per gallon of space).  If you look in 1 cubic
centimeter of space, chances are you would not find a
photon.

So how do you use Maxwell’s equations to predict the
results of an experiment to detect photons a million
kilometers from the antenna?  First you use Maxwell’s
equation to calculate E  at the point of interest, then
evaluate the quantity   (ε0E⋅E/hf ) , and finally interpret
the result as the probability of finding a photon in the
region of interest.  If, for example, we were looking in
a volume of one cubic centimeter, the probability of
finding a photon there would be about .00025 or
.025%.

This is an explicit prescription for turning Maxwell’s
theory of electromagnetic radiation into a probability
wave for photons.  If the wave is intense, as it was close
to the antenna, then   (ε0E⋅E/hf )  represents the density
of photons.  If the wave is very faint, then   (ε0E⋅E/hf )
becomes the probability of finding a photon in a certain
volume of space.
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Reflection and Fluorescence
An interesting example of the probability interpreta-
tion of light waves is provided by the phenomena of
reflection and of fluorescence.

When a light beam is reflected from a metal surface, the
angle of reflection, labeled  θr  in Figure (7a) is equal to
the angle of incidence  θi .  The reason for this is seen
in Figure (7b).  The incident light wave is scattered by
many atoms in the metal surface.  The scattered waves
add up to produce the reflected wave as shown in
Figure (7b).  Any individual photon in the incident
wave must have an equal probability of being scattered
by all of these atoms in order that the scattered probabil-
ity waves add up to the reflected wave shown in (7b).

When you have a fluorescent material, you see a rather
uniform eerie glow rather than a reflected wave.  The
light comes out in all directions as in Figure (8a).

The wavelength of the light from a fluorescent material
is not the same wavelength as the incident light.  What
happens is that a photon in the incident beam strikes and
excites an individual atom in the material.  The excited
atom then drops back down to the ground state radiat-
ing two or more photons to get rid of the excitation
energy.  (Ultraviolet light is often used in the incident
beam, and we see the lower energy visible photons
radiated from the fluorescing material.)

The reason that fluorescent light emerges in many
directions rather than in a reflected  beam is that an
individual photon in the incident beam is absorbed by
and excites one atom in the fluorescent material.  There
is no probability that it has struck any of the other
atoms.  The fluorescent light is then radiated as a
circular wave from that atom, and the emerging photon
has a more or less equal probability of coming out in all
directions above the material.

reflected wave

incident wave

Figure 7b
The reflected wave results from the scattering of the
incident wave by many atoms. If the incident wave
contains a single photon, that photon must have an
equal probability of being scattered by many atoms
in order to emerge in the reflected wave.

incident
beam

mirror

flourescent
glow

Figure 8a
When a beam of light strikes a fluorescent material, we
see an eerie glow rather than a normal reflected light.

angle of
incidence

mirror

angle of
reflection

θi θr

Figure 7a
When a light wave strikes a mirror, the angle
of incidence equals the angle of reflection.

incident 
photon reemitted wave

excited atom
Figure 8b
Fluorescence occurs when an individual atom is
excited and radiates its extra energy as two
distinct photons. Since there is no chance that the
radiation came from other atoms, the radiated
wave emerges only from the excited atom.
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A Closer Look at the
Two Slit Experiment
While the probability interpretation of electron and
photon waves provides a reasonable explanation of
some phenomena, the interpretation is not without
problems.  To illustrate what these problems are, con-
sider the following thought experiment.

Imagine that we have a large box with two slits at one
end and a photographic film at the other, as shown in
Figure (9).  Far from the slits is an electron gun that
produces a weak beam of electrons, so weak that on the
average only one electron per hour passes through the
slits and strikes the film.  For simplicity we will assume
that the electrons go through the slits on the hour, there
being the 9:00 AM electron, the 10:00 AM electron, etc.

The electron gun is one of the simple electron guns we
discussed back in Chapter 28.  The beam is so spread out
that there is no way it can be aimed at one slit or the
other.  Our beam covers both slits, meaning that each of
the electrons has an equal chance of going through the
top or bottom slit.

We will take the probability interpretation of the elec-
tron wave seriously.  If the electron has an equal
probability of passing through either slit, then an equally
intense probability wave must emerge from both slits.
When the probability waves get to the photographic
film, there will be bands along which waves from one
slit cancel waves from the other, and we should even-
tually build up a two slit interference pattern on the film.

Suppose that on our first run of the thought experiment,
we do build up a two slit pattern after many hours and
many electrons have hit the film.

We will now repeat the experiment with a new twist.
We ask for a volunteer to go inside the box, look at the
slits, and see which one each electron went through.
John volunteers, and we give him a sheet of paper to
write down the results.  To make the job easier, we tell
him to just look at the bottom slit on the hour to see if the
electron went through that slit.  If for example he sees
an electron come out of the bottom slit at 9:00 AM, then
the 9:00 AM electron went through the bottom slit.  If
he saw no electron at 10:00 AM, then the 10:00 AM
electron must have gone through the upper slit.

If John does his job carefully, what kind of a pattern
should build up on the film after many electrons have
gone through?  If the 9:00 AM electron was seen to pass
through the bottom slit, then there is no probability that
it went through the top slit.  As a result, a probability
wave can emerge only from the bottom slit, and there
can be no cancellation of probability waves at the
photographic film.  Since the 10:00 AM electron did not
go through the bottom slit, the probability wave must
have emerged only from the top slit and there again can
be no cancellation of waves at the photographic film.

If John correctly determines which slit each electron
went through, there can be no cancellation of waves
from the two slits, and we have to end up with a one slit
pattern on the film.  Just the knowledge of which slit
each electron went through has to change the two slit
pattern into a one slit pattern.  With Born’s probability
interpretation of electron waves, just the knowledge of
which slit the electrons go through changes the result
of the experiment.  Does this really happen, or have we
entered the realm of metaphysics?
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Figure 9
In this thought experiment, we consider the possibility that someone is
looking at the two slits to see which slit each electron comes through.
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Let us return to our thought experiment.  John has been
in the box for a long time now, so that a number of
electrons have hit the film.  We take the film out,
develop it, and clearly see a two slit interference pattern
emerging.  There are the dark bands along which waves
from one slit cancel the waves from the other slit.

Then we go over to the door on the side of the box, open
it and let John out, asking to see his results.  We look at
his sheet of paper and nothing is written on it.  “What
were you doing all of that time,” we ask.  “What do you
mean, what was I doing?  How could I do anything?
You were so careful sealing up the box from outside
disturbances that it was dark inside.  I couldn’t see a
thing and just had to wait until you opened the door.
Not much of a fun experiment.”

“Next time,” John said, “give me a flashlight so I can
see the electrons coming through the slits.  Then I can
fill out your sheet of paper.”

“Better be careful,” Jill interrupts, “about what kind of
a flashlight you give John.  A flashlight produces a
beam of photons, and John can only see a passing
electron if one of the flashlight’s photons bounces off
the electron.”

“Remember that the energy of a photon is proportional
to its frequency.  If the photons from John’s flashlight
have too high a frequency, the photon hitting the
passing electron will change the motion of the electron
and mess up the two slit pattern.  Give John a flashlight
that produces low frequency, low energy photons, so
he won’t mess up the experiment.”

“But,” Bill responds, “a low frequency photon is a long
wavelength photon.  Remember that demonstration
where waves were scattered from a tiny object?  The
scattered waves were circular, and contained no infor-
mation about the shape of the object (Figure 36-1).  You
can’t use waves to study details that are much smaller
than the wavelength of the wave.  That is why optical
microscopes can’t be used to study viruses that are
smaller than a wavelength of visible light.”

“If John’s flashlight,” Bill continues, “produced pho-
tons whose wavelength was longer than the distance
between the two slits, then even if he hit the electron
with one of the photons in the wave, John could not tell
which slit the electron came through.”

“Let us do some calculations,” the professor says.  “The
most delicate way we can mess up the experiment is to
hit an electron sideways, changing the electron’s direc-
tion of motion so that if it were heading toward a
maxima, it will instead land in a minima, filling up the
dark bands and making the pattern look like a one slit
pattern.  Here is a diagram for the situation (Figure 10).”

“In the top sketch (10a), John is shining his flashlight
at an electron that has just gone through the slit and is
heading toward the central maximum.  In the middle
sketch (10b) the photon has knocked the electron
sideways, so that it is now headed toward the first
minimum in the diffraction pattern.  Let us assume that
all the photon’s momentum  pphoton  has been trans-
ferred to the electron, so that the electron’s new mo-
mentum is now

Figure 36-1 (reproduced)
If an object is smaller than a
wavelength, the scattered
waves are circular and do
not contain information
about the shape of the object.

Incident and scattered wave After incident wave has passed
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 pelectron – new = pelectron – old + pphoton (3)

The angle θ  by which the electron  is deflected is
approximately given by

  
θ ≈

pphoton
pelectron

=
h/λphoton

h/λelectron

  θ ≈
λelectron
λphoton

(4)

where we used the de Broglie formula for the photon
and electron momenta.”

“In the bottom sketch we have the usual analysis of a
two slit pattern.  If the angle θ to the first minimum is
small, which it usually is for a two slit experiment, then
by similar triangles we have

  θ ≈
ymin

D =
λelectron 2λelectron 2

d (5)

Equating the values of θ from equations (5) and (4), we
get

  θ =
λelectron

2d
=

λelectron
λphoton

(6)

“Look!” Bill says, “   λelectron  cancels and we are left
with  ”

  λphoton = 2d (7)

“I told you,” Jill interrupts, “that you had to be careful
about what wavelength photons John could use.  Here
we see that if John’s photons have a wavelength of 2d
or less, his photons will carry enough of a punch,
enough momentum to destroy the two slit pattern.  Be
sure John’s photons have a wavelength longer than 2d
so that they will be incapable of knocking an electron
from a maxima to a minima.”

“No way,” responds Bill.  “A wavelength of 2d is
already too big.  John cannot use photons with a
wavelength any greater than the slit width d if he wants
to see which slit the electron went through.  And you
want him to use photons with a wavelength greater than
2d!”
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Figure 10a
In order to see the electron, John
uses a flashlight, and strikes the
electron with a photon.

Figure 10c
Analysis of the two slit pattern. The angle to the
first minimum is determined by using similar
triangles. If the angle θ is small, then sinθ ≈ θ.

Figure 10b
Assume the photon’s momentum has been
absorbed by the electron. This could deflect
the electron’s path by an angle θ.
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“That’s the dilemma,” the professor replies.  “If John
uses photons whose wavelength is short enough to see
which slit the electron went through, he is likely to mess
up the experiment and destroy the two slit pattern.”

“It looks like the very act of getting information is
messing up the experiment,” Jill muses.

“It messes it up if we use photons,” Bill responds.”  Let
us work out a better experiment where we do a more
delicate measurement to see which slit the electron
went through.  Do the experiment so delicately that we
do not affect the motion of the electron, but accurately
enough to see which slit the electron went through.”

“How would you do that?” Jill asks.

“Maybe I would put a capacitor plate on one of the
slits,” Bill responds, “and record the capacitor voltage.
If the electron went through that slit, the electric field of
the electron should affect the voltage on the capacitor
and leave a blip on my oscilloscope screen.  If I don’t
see a blip, the electron went through the other slit.”

“Would this measurement affect the motion of the
electron?” Jill asks.

“I don’t see why,” Bill responds.

“Think about this,” the professor interrupts.  “We are
now interpreting the electric and magnetic fields of a
light wave as a probability wave for photons.  In this
view, all electric and magnetic phenomena are ulti-
mately caused by photons.  The electric and magnetic
fields we worked with earlier in the course are now to
be thought of as a way of describing the behavior of the
underlying photons.”

“That’s crazy,” Bill argues.  “You mean, for example,
that the good old  1/r2  Coulomb force law that holds
the hydrogen atom together, is caused by photons?  I
don’t see how.”

“It’s hard to visualize, but you can use a photon picture
to explain every detail of the interaction between the
electron and proton in the hydrogen atom.  That calcu-
lation was actually done back in 1947.  The modern
view is that all electric and magnetic phenomena are
caused by photons.”

“If all electric and magnetic phenomena are caused by
photons,” Jill observes, “then Bill’s capacitor plate and
voltmeter, which uses electromagnetic phenomena, is
based on photons.  Since photons obey the de Broglie
relationship, the photons in Bill’s experiment should
have the same effect as the photons from John’s
flashlight.  If John’s photons mess up the experiment,
Bill’s should too!”

“I have an idea,” Bill says.  “Aren’t there such a thing
as gravitational waves?”

“Yes,” replies the professor.  “They are very hard to
make, and very hard to detect.  We have not been able
to make or detect them yet in the laboratory.  But back
in the 1970’s Joe Taylor at the University of Massachu-
setts discovered a pair of binary neutron stars orbiting
about each other.  Since the stars eclipse each other,
Taylor could accurately measure the orbital period.”

“According to Einstein’s theory of gravity, the orbiting
neutron stars should radiate gravitational waves and
lose energy.  Joe Taylor has conclusively shown that
the pair of stars are losing energy just as predicted by
Einstein’s theory.  Taylor got the Nobel prize for this
work in 1993.”

“Is Einstein’s theory a quantum theory?” Bill asks.

“What do you mean by that?” Jill asks.

“I mean,” Bill responds, “in Einstein’s theory, do
gravitational waves have a particle wave nature like
electromagnetic waves?  Are there particles in a gravi-
tational wave like there are photons in a light wave?”

“Not in Einstein’s theory,” the professor replies.
“Einstein’s theory is strictly a classical theory.  No
particles in the wave.”
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“Then if Einstein’s theory is correct,” Bill continues, “I
should be able to make a gravitational wave with a very
short wavelength and very little energy.”

“Couldn’t  I then use this short wavelength, low en-
ergy, gravitational wave to see which slit the electron
went through?  I would make the wavelength much
shorter than the slit spacing d so that there would be
no doubt about which slit the electron went through.
But I would use a very low energy, delicate wave so that
I would not affect the motion of the electron.”

“You could do that if Einstein’s theory is right,” the
professor replies.

“But,” Bill responds, “that allows me to tell which slit
the electron went through without destroying the two
slit pattern.  What happens to the probability interpre-
tation of the electron wave?  If I know which slit the
electron went through, the probability wave must have
come from that slit, and we must get a one slit pattern.
If John used gravitational waves instead of light waves
in his flashlight, he could observe which slit the elec-
tron went through without destroying the two slit
pattern.”

“You have just stumbled upon one of the major out-
standing problems in physics,” the professor replies.
“As far as we know there are four basic forces in nature.
They are gravity, the electromagnetic force, the weak
interaction, and the so-called gluon force that holds
quarks together.  I listed these in the order in which they
were discovered.”

“Now three of these forces, all but gravity, are known
to have a particle-wave nature like light.  All the
particles obey the de Broglie relation   p = h/λ .”

“As a result, if we perform our two slit electron
experiment, trying to see which slit the electron went
through, and we use apparatus based on non gravita-
tional forces, we run into the same problem we had with
John’s flashlight.  The only chance we have for detect-
ing which slit the electron went through without mess-
ing up the two slit pattern, is to use gravity.”

“Could Einstein be wrong?” Jill asks.  “Couldn’t
gravitational waves also have a particle nature?  Couldn’t
the gravitational particles also obey the de Broglie
relation?”

“Perhaps,” the professor replies.  “For years, physicists
have speculated that gravity should have a particle-
wave nature.  They have even named the particle -- they
call it a graviton.  One problem is that gravitons should
be very, very hard to detect.  The only way we know that
gravitational waves actually exist is from Joe Taylor’s
binary neutron stars.  There are various experiments
designed to directly observe gravitational waves, but
no waves have yet been seen in these experiments.”

“In the case of electromagnetism, we saw electromag-
netic radiation -- i.e., light -- long  before photons were
detected in Hertz’s photoelectric effect experiment.
After gravitational waves are detected, then we will
have to do the equivalent of a photoelectric effect
experiment for gravity in order to see the individual
gravitons.  The main problem here is that the gravita-
tional radiation we expect to see, like that from massive
objects such as neutron stars, is very low frequency
radiation.  Thus we would be dealing with very low
energy gravitons which would be hard to detect indi-
vidually.”

“And there is another problem,” the professor contin-
ues, “no one has yet succeeded in constructing a
consistent quantum theory of gravity.  There are math-
ematical problems that have yet to be overcome.  At the
present time, the only consistent theory of gravity we
have is Einstein’s classical theory.”

“It looks like two possibilities,” Jill says.  “If the
probability interpretation of electron waves is right,
then there has to be a quantum theory of gravity,
gravitons have to exist.  If Einstein’s classical theory is
right, then there is some flaw in the probability interpre-
tation.”

“That is the way it stands now,” the professor replies.
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THE UNCERTAINTY PRINCIPLE
We have just seen that, for the probability interpreta-
tion of particle-waves to be a viable theory, there can be
no way we can detect which slit the electron went
through without destroying the two slit pattern.  Also
we have seen that if every particle and every force have
a particle wave nature obeying the de Broglie relation-
ship   λ = h/p , then there is no way we can tell which slit
the electron went through without destroying the two
slit pattern.  Both the particle-wave nature of matter,
and the probability interpretation of particle waves,
lead to a basic limitation on our ability to make experi-
mental measurements.  This basic limitation was dis-
covered by Werner Heisenberg shortly before
Schrödinger developed his wave equation for elec-
trons.  Heisenberg called this limitation the uncertainty
principle.

When you cannot do something, when there is really no
way to do something, physicists give the failure a name
and call it a basic law of physics.  We began the text with
the observation that you cannot detect uniform motion.
Michaelson and Morley thought they could, repeatedly
tried to do so, and failed.  This failure is known as the
principle of relativity which Einstein used as the foun-
dation of his theories of relativity.  Throughout the text
we have seen the impact of this simple idea.  When
combined with Maxwell’s theory of light, it implied
that light traveled at the same speed relative to all
observers.  That implied moving clocks ran slow,

moving lengths contracted, and the mass of a moving
object increased with velocity.  This led to the relation-
ship  E = mc2  between mass and energy, and to the
connections between electric and magnetic fields.  The
simple idea that you cannot measure uniform motion
has an enormous impact on our understanding of the
way matter behaves.

Now, with the particle-wave nature of matter, we are
encountering an equally universal restriction on what
we can measure, and that restriction has an equally
important  impact on our understanding of the behavior
of matter.  Our discussion of the uncertainty principle
comes at the end of the text rather than at the beginning
only because it has taken a while to develop the
concepts we need to explain this restriction.  With the
principle of relativity we could rely on the student’s
experience with uniform motion, clocks and meter
sticks.  For the uncertainty principle, we need some
understanding of the behavior of particles and waves,
and as we shall see, Fourier analysis plays an important
role.

There are two forms of the uncertainty principle, one
related to measurements of position and momentum,
and the other related to measurements of time and
energy.  They are not separate laws, one can be derived
from the other.  The choice of which to use is a matter
of convenience.  Our discussion of the two slit experi-
ment and the de Broglie relationship naturally leads to
the position-momentum form of the law, while Fourier
analysis naturally introduces the time-energy form.
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POSITION-MOMENTUM FORM
OF THE UNCERTAINTY PRINCIPLE
In our two slit thought experiment, in the attempt to see
which slit the electron went through, we used a beam
of photons whose momenta was related to their wave-
length by   p = h/λ .  The wave nature of the photon is
important because we cannot see details smaller than a
wavelength λ  when we scatter waves from an object.
When we use waves of wavelength λ , the uncertainty
in our measurement is at least as large as λ .  Let us call
the uncertainty in the position measurement   ∆x .

However when we use photons to locate the electron,
we are slugging the electron with particles, photons of
momentum   pphoton = h/λ .  Since we do not know
where the photons are within a distance λ , we do not
know exactly how the electron was hit and how much
momentum it absorbed from the photon.  The electron
could have absorbed the full photon momentum  pphoton
or none of it.  If we observe the electron, we make the
electron’s momentum uncertain by an amount at least
as large as  pphoton .  Calling the uncertainty in the
electron’s momentum   ∆pelectron  we have

  ∆pelectron = pphoton = h
λ = h

∆x (8)

multiplying through by   ∆x  gives

  ∆p∆x = h (9)

In Equation 9,   ∆p  and   ∆x  represent the smallest
possible uncertainties we can have when measuring the
position of the electron using photons.  To allow for the
fact that we could get much greater uncertainties using
poor equipment or sloppy techniques, we will write the
equation in the form

   
∆p∆x ≥ h

position–momentum
form of the
uncertainty principle

(10)

indicating that the product of the uncertainties is at least
as large as Planck’s constant h.

If all forces have a particle nature, and all particles obey
the de Broglie relationship, then the fact that we derived
Equation 10 using photons makes no difference.  We
have to get the same result using any particle, in any
possible kind of experiment.  Thus Equation 10 repre-
sents a fundamental limitation on the measurement
process itself!

Equation 10 is not like any formula we have previously
dealt with in the text.  It gives you an estimate, not an
exact value.  Often you will see the formula written

  ∆p∆x ≥ h  with   h = h/2π , rather than h, appearing on
the right side.  Whether you use h or h  depends upon
how you wish to define the uncertainties   ∆p  and   ∆x .
But it is not necessary to be too precise.  The important
point is that the product   ∆p∆x  must be at least of the
order of magnitude h.  It cannot be h/100 or something
smaller.

The gist of the uncertainty principle is that the more
accurately you measure the position of the particle, the
more you mess up the particle’s momentum.  Or, the
more accurately you measure the momentum of a
particle, the less you know about the particle’s position.

Equation (10) is not quite right, because it turns out that
an accurate measurement of the x position of a particle
does not necessarily mess up the particle’s y compo-
nent of momentum, only its x component.  A more
accurate statement of the uncertainty principle is

  ∆px∆x ≥ h (11a)

  ∆py∆y ≥ h (11b)

where   ∆px  is the uncertainty in the particle’s x compo-
nent of momentum due to a measurement of its x
position, and   ∆py  is the uncertainty in the y component
of momentum resulting from a y position measure-
ment.  The quantities   ∆x  and   ∆y  are the uncertainty in
the x and y measurements respectively.
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Single Slit Experiment
In our two slit thought experiment, we measured the
position of the electron by hitting it with a photon.
Another way to measure the position of a particle is to
send it through a slit.  For example, suppose a beam of
particles impinges on a slit of width (w) as illustrated in
Figure (11).  We know that any particle that makes it to
the far side of the slit had, at one time, been within the
slit.  At that time we knew its y position to within an
uncertainty   ∆y  equal to the width (w) of the slit.

  ∆y = w (12)

This is an example of a position measurement with a
precisely known uncertainty   ∆y .

According to the uncertainty principle, the particle’s y
component of momentum is uncertain by an amount

  ∆py  given by Equation 11b as

  ∆py ≥ h
∆y

= h
w (13) w

y

Figure 11
When a particle goes through the slit, its y position is
known to within an uncertainty    ∆∆y = w .

Equation 13 tells us that the smaller   ∆y , i.e., the
narrower the slit, the bigger the uncertainty   ∆py we
create in the particle’s y momentum.  This is what
happens if the particle’s motion is governed by its wave
nature.

In Figure (12a) we have a ripple tank photograph of a
wave passing through a moderately narrow slit.  The
wave on the far side of the slit is seen to spread out a bit.
We can calculate the amount of spread by noting that
the beam is mostly contained within the central maxi-
mum of the single slit diffraction pattern.
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Now suppose that this wave represented a beam of
photons or electrons.  On the right side of the slit, all the
particles have a definite x component of momentum

  px = h/λ  and no y momentum.  The uncertainty in the
y momentum is zero.

Once the particle’s have gone through the slit, the beam
spreads out giving the particles a y momentum.

Since you do not know whether any given particle in
the beam will go straight ahead, up or down, the spread
of the beam introduces an uncertainty   ∆py  in the
particle’s y momentum.  This spread is illustrated in
Figure (12b).

In Figure (13a), we see a wave passing through a
narrower slit than the one in Figure (12a).  With the
narrower slit, we have made a more precise measure-
ment of the particle’s y position.  We have reduced the
uncertainty   ∆y = w .  According to the uncertainty
principle   ∆py ≥ h/∆y , a decrease in   ∆y  should in-
crease the uncertainty   ∆py  in the particle’s y momen-
tum.  But an increase in   ∆py  means that the beam
should spread out more, which is what it does in Figure
(13).  In going from Figure (12) to Figure (13), we have
cut the slit width about in half and about doubled the
spread.  I.e., cutting   ∆y  in half doubles   ∆py  as
expected.
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Figure 12b
Particle picture of the single slit experiment.

Figure 12a
Wave picture of the single slit experiment, wide slit.

Figure 13a
Narrow the slit and the wave spreads out.
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Figure 13b
With a narrower slit,    ∆∆py  increases.
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Example 1
We can use our analysis of the single slit pattern in
Chapter 33 to show that   ∆py  and  ∆y are related by the
uncertainty principle.  We saw that when a wave goes
through a single slit of width w, the distance   ymin  to the
first minimum is given by

    ymin = λD
w (33-14)

where λ  is the wavelength and D the distance to the
screen as shown in Figure (14a).  The angle to the first
minimum is given by

    
tan θmin =

ymin
D =

λD/w
D = λ

w (14)

       
w

D

Ymin

θmin

Figure 14a

After the beam emerges from the slit, the momenta of
the particles spreads out through the same angle   θmin
as indicated in Figure (14b).  From that figure we have

    tan θmin =
∆py

px
(15)

                       
y∆p

minθ

xp

Figure 14b

where   ∆py  represents the possible spread in the
particle’s y momenta.  Equating values of    tan θmin from
Equation 14 and Equation 15 gives

    λ
w =

∆py

px
(16)

The particles entered the slit as plane waves with only
an x component of momentum given by de Broglie’s
formula

    px = h
λ (17)

Using this formula for  px  in Equation 16 gives

    λ
w =

∆py

h/ λ
=

λ∆py

h
(18)

The   λ's  cancel, and we are left with

    ∆py w = h (19)

But the slit width w is  ∆y, the uncertainty in the y
measurement, thus

    ∆py∆y = h (20)

There is an equal sign in Equation 20 because this
particular measurement of the y position of the particle
causes the least possible uncertainty in the particle’s y
component of momentum.  (Note that the x component
of the particle’s momentum is more or less unaffected
by the slit.  The wave has the same wavelength λ  before
and after going through the slit.  It is the y component of
momentum that changed from zero on the left side to

   ± ∆py on the right.)

Exercise 3
A microwave beam, consisting of    1.24 × 10– 4eV pho-
tons impinges on a slit of width (w) as shown in Figure
14a.

(a) What is the momentum  px  of the photons in the laser
beam before they get to the slit?

(b) When the photon passes through the slit, their y
position is known to an uncertainty  ∆y = w, the slit width.
Before the photons get to the slit, their y momentum has
the definite value  py = 0.  Passing through the slit makes
the photon’s y momentum uncertain by an amount   ∆py.
Using the uncertainty principle, calculate what the slit
width (w) must be so that   ∆py is equal to the photon’s
original momentum   px .  How does w compare with the
wavelength λ  of the laser beam?

(c)  If   ∆py becomes as large as the original momentum
 px , what can you say about the wave pattern on the right

side of Figure (11)?  Is this consistent with what you
know about waves of wavelength λ  passing through a
slit of this width?  Explain.
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TIME-ENERGY FORM OF
THE UNCERTAINTY PRINCIPLE
The second form of the uncertainty principle, which
perhaps has an even greater impact on our understand-
ing of the behavior of matter, involves the measure-
ment of the energy of a particle, and the time available
to make the measurement.  The shorter the time
available, the less accurate the energy measurement
is.  If   ∆E  is the uncertainty in the results of our energy
measurement, and  ∆t  the time we had to make the
measurement, then   ∆E  and   ∆t  are related by

  ∆E∆t ≥ h (21)

One can derive this form of the uncertainty principle
from   ∆p∆x ≥ h , but we can gain a better insight into
the relationship by starting with an explicit example.

A device that has become increasingly important in
research, particularly in the study of fast reactions in
molecules and atoms, is the pulsed laser.  The lasers we
have used in various experiments are all continuous
beam lasers.  The beam is at least as long as the distance
from the laser to the wall.  If we had a laser that we could
turn on and off in one nanosecond, the pulse would be
1 foot or 30 cm long and contain

  30cm
6 × 10– 5 cm

wavelength
= 5 × 105wavelengths

Even a picosecond laser pulse which is 1000 times
shorter, contains 500 wavelengths.  Some of the recent
pulsed lasers can produce a pulse 500 times shorter than
that, only 2 femtoseconds (   2 × 10– 15 seconds) long.
These lasers emit a pulse that is only one wavelength
long.

For our example of the time-energy form of the uncer-
tainty principle, we wish to consider the nature of the
photons in a 2 femtosecond long laser pulse.  If we want
to measure the energy of the photons in such a pulse, we
only have 2 femtoseconds to make the measurement
because that is how long the pulse takes to go by us.  In
the notation of the uncertainty principle

   
∆t = 2 × 10–15sec

= 2 femtoseconds

time available to
measure the energy
of the photons
in our laser pulse

(22)

Let us suppose that the laser produces red photons
whose wavelength is   6.2 × 10– 5cm , about the wave-
length of the lasers we have been using.  According to
our usual formula for calculating the energy of the
photons in such a laser beam we have

  
Ephoton = 12.4 × 10– 5eV cm

6.2 × 10– 5cm
= 2 eV (23)

Now let us use the uncertainty principle in the form

  ∆E ≥ h
∆t (24)

to calculate the uncertainty in any measurement we
would make the energy of the photons in the 2
femtosecond laser beam.  We have

  
∆E ≥ h

∆t
≥ 6.63 × 10– 27erg sec

2 × 10– 15sec

≥ 3.31 × 10– 12ergs
(25)

Converting   ∆E  from ergs to electron volts, we get

  
∆E ≥

3.31 × 10– 12ergs

1.6 × 10– 12ergs/eV
≈ 2 eV (26)

The uncertainty in any energy measurement we make
of these photons is as great as the energy itself!  If we
try to measure the energy of these photons, we expect
the answers to range from   E – ∆E = 0 eV  up to

  E + ∆E = 4 eV .  Why does this happen?  Why is the
energy of the photons in this beam so uncertain?
Fourier analysis provides the answer.
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We can see why the energy of the photons in the 2
femtosecond pulse is so uncertain by comparing the
Fourier transform of a long laser pulse with that of a
pulse consisting of only one wavelength.

Figure (15) shows the Fourier transform of an infinitely
long sine wave.  You will recall that, in the design of the
MacScope program, it is assumed that we are analyz-
ing a repeated waveform.  If you continuously repeat
the waveform seen in the upper half of the diagram, you
get an infinitely long cyclic wave which is a pure sine
wave.  (Sine waves are by definition infinitely long
waves.)  In effect we have in Figure (15) selected 16
cycles of the pure sine wave, and the Fourier analysis
box shows that we have a pure 16th harmonic.  This
sine wave has a definite frequency f, and if this repre-
sented a laser beam, the photons in the beam would
have a precise energy given by the formula E = hf.
There is no uncertainty in the energy of this infinitely
long sine wave.  (It would take an infinite time  ∆t  to
make sure that the wave was infinitely long, with the
result   ∆E = h/∆t = h/∞ = 0 .)

In Figure (16) we are looking at a waveform consisting
of a single pulse.  This would accurately represent the
output of a red laser that continuously emitted single
wavelength pulses spaced 16 wavelengths apart.  (Re-
member that our program assumes that the wave shape
is repeated.)  From the Fourier analysis box we see that
there is a dramatic difference between the composition
of a pure sine wave and of a single pulse.  To construct
a single pulse out of sine waves, we have to add up a
slew of harmonics.  The single pulse is more like a drum
beat while the continuous wave is more like a flute.  (In
the appendix we show how the sine wave harmonics
add up to produce a pulse.)

In Figure (16) we see that the dominant harmonic is still
around the sixteenth, as it was for the continuous wave,
but there is a spread of harmonics from near zero up to
almost the 32nd.  For a laser pulse to have this shape,
it must consist of frequencies ranging from near zero up
to twice the natural frequency.  Each of these frequen-
cies contains photons whose energy is given by
Einstein’s formula E = hf where f is the frequency of the
harmonic.

Figure 15
A pure sine wave has a single frequency.

Figure 16
One cycle of a wave is made
up of a spread of harmonics
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In Figure (17) we have reproduced the Fourier analysis
box of Figure (16), but relabeled the horizontal axis in
electron volts.  We have assumed that the 16th har-
monic represented 2 eV photons which would be the
case if the wave were an infinitely long red laser pulse.
Now the diagram represents the density of photons of
different energies in the laser beam.  While 2 eV is the
most likely energy, there is a spread of energies ranging
from nearly 0 eV up to nearly 4 eV.  If we measure the
energy of a photon in the beam, our answer is 2 eV with
an uncertainty of 2 eV, just as predicted by the uncer-
tainty principle   ∆E∆t ≥ h .

In Figure (18) we analyze a pulse two wavelengths
long.  Now we see that the spread of frequencies
required to reconstruct this waveform is only half as
wide, ranging from the 8th to 24th harmonic, or from
1 eV to 3 eV.  We have twice as long to study a 2
wavelength pulse, and the uncertainty in energy   ∆E  is
only about 1 eV, or half as big.

Going to a 4 wavelength pulse in Figure (19) we see that
by doubling the time available we again cut in half the
uncertainty   ∆E  in energy.  Now the energy varies from
about 1.5 eV to 2.5 eV for a   ∆E = .5 eV .  This is just
what you expect from   ∆E∆t ≥ h .  You should now
begin to see that the uncertainty principle is a simple
rule evolving from the wave nature of particles.  (By the
way, it would be more accurate to write   ∆E∆t = h  for
this discussion, because we are describing the very
least uncertainty in energy.)

2eV1eV 3eV0eV 4eV

Figure 19
A four cycle wave has a fourth
the spread of harmonics.

Figure 18
A two cycle wave has half the spread of harmonics.

Figure 17
Photon energies in single wavelength
pulse of a red laser beam.

1eV 2eV 3eV1eV 2eV 3eV
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Probability Interpretation
We have interpreted Figure (17) as representing the
spread in energies of the photons in a 2 femtosecond red
laser pulse.  What if the pulse consisted of only a single
photon?  Then how do we interpret this spread in
energies?  The answer is that we use a probability
interpretation.  The photon in the pulse has different
probabilities of having different energies.

In our discussion of light waves, we saw that the energy
density in a light wave was proportional to the square
of the amplitude of the wave.  This is reasonable
because while the amplitude of a wave can be positive
or negative, the square of the amplitude, which we call
the intensity is always positive.  Probabilities, like
energy densities, also have to be positive, thus we
should associate the probability of a photon as having
a given frequency with the intensity or square of the
amplitude of the wave of that frequency.

In Figure (20) we show the intensities (square of the
amplitudes) of the harmonics that make up the single
wavelength pulse.  (This is plotted automatically by
MacScope when we click on the button labeled  Φ .)
We see that squaring the amplitudes narrows the spread.

Figure (20) has the following interpretation when
applied to pulses containing a single photon.  If we
measure the energy of the photon, we are most likely to
get an answer close to 2 eV but there is a reasonable
probability of getting an answer lower than 1 eV or
even higher than 3 eV.  The heights of the bars tell us
the relative probability of measuring that energy for the
photon.

Measuring Short Times
We have said that the new pulsed lasers produce pulses
as short as 2 femtoseconds.  How do we know that?
Suppose we gave you the job of measuring the length
of the laser pulse, and the best oscilloscope you had
could measure times no shorter than a nanosecond.
This is a million times too slow to see a femtosecond
pulse.  What do you do?

If you cannot measure the time directly, you can be
sneaky and use the uncertainty principle.  Send the laser
pulse through a diffraction grating, and record the
spread in wavelengths, i.e., the spread in energies of the
photons in the pulse.  If the line is very sharp, if they are
all red photons of a single wavelength and energy, then
you know that there is no measurable uncertainty   ∆E
in the photon energies, and the pulse must last a time

 ∆t that is considerably longer than 2 femtoseconds.  If,
on the other hand, the line is spread out from the near
infra red to violet, if the spread in energies is from 1 eV
to 3 eV, and the spread is not caused by some other
phenomena (like the Doppler effect), then from the
uncertainty principle you know that the pulse is only
about a femtosecond long.  (You know, for example, it
cannot be as long as 10 femtoseconds, or as short as a
tenth of a femtosecond.)

Thus, with the uncertainty principle, you can use a
diffraction grating rather than a clock or oscilloscope to
measure very short times.  Instead of being an annoying
restriction on our ability to make experimental mea-
surements, the uncertainty principle can be turned into
an important scientific tool for measuring short times
and, as we shall see, short distances.

Exercise 4

An electron is in an excited state of the hydrogen atom,
either the second energy level at -3.40 eV or the third
energy level at -1.51 eV.  You wish to do an experiment
to decide which of these two states the electron is in.
What is the least amount of time you must take to make
this measurement?

amplitudes of
the harmonics

intensities of
the harmonics
(amplitude 
squared)

1eV 2eV 3eV
Figure 20
Intensities of the harmonics are proportional
to the square of the amplitudes.
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a) A   K – meson and a proton are about to collide. We are
looking at the collision in a coordinate system where the
total momentum is zero (the so called “center of mass”
system).

b) In the collision a ΛΛ (1520) particle is created.
It is at rest in this center of mass system

c) The ΛΛ (1520) then quickly
decays into a lower energy ΛΛ  particle and two π mesons.

Figure 21
A ΛΛ (1520) particle can be created if the total energy
(in the center of mass system) of the incoming particles
equals the rest mass energy of the ΛΛ (1520).

Short Lived Elementary Particles
We usually think of the rest energy of a particle as
having a definite value.  For example the rest energy of
a proton is   938.2723 × 106eV .  The proton itself is a
composite particle made of 3 quarks, and the number

  938.2723 MeV  represents the total energy of the
quarks in the allowed wave pattern that represents a
proton.  This rest energy has a very definite value
because the proton is a stable particle with plenty of
time to settle into a precise wave pattern.

A rather different particle is the so called “  Λ (1520)”,
which is another combination of 3 quarks, but very
short lived. The name comes partly from the fact that
the particle’s rest mass energy is about 1520 million
electron volts (MeV). As  indicated in Figure (21), a

 Λ(1520) can be created as a result of the collision
between a  K–  meson and a proton.

We are viewing the collision in a special coordinate
system, where the total momentum of the incoming
particles is zero. In this coordinate system, the resulting

 Λ(1520) will be at rest. By conservation of energy, the
total energy of the incoming particles should equal the

rest mass energy of the  Λ (1520). Thus if we collide  K–

particles with protons, we expect to create a Λ (1520)
particle only if the incoming particles have the right
total energy.

Figure (22) shows the results of some collision experi-
ments, where a  K–  meson and a proton collided to
produce a  Λ and two π  mesons. The probability of such
a result peaked when the energy of the incoming
particles was 1,520 MeV. This peak occurred because
the incoming  K–  meson and proton created a Λ (1520)
particle, which then decayed into the Λ and two π
mesons, as shown in Figure (21). The  Λ (1520) was not
observed directly, because its lifetime is too short.

Figure (22) shows that the energy of the incoming
particles does not have to be exactly 1520 MeV in order
to create a  Λ (1520). The peak is in the range from about
1510 to 1530 Mev, which implies that the rest mass
energy of the  Λ (1520) is 1520 MeV plus or minus
about 10 MeV. From one experiment to another, the
rest mass energy can vary by about 20 MeV. (The
experimentalists quoted a variation of 16 MeV.)

1460
center of mass energy, MeV

1480 1500 1520 1540 1560

K + p       Λ(1520)       Λ+π +π++− −

Figure 22
The probability that a   K – meson and a proton collide
to produce a ΛΛ  particle, and two ππ  mesons peak at an
energy of 1520 MeV.  The peak results from the fact
that a ΛΛ (1520) particle was created and quickly
decayed into the ΛΛ  and two ππ  mesons.  The
probability peaks at 1520 MeV, but can be seen to
spread out over a range of about 16MeV. The small
circles are experimental values, the vertical lines
represent the possible error in the value. (Data from
M.B. Watson et al., Phys. Rev. 131(1963).)
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Why isn’t the peak sharp? Why does the rest mass
energy of the  Λ (1520) particle vary by as much as 16
to 20 MeV from one experiment to another? The
answer lies in the fact that the lifetime of the  ΛΛ (1520)
is so short, that the particle does not have enough time
to establish a definite rest mass energy. The 16 MeV
variation is the uncertainty   ∆E in the particles rest mass
energy that results from the fact that the particle’s
lifetime is limited.

The uncertainty principle relates the uncertainty in
energy   ∆Eto the time  ∆t  available to establish that
energy. To establish the rest mass energy, time  ∆t
available is the particle’s lifetime. Thus we can use the
uncertainty principle to estimate the lifetime of the

 Λ (1520) particle. With   ∆E × ∆t ≈ h  we get

  
∆t ≈ h

∆E
=

6.63 × 10– 27erg sec

16 MeV × 1.6×10– 6 erg
MeV

  ∆t ≈ 2.6 × 10– 22 seconds (27)

The lifetime of the  Λ (1520) particle is of the order of
 10– 22 seconds!  This is only about 10 times longer

than it takes light to cross a proton! Only by using the
uncertainty principle could we possibly measure such
short times.

THE UNCERTAINTY PRINCIPLE
AND ENERGY CONSERVATION
The fact that for short times the energy of a particle is
uncertain, raises an interesting question about basic
physical laws like the law of conservation of energy.  If
a particle’s energy is uncertain, how do we know that
energy is conserved in some process involving that
particle?  The answer is -- we don’t.

One way to explain the situation is to say that nature will
cheat if it can get away with it.  Energy does not have
to be conserved if we cannot do an experiment to
demonstrate a lack of conservation of energy.

Consider the process shown in Figure (23).  It shows a
red, 2 eV photon traveling along in space.  Suddenly the
photon creates an positron-electron  pair.  The rest mass
energy of both the positron and the electron are .51
MeV.  Thus we have a 2 eV photon creating a pair of
particles whose total  energy is   1.02 × 106eV , a huge
violation of the law of conservation of energy.  A short
time later the electron and positron come back together,
annihilate, leaving behind a 2 eV photon.  This is an
equally huge violation of the conservation of energy.

But have we really violated the conservation of energy?
During its lifetime, the positron-electron pair is a com-
posite object whose total energy is uncertain.  If the pair
lived a long time, its total energy would be close to the
expected energy of   1.02 × 106eV .  But suppose the
pair were in existence only for a very short time   ∆t,a
time so short that the uncertainty in the energy could be
as large as   1.02 × 106eV .  Then there is some probabil-
ity that the energy of the pair might be only 2 eV and the
process shown in Figure (2) could happen.

Figure 23
Consider a process where a 2 eV photon
suddenly creates a positron-electron pair. A short
time later the pair annihilates, leaving a 2 eV
photon. In the long range, energy is conserved.

electron

positron
2 eV photon

2 eV photon
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The length of time  ∆t  that the pair could exist and have
an energy uncertain by 1.02 MeV is

  
∆t = h

∆E
=

6.63 × 10– 27 erg sec

1.02 MeV × 1.6×10– 6 erg
MeV

  ∆t = 4 × 10– 21sec (32)
Another way to view the situation is as follows.  Sup-
pose the pair in Figure (20) lasted only   4 × 10– 21

seconds or less.  Even if the pair had  an energy of
  1.02 × 106eV , the lifetime is so short that any mea-

surement of the energy of the pair would be uncertain
by at least   1.02 × 106eV , and the experiment could
not detect the violation of the law of conservation of
energy.  In this point of view, if we cannot perform an
experiment to detect a violation of the conservation
law, then the process should have some probability of
occurring.

Does a process like that shown in Figure (23) actually
occur?  If so, is there any way that we can know that it
does?  The answer is yes, to both questions.  It is
possible to make extremely accurate studies of the
energy levels of the electron in hydrogen, and to make
equally accurate predictions of the energy using the
theory of quantum electrodynamics.  We can view the
binding of the electron in hydrogen as resulting from
the continual exchange of photons between the elec-
tron and proton.  During this continual exchange, there
is some probability that the photon creates a positron
electron pair that quickly annihilates as shown in
Figure (23).  In order to predict the correct values of the
hydrogen energy levels, the process shown in Figure
(23) has to be included.  Thus we have direct experi-
mental evidence that for a short time the particle
antiparticle pair existed.

QUANTUM FLUCTUATIONS
AND EMPTY SPACE
We began the text with a discussion of the principle of
relativity—that you could not detect your own motion
relative to empty space.  The concept of empty space
seemed rather obvious—space with nothing in it.  But
the idea of empty space is not so obvious after all.

With the discovery of the cosmic background radiation,
we find that all the space in this universe is filled with
a sea of photons left over from the big bang.  We can
accurately measure our motion relative to this sea of
photons.  The earth is moving relative to this sea at a
velocity of 600 kilometers per second toward the Vergo
cluster of galaxies.  While this measurement does not
violate the principle of relativity, it is in some sense a
measurement of our motion relative to the universe as
a whole.

Empty space itself may not be empty.  Consider a
process like that shown in Figure (24) where a photon,
an electron, and a positron are all created at some point
in space.  A short while later the three particles come
back together with the positron and electron annihilat-
ing and the photon being absorbed.

One’s first reaction might be that such a process is
ridiculous.  How could these three particles just appear
and then disappear?  To do this we would have to violate
both the laws of conservation of energy and momen-
tum.

But, of course, the uncertainty principle allows us to do
that.  We can, in fact, use the uncertainty principle to
estimate how long such an object could last.  The
arguments would be similar to the ones we used in the
analysis of the process shown in Figure (23).

electron

positron

photon

Figure 24
Quantum fluctuation. The uncertainty principle
allows such an object to suddenly appear, and
then disappear.
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In the theory of quantum electrodynamics, a com-
pletely isolated process like that shown in Figure (24)
does not affect the energy levels of the hydrogen atom
and should be undetectable in electrical measurements.
But such a process might affect gravity.  A gravitational
wave or a graviton might interact with the energy of
such an object.  Some calculations have suggested that
such interactions could show up in Einstein’s classical
theory of gravity as a correction to the famous cosmo-
logical constant we discussed in Chapter 21.

An object like that shown in Figure (23) is an example
of what one calls a quantum fluctuation.  Here we have
something that appears and disappears in so-called
empty space.  If such objects can keep appearing and
disappearing, then we have to revise our understanding
of what we mean by empty.

The uncertainty principle allows us to tell the difference
between a quantum fluctuation and a real particle.  A
quantum fluctuation like that in Figure (24) violates
conservation of energy, and therefore cannot last very
long.  A real particle can last a long time because energy
conservation is not violated.

However, there is not necessarily that much difference
between a real object and a quantum fluctuation.  To see
why, let us take a closer look at the π  meson.  The   π+

is a particle with a rest mass energy of 140 MeV, that
consists of a quark-antiquark pair.  The quark in that
pair is the so-called up quark that has a rest mass of
roughly 400 MeV.  The other is the antidown quark that
has a rest mass of about 700 MeV.  (Since we can’t get
at isolated quarks, the quark rest masses are estimates,
but should not be too far off).  Thus the two quarks
making up the π  meson have a total rest mass of about
1100 MeV.  How could they combine to produce a
particle whose rest mass is only 140 MeV?

The answer lies in the potential energy of the gluon
force that holds the quarks together.  As we have seen
many times, the potential energy of an attractive force
is negative.  In this case the potential energy of the
gluon force is almost as big in magnitude as the rest
mass of the quarks, reducing the total energy from
1100 MeV to 140 MeV.

Suppose we had an object whose negative potential
energy was as large as the positive rest mass energy.
Imagine, for example, that the object consisted of a
collection of point sized elementary particles so close
together that their negative gravitational potential en-
ergy was the same magnitude as the positive rest mass
and kinetic energy.  Suppose such a collection of
particles were created in a quantum fluctuation.  How
long could the fluctuation last?

Since such an object has no total energy, the violation
  ∆E  of energy conservation is zero, and therefore the

lifetime   ∆t = h/∆E  could be forever.

Suppose the laws of physics required that such a
fluctuation rapidly expand, greatly increasing both the
positive rest mass and kinetic energy, while maintain-
ing the corresponding amount of negative gravitational
potential energy.  As long as   ∆E  remained zero, the
expanding fluctuation could keep on going.  Perhaps
such a fluctuation occurred 14 billion years ago and we
live in it now.
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APPENDIX
HOW A PULSE IS FORMED
FROM SINE WAVES

Figure A1
By selecting more and more harmonics, you can
see how the sine waves add up to produce a pulse.



CHAPTER  ON GEOMETRICAL OPTICSChapter  on                   ̂
Geometrical Optics
For over 100 years, from the time of Newton and
Huygens in the late 1600s, until 1801 when Thomas
Young demonstrated the wave nature of light with his
two slit experiment, it was not clear whether light
consisted of beams of particles as proposed by Newton,
or was a wave phenomenon as put forward by Huygens.
The reason for the confusion is that almost all common
optical phenomena can be explained by tracing light
rays.  The wavelength of light is so short compared to
the size of most objects we are familiar with, that light
rays produce sharp shadows and interference and
diffraction effects are negligible.

To see how wave phenomena can be explained by ray
tracing, consider the reflection of a light wave by a
metal surface.  When a wave strikes a very small object,
an object much smaller than a wavelength, a circular
scattered wave emerges as shown in the ripple tank
photograph of Figure (36-1) reproduced here.  But
when a light wave impinges on a metal surface consist-
ing of many small atoms, represented by the line of dots
in Figure (36-2), the circular scattered waves all add
up to produce a reflected wave that emerges at an angle
of reflection  θr  equal to the angle of incidence  θi .
Rather than sketching the individual crests and troughs
of the incident wave, and adding up all the scattered
waves, it is much easier to treat the light as a ray that
reflected from the surface.  This ray is governed by the
law of reflection, namely  θr  =  θi .

reflected wave

incident wave

angle of
incidence

angle of
reflection

θi θr

angle of
incidence

mirror

angle of
reflection

θi θr

Figure 36-2
Reflection of light.  In the photograph, we see an incoming plane wave scattered by a small object.  If the
object is smaller than a wavelength, the scattered waves are circular.  When an incoming light wave strikes
an array of atoms in the surface of a metal, the scattered waves add up to produce a reflected wave that
comes out at an angle of reflection  θθ r equal to the angle of incidence  θθ i .

Figure 36-1
An incident
wave passing
over a small
object produces
a circular
scattered wave.

Light ray
reflected
from a
mirror.

incident wave
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The subject of geometrical optics is the study of the
behavior of light when the phenomena can be ex-
plained by ray tracing, where shadows are sharp and
interference and diffraction effects can be neglected.
The basic laws for ray tracing are extremely simple.  At
a reflecting surface    θθr = θθi , as we have just seen.  When
a light ray passes between two media of different
indexes of refraction, as in going from air into glass or
air into water, the rule is      n1 sinθθ1 = n2 sinθθ2 , where

 n1 and  n2 are constants called indices of refraction,
and  θ1 and  θ2 are the angles that the rays made with
the line perpendicular  to the interface.  This is known
as Snell’s law.

This entire chapter is based on the two rules    θθr = θθi
and    n1 sinθθ1 = n2 sinθθ2 .  These rules are all that are
needed to understand the function of telescopes, micro-
scopes, cameras, fiber optics, and the optical compo-
nents of the human eye.  You can understand the
operation of these instruments without knowing any-
thing about Newton’s laws, kinetic and potential en-
ergy, electric or magnetic fields, or the particle and
wave nature of matter.  In other words, there is no
prerequisite background needed for studying geo-
metrical optics as long as you accept the two rules
which are easily verified by experiment.

In most introductory texts, geometrical optics appears
after Maxwell’s equations and theory of light.  There is
a certain logic to this, first introducing a basic theory
for light and then treating geometrical optics as a
practical application of the theory.  But this is clearly
not an historical approach since geometrical optics
was developed centuries before Maxwell’s theory.  Nor
is it the only logical approach, because studying lens
systems teaches you nothing more about Maxwell’s
equations than you can learn by deriving Snell’s law.
Geometrical optics is an interesting subject full of
wonderful applications, a subject that can appear
anywhere in an introductory physics course.

We have a preference not to introduce geometrical
optics after Maxwell’s equations.  With Maxwell’s
theory, the student is introduced to the wave nature of
one component of matter, namely light.  If the focus is
kept on the basic nature of matter, the next step is to look
at the photoelectric effect and the particle nature of
light.  You then see that light has both a particle and a
wave nature, which opens the door to the particle-wave
nature of all matter and the subject of quantum me-
chanics.  We have a strong preference not to interrupt
this focus on the basic nature of matter with a long and
possibly distracting chapter on geometrical optics.
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REFLECTION FROM CURVED SURFACES
The Mormon Tabernacle, shown in Figure (1), is
constructed in the shape of an ellipse.  If one stands at
one of the focuses and drops a pin, the pin drop can be
heard 120 feet away at the other focus.  The reason why
can be seen from Figure (2), which is similar to Figure
(8-28) where we showed you how to draw an ellipse
with a pencil, a piece of string, and two thumbtacks.

The thumbtacks are at the focuses, and the ellipse is
drawn by holding the string taut as shown.  As you
move the pencil point along, the two sections of string
always make equal angles  θi  and  θr  to a line perpen-

stringnorm
al

θr

pencil point

(1)(2)

A

B

θi

θr

θi

dicular or normal to the part of the ellipse we are
drawing.  The best way to see that the angles  θi  and  θr
are always equal is to construct your own ellipse and
measure these angles at various points along the curve.

If a sound wave were emitted from focus 1 in Figure (2),
the part of the wave that traveled over to point A on the
ellipse would be reflected at an angle  θr  equal to the
angle of incidence  θi , and travel over to focus 2.  The
part of the sound wave that struck point B on the ellipse,
would be reflected at an angle  θr  equal to it’s angle of
incidence  θi , and also travel over to focus 2.  If you
think of the sound wave as traveling out in rays, then all
the rays radiated from focus 1 end up at focus 2, and that
is why you hear the whisper there.  We say that the rays
are focused at focus 2, and that is why these points are
called focuses of the ellipse.  (Note also that the path
lengths are the same, so that all the waves arriving at
focus 2 are in phase.)

Figure 2
Drawing an ellipse using a string and two thumbtacks.

Figure 1

Mormon Tabernacle under construction, 1866.

Mormon Tabernacle today.

Mormon Tabernacle finished, 1871.

Figure 2a
A superposition of the top half of Figure 2 on Figure 1.
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The Parabolic Reflection
You make a parabola out of an ellipse by moving one
of the focuses very far away.  The progression from a
parabola to an ellipse is shown in Figure (3).  For a true
parabola, the second focus has to be infinitely far away.

Suppose a light wave were emitted from a star and
traveled to a parabolic reflecting surface.  We can think
of the star as being out at the second, infinitely distant,
focus of the parabola.  Thus all the light rays coming in
from the star would reflect from the parabolic surface
and come to a point at the near focus.  The rays from the
star approach the reflector as a parallel beam of rays,
thus a parabolic reflector has the property of focusing
parallel rays to a point, as shown in Figure (4a).

If parallel rays enter a deep dish parabolic mirror from
an angle off axis as shown in Figure (4b), the rays do not
focus to a point, with the result that an off axis star
would appear as a blurry blob. (This figure corresponds
to looking at a star 2.5° off axis, about 5 moon diameters
from the center of the field of view.)

other focus 
at infinity

ellipse

ellipse

parabola

circle

focuses

focus

Figure 3
Evolution of an ellipse into a parabola.  For a
parabola, one of the focuses is out at infinity.

      parabolic 
reflector

parallel rays coming 
in from infinity

focus

off axis
parallel rays

focus is 
not good

          deep 
    parabolic 
reflector

Figure 4a
Parallel rays, coming down the axis
of the parabola, focus to a point.

Figure 4b
For such a deep dish parabola, rays coming
in at an angle of 2.5° do not focus well.
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One way to get sharp images for parallel rays coming
in at an angle is to use a shallower parabola as illustrated
in Figure (4c). In that figure, the focal length (distance
from the center of the mirror to the focus) is 2 times the
mirror diameter, giving what is called an f 2 mirror. In
Figure (4d), you can see that rays coming in at an angle
of 2.5° (blue lines) almost focus to a point. Typical
amateur telescopes are still shallower, around f 8,
which gives a sharp focus for rays off angle by as much
as 2° to 3°.

light from star on axis

f2
 m

irr
or

As we can see in Figure (4d), light coming from two
different stars focus at two different points in what is
called the focal plane of the mirror.  If you placed a
photographic film at the focal plane, light from each
different star, entering as parallel beams from different
angles, would focus at different points on the film, and
you would end up with a photographic image of the
stars.  This is how distant objects like stars are photo-
graphed with what is called a reflecting telescope.

light from star #1, on axis

f2
 m

irr
or

light from star #2, 2.5° off axis

focus #1

focus #2

Figure 4c
A shallow dish is made by using only the shallow bottom of the parabola. Here the focal length is twice the
diameter of the dish,  giving us an f2 mirror. Typical amateur telescopes are still shallower, having a focal
length around 8 times the mirror diameter (f8 mirrors). [The mirror in Figure 4b, that gave a bad focus, was
f.125, having a focal length 1/8 the diameter of the mirror.]

Figure 4d
We can think of this drawing as representing light coming in from a red star at the center of the field of
view, and a blue star 2.5° (5 full moon diameters) away. Separate images are formed, which could be
recorded on a photographic film. With this shallow dish, the off axis image is sharp (but not quite a point).
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MIRROR IMAGES
The image you see in a mirror, although very familiar,
is still quite remarkable in its reality.  Why does it look
so real?  You do not need to know how your eye works
to begin to see why.

Consider Figure (5a) where light from a point source
reaches your eye. We have drawn two rays, one from
the source to the top of the eye, and one to the bottom.
In Figure (5b), we have placed a horizontal mirror as
shown and moved the light source a distance h above
the mirror equal to the distance it was below the mirror
before the mirror was inserted.  Using the rule that the
angle of incidence equals the angle of reflection, we
again drew two rays that went from the light source to

the top and to the bottom of the eye.  You can see that
if you started at the eye and drew the rays back as
straight lines, ignoring the mirror, the rays would
intersect at the old source point A as shown by the
dotted lines in Figure (5b).

To the eye (or a camera) at point B, there is no
detectable difference between Figures (5a) and (5b).  In
both cases, the same rays of light, coming from the
same directions enter the eye.  Since the eye has no way
of telling that the rays have been bent, we perceive that
the light source is at the image point  A  rather than at
the source point   A′.

When we look at an extended object, its image in the
mirror does not look identical to the object itself.  In
Figure (6), my granddaughter Julia is holding her right
hand in front of a mirror and her left hand off to the side.
The image of the right hand looks like the left hand. In
particular, the fingers of the mirror image of the right
hand curl in the opposite direction from those of the
right hand itself. If she were using the right hand rule to
find the direction of the angular momentum of a
rotating object, the mirror image would look as if she
were using a left hand rule.

It is fairly common knowledge that left and right are
reversed in a mirror image.  But if left and right are
reversed, why aren’t top and bottom reversed also?
Think about that for a minute before you go on to the
next paragraph.

point source

eye

A 

B

Figure 5b
There is no difference when the source is at point A,
or at point A’ and the light is reflected in a mirror.

mirror image

mirror

point source

eye

h

h

A'

A 

B 

Figure 5a
Light from a point source reaching your eye.

Figure 6
The image of the right hand looks like a left hand.
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To see what the image of an extended object should be,
imagine that we place an arrow in front of a mirror as
shown in Figure (7).  We have constructed rays from
the tip and the base of the arrow that reflect and enter
the eye as shown.  Extending these rays back to the
image, we see that the image arrow has been reversed
front to back.  That is what a mirror does.  The mirror
image is reversed front to back, not left to right or top
to bottom.  It turns out that the right hand, when
reversed front to back as in its image in Figure (6), has
the symmetry properties of a left hand.  If used to define
angular momentum, you would get a left hand rule.

The Corner Reflector
When two vertical mirrors are placed at right angles as
shown in Figure (8a), a horizontal ray approaching the
mirrors is reflected back in the direction from which it
came.  It is a little exercise in trigonometry to see that
this is so.  Since the angle of incidence equals the angle
of reflection at each mirror surface, we see that the
angles labeled   θ1  must be equal to each other and the
same for the angles   θ2 .  From the right triangle ABC,
we see that   θ1 + θ2 = 90°.   We also see that the angles

  θ2 + θ3  also add up to 90°, thus   θ3 = θ1 , which
implies the exiting ray is parallel to the entering one.

If you mount three mirrors perpendicular to each other
to form the corner of a cube, then light entering this so
called corner reflector from any angle goes back in the
direction from which it came.  The Apollo II astronauts
placed the array of corner reflectors shown in Figure
(8b) on the surface of the moon, so that a laser beam
from the earth would be reflected back from a precisely
known point on the surface of the moon.  By measuring
the time it took a laser pulse to be reflected back from
the array, the distance to the moon could be measured
to an accuracy of centimeters.  With the distance to the
moon known with such precision, other distances in the
solar system could then be determined accurately.

Figure 7
A mirror image changes front to back, not left to right.

mirror

eye

A B 

C 

1θ
2θ

2θ 3θ

1θ

Figure 8a
With a corner reflector, the light is reflected back
it the same direction from which it arrived.

Figure 8b
Array of corner reflectors left on the moon by the
Apollo astronauts. A laser pulse from the earth,
aimed at the reflectors, returns straight back to the
laser. By measuring the time the pulse takes to go
to the reflectors and back, the distance to that point
on the moon and back can be accurately measured.
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MOTION OF LIGHT THROUGH A MEDIUM
We are all familiar with the fact that light can travel
through clear water or clear glass.  With some of the
new glasses developed for fiber optics communication,
light signals can travel for miles without serious distor-
tion.  If you made a mile thick pane from this glass you
could see objects through it.

From an atomic point of view, it is perhaps surprising
that light can travel any distance at all through water or
glass.  A reasonable picture of what happens when a
light wave passes over an atom is provided by the ripple
tank photograph shown in Figure (36-1) reproduced
here.  The wave scatters from the atom, and since atoms
are considerably smaller than a wavelength of visible

light, the scattered waves are circular like those in the
ripple tank photograph.  The final wave is the sum of the
incident and the scattered waves as shown in Figure
(36-1a).

When light passes through a medium like glass or
water, the wave is being scattered by a huge number of
atoms.  The final wave pattern is the sum of the incident
wave and all of the many billions of scattered waves.
You might suspect that this sum would be very com-
plex, but that is not the case.  At the surface some of the
incident wave is reflected.  Inside the medium, the
incident and scattered waves add up to a new wave of
the same frequency as the incident wave but which
travels at a reduced speed.   The speed of a light wave
in water for example is 25% less than the speed of light
in a vacuum.

Figure 36-1
If the scattering object is smaller than a wavelength, we get circular scattered waves.

incident waveincident wave

a) Incident and scattered wave together. b) After incident wave has passed.
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The optical properties of lenses are a consequence of
this effective reduction in the speed of light in the lens.
Figure (9) is a rather remarkable photograph of indi-
vidual short pulses of laser light as they pass through
and around a glass lens.  You can see that the part of the
wave front that passed through the lens is delayed by its
motion through the glass.  The thicker the glass, the
greater the delay.  You can also see that the delay
changed the shape and direction of motion of the wave
front, so that the light passing through the lens focuses
to a point behind the lens.  This is how a lens really
works.

Index of Refraction
The amount by which the effective speed of light is
reduced as the light passes through a medium depends
both upon the medium and the wavelength of the light.
There is very little slowing of the speed of light in air,
about a 25% reduction in speed in water, and nearly a
59% reduction in speed in diamond.  In general, blue
light travels somewhat slower than red light in nearly all
media.

It is traditional to describe the slowing of the speed of
light in terms of what is called the index of refraction of
the medium.  The index of refraction n is defined by the
equation

 
speed of light
in a medium

vlight =
c
n

(1)

The index n has to equal 1 in a vacuum because light
always travels at the speed   3 × 108 meters  in a vacuum.
The index  n  can never be less than 1, because nothing
can travel faster than the speed c.  For yellow sodium
light of wavelength   λ = 5.89 × 10– 5 cm  (589 nanom-
eters), the index of refraction of water at 20° C is
n = 1.333, which implies a 25% reduction in speed.  For
diamond, n = 2.417 for this yellow light.  Table 1 gives
the indices of refraction for various transparent sub-
stances for the sodium light.

Vacuum 1.00000 exactly
Air (STP) 1.00029
Ice 1.309
Water (20° C) 1.333
Ethyl alcohol 1.36
Fuzed quartz 1.46
Sugar solution (80%) 1.49
Typical crown glass 1.52
Sodium Chloride 1.54
Polystyrene 1.55
Heavy flint glass 1.65
Sapphire 1.77
Zircon 1.923
Diamond 2.417
Rutile 2.907
Gallium phosphide 3.50
Very cold sodium atoms 18000000 for laser pulse

Table 1
Some indices of refraction for yellow sodium light at a
wavelength of 589 nanometers.

Figure 9
Motion of a wave front through a glass lens.  The delay
in the motion of the wave front as it passes through the
glass changes the shape and direction of motion of the
wave front, resulting in the focusing of light.  (This
photograph should not be confused with ripple tank
photographs where wavelengths are comparable to the
size of the objects.  Here the wavelength of the light is
about one hundred thousand times smaller than the
diameter of the lens, with the result we get sharp
shadows and do not see diffraction effects.)

In the 18/February/1999 issue of Nature it was
announced that a laser pulse travelled through a gas
of supercooled sodium atoms at a speed of 17 meters
per second! (You can ride a bicycle faster than that.)
This means that the sodium atoms had an index of
refraction of about 18 million, 7.3 million times
greater than that of diamond!
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Exercise 1a
What is the speed of light in air, water, crown glass, and
diamond.  Express your answer in feet/nanosecond.
(Take c to be exactly 1 ft/nanosecond.)

Exercise 1b

In one of the experiments announced in Nature, a laser
pulse took 7.05 microseconds to travel .229 millimeters
through the gas of supercooled sodium atoms. What
was the index of refraction of the gas for this particular
experiment? (The index quoted on the previous page
was for the slowest observed pulse. The pulse we are
now considering went a bit faster.)

CERENKOV RADIATION
In our discussion, in Chapter 1, of the motion of light
through empty space, we saw that nothing, not even
information, could travel faster than the speed of light.
If it did, we could, for example, get answers to ques-
tions that had not yet been thought of.

When moving through a medium, the speed of a light
wave is slowed by repeated scattering and it is no longer
true that nothing can move faster than the speed of light
in that medium.  We saw for example that the speed of
light in water is only 3/4 the speed c in vacuum.  Many
elementary particles, like the muons in the muon
lifetime experiment, travel at speeds much closer to c.
When a charged particle moves faster than the speed of
light in a medium, we get an effect not unlike the sonic
boom produced by a supersonic jet.  We get a shock
wave of light that is similar to a sound shock wave
(sonic boom), or to the water shock wave shown in
Figure (33-30) reproduced here.  The light shock wave
is called Cerenkov radiation after the Russian physi-
cist Pavel Cerenkov who received the 1958 Nobel prize
for discovering the effect.

In the muon lifetime picture, one observed how long
muons lived when stopped in a block of plastic.  The
experiment was made possible by Cerenkov radiation.
The muons that stopped in the plastic, entered moving
faster than the speed of light in plastic, and as a result
emitted a flash of light in the form of Cerenkov
radiation.  When the muon decayed, a charged positron
and a neutral neutrino were emitted.  In most cases the
charged positron emerged faster than the speed of light
in the plastic, and also emitted Cerenkov radiation.  The
two flashes of light were detected by the phototube
which converted the light flashes to voltage pulses.  The
voltage pulses were then displayed on an oscilloscope
screen where the time interval between the pulses could
be measured.  This interval represented the time that the
muon lived, mostly at rest, in the plastic.

Figure 33-30
When the source of the waves moves faster than the
speed of the waves, the wave fronts pile up to produce
a shock wave as shown. This shock wave is the sonic
boom you hear when a jet plane flies overhead faster
than the speed of sound.
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SNELL’S LAW
When a wave enters a medium of higher index of
refraction and travels more slowly, the wavelength of
the wave changes.  The wavelength is the distance the
wave travels in one period, and if the speed of the wave
is reduced, the distance the wave travels in one period
is reduced.  (In most cases, the frequency or period of
the wave is not changed.  The exceptions are in
fluorescence and nonlinear optics where the frequency
or color of light can change.)

We can calculate how the wavelength changes with
wave speed from the relationship

  

λ cm
cycle

=
vwave

cm
sec

T
sec

cycle

Setting  vwave = c/n  for the speed of light in the me-
dium, gives for the corresponding wavelength   λn

  
λn =

vwave

T
=

c/n
T

=
1
n

c
T

=
λ0

n
(2)

where   λ0 = c/T is the wavelength in a vacuum.  Thus,
for example, the wavelength of light entering a dia-
mond from air will be shortened by a factor of 1/2.42.

What happens when a set of periodic plane waves goes
from one medium to another is illustrated in the ripple
tank photograph of Figure (10).  In this photograph, the

water has two depths, deeper on the upper part where
the waves travel faster, and shallower in the lower part
where the waves travel more slowly.  You can see that
the wavelengths are shorter in the lower part, but there
are the same number of waves. (We do not gain or loose
waves at the boundary.)  The frequency, the number of
waves that pass you per second, is the same on the top
and bottom.

The only way that the wavelength can be shorter and
still have the same number of waves is for the wave to
bend at the boundary as shown.  We have drawn arrows
showing the direction of the wave in the deep water (the
incident wave) and in the shallow water (what we will
call the transmitted or refracted  wave), and we see that
the change in wavelength causes a sudden change in
direction of motion of the wave.  If you look carefully
you will also see reflected waves which emerge at an
angle of reflection equal to the angle of incidence.

Figure (11) shows a beam of yellow light entering a
piece of glass.  The index of refraction of the glass is
1.55, thus the wavelength of the light in the glass is only
.65 times as long as that in air  (   n ≈ 1  for air).  You can
see both the bending of the ray as it enters the glass and
also the reflected ray. (You also see internal reflection
and the ray emerging from the bottom surface.)  You
cannot see the individual wave crests, but otherwise
Figures (10) and (11) show similar phenomena.
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(REFRACTED)

INCIDENT

REFLECTED

TRANSMITTED
(REFRACTED)

Figure 11
Refraction at surface of glass. When the light waves
enter the glass, they travel more slowly and have a
shorter wavelength. Like the water waves, the light
waves must travel in a different direction in order for
the crests to match up.

Figure 10
Refraction at surface of water. When the waves enter
shallower water, they travel more slowly and have a
shorter wavelength. The waves must travel in a
different direction in order for the crests to match up.
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Derivation of Snell’s Law
To calculate the angle by which a light ray is bent when
it enters another medium, consider the diagram in
Figure (12).  The drawing represents a light wave,
traveling in a medium of index  n1,  incident on a
boundary at an angle   θ1.  We have sketched successive
incident wave crests separated by the wavelength   λ1.
Assuming that the index  n2  in the lower medium is
greater than  n1,  the wavelength   λ2 will be shorter than

  λ1 and the beam will emerge at the smaller angle   θ2.

To calculate the angle   θ2 at which the transmitted or
refracted wave emerges, consider the detailed section
of Figure (12) redrawn in Figure (13a).  Notice that we
have labeled two apparently different angles by the
same label   θ1.  Why these angles are equal is seen in the
construction of Figure (13b) where we see that the
angles  α  and   θ1  are equal.

Exercise 2

Show that the two angles labeled  θ2  in Figure (13a)
must also be equal.

Since the triangles ACB and ADB are right triangles in
Figure (13a), we have

  λ1 = AB sin θ1 = λ0/n1 (3)

  λ2 = AB sin θ2 = λ0/n2 (4)

where AB is the hypotenuse of both triangles and   λ0  is
the wavelength when  n0 = 1.  When we divide Equa-
tion 4 by Equation 5, the distances AB and   λ0  cancel,
and we are left with

  sin θ1

sin θ2
=

n2

n1

or

   
n1 sin θ1 = n2 sin θ2 Snell's law (5)

Equation 5, known as Snell’s law, allows us to calculate
the change in direction when a beam of light goes from
one medium to another.
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Figure 12
Analysis of refraction. The crests must match at the
boundary between the different wavelength waves.

Figure 13a
The angles
involved in
the analysis.

Figure 13b
Detail. θ1

α β
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INTERNAL REFLECTION
Because of the way rays bend at the interface of two
media, there is a rather interesting effect when light
goes from a material of higher to a material of lower
index of refraction, as in the case of light going from
water into air.  The effect is seen clearly in Figure (14).
Here we have a multiple exposure showing a laser
beam entering a tank of water, being reflected by a
mirror, and coming out at different angles.  The outgo-
ing ray is bent farther away from the normal as it
emerges from the water.  We reach the point where the
outgoing ray bends and runs parallel to the surface of
the water.  This is a critical angle, for if the mirror is
turned farther, the ray can no longer get out and is
completely reflected inside the surface.

It is easy to calculate the critical angle   θc  at which this
complete internal reflection begins.  Set the angle of
refraction,   θ2  in Figure (14), equal to 90° and we get
from Snell’s law

  n1sinθc = n2sinθ2 = n2sin90° = n2

  
sinθc =

n2

n1
; θc = sin–1 n2

n1
(6)

For light emerging from water, we have   n2 ≈ 1  for air
and  n1 = 1.33  for water giving

  
sin–1θ2 =

1
1.33

= .75

  θc = 48.6° (7)

Anyone who swims underwater, scuba divers espe-
cially, are quite familiar with the phenomenon of
internal reflection.  When you look up at the surface of
the water, you can see the entire outside world through
a circular region directly overhead, as shown in Figure
(14a).  Beyond this circle the surface looks like a silver
mirror.

Exercise 3

A glass prism can be used as shown in Figure (15) to
reflect light at right angles.  The index of refraction  ng  of
the glass must be high enough so that there is total
internal reflection at the back surface.  What is the least
value  ng  one can have to make such a prism work?
(Assume the prism is in the air where   n ≈ 1.)

Figure 14
Internal reflection. We took three exposures of a
laser beam reflecting off an underwater mirror set at
different angles. In the first case the laser beam
makes it back out of the water and strikes a white
cardboard behind the water tank. In the other two
cases, there is total internal reflection at the under
side of the water surface. In the final exposure we
used a flash to make the mirror visible.

diver looking up

48
.6° 45°

Figure 14a
When you are swimming under water and look up,
you see the outside world through a round hole.
Outside that hole, the surface is a silver mirror.

Figure 15
Right angled prism. The
index of refraction of the
glass has to be high enough
to cause total internal
reflection.
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Fiber Optics
Internal reflection plays a critical role in modern com-
munications and modern medicine through fiber op-
tics.  When light is sent down through a glass rod or
fiber so that it strikes the surface at an angle greater than
the critical angle, as shown in Figure (16a), the light
will be completely reflected and continue to bounce
down the rod with no loss out through the surface.  By
using modern very clear glass, a fiber can carry a light
signal for miles without serious attenuation.

The reason it is more effective to use light in glass fibers
than electrons in copper wire for transmitting signals,
is that the glass fiber can carry information at a much
higher rate than a copper wire, as indicated in Figure
(16b).  This is because laser pulses traveling through
glass, can be turned on and off much more rapidly than
electrical pulses in a wire.  The practical limit for
copper wire is on the order of a million pulses or bits of
information per second (corresponding to a baud rate
of one megabit).  Typically the information rate is

much slower over commercial telephone lines, not
much in excess of 30 to 50 thousand bits of information
per second (corresponding to 30 to 50 kilobaud).
These rates are fast enough to carry telephone conver-
sations or transmit text to a printer, but painfully slow
for sending pictures and much too slow for digital
television signals.  High definition digital television
will require that information be sent at a rate of about
3 million bits or pulses every 1/30 of a second for a baud
rate of 90 million baud.  (Compare that with the baud
rate on your computer modem.)  In contrast, fiber optics
cables are capable of carrying pulses or bits at a rate of
about a billion (  109 ) per second, and are thus well
suited for transmitting pictures or many phone conver-
sations at once.

By bundling many fine fibers together, as indicated in
Figure (17), one can transmit a complete image along
the bundle. One end of the bundle is placed up against
the object to be observed, and if the fibers are not mixed
up, the image appears at the other end.

To transmit a high resolution image, one needs a bundle
of about a million fibers.  The tiny fibers needed for this
are constructed by making a rather large bundle of
small glass strands, heating the bundle to soften the
glass, and then stretching the bundle until the indi-
vidual strands are very fine.  (If you have heated a glass
rod over a Bunsen burner and pulled out the ends, you
have seen how fine a glass fiber can be made this way.)

Figure 17
A bundle of glass fibers
can be used to carry an
image from one point to
another. The order of a
million fibers are needed
to carry the medical
images seen on the next
page.

Figure 16a
Because of internal
reflections, light can
travel down a glass
fiber, even when the
fiber is bent.

Figure 16b
A single glass fiber can carry the same amount
of information as a fat cable of copper wires.
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PRISMS
So far in our discussion of refraction, we have consid-
ered only beams of light of one color, one wavelength.
Because the index of refraction generally changes with
wavelength, rays of different wavelength will be bent
at different angles when passing the interface of two
media.  Usually the index of refraction of visible light
increases as the wavelength becomes shorter.  Thus
when white light, which is a mixture of all the visible
colors, is sent through a prism as shown in Figure (20),
the short wavelength blue light will be deflected by a
greater angle than the red light, and the beam of light is
separated into a rainbow of colors.

n(red)     = 1.516
n(yellow) = 1.522
n(green)  = 1.525
n(blue)    = 1.529
θ(initial)   = 30.2°

white

redblue

θ(initial)

Figure 20
When light is sent through a prism, it is separated into
a rainbow of colors. In this scale drawing, we find that
almost all the separation of colors occurs at the second
surface where the light emerges from the glass.

Medical Imaging
The use of fiber optics has revolutionized many aspects
of medicine. It is an amazing experience to go down
and look inside your own stomach and beyond, as the
author did a few years ago. This is done with a flexible
fiber optics instrument called a retroflexion, producing
the results shown in Figure (18). An operation, such as
the removal of a gallbladder, which used to require
opening the abdomen and a long recovery period, can
now be performed through a small hole near the navel,
using fiber optics to view the procedure. You can see
the viewing instrument and such an operation in progress
in Figure (19).

you are
here 

duodenum

stomach
flexible optical
fiber viewing 
scope

Figure 18
Close-up view of the
author taken by
photographer Dr.
Richard Rothstein.

Figure 19
Gallbladder operation in progress, being viewed by the
rigid laparoscope shown on the right. Such views are
now recorded by high resolution television.
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Rainbows
Rainbows in the sky are formed by the reflection and
refraction of sunlight by raindrops.  It is not, however,
particularly easy to see why a rainbow is formed. René
Descartes figured this out by tracing rays that enter and
leave a spherical raindrop.

In Figure (21a) we have used Snell’s law to trace the
path of a ray of yellow light that enters a spherical drop
of water (of index  n = 1.33), is reflected on the back
side, and emerges again on the front side.  (Only a
fraction of the light is reflected at the back, thus the
reflected beam is rather weak.)  In this drawing, the
angle   θ2  is determined by   sin θ1 = 1.33 sin θ2 .
At the back, the angles of incidence and reflection are
equal, and at the front we have   1.33 sin θ2 = sin θ1
(taking the index of refraction of air = 1).  Nothing is
hard about this construction, it is fairly easy to do with
a good drafting program like Adobe Illustrator and a
hand calculator.

In Figure (21b) we see what happens when a number of
parallel rays enter a spherical drop of water.  (This is
similar to the construction that was done by Descartes
in 1633.)  When you look at the outgoing rays, it is not
immediately obvious that there is any special direction
for the reflected rays.  But if you look closely you will
see that the ray we have labeled #11 is the one that
comes back at the widest angle from the incident ray.

Ray #1, through the center, comes straight back out.
Ray #2 comes out at a small angle.  The angles increase
up to Ray #11, and then start to decrease again for Rays
#12 and #13.  In our construction the maximum angle,
that of Ray #11, was 41.6°, close to the theoretical value
of 42° for yellow light.

What is more important than the fact that the maximum
angle of deviation is 42° is the fact that the rays close to
#11 emerge as  more or less parallel to each other.  The
other rays, like those near #3 for example come out at
diverging angles.  That light is spread out.  But the light
emerging at 42° comes out as a parallel beam.  When
you have sunlight striking many raindrops, more yel-
low light is reflected back at this angle of 42° than any
other angle.

n = 1.33

θ1

θ2

θi

θr

θ2

θ1'

'

42 degrees

13

13

12

12

11

11

10

10

9

9

8

6

7

7

6

8

5

5

  4

  4

  3

  3

  2

  2

  1

angle of sun

red

yellow

blue

42°

42°
Figure 21a
Light ray
reflecting from
a raindrop.

Figure 21b
Light from ray 11 comes out at
the maximum angle of 42°.
Nearby rays come out at nearly
the same angle, producing a
parallel beam at an angle of 42°.

Figure 21c
You will see the yellow part of the rainbow at
an angle of 42° as shown above. Red will be
seen at a greater angle, blue at a lesser one.
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Repeat the construction for red light where the index of
refraction is slightly less than 1.33, and you find the
maximum angle of deviation and the direction of the
parallel beam is slightly greater than 42°.  For blue light,
with a higher index, the deviation is less.

If you look at falling raindrops with the sun at your back
as shown in Figure (21c), you will see the yellow part
of the rainbow along the arc that has an angle of 42°
from the rays of sun passing you.  The red light, having
a greater angle of deviation will be above the yellow,
and the blue will be below, as you can see in Figure
(21d).

Sometimes you will see two or more rainbows if the
rain is particularly heavy (we have seen up to 7).  These
are caused by multiple internal reflections.  In the
second rainbow there are two internal reflections and
the parallel beam of yellow light comes out at an angle
of 51°.  Because of the extra reflection the red is on the
inside of the arc and the blue on the outside.

Exercise 4

Next time you see a rainbow, try to measure the angle
the yellow part of the arc makes with the rays of sun
passing your head.

The Green Flash
The so called green flash at sunset is a phenomenon that
is supposed to be very rare, but which is easy to see if
you can look at a distant sunset through binoculars.
(Don’t look until the very last couple of seconds so that
you will not hurt your eyes.)

The earth’s atmosphere acts as a prism, refracting the
light as shown in Figure (22).  The main effect is that
when you look at a sunset, the sun has already set; only
its image is above the horizon. But, as seen in Figure
(20), the atmospheric prism also refracts the different
colors in the white sunlight at different angles.   Due to
the fact that the blue light is refracted at a greater angle
than the red light, the blue image of the sun is slightly
higher above the horizon than the green image, and the
green image is higher than the red image.  We have over
emphasized the displacement of the image in Figure
(22).  The blue image is only a few percent of the sun’s
diameter above the red image.  Before the sun sets, the
various colored images are more or less on top of each
other and the sun looks more or less white.

If it is a very clear day, and you watch the sunset with
binoculars, just as the sun disappears, for about 1/2
second, the sun turns a deep blue.  The reason is that all
the other images have set, and for this short time only
this blue image is visible.  We should call this the “blue
flash”.

Figure 21d
Rainbow over Cook’s Bay, Moorea.

sun earth

red image

green image

blue image greatly exaggerated
separation of 
sun's images

Figure 22
The green flash. You can think
of the white sun as consisting of various
colored disks that add up to white. The earth’s
atmosphere acts as a prism, diffracting the light from the
setting sun, separating the colored disks. The blue disk is
the last to set. Haze in the atmosphere can block the blue
light, leaving the green disk as the last one seen.
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If the atmosphere is not so clear, if there is a bit of haze
or moisture as one often gets in the summer, the blue
light is absorbed by the haze, and the last image we see
setting is the green image.  This is the origin of the green
flash.  With still more haze you get a red sunset, all the
other colors having been absorbed by the haze.

Usually it requires binoculars to see the green or blue
colors at the instant of sunset.  But sometimes the
atmospheric conditions are right so that this final light
of the sun is reflected on clouds and can be seen without
binoculars.  If the clouds are there, there is probably
enough moisture to absorb the blue image, and the
resulting flash on the clouds is green.

Halos and Sun Dogs
Another phenomenon often seen is the reflection of
light from hexagonal ice crystals in the atmosphere.
The reflection is seen at an angle of 22° from the sun.
If the ice crystals are randomly oriented then we get a
complete halo as seen in Figure (23a).  If the crystals are
falling with their flat planes predominately horizontal,
we only see the two pieces of the halo at each side of the
sun, seen in Figure (24).  These little pieces of rainbow
are known as “sun dogs”.

Figure 23
Halo caused
by reflection
by randomly
oriented
hexagonal ice
crystals.

Figure 24
Sun dogs
caused by
ice crystals
falling flat.

LENSES
The main impact geometrical optics has had on man-
kind is through the use of lenses in microscopes,
telescopes, eyeglasses, and of course, the human eye.
The basic idea behind the construction of a lens is
Snell’s law, but as our analysis of light reflected from
a spherical raindrop indicated, we can get complex
results from even simple geometries like a sphere.

Modern optical systems like the zoom lens shown in
Figure (25) are designed by computer.  Lens design is
an ideal problem for the computer, for tracing light rays
through a lens system requires many repeated applica-
tions of Snell’s law.  When we analyzed the spherical
raindrop, we followed the paths of 12 rays for an index
of refraction for only yellow light.  A much better
analysis would have resulted from tracing at least 100
rays for the yellow index of refraction, and then repeat-
ing the whole process for different indices of refraction,
corresponding to different wavelengths or colors of
light.  This kind of analysis, while extremely tedious to
do by hand, can be done in seconds on a modern
desktop computer.

In this chapter we will restrict our discussion to the
simplest of lens systems in order to see how basic
instruments, like the microscope, telescope and eye,
function.  You will not learn here how to design a color
corrected zoom lens like the Nikon lens shown below.

Figure 25
Nikon zoom lens.
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Spherical Lens Surface
A very accurate spherical surface on a piece of glass is
surprisingly easy to make.  Take two pieces of glass, put
a mixture of grinding powder and water between them,
rub them together in a somewhat regular, somewhat
irregular, pattern that one can learn in less than 5
minutes.  The result is a spherical surface on the two
pieces of glass, one being concave and the other being
convex.  The reason you get a spherical surface from
this somewhat random rubbing is that only spherical
surfaces fit together perfectly for all angles and rota-
tions.  Once the spheres have the desired radius of
curvature, you use finer and finer grits to smooth out the
scratches, and then jeweler’s rouge to polish the sur-
faces.  With any skill at all, one ends up with a polished
surface that is perfectly spherical to within a fraction of
a wavelength of light.

To see the optical properties of a spherical surface, we
can start with the ray diagram we used for the spherical
raindrop, and remove the reflections by extending the
refracting medium back as shown in Figure (26a).  The
result is not encouraging.  The parallel rays entering
near the center of the surface come together—focus—
quite a bit farther back than rays entering near the outer
edge.  This range of focal distances is not useful in
optical instruments.

In Figure (26b) we have restricted the area where the
rays are allowed to enter to a small region around the
center of the surface.  To a very good approximation all
these parallel rays come together, focus, at one point.
This is the characteristic we want in a simple lens, to
bring parallel incoming rays together at one point as the
parabolic reflector did.

Figure (26b) shows us that the way to make a good lens
using spherical surfaces is to use only the central part
of the surface.  Rays entering near the axis as in Figure
(26b) are deflected only by small angles, angles where
we can approximate   sin θ  by θ itself.  When the
angles of deflection are small enough to use small angle
approximations, a spherical surface provides sharp
focusing.  As a result, in analyzing the small angle
spherical lenses, we can replace the exact form of
Snell’s law

  n1 sin θ1 = n2 sin θ2 (5 repeated)

by the approximate equation

   
n1 θ1 = n2 θ2

Snell's law
for small
angles

(8)

Figure 26a
Focusing properties of a spherical surface. (Not good!)

Figure 26b
We get a much better focus if we use only a small part
of the spherical surface.



Optics-20

Focal Length of a Spherical Surface
Let us now use the simplified form of Snell’s law to
calculate the focal length  f  of a spherical surface, i.e.,
the distance behind the surface where entering parallel
rays come to a point.  Unless you plan to start making
your own lenses, you do not really need this result, but
the exercise provides an introduction to how focal
lengths are related to the curvature of lenses.

Consider two parallel rays entering a spherical surface
as shown in Figure (27).  One enters along the axis of
the surface, the other a distance h above it.  The angle
labeled   θ1  is the angle of incidence for the upper ray,
while   θ2 is the refracted angle.  These angles are related
by Snell’s law

  n1 θ1 = n2 θ2

or
  

θ2 =
n1

n2
θ1 (9)

If you recall your high school trigonometry you will
remember that the outside angle of a triangle,   θ1  in
Figure (27a), is equal to the sum of the opposite angles,

  θ2  and  α  in this case.  Thus

  θ1 = θ2 + α
or using Equation 9 for   θ2

  
θ1 =

n1

n2
θ1 + α (10)

Now consider the two triangles reproduced in Figures
(27b) and (27c).  Using the small angle approximation

  tan θ ≈ sin θ ≈ θ , we have for Figure (27b)
   θ1 ≈ h

r
; α ≈ h

f (11)

Substituting these values for   θ1  and α  into Equation
10 gives

  h
r

=
n1

n2

h
r

+
h
f (12)

The height h cancels, and we are left with
  

1
f

=
1
r

1 –
n1

n2 (13)

The fact that the height h cancels means that parallel
rays entering at any height h (as long as the small angle
approximation holds) will focus at the same point a
distance f behind the surface.  This is what we saw in
Figure (26b).

Figure (26b) was drawn for  n1 = 1  (air) and  n2 = 1.33
(water) so that  n1/n2 = 1/1.33 = .75 .  Thus for that
drawing we should have had

  1
f

=
1
r

1 – .75 =
1
r

.25 =
1
r

1
4

or

  f = 4r (14)

as the predicted focal length of that surface.

Figure 27
Calculating the
focal length f of a
spherical surface.

r (radius of sphere)

parallel rays

r
f

h

n

θ1

1
n2θ1

θ2

α

θ1

θ2

αh
θ1

r

h
α

f

Figure 27c
   αα ≈≈ h /f

Figure 27a
   θθ 1 = θθ 2 + αα

Figure 27b

   θθ1 ≈≈ h /r
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Exercise 5
Compare the prediction of Equation 14 with the results
we got in Figure (26b). That is, what do you measure for
the relationship between f and r in that figure?

Exercise 6
The index of refraction for red light in water is slightly less
than the index of refraction for blue light.  Will the focal
length of the surface in Figure (26b) be longer or shorter
than the focal length for red light?

Exercise 7

The simplest model for a fixed focus eye is a sphere of
index of refraction  n2 .  The index  n2  is chosen so that
parallel light entering the front surface of the sphere
focuses on the back surface as shown in Figure (27d).
What value of  n2  is required for this model to work when

 n1=1 ?  Looking at the table of indexes of refraction,
Table 1, explain why such a model would be hard to
achieve.

Aberrations
When parallel rays entering a lens do not come to focus
at a point, we say that the lens has an aberration.  We
saw in Figure (26a) that if light enters too large a region
of a spherical surface, the focal points are spread out in
back.  This is called spherical aberration.  One cure for
spherical aberration is to make sure that the diameter of
any spherical lens you use is small in comparison to the
radius of curvature of the lens surface.

We get rainbows from raindrops and prisms because
the index of refraction for most transparent substances
changes with wavelength.  As we saw in Exercise 6,
this causes red light to focus at a different point than
yellow or blue light, (resulting in colored bands around
the edges of images).  This problem is called chromatic
aberration.  The cure for chromatic aberration is to
construct complex lenses out of materials of different
indices of refraction.  With careful design, you can
bring the focal points of the various colors back to-
gether.  Some of the complexity in the design of the
zoom lens in Figure (25) is to correct for chromatic
aberration.

Astigmatism is a common problem for the lens of the
human eye.  You get astigmatism when the lens is not
perfectly spherical, but is a bit cylindrical.  If, for
example, the cylindrical axis is horizontal, then light
from a horizontal line will focus farther back than light
from a vertical line.  Either the vertical lines in the
image are in focus, or the horizontal lines, but not both
at the same time.  (In the eye, the cylindrical axis does
not have to be horizontal or vertical, but can be at any
angle.)

There can be many other aberrations depending upon
what distortions are present in the lens surface.  We
once built a small telescope using a shaving mirror
instead of a carefully ground parabolic mirror.  The
image of a single star stretched out in a line that covered
an angle of about 30 degrees.  This was an extreme
example of an aberration called coma.  That telescope
provided a good example of why optical lenses and
mirrors need to be ground very accurately.

What, surprisingly, does not usually cause a serious
problem is a small scratch on a lens.  You do not get an
image of the scratch because the scratch is completely
out of focus.  Instead the main effect of a scratch is to
scatter light and fog the image a bit.

n  = 11
n  = ?2

Figure 27d
A simple, but hard to achieve, model for an eye.
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Perhaps the most famous aberration in history is the
spherical aberration in the primary mirror of the orbit-
ing Hubble telescope.  The aberration was caused by an
undetected error in the complex apparatus used to test
the surface of the mirror while the mirror was being
ground and polished.  The ironic part of the story is that
the aberration could have easily been detected using the
same simple apparatus all amateur telescope makers
use to test their mirrors (the so called Foucault test), but
such a simple minded test was not deemed necessary.

What saved the Hubble telescope is that the engineers
found the problem with the testing apparatus, and could
therefore precisely determine the error in the shape of
the lens.  A small mirror, only a few centimeters in
diameter, was designed to correct for the aberration in
the Hubble image.  When this correcting mirror was
inserted near the focus of the main mirror, the aberra-
tion was eliminated and we started getting the many
fantastic pictures from that telescope.

Another case of historical importance is the fact that
Issac Newton invented the reflecting telescope to avoid
the chromatic aberration present in all lenses at that
time.  With a parabolic reflecting mirror, all parallel
rays entering the mirror focus at a point.  The location
of the focal point does not depend on the wavelength of
the light (as long as the mirror surface is reflecting at
that wavelength).  You also do not get spherical aber-
ration either because a parabolic surface is the correct
shape for focusing, no matter how big the diameter of
the mirror is compared to the radius of curvature of the
surface.

Figure 28
Correction of the Hubble telescope mirror. Top: before
the correction. Bottom: same galaxy after correction.
Left: astronauts installing correction mirror.
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THIN LENSES
In Figure (29), we look at what happens when parallel
rays pass through the two spherical surfaces of a lens.
The top diagram (a) is a reproduction of Figure (26b)
where a narrow bundle of parallel rays enters a new
medium through a single spherical surface.  By making
the diameter of the bundle of rays much less than the
radius of curvature of the surface, the parallel rays all
focus to a single point.  We were able to calculate where
this point was located using small angle approxima-
tions.

In Figure (29b), we added a second spherical surface.
The diagram is drawn to scale for indices of refraction
n = 1 outside the gray region and n = 1.33 inside, and
using Snell’s law at each interface of each ray.  (The
drawing program Adobe Illustrator allows you to do
this quite accurately.)  The important point to note is
that the parallel rays still focus to a point.  The differ-
ence is that the focal point has moved inward.

Figure 29
A two surface lens. Adding a second surface still leaves
the light focused to a point, as long as the diameter of
the light bundle is small compared to the radii of the
lens surfaces.

In Figure (29c), we have moved the two spherical
surfaces close together to form what is called a thin
lens.  We have essentially eliminated the distance the
light travels between surfaces.  If the index of refraction
outside the lens is 1 and has a value n inside, and
surfaces have radii of curvature  r1  and  r2 , then the
focal length f of the lens given by the equation

  
1
f

= n – 1
1
r1

+
1
r2

lens maker 's
equation

(15)

Equation 15, which is known as the lens maker’s
equation, can be derived in a somewhat lengthy exer-
cise involving similar triangles.

Unless you are planning to grind your own lenses, the
lens maker’s equation is not something you will need
to use.  When you buy a lens, you specify what focal
length you want, what diameter the lens should be, and
whether or not it needs to be corrected for color
aberration.  You are generally not concerned with how
the particular focal length was achieved—what combi-
nation of radii of curvatures and index of refraction
were used.

Exercise 8
(a) See how well the lens maker’s equation applies to
our scale drawing of Figure (29c).  Our drawing was
done to a scale where the spherical surfaces each had
a radius of  r1 = r2 = 37mm, and the distance  f  from the
center of the lens to the focal point was 55 mm.

(b) What would be the focal length f of the lens if it had
been made from diamond with an index of refraction
n = 2.42?

(a)

(c)

(b)
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The Lens Equation
What is important in the design of a simple lens system
is where images are formed for objects that are different
distances from the lens.  Light from a very distant object
enters a lens as parallel rays and focuses at a distance
equal to the focal length  f  behind the lens.  To locate
the image when the object is not so far away, you can
either use a simple graphical method which involves a
tracing of two or three rays, or use what is called the lens
equation which we will derive shortly from the graphi-
cal approach.

For our graphical work, we will use an arrow for the
object, and trace out rays coming from the tip of the
arrow.  Where the rays come back together is where the
image is formed.  We will use the notation that the
object is at a distance (o) from the lens, and that the
image is at a distance (i) as shown in Figure (30).

In Figure (30) we have located the image by tracing
three rays from the tip of the object.  The top ray is
parallel to the axis of the lens, and therefore must cross
the axis at the focal point behind the lens.  The middle

ray, which goes through the center of the lens, is
undeflected if the lens is thin.  The bottom ray goes
through the focal point in front of the lens, and therefore
must come out parallel to the axis behind the lens.
(Lenses are symmetric in that parallel light from either
side focuses at the same distance  f  from the lens.)  The
image is formed where the three rays from the tip
merge.  To locate the image, you only need to draw two
of these three special rays.

Exercise 9
(a) Graphically locate the image of the object in Figure
(31).

(b) A ray starts out from the tip of the object in the
direction of the dotted line shown.  Trace out this ray
through the lens and show where it goes on the back
side of the lens.

In Exercise 9, you found that, once you have located the
image, you can trace out any other ray from the tip of
the object that passes through the lens, because these
rays must all pass through the tip of the image.

object distance

object

focal
length

image distance

image

o

f f

i

Figure 30
Locating the image using ray tracing. Three rays are
easy to draw. One ray goes straight through the center
of the lens. The top ray, parallel to the axis, intersects
the axis where parallel rays would focus. A ray going
through the left focus, comes out parallel to the axis.
The image of the arrow tip is located where these rays
intersect.

object f

Figure 31
Locate the image of the arrow, and then trace the ray
starting out in the direction of the dotted line.
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There is a very, very simple relationship between the
object distance o, the image distance i and the lens focal
length f.  It is

  1
o

+
1
i

=
1
f

the lens
equation

(16)

Equation 16 is worth memorizing if you are going to do
any work with lenses.  It is the equation you will use all
the time, it is easy to remember, and as you will see
now, the derivation requires some trigonometry you
are not likely to remember.  We will take you through
the derivation anyway, because of the importance of
the result.

In Figure (32a), we have an object of height A that
forms an inverted image of height B.  We located the
image by tracing the top ray parallel to the axis that
passes through the focal point behind the lens, and by
tracing the ray that goes through the center of the lens.

In Figure (32b) we have selected one of the triangles
that appears in Figure (32a).  The triangle starts at the
tip of the object, goes parallel to the axis over to the
image, and then down to the tip of the image.  The
length of the triangle is (o + i) and the height of the base
is (A+B).  The lens cuts this triangle to form a smaller
similar triangle whose length is o and base is (A).  The
ratio of the base to length of these similar triangles must
be equal, giving

   
A
o

= A+B
o + i

⇒
A+B

A
=

o + i

o
(17)

In Figure (32c) we have selected another triangle which
starts where the top ray hits the lens, goes parallel to the
axis over to the image, and down to the tip of the image.
This triangle has a length i and a base of height (A+B)
as shown.  This triangle is cut by a vertical line at the
focal plane, giving a smaller similar triangle of length
f  and base (A) as shown.  The ratio of the length to base
of these similar triangles must be equal, giving

   A
f

=
A+B

i
⇒

A+B

A
=

i
f

(18)

Combining Equations 17 and 18 gives

  i
f

=
o + i

o
= 1 +

i
o

(19)

Finally, divide both sides by i and we get

  1
f

=
1
i

+
1
o

lens
equation

(16)

which is the lens equation, as advertised.

Note that the lens equation is an exact consequence of
the geometrical construction shown back in Figure
(30).  There is no restriction about small angles.  How-
ever if you are using spherical lenses, you have to stick
to small angles or the light will not focus to a point.

Figure 32
Derivation of the lens equation.

o

f

i

A A

B
(a)

o i

A
A + B

(b)

i

A
A + B

f(c)
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Negative Image Distance
The lens equation is more general than you might
expect, for it works equally well for positive and
negative distances and focal lengths.  Let us start by
seeing what we mean by a negative image distance.
Writing Equation 15 in the form

  1
i

=
1
f

–
1
o

(16a)

let us see what happens if 1/o is bigger than 1/f so
that i turns out to be negative.  If 1/o is bigger than 1/f,
that means that o is less than f and we have placed the
object within the focal length as shown in Figure (33).

When we trace out two rays from the tip of the image,
we find that the rays diverge after they pass through the
lens.  They diverge as if they were coming from a point
behind the object, a point shown by the dotted lines.  In
this case we have what is called a virtual image, which
is located at a negative image distance (i).  This
negative image distance is correctly given by the lens
equation (16a).

(We will not drag you through another geometrical
proof of the lens equation for negative image distances.
It should be fairly convincing that just when the image
distance becomes negative in the lens equation, the
geometry shows that we switch from a real image on
the right side of the lens to a virtual image on the left.)

Negative Focal Length
and Diverging Lenses
In Figure (33) we got a virtual image by moving the
object inside the focal length.  Another way to get a
virtual image is to use a diverging lens as shown in
Figure (34).  Here we have drawn the three special rays,
but the role of the focal point is reversed.  The ray
through the center of the lens goes through the center as
before.  The top ray parallel to the axis of the lens
diverges outward as if it came from the focal point on
the left side of the lens.  The ray from the tip of the object
headed for the right focal point, comes out parallel to
the axis.  Extending the diverging rays on the right,
back to the left side, we find a virtual image on the left
side.

You get diverging lenses by using concave surfaces as
shown in Figure (34).  In the lens maker’s equation,

  1
f

= n – 1
1
r1

+
1
r2

lensmaker 's
equation

(15)

you replace 1/r by – 1/r  for any concave surface. If
1/f  turns out negative, then you have a diverging lens.
Using this negative value of  f   in the lens equation (with

  f = – f ) we get

  1
i

= –
1

f
+

1
o (16b)

This always gives a negative image distance i, which
means that diverging lenses only give virtual images.

virtual
image

o

f

i

Figure 33
When the object is located within the focal length, we
get a virtual image behind the object.

object

virtual
image

o
f

i

Figure 34
A diverging lens always gives a virtual image.
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Exercise 10

You have a lens making machine that can grind sur-
faces, either convex or concave, with radius of curva-
tures of either 20 cm or 40 cm, or a flat surface.  How
many different kinds of lenses can you make?  What is
the focal length and the name of the lens type for each
lens?  Figure (35) shows the names given to the various
lens types.

Negative Object Distance
With the lens equation, we can have negative image
distances and negative focal lengths, and also negative
object distances as well.

In all our drawings so far, we have drawn rays coming
out of the tip of an object located at a positive object
distance.  A negative object distance means we have a
virtual object where rays are converging toward the tip
of the virtual object but don’t get there.  A comparison
of the rays emerging from a real object and converging
toward a virtual object is shown in Figure (36).  The
converging rays (which were usually created by some
other lens) can be handled with the lens equation by
assuming that the distance from the lens to the virtual
object is negative.

As an example, suppose we have rays converging to a
point, and we insert a diverging lens whose negative
focal length   f = – f  is equal to the negative object
distance   o = – o  as shown in Figure (37).  The lens
equation gives

  1
i

=
1
f

–
1
o

=
1

– f
–

1

– o
=

1

o
–

1

f
(20)

If   f = o , then 1/i = 0  and the image is infinitely far
away.  This means that the light emerges as a parallel
beam as we showed in Figure (37).

 bi-convex  bi-concave  planar-convex

 planar-concave meniscus
convex

meniscus
concave

Figure 35
Various lens types.  Note that eyeglasses are
usually meniscus convex or meniscus concave.

negative focal length

negative object distance
o

f

object lens

positive object
distance

rays emerging
from real
object

rays converging
on a virtual
object

o

negative
object
distance

o

Figure 37
Negative focal length.

Figure 36
Positive and negative object distances.
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Multiple Lens Systems
Using the lens equation, and knowing how to handle
both positive and negative distances and focal lengths,
you can design almost any simple lens system you
want.  The idea is to work your way through the system,
one lens at a time, where the image from one lens
becomes the object for the next.  We will illustrate this
process with a few examples.

As our first example, consider Figure (38a) where we
have two lenses of focal lengths   f1 = 10 cm  and

  f2 = 12 cm  separated by a distance D = 40 cm.  An
object placed at a distance   o1 = 17.5 cm  from the first
lens creates an image a distance i1 behind the first lens.
Using the lens equation, we get

  
i1 =

1
f1

–
1
o1

=
1
10

–
1

17.5
=

1
23.33

(21)

  i1 = 23.33 cm

the same distance we got graphically in Figure (38a).

This image, which acts  as the object for the second lens
has an object distance

  o2 = D – i1 = 40 cm – 23.33 cm = 16.67 cm

This gives us a final upright image at a distance  i2
given by

  1
i2

=
1
f2

–
1
o2

=
1
12

–
1

16.67
=

1
42.86

(22)

  i2 = 42.86 cm (23)

which also accurately agrees with the geometrical
construction.

In Figure (38b), we moved the second lens up to within
8 cm of the first lens, so that the first image now falls
behind the second lens.  We now have a negative object
distance

  o2 = D – i1 = 8 cm – 23.33 cm = – 15.33 cm

Using this negative object distance in the lens equation
gives

  1
i2

=
1
f2

–
1
o2

=
1
12

–
1

–15.33

=
1
12

+
1

15.33
=

1
6.73

  i2 = 6.73 cm (24)

In the geometrical construction we find that the still
inverted image is in fact located 6.73 cm behind the
second image.

While it is much faster to use the lens equation than
trace rays, it is instructive to apply both approaches for
a few examples to see that they both give the same
result.  In drawing Figure (38b) an important ray was
the one that went from the tip of the original object,
down through the first focal point.  This ray emerges
from the first lens traveling parallel to the optical axis.
The ray then enters the second lens, and since it was
parallel to the axis, it goes up through the focal point of
the second lens as shown.  The second image is located
by drawing the ray that passes straight through the
second lens, heading for the tip of the first image.
Where these two rays cross is where the tip of the final
image is located.

o

ff

i

1

1
o21

i2

2

–17.5 –10 0 23.33 40 52 82.85 cm 

D = 40cm

object image

o

ff

i

1

1

o2

1

i2

2

–17.5 –10 0
23.33 cm

8 20
14.73

object

Figure 38a
Locating the image in a two lens system.

Figure 38b
We moved the second lens in so that
the second object distance is negative.
We now get an inverted image 6.73
cm from the second lens.
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In Figure (38c) we sketched a number of rays passing
through the first lens, heading for the first image.  These
rays are converging on the second lens, which we point
out in Figure (36b) was the condition for a negative
object distance.

                object

Figure 38c

Two Lenses Together
If you put two thin lenses together, as shown in Figure
(39), you effectively create a new thin lens with a
different focal length.  To find out what the focal length
of the combination is, you use the lens equation twice,
setting the second object distance  o2  equal to minus the
first image distance   –i1 .

  
o2 = –i1

for two lenses
together

(25)

From the lens equations we have

  1
i1

=
1
f1

–
1
o1

(26)

  1
i2

=
1
f2

–
1
o2

(27)

Setting   o2 = – i1  in Equation 27 gives

  1
i2

=
1
f2

–
1

–i1
=

1
f2

+
1
i1

Using Equation 26 for   1/i1  gives

  1
i2

=
1
f2

+
1
f1

–
1
o1

  1
o1

+
1
i2

=
1
f1

+
1
f2

(28)

Now  o1 is the object distance and i2  is the image
distance for the pair of lenses.  Treating the pair of
lenses as a single lens, we should have

  1
o1

+
1
i2

=
1
f

(29)

where f is the focal length of the combined lens.

Comparing Equations 28 and 29 we get

  1
f

=
1
f1

+
1
f2

focal length of two
thin lenses together

(30)

as the simple formula for the combined focal length.

Exercise 11
(a) Find the image distances i2 for the geometry of
Figures (38), but with the two lenses reversed, i.e., with

  f1=12 cm,   f2=10 cm.  Do this for both length D = 40 cm
and D = 8 cm.

(b) If the two lenses are put together (D = 0) what is the
focal length of the combination?

Figure 39
Two lenses together. Since the object for the second
lens is on the wrong side of the lens, the object distance

 o2is negative in this diagram. If the lenses are close
together, i1  and –  o2 are essentially the same.

o
i

1 –o2

1

object

object for
second lens1 2 
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Magnification
It is natural to define the magnification created by a lens
as the ratio of the height of the image to the height of the
object.  In Figure (40) we have reproduced Figure (38a)
emphasizing the heights of the objects and images.

We see that the shaded triangles are similar, thus the
ratio of the height B of the first image to the height A
of the object is

  B
A

=
i1
o1

(31)

We could define the magnification in the first lens as
the ratio of B/A, but instead we will be a bit tricky and
include a  - (minus) sign to represent the fact that the
image is inverted.  With this convention we get

  
m1 =

–B
A

=
–i1
o1

definition of
magnificationm

(32)

Treating B as the object for the second lens gives

  
m2 =

– C
B

=
–i2
o2

(33)

The total magnification  m12 in going from the object A
to the final image C is

  
m12 =

C
A

(34)

which has a  +  sign because the final image C is upright.
But

 C
A = – C

B
– B
A (35)

Thus we find that the final magnification is the product
of the magnifications of each lens.

  m12 = m1 m2 (36)

Exercise 12
Figures (38) and (40) are scale drawings, so that the
ratio of image to object sizes measured from these
drawings should equal the calculated magnifications.

(a) Calculate the magnifications  m1,  m2 and  m12 for
Figure (38a) or (40) and compare your results with
magnifications measured from the figure.

(b) Do the same for Figure (38b).  In Figure (38b), the
final image is inverted.  Did your final magnification  m12
come out negative?

Exercise 13

Figure (41a) shows a magnifying glass held 10 cm
above the printed page. Since the object is inside the
focal length we get a virtual image as seen in the
geometrical construction of Figure (41b). Show that our
formulas predict a positive magnification, and estimate
the focal length of the lens. (Answer: about 17 cm.)

o
i

1

o21

i2

A

B

C
image

Figure 40
Magnification of two lenses.

object
virtual
image

o
i

f

Figure 41a
Using a magnifying glass.

Figure 41b
When the magnifying glass is less than a focal length
away from the object, we see an upright virtual image.
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THE HUMAN EYE
A very good reason for studying geometrical optics is
to understand how your own eye works, and how the
situation is corrected when something goes wrong.

Back in Exercise 6 (p21),
during our early discussion
of spherical lens surfaces,
we considered as a model
of an eye a sphere of index
of refraction  n2 , where  n2
was chosen so that parallel
rays which entered the front surface focused on the
back surface as shown in Figure (27d).  The value of  n2
turned out to be  n2 = 2.0 .  Since the only common
substance with an index of refraction greater than
zircon at n = 1.923 is diamond at n = 2.417, it would be
difficult to construct such a model eye.  Instead some
extra focusing capability is required, both to bring the
focus to the back surface of the eye, and to focus on
objects located at various distances.

Figure (42a) is a sketch of the human eye and Figure
42b a remarkable photograph of the eye. As seen in
(42a), light enters the cornea at the front of the eye.  The
amount of light allowed to enter is controlled by the
opening of the iris.  Together the cornea and crystalline
lens focuses light on the retina which is a film of nerve
fibers on the back surface of the eye.  Information from
the new fibers is carried to the brain through the optic
nerve at the back.  In the retina there are two kinds of
nerve fibers, called rods and cones.  Some of the
roughly 120 million rods and 7 million cones are seen
magnified about 5000 times in Figure (43).  The slender
ones, the rods, are more sensitive to dim light, while the
shorter, fatter, cones, provide our color sensitivity.

In our discussion of the human ear, we saw how there
was a mechanical system involving the basilar mem-
brane that distinguished between the various frequen-
cies of incoming sound waves.  Information from
nerves attached to the basilar membrane was then
enhanced through processing in the local nerve fibers
before being sent to the brain via the auditory nerve.  In
the eye, the nerve fibers behind the retina, some of
which can be seen on the right side of Figure (43), also
do a considerable amount of information processing
before the signal travels to the brain via the optic nerve.
The way that information from the rods and cones is
processed by the nerve fibers is a field of research.

Returning to the front of the eye we have the surface of
the cornea and the crystalline lens focusing light on the
retina.  Most of the focusing is done by the cornea.  The
shape, and therefore the focal length of the crystalline
lens can be altered slightly by the ciliary muscle in
order to bring into focus objects located at different
distances.

n  = 11
n  = ?2

pupil

iris

cornea

ciliary
muscle

lens

retina

central
fovea

optic
nerve

Figure 42
The human eye. The
cornea and the lens
together provide the
extra focusing power
required to focus light
on the retina.
(Photograph of the
human eye by
Lennart Nilsson.)

Figure 43
Rods and
cones in the
retina. The
thin ones
are the rods,
the fat ones
the cones.

a)

b)

Figure 27d

cone
rod
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In a normal eye, when the ciliary muscle is in its resting
position, light from infinity is focused on the retina as
shown in Figure (44a).  To see a closer object, the
ciliary muscles contract to shorten the focal length of
the cornea-lens system in order to continue to focus
light on the cornea (44b).  If the object is too close as in
Figure (44c), the light is no longer focused and the
object looks blurry.  The shortest distance at which the
light remains in focus is called the near point.  For
children the near point is as short as 7 cm, but as one
ages and the crystalline lens becomes less flexible, the
near point recedes to something like 200 cm.  This is
why older people hold written material far away unless
they have reading glasses.

Nearsightedness and Farsightedness
Not all of us have the so called normal eyes described
by Figure (44).  There is increasing evidence that those
who do a lot of close work as children end up with a
condition called nearsightedness or myopia where the
eye is elongated and light from infinity focuses inside
the eye as shown in Figure (45a).  This can be corrected
by placing a diverging lens in front of the eye to move
the focus back to the retina as shown in Figure (45b).

The opposite problem, farsightedness, where light
focuses behind the retina as shown in Figure (46a) is
corrected by a converging lens as shown in Figure
(46b).

meniscus
concave

meniscus
convex

Figure 44a
Parallel light rays from a distant object are focuses on
the retina when the ciliary muscles are in the resting
position.

Figure 44b
The ciliary muscle contracts to shorten the focal length
of the cornea-lens system in order to focus light from a
more nearby object.

Figure 44c
When an object is to close, the light cannot be focused.
The closest distance we. ....

Figure 45
Nearsightedness can be corrected by a convex lens..

Figure 46
Farsightedness can be corrected by a convex lens

a)

a)

b)

b)
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THE CAMERA
There are a number of similarities between the human
eye and a simple camera.  Both have an iris to control
the amount of light entering, and both record an image
at the focal plane of the lens.  In a camera, the focus is
adjusted, not by changing the shape of the lens as in the
eye, but by moving the lens back and forth.  The eye is
somewhat like a TV camera in that both record images
at a rate of about 30 per second, and the information is
transmitted electronically to either the brain or a TV
screen.

On many cameras you will find a series of numbers
labeled by the letter  f, called the  f  number or f stop.
Just as for the parabolic reflectors in figure 4 (p5), the
f number is the ratio of the lens focal length to the lens
diameter.  As you close down the iris of the camera to
reduce the amount of light entering, you reduce the
effective diameter of the lens and therefore increase the
f number.

Exercise 14

The iris on the human eye can change the diameter of
the opening to the lens from about 2 to 8 millimeters.  The
total distance from the cornea to the retina is typically
about 2.3 cm.  What is the range of  f  values for the
human eye?  How does this range compare with the
range of  f  value on your camera?  (If you have one of
the automatic point and shoot cameras, the f  number
and the exposure time are controlled electronically and
you do not get to see or control these yourself.)

film

pentaprism

retractable
mirror

Figure 47b
The lens system for a Nikon single lens reflex camera.
When you take the picture, the hinged mirror flips out
of the way and the light reaches the film. Before that,
the light is reflected through the prism to the eyepiece.

Figure 47a
The Physics department’s Minolta
single lens reflex camera.
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Depth of Field
There are three ways to control the exposure of the film
in a camera.  One is by the speed of the film, the second
is the exposure time, and the third is the opening of the
iris or f stop.  In talking a picture you should first make
sure the exposure is short enough so that motion of the
camera and the subject do not cause blurring.  If your
film is fast enough, you can still choose between a
shorter exposure time or a smaller f stop.  This choice
is determined by the depth of field that you want.

The concept of depth of field is illustrated in Figures
(48a and b).  In (48a), we have drawn the rays of light
from an object to an image through an  f 2  lens, a lens
with a focal length equal to twice its diameter. (The
effective diameter can be controlled by a flexible
diaphragm or iris like the one shown.)  If you placed a
film at the image distance, the point at the tip of the
object arrow would focus to a point on the film.  If you
moved the film forward to position 1, or back to
position 2, the image of the arrow tip would fill a circle
about equal to the thickness of the three rays we drew
in the diagram.

If the film were ideal, you could tell that the image at
positions 1 or 2 was out of focus.  But no film or
recording medium is ideal.  If you look closely enough
there is always a graininess caused by the size of the
basic medium like the silver halide crystals in black and
white film, the width of the scan lines in an analog TV
camera, or the size of the pixels in a digital camera.  If
the image of the arrow tip at position 1 is smaller than
the grain or pixel size then you cannot tell that the
picture is out of focus.  You can place the recording
medium anywhere between position 1 and 2 and the
image will be as sharp as you can get.

In Figure (48b), we have drawn the rays from the same
object passing through a smaller diameter f 8 lens.
Again we show by dotted lines positions 1 and 2 where
the image of the arrow point would fill the same size
circle as it did at positions 1 and 2 for the f 2 lens above.
Because the rays from the f 8 lens fill a much narrower
cone than those from the f 2 lens, there is a much greater
distance between positions 1 and 2 for the f 8 lens.

f 2.8 opening
debth of field
on film side

1 2 

f8 opening debth of field
on film side

1 2 

Figure 48a
A large diameter lens has a narrow depth of field.

Figure 48b
Reducing the effective diameter of the
lens increases the depth of field. Photograph taken at f 22.

Photograph taken at f 5.6.
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If Figures (48) represented a camera, you would not be
concerned with moving the film back and forth.  In-
stead you would be concerned with how far the image
could be moved back and forth and still appear to be in
focus.  If the film were at the image position and you
then moved the object in and out, you could not move
it very far before it’s image was noticeably out of focus
with the f 2 lens.  You could move it much farther for
the f 8 lens.

 This effect is illustrated by the photographs on the right
side of Figures 48, showing a close-up tree and the
distant tower on Baker Library at Dartmouth College.
The upper picture taken at f 5.6 has a narrow depth of
field, and the tower is well out of focus. In the bottom
picture, taken at f22, has a much broader depth of field
and the tower is more nearly in focus. (In both cases we
focused on the nearby tree bark.)

Camera manufacturers decide how much blurring of
the image is noticeable or tolerable, and then figure out
the range of distances the object can be moved and still
be acceptably in focus.  This range of distance is called
the depth of field.  It can be very short when the object
is up close and you use a wide opening like f 2.  It can
be quite long for a high f number like f 22.  The
inexpensive fixed focus cameras use a small enough
lens so that all objects are “in focus” from about 3 feet
or 1 meter to infinity.

In the extreme limit when the lens is very small, the
depth of field is so great that everything is in focus

everywhere behind the lens.  In this limit you do not
even need a lens, a pinhole in a piece of cardboard will
do.  If enough light is available and the subject doesn’t
not move, you can get as good a picture with a pinhole
camera as one with an expensive lens system. Our
pinhole camera image in Figure (49) is a bit fuzzy
because we used too big a pinhole.

(If you are nearsighted you can see how a pinhole
camera works by making a tiny hole with your fingers
and looking at a distant light at night without your
glasses.  Just looking at the light, it will look blurry.  But
look at the light through the hole made by your fingers
and the light will be sharp.  You can also see the eye
chart better at the optometrists if you look through a
small hole, but they don’t let you do that.)

Figure 49b
Photograph of Baker library tower, taken with the
pinhole camera above. If we had used a smaller hole
we would have gotten a sharper focus.

Figure 48c
Camera lens. This lens is set to f11, and adjusted
to a focus of 3 meters or 10 ft. At this setting, the
depth of field ranges from 2 to 5 meters.

Figure 49a
We made a pinhole camera by replacing
the camera lens with a plastic film case
that had a small hole poked into the end.

range
for f 11
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Eye Glasses and a Home Lab
Experiment
When you get a prescription for eyeglasses, the optom-
etrist writes down number like -1.5, -1.8 to represent
the power of the lenses you need.  These cryptic number
are the power of the lenses measured in diopters.  What
a diopter is, is simply the reciprocal of the focal length
1/f, where f is measured in meters.  A lens with a power
of 1 diopter  is a converging lens with a focal length of
1 meter.  Those of us who have lenses closer to –4 in
power have lenses with a focal length of –25 cm, the
minus sign indicating a diverging lens to correct for
nearsightedness as shown back in Figure (45).

If you are nearsighted and want to measure the power
of your own eyeglass lenses, you have the problem that
it is harder to measure the focal length of a diverging
lens than a converging lens.  You can quickly measure
the focal length of a converging lens like a simple
magnifying glass by focusing sunlight on a piece of
paper and measuring the distance from the lens to
where the paper is starting to smoke.  But you do not get
a real image for a diverging lens, and cannot use this
simple technique for measuring the focal length and
power of diverging lenses used by the nearsighted.

As part of a project, some students used the following
method to measure the focal length and then determine
the power in diopters, of their and their friend’s eye-
glasses.  They started by measuring the focal length f0
of a simple magnifying glass by focusing the sun.  Then

they placed the magnifying glass and the eyeglass lens
together, measured the focal length of the combination,
and used the formula

  1
f

=
1
f1

+
1
f2

(30 repeated)

to calculate the focal length of the lens.

(Note that if you measure distances in meters, then
1/  f1  is the power of lens 1 in diopters and 1/  f2  that of
lens 2.  Equation 30 tells you that the power of the
combination 1/f is the sum of the powers of the two
lenses.

Exercise 15
Assume that you find a magnifying lens that focuses the
sun at a distance of 10 cm from the lens.  You then
combine that with one of your (or a friends) eyeglass
lenses, and discover that the combination focus at a
distance of 15 cm.  What is the power, in diopters, of

(a) The magnifying glass.

(b) The combination.

(c) The eyeglass lens.

Exercise 16 – Home Lab

Use the above technique to measure the power of your
or your friend’s glasses.  If you have your prescription
compare your results with what is written on the pre-
scription.  (The prescription will also contain information
about axis and amount of astigmatism.  That you cannot
check as easily.
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THE EYEPIECE
When the author was a young student, he wondered
why you do not put your eye at the focal point of a
telescope mirror.  That is where the image of a distance
object is, and that is where you put the film in order to
record the image.  You do not put your eye at the image
because it would be like viewing an object by putting
your eyeball next to it.  The object would be hopelessly
out of focus. Instead you look through an eyepiece.

The eyepiece is a magnifying glass that allows your eye
to comfortably view an image or small object up close.
For a normal eye, the least eyestrain occurs when
looking at a distant object where the light from the
object enters the eye as parallel rays.  It is then that the
ciliary muscles in the eye are in a resting position.  If the
image or small object is placed at the focal plane of a
lens, as shown in Figure (50), light emerges from the
lens as parallel rays.  You can put your eye right up to
that lens, and view the object or image as comfortably
as you would view a distant scene.

Exercise 17 - The Magnifying Glass
There are three distinct ways of viewing an object
through a magnifying glass, which you should try for
yourself.  Get a magnifying glass and use the letters on
this page as the object to be viewed.

(a) First measure the focal length of the lens by focusing
the image of a distant object onto a piece of paper.  A
light bulb across the room or scene out the window will
do.

(b) Draw some object on the paper, and place the paper
at least several focal lengths from your eye. Then hold
the lens about 1/2 a focal length above the object as
shown in Figure (51a).  You should now see an enlarged
image of the object as indicated in Figure (51a).  You are
now looking at the virtual image of the object.  Check
that the magnification is roughly a factor of   2× .

(c) Keeping your eye in the same position, several focal
lengths and at least 20 cm from the paper, pull the lens
back toward your eye.  The image goes out of focus
when the lens is one focal length above the paper, and
then comes back into focus upside down when the lens
is farther out.  You are now looking at the real image as
indicated in Figure (51b).  Keep your head far enough
back that your eye can focus on this real image.

Hold the lens two focal lengths above the page and
check that the inverted real image of the object looks
about the same size as the object itself.  (As you can see
from Figure (51b), the inverted image should be the
same size as the object, but 4 focal lengths closer.)

parallel
rays

image
or
small
object

eye

f

Figure 50
The eyepiece or magnifier.  To look at small object, or
to study the image produced by another lens or mirror,
place the image or object at the focal plane of a lens, so
that the light emerges as parallel rays that your eye can
comfortably focus upon.

object

virtual
image

f

Figure 51a
Looking at the virtual image.

object image

15 – 25 cm
f

2f

Figure 51b
Looking at the inverted real image.
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(d) Now hold the lens one focal length above the page
and put your eye right up to the lens.  You are now using
the lens as an eyepiece as shown in Figure (50).  The
letters will be large because your eye is close to them,
and they will be comfortably in focus because the rays
are entering your eye as parallel rays like the rays from
a distant object.  When you use the lens as an eyepiece
you are not looking at an image as you did in parts (b)
and (c) of this exercise, instead your eye is creating an
image on your retina from the parallel rays.

(e) As a final exercise, hold the lens one focal length
above a page of text, start with your eye next to the lens,
and then move your head back.  Since the light from the
page is emerging from the lens as parallel rays, the size
of the letters should not change as you move your head
back.  Instead what you should see is fewer and fewer
letters in the magnifying glass as the magnifying glass
itself looks smaller when farther away.  This effect is
seen in Figure (52).

The Magnifier
When jewelers work on small objects like the innards
of a watch, they use what they call a magnifier which
can be a lens mounted at one end of a tube as shown in
Figure (53).  The length of the tube is equal to the focal
length of the lens, so that if you put the other end of the
tube up against an object, the lens acts as an eyepiece
and light from the object emerges from the lens as
parallel rays.  By placing your eye close to the lens, you
get a close up, comfortably seen view of the object.
You may have seen jewelers wear magnifiers like that
shown in Figure (54).

Figure 52
When the lens is one focal length from the page, the
emerging rays are parallel. Thus the image letters do
not change size as we move away. Instead the lens
looks smaller, and we see fewer letters in the lens.

f

watch

lens

Figure 53
A magnifier.

Figure 54
Jeweler Paul Gross with magnifier
lenses mounted in visor.
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Angular Magnification
Basically all the magnifier does is to allow you to move
the object close to your eye while keeping the object
comfortably in focus.  It is traditional to define the
magnification of the magnifier as the ratio of the size
of the object as seen through the lens to the size of the
object as you would see it without a magnifier.  By size,
we mean the angle the object subtends at your eye.  This
is often called the angular magnification.

The problem with this definition of magnification is
that different people, would hold the object at different
distances in order to look at it without a magnifier.  For
example, us nearsighted people would hold it a lot
closer than a person with normal vision.  To avoid this
ambiguity, we can choose some standard distance like
25 cm, a standard near point, at which a person would
normally hold an object when looking at it.  Then the
angular magnification of the magnifier is the ratio of
the angle   θm  subtended by the object when using the
magnifier, as shown in Figure (55a), to the angle   θ0
subtended by the object held at a distance of 25 cm, as
shown in Figure (55b).

   angular
magnification

=
θm

θ0

angles defined
in Figure 55 (37)

To calculate the angular magnification we use the small
angle approximation   sinθ ≈ θ  to get

   θm =
y
f

from Figure 55a

   θ0 =
y

25 cm
from Figure 55b

which gives

  angular
magnification

=
y/f

y/25 cm
=

25 cm
f

(38)

Thus  if our magnifier lens has a focal length of 5 cm,
the angular magnification is   5× .  Supposedly the
object will look five times bigger using the magnifier
than without it.

Figure 55
The angles used in defining angular magnification.

parallel
rays

y

f

y

25 cm

θm

θ0
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TELESCOPES
The basic design of a telescope is to have a large lens
or parabolic mirror to create a bright real image, and
then use an eyepiece to view the image.  If we use a large
lens, that lens is called an objective lens, and the
telescope is called a refracting telescope.  If we use a
parabolic mirror, then we have a reflecting telescope.

The basic design of a refracting telescope is shown in
Figure (56).  Suppose, as shown in Figure (56a), we are
looking at a constellation of stars that subtend an angle

  θ0  as viewed by the unaided eye.  The eye is directed
just below the bottom star and light from the top star
enters at an angle   θ0 .  In Figure (56b), the lens system
from the telescope is placed in front of the eye, and we
are following the path of the light from the top star in
the constellation.

The parallel rays from the top star are focused at the
focal length f0 of the objective lens.  We adjust the
eyepiece so that the image produced by the objective
lens is at the focal point of the eyepiece lens, so that light
from the image will emerge from the eyepiece as
parallel rays that the eye can easily focus.

As with the magnifier, we define the magnification of
the telescope as the ratio of the size of (angle subtended
by) the object as seen through the object to the size of
(angle subtended by) the object seen by the unaided
eye.  In Figure (56) we see that the constellation
subtends an angle   θ0  as viewed by the unaided eye, and
an angle  θi  when seen through the telescope.  Thus we
define the magnification of the telescope as

   
m =

θi

θ0

magnification
of telescope

(39)

To calculate this ratio, we note from Figure (56c) that,
using the small angle approximation    sinθ ≈ θ , we
have

   
θ0 =

yi

f0
; θi =

yi

fe
(40)

where f0 and fe are the focal lengths of the objective
and eyepiece lens respectively.  In the ratio, the image
height  yi  cancels and we get

   
m =

θi

θ0
=

yi/fe

yi/f0

  
m =

f0

fe (41)

Figure 56a
The unaided eye looking at a constellation of
stars that subtend an angle   θo .

Figure 56b
Looking at the same constellation through a
simple refracting telescope.  The objective lens
produces an inverted image which is viewed by
the eyepiece acting as a magnifier.  Note that
the parallel light from the star focuses at the
focal point of the objective lens.  With the image
at the focal point of the eyepiece lens, light from
the image emerges as parallel rays that are
easily focused by the eye.

Figure 56c
Relationship between the angles

 θθ0 , θθi , and the focal lengths. f f

θ0 θi
i

0 e

objective
lens

y

eyepiece
lens

(a)

(c)

(b)

parallel
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constellation

f f

θ0

θ0 θi
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e
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The same formula also applies to a reflecting telescope
with f0 the focal length of the parabolic mirror.  Note
that there is no arbitrary number like 25 cm in the
formula for the magnification of a telescope because
telescopes are designed to look at distant objects where
the angle   θ0  the object subtends to the unaided eye is
the same for everyone.

The first and the last of the important refracting tele-
scopes are shown in Figures (57). The telescope was
invented in Holland in 1608 by Hans Lippershy. Shortly
after that, Galileo constructed a more powerful instru-
ment and was the first to use it effectively in astronomy.
With a telescope like the one shown in Figure (57a), he
discovered the moons of Jupiter, a result that provided
an explicit demonstration that heavenly bodies could
orbit around something other than the earth. This
countered the long held idea that the earth was at the
center of everything and provided support for the
Copernican sun centered picture of the solar system.

When it comes to building large refracting telescopes,
the huge amount of glass in the objective lens becomes
a problem.  The 1 meter diameter refracting telescope
at the Yerkes Observatory, shown in Figure (57b), is
the largest refracting telescope ever constructed. That
was built back in 1897.  The largest reflecting telescope
is the new 10 meter telescope at the Keck Observatory
at the summit of the inactive volcano Mauna Kea in
Hawaii.  Since the area and light gathering power of a
telescope is proportional to the area or the square of the
diameter of the mirror or objective lens, the 10 meter
Keck telescope is 100 times more powerful than the 1
meter Yerkes telescope.

Figure 57a
Galileo’s telescope. With such an instrument
Galileo discovered the moons of Jupiter.

Figure 57b
The Yerkes telescope is the world’s largest refracting
telescope, was finished in 1897. Since then all larger
telescopes have been reflectors.

Exercise 8
To build your own refracting telescope, you purchase a
3 inch diameter objective lens with a focal length of 50
cm.  You want the telescope to have a magnification

   m=25 × .

(a) What will be the f number of your telescope?  (1 inch
= 2.54 cm).

(b) What should the focal length of your eyepiece lens
be?

(c) How far behind the objective lens should the eye-
piece lens be located?

(d) Someone give you an eyepiece with a focal length
of 10 mm.  Using this eyepiece, what magnification do
you get with your telescope?

(e) You notice that your new eyepiece is not in focus at
the same place as your old eyepiece.  Did you have to
move the new eyepiece toward or away from the
objective lens, and by how much?

(f) Still later, you decide to take pictures with your
telescope.  To do this you replace the eyepiece with a
film holder.  Where do you place the film, and why did
you remove the eyepiece?
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Reflecting telescopes
In several ways, the reflecting telescope is similar to the
refracting telescope.  As we saw back in our discussion
of parabolic mirrors, the mirror produces an image in
the focal plane when the light comes from a distant
object.  This is shown in Figure (58a) which is similar
to our old Figure (4).  If you want to look at the image
with an eyepiece, you have the problem that the image
is in front of the mirror where, for a small telescope,
your head would block the light coming into the scope.
Issac Newton, who invented the reflecting telescope,
solved that problem by placing a small, flat, 45°
reflecting surface inside the telescope tube to deflect
the image outside the tube as shown in Figure (58b).
There the image can easily be viewed using an eye-
piece. Newton’s own telescope is shown in Figure
(58d). Another technique, used in larger telescopes, is
to reflect the beam back through a hole in the mirror as
shown in Figure (58c).

The reason Newton invented the reflecting telescope
was to avoid an effect called chromatic aberration.
When white light passes through a simple lens, differ-
ent wavelengths or colors focus at different distances
behind the lens. For example if the yellow light is in
focus the red and blue images will be out of focus. In
contrast, all wavelengths focus at the same point using
a parabolic mirror.

Figure 58a
A parabolic reflector focuses the parallel rays from a
distant object, forming an image a distance f0  in

front of the mirror.

Figure 58b
Issac Newton’s solution to viewing the image was to
deflect the beam using a 45° reflecting surface so that
the eyepiece could be outside the telescope tube.

θ0

inverted
image

parabolic reflector

f0

eyepiece to 
look at image

parabolic reflector

photographic film
or eyepiece

secondary
mirror

parabolic reflector
with hole in center

Figure 58c
For large telescopes, it is common to reflect the
beam back through a hole in the center of the
primary mirror. This arrangement is known as
the Cassegrain design.

Figure 58d
Issac Newton’s reflecting telescope.

However, problems with keeping the reflecting surface
shinny, and the development of lens combinations that
eliminated chromatic aberration, made refracting tele-
scopes more popular until the late 1800’s. The inven-
tion of the durable silver and aluminum coatings on
glass brought reflecting telescopes into prominence in
the twentieth century.
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Large Reflecting Telescopes.
The first person to build a really large reflecting telescope
was William Hershel, who started with a two inch reflector
in 1774 and by 1789 had constructed the four foot diameter
telescope shown in Figure (59a). Among Hershel’s accom-
plishments was the discovery of the planet Uranus, and the
first observation a distant nebula. It would be another 130
years before Edwin Hubble, using the 100 inch telescope on
Mt. Wilson would conclusively demonstrate that such
nebula were in fact galaxies like our own milky way. This
also led hubble to discover the expansion of the universe.

During most of the second half of the twentieth century, the
largest telescope has been the 200 inch (5 meter) telescope
on Mt. Palomar, shown in Figure (59b). This was the first
telescope large enough that a person could work at the prime
focus, without using a secondary mirror. Hubbel himself is
seen in the observing cage at the prime focus in Figure (59c).

Recently it has become possible to construct mirrors larger
than 5 meters in diameter. One of the tricks is to cast the
molten glass in a rotating container and keep the container
rotating while the glass cools. A rotating liquid has a
parabolic surface. The faster the rotation the deeper the
parabola. Thus by choosing the right rotation speed, one can
cast a mirror blank that has the correct parabola built in. The
surface is still a bit rough, and has to be polished smooth, but
the grinding out oh large amounts of glass is avoided. The
6.5 meter mirror, shown in Figures (59d and e), being
installed on top of Mt. Hopkins in Arizona, was built this
way. Seventeen tons of glass would have to have been
ground out if the parabola had not been cast into the mirror
blank.

Figures 59b,c
The Mt. Palomar
200 inch telescope.
Below is Edwin
Hubble in the
observing cage.

Figure 59a
William Hershel’s 4 ft diameter, 40 ft long
reflecting telescope which he completed in 1789.

Figures 59d,e
The 6.5 meter MMT
telescope atop Mt.
Hopkins. Above, the
mirror has not been
silvered yet. The blue
is a temporary
protective coating.
Below, the mirror is
being hoisted into
the telescope frame.
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Hubbel Space Telescope
An important limit to telescopes on earth, in their
ability to distinguish fine detail, is turbulence in the
atmosphere.  Blobs of air above the telescope move
around causing the star image to move, blurring the
picture.  This motion, on a time scale of about 1/60
second, is what causes stars to appear to twinkle.

The effects of turbulance, and any distortion caused by
the atmosphere, are eliminated by placing the telescope
in orbit above the atmosphere. The largest telescope in
orbit is the famous Hubble telescope with its 1.5 meter
diameter mirror, seen in Figure (60). After initial
problems with its optics were fixed, the Hubble tele-
scope has produced fantastic images like that of the
Eagle nebula seen in Figure (7-17) reproduced here.

With a modern telescope like the Keck (see next page),
the effects of atmospheric turbulance can mostly be
eliminated by having a computer can track the image of
a bright star.  The telescopes mirror is flexible enough
that the shape of the mirror can then be be modified
rapidly and by a tiny amount to keep the image steady.

Figure 60a
The Hubble telescope mirror. How
is that for a shaving mirror?

Figure 60b
Hubble telescope before launch.

Figure 60c
Hubble telescope being deployed.

Figure 7-17
The eagle nebula, birthplace of stars. This Hubble
photograph, which apeared on the cover of Time
magazine, is perhaps the most famous.
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World’s Largest Optical Telescope
As of 1999, the largest optical telescope in the world is the
Keck telescope located atop the Mauna Kea volcano in
Hawaii, seen in Figure (61a). Actually there are two
identical Keck telescopes as seen in the close-up, Figure
(61b). The primary mirror in each telescope consists of 36
hexagonal mirrors fitted together as seen in Figure (61c)
to form a mirror 10 meters in diameter. This is twice the
diameter of the Mt. palomar mirrorwe discussed earlier.

The reason for building two Keck telescopes has to do
with the wave nature of light. As we mentioned in the
introduction to this chapter, geometrical optics works
well when the objects we are studying are large compared
to the wavelength of light. This is illustrated by the ripple
tank photographs of Figures (33-3) and (33-8) repro-
duced here. In the left hand figure, we see we see a wave
passing through a gap that is considerably wider than the
wave’s wavelength. On the other side of the gap there is
a well defined beam with a distinct shadow. This is what
we assume light waves do in geometrical optics.

In contrast, when the water waves encounter a gap whose
width is comparable to a wavelength,as in the right hand
figure, the waves spread out on the far side. This is a
phenomenon called diffraction. We can even see some
diffraction at the edges of the beam emerging from the
wide gap.

Diffraction also affects the ability of telescopes to form
sharp images. The bigger the diameter of the telescope,
compared to the light wavelength, the less important
diffraction is and the sharper the image that can be
formed. By combining the output from the two Keck
telescopes, one creates a telescope whose effective
diameter, for handling diffraction effects, is equal to the
90 meter separation of the telescopes rather than just
the 10 meter diameter of one telescope. The great
improvement in the image sharpness that results is seen
in Figure (61d). On the left is the best possible image of
a star, taken using one telescope alone. When the two
telescopes are combined, they get the much sharper
image on the right.

Figures 61 a,b
The Keck telescopes atop Mauna Kea volcano in Hawaii

Figures 61 c
The 36 mirrors forming Keck’s primary mirror. We
have emphasized the outline of the upper 4 mirrors.

Figures 33-3,8
Unless the gap
is wide in
comparison to a
wavelength,
diffraction
effects are
important.

Figures 62
Same star, photographed on the left using one scope,
on the right with the two Keck telescopes combined.
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Infrared Telescopes
Among the spectacular images in astronomy are the
large dust clouds like the ones that form the Eagle
nebula photographed by the Hubble telescope, and the
famous Horsehead nebula shown in Figure (63a). But
a  problem is that astronomers would like to see through
the dust, to see what is going on inside the clouds and
what lies beyond.

While visible light is blocked by the dust, other
wavelength’s of electromagnetic radiation can pen-
etrate these clouds. Figure (63b) is a photograph of the
same patch of sky as the Horsehead nebula in (63a), but
observed using infrared light whose wavelengths are
about 3 times longer than the wavelengths of visible
light. First notice that the brightest stars are at the same
positions in both photographs. But then notice that the
black cloud, thought to resemble a horses head, is
missing in the infrared photograph. The stars in and
behind the cloud shine through; their infrared light is
not blocked by the dust.

Where does the infrared light come from? If you have
studied Chapter 35 on the Bohr theory of hydrogen,
you will recall that hydrogen atoms can radiate many
different wavelengths of light. The only visible wave-
lengths are the three longest wavelengths in the Balmer
series. The rest of the Balmer series and all of the
Lyman series consist of short wavelength ultraviolet
light. But all the other wavelengths radiated by hydro-
gen are infrared, like the Paschen series where the
electron ends up in the third energy level. The infrared
wavelengths are longer than those of visible light.
Since hydrogen is the major constituent of almost all
stars, it should not be surprising that stars radiate
infrared as well as visible light.

A telescope designed for looking at infrared light is
essentially the same as a visible light telescope, except
for the camera. Figure (64) shows the infrared tele-
scope on Mt. Hopkins used to take the infrared image
of the Horsehead nebula. We enlarged the interior
photograph to show the infrared camera which is
cooled by a jacket of liquid nitrogen (essentially a large
thermos bottle surrounding the camera).

Figure 63
The horsehead nebula photographed in visible
(a) and infrared light (b). The infrared light
passes through the dust cloud.

a)
Visible light
photograph

b)
Infrared light
photograph

Figure 64
Infrared telescope on
Mt. Hopkins. Note that
the infrared camera,
seen in the blowup, is in
a container cooled by
liquid nitrogen. You do
not want the walls of the
camera to be “infrared
hot” which would fog
the image.
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You might wonder why you have to cool an infrared
camera and not a visible light camera. The answer is
that warm bodies emit infrared radiation. The hotter the
object, the shorter the wavelength of the radiation. If an
object is hot enough, it begins to glow in visible light,
and we say that the object is red hot, or white hot. Since
you do not want the infrared detector in the camera
seeing camera walls glowing “infrared hot”, the cam-
era has to be cooled.

Not all infrared radiation can make it down through the
earth’s atmosphere. Water vapor, for example is very
good at absorbing certain infrared wavelengths. To
observe the wavelengths that do not make it through,
infrared telescopes have been placed in orbit. Figure 65
is an artist’s drawing of the Infrared Astronomical
Satellite (IRAS) which was used to make the infrared
map of the entire sky seen in Figure (66). The map is
oriented so that the Milky Way, our own galaxy, lies
along the center horizontal plane. In visible light pho-
tographs, most of the stars in our own galaxy are
obscured by the immense amount of dust in the plane

of the galaxy. But in an infrared photograph, the huge
concentration of stars in the plane of the galaxy show
up clearly.

At the center of our galaxy is a gigantic black hole, with
a mass of millions of suns. For a visible light telescope,
the galactic center is completely obscured by dust. But
the center can be clearly seen in the infrared photograph
of Figure (67), taken by the Mt. Hopkins telescope of
Figure 64. This is not a single exposure, instead it is a
composite of thousands of images in that region of the
sky. Three different infrared wavelengths were re-
corded, and the color photograph was created by
displaying the longest wavelength image as red,  the
middle wavelength as green, and the shortest wave-
length as blue. In this photograph, you not only see the
intense radiation from the region of the black hole at the
center, but also the enormous density of stars at the
center of our galaxy. (You do not see radiation from the
black hole itself, but from nearby stars that may be in
the process of being captured by the black hole.)

Figure 65
Artist’s drawing of the infrared
telescope IRAS in orbit.

Figure 66
Map of the entire sky made by
IRAS. The center of the Milky
Way is in the center of the map.
This is essentially a view of our
galaxy seen from the inside.

Figure 67
Center of our galaxy, where an enormous black hole resides. Not only is
the galactic center rich in stars, but also in dust which prevents viewing
this region in visible light.
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Radio Telescopes
The earth’s atmosphere allows not only visible and
some infrared light from stars to pass through, but also
radio waves in the wavelength range from a few millimeters
to a good fraction of a meter. To study the radio waves
emitted by stars and galaxies, a number of radio telescopes
have been constructed.

For a telescope reflector to produce a sharp image, the
surface of the reflector should be smooth and accurate to
within about a fifth of a wavelength of the radiation being
studied. For example, the surface of a mirror for a visible
wavelength telescope should be accurate to within about

 10– 4  millimeters since the wavelength of visible light is
centered around   5 × 10– 4millimeters. Radio telescopes
that are to work with 5 millimeter wavelength radio waves,
need surfaces accurate only to about a millimeter. Tele-
scopes designed to study the important 21 cm wavelength
radiation emitted by hydrogen, can have a rougher surface
yet. As a result, radio telescopes can use sheet metal or even
wire mesh rather than polished glass for the reflecting
surface.

This is a good thing, because radio telescopes have to  be
much bigger than optical telescopes to order to achieve
comparable images. The sharpness of an image, due to
diffraction effects, is related to the ratio of the reflector
diameter to the radiation wavelength. Since the radio wave-
lengths are at least  10 4times larger than those for visible
light, a radio telescope has to be  10 4times larger than an
optical telescope to achieve the same resolution.

The worlds largest radio telescope dish, shown in Figure
(68), is the 305 meter dish at the Arecibo Observatory in
Perto Rico. While this dish can see faint objects because of

it’s enormous size, and has been used to make significant
discoveries, it has the resolving ability of an optical tele-
scope about 3 centimeters in diameter, or a good set of
binoculars .

As we saw with the Keck telescope, there is a great
improvement in resolving power if the images of two or
more telescopes are combined. The effective resolving
power is related to the separation of the telescopes rather
than to the diameter of the individual telescopes. Figure (69)
shows the Very Large Array (VLA) consisting of twenty
seven 25 meter diameter radio telescopes located in south-
ern New Mexico. The  dishes are mounted on tracks, and can
be spread out to cover an area 36 kilometers in diameter. At
this spacing, the resolving power is nearly comparable to a
5 meter optical telescope at Mt. Palomar.

Figure 68
Arecibo radio telescope. While the world’s largest
telescope dish remains fixed in the earth, the focal
point can be moved to track a star.

Figures 69
The “Very Large Array”  (VLA) of radio telescopes.
The twenty seven telescopes can be spread out to a
diameter of 36 kilometers.

Figures 69b
Radio galaxy image from the VLA. Studying the
radio waves emitted by a galaxy often gives a
very different picture than visible light.
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The Very Long Baseline Array (VLBA)
To obtain significantly greater resolving power, the
Very Long Baseline Array  (VLBA)  was set up in the
early 1990’s. It consists of ten 25 meter diameter radio
telescopes placed around the earth as shown in Figure
(70). When the images of these telescopes are com-
bined, the resolving power is comparable to an optical
telescope 1000 meters in diameter (or an array of
optical telescopes spread over an area one kilometer
across).

The data from each telescope is recorded on a high
speed digital tape with a time track created by a
hydrogen maser atomic clock. The tapes are brought to
a single location in Socorrow New Mexico where a
high speed computer uses the accurate time tracks to
combine the data from all the telescopes into a single
image. To do this, the computer has to  correct, for
example, for the time difference of the arrival of the
radio waves at the different telescope locations.

Because of it’s high resolution, the VLBA can be used
to study the structure of individual stars. In Figure 72
we see two time snapshots of the radio emission from
the stellar atmosphere of a star 1000 light years away.
With any of the current optical telescopes, the image of
this star is only a point.
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Figure 70
The Very Long Baseline Array of radio antennas. They
are located at a) Hancock New Hampshire b) Ft. Davis
Texas c) Kitt Peak Arizona d) North Liberty Iowa e) St.
Croix Virgin Islands f) Brewster Washington g) Mauna
Kea Hawaii h) Pie Town New Mexico i) Los Alamos
New Mexico j) Owen’s Valley California.

Figure 71
Very Long Baseline Array (VLBA)  radio images of the
variable star TX Cam which is located 1000 light years
away. The approximate size of the star as it would be
seen in visible light is indicated by the circle. The spots
are silicon Monoxide (SiO) gas in the star’s extended
atmosphere.  Motion of the these spots trace the periodic
changes in the atmosphere of the star.
(Credit P.J. Diamond & A.J. Kembal, National Radio
Astronomy, Associated Universities, Inc.)
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MICROSCOPES
Optically, microscopes like the one seen in Figure (72),
are telescopes designed to focus on nearby objects.
Figure (73) shows the ray diagram for a simple micro-
scope, where the objective lens forms an inverted
image which is viewed by an eyepiece.

To calculate the magnification of a simple microscope,
note that if an object of height  y0 were viewed unaided
at a distance of 25 cm, it would subtend an angle   θ0
given by

  
θ0 =

y0

25 cm (42)

where throughout this discussion we will use the small
angle approximation   sinθ ≈ tanθ ≈ θ .

A ray from the tip of the object (point A in Figure 73b),
parallel to the axis, will cross the axis at point D, the
focal point of the objective lens.  Thus the height BC is
equal to the height  y0 of the object, and the distance BD
is the focal length  f0 of the objective, and the angle β
is given by

   
β =

y0

f0

from triangle
BCD (43)

From triangle DEF, where the small angle at D is also
 β,we have

   
β =

yi

L
from triangle
DEF (44)

where  yi  is the height of the image and the distance L
is called the tube length of the microscope.
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rays

y

f

0
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0 fe
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Equating the values of β  in Equations 29 and 30 and
solving for  yi  gives

   
β =

y0

f0
=

yi

L
; yi = y0

L
f0

(45)

The eyepiece is placed so that the image of the objective
is in the focal plane of the eyepiece lens, producing
parallel rays that the eye can focus.  Thus the distance
EG equals the focal length  f0 of the eyepiece.  From
triangle EFG we find that the angle  θi  that image
subtends as seen by the eye is

   
θi =

yi

fe

angle subtended
by image

(46)

Substituting Equation 45 for  yi  in Equation 46 gives

   
θi =

L
f0

y0

fe
(47)

Finally, the magnification m of the microscope is equal
to the ratio of the angle  θi  subtended by the image in
the microscope, to the angle   θ0  the object subtends at
a distance of 25 cm from the unaided eye.

   
m =

θi

θ0
= L

f0

y0

fe
× 1

y0/25 cm
(48)

where we used Equation 47 for  θi  and Equation 42 for
  θ0 .  The distance  y0 cancels in Equation 48 and we get

   
m = L

f0
× 25 cm

fe

magnificationof a
simple microscope

(49)

(We could have inserted a minus sign in the formula for
magnification to indicate that the image is inverted.)

Figure 72
Standard optical microscope, which my grandfather
purchased as a medical student in the 1890’s. Compare
this with a microscope constructed 100 years later, seen
in Figure (69) on the next page.

Figure 73
Optics of a simple microscope.
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Scanning Tunneling Microscope
Modern research microscopes bear less resemblance to
the simple microscope described above than the Hubble
telescope does to Newton’s first reflector telescope.  In
the research microscopes that can view and manipulate
individual atoms, there are no lenses based on geometri-
cal optics.  Instead the surface to be studied is scanned,

line by line, by a tiny probe whose operation is based on
the particle-wave nature of electrons.  An image of the
surface is then reconstructed by computer and displayed
on a computer screen.  These microscopes work at a
scale of distance much smaller than the wavelength of
light, a distance scale where the approximations inher-
ent in geometrical optics do not apply.
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Figure 74
Scanning Tunneling Microscope (STM). The tungsten
probe seen in (a) has a very sharp point, about one
atom across. With a couple of volts difference between
the probe and the silicon crystal in the sample holder,
an electric current begins to flow when the tip gets to
within about fifteen angstroms (less than fifteen atomic
diameters) of the surface. The current flows because
the wave nature of the electrons allows them to
“tunnel” through the few angstrom gap. The current
increases rapidly as the probe is brought still closer. By
moving the probe in a line sideways across the face of
the silicon, while moving the probe in and out to keep
the current constant, the tip of the probe travels at a
constant height above the silicon atoms. By recording
how much the probe was moved in and out, one gets a
recording of the shape of the surface along that line.
By scanning across many closely spaced lines, one gets
a map of the entire surface. The fine motions of the
tungsten probe are controlled by piezo crystals which
expand or contract by tiny amounts when a voltage is
applied to them. The final image you see was created by
computer from the scanning data.

a) Probe and sample holder.

b) Vacuum chamber
enclosing the probe and
sample holder. Photograph
taken in Geoff Nunes’ lab
at Dartmouth College.

c) Surface (111 plane) of a silicon
crystal imaged by this microscope. We
see the individual silicon atoms in the
surface
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Calculus 2000
A Physics Based Calculus Text

The Physics 2000 (P2000) text uses certain calculus
concepts that are taught in Chapter 1 of this Calculus
2000 (C2000) text.  For students whose calculus is
rusty, or who have not had calculus, they should start
studying Chapter 1 of C2000 while studying Chapter 4
of P2000 on the use of calculus in Physics.  By the time
the student reaches Part 2 of P2000, Chapter 23, the
ideas contained in Chapter 1 of C2000 should be well
understood.  That is because the chapters on electric
and magnetic fields make extensive use of these basic
calculus ideas.

The remaining chapters in Calculus 2000 start from
physical concepts built up in P2000 and introduce the
student to advanced mathematical techniques.  These
include concepts such as gradient, divergence, and curl
which are essential tools for further study of physics
and engineering.  Later chapters in C2000 will include
such topics as an introduction to complex variables, the
Lorentz transformation and 4 vector notation, and two
chapters on fluid dynamics.

In the standard calculus text, there is an advantage to
presenting a theorem in its most general form so that the
theorem can be used effectively in later proofs.  The
emphasis is on the logical structure of the mathematics.
The problem the physics student often encounters is
that before the intuitive implications of one theorem
can be worked out, the instructor has plowed through

CALCULUS 2000A PHYSICS BASED
CALCULUS TEXT

five more theorems and proofs.  The mathematical
structure may be clear, but the usefulness of the math-
ematics is obscured.

In Calculus 2000, the emphasis is on the intuitive use
of the mathematics.  We do not introduce a new
mathematical concept or technique until the founda-
tion has been developed in the Physics 2000 text.  In
Chapter 3 of P2000, for example, we use strobe photo-
graphs to introduce the concepts of velocity, accelera-
tion, and the limiting process.  The calculus limit at  ∆t
goes to zero is represented physically by the idea of
turning the strobe flashing rate all the way up.  We point
out, however, that because of the uncertainty principle
we reach a point where further increase of the flashing
rate affects the behavior of the object being studied.
Before the student works with calculus formulas, we
set both the intuitive basis for the calculus concepts and
discuss the limitation of their applicability.

As we mentioned, Calculus 2000 provides the calculus
background necessary to complete all of the Physics
2000 text.  All further calculus and advanced math-
ematics concepts used in P2000 are developed in the
physics text.  Chapter 2 of P2000 discusses vectors and
their scalar and vector products.  The scalar dot product
is applied in Chapter 8 to the discussion of work and
energy, and the vector cross product is applied in the
discussion of torques and gyroscopes in Chapter 12.
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In Chapter 14 on oscillations, we introduce the student
to some techniques of solving differential equations.
The idea is to guess an answer and plug the guess into
the equation to see if it works.  The important point,
however, is that we use experimental results to make an
informed guess.  In Chapter 16 the student is introduced
to Fourier analysis.  We wrote the MacScope™ com-
puter program so that the student could easily use
Fourier analysis to study experimental data.  One of our
standard laboratory examples is to use Fourier analysis
to determine the normal modes of oscillation of a
system of coupled air carts.

Part II of Physics 2000, particularly Chapters 23 through
32 on Electric and Magnetic fields, are more math-
ematically based than the other chapters.  Chapter 23 on
fluids is used to introduce the concept of a vector field.
It is easier to visualize the velocity field of a fluid with
its streamlines, than the more abstract electric and
magnetic field lines.  We also use the velocity field to
introduce the concepts involved in Gauss' law.

In Chapter 25 we use contour maps to introduce equi-
potential lines and the concept of electrical voltage.
Chapter 29 formalizes Gauss' law as an example of a
surface integral, and introduces the closed line integral
in the discussion of Ampere's law.  By pointing out that
equations for both the surface integral and the line
integral are required to uniquely determine a vector
field, the student sees why four equations are needed to
specify both the electric field and the magnetic field.
These are the four integral equations that form Maxwell's
equations studied in Chapter 32.  Our main mathemati-
cal achievement in Chapter 32 is to show that a pulse of
crossed electric and magnetic fields travels through
space at the speed of light.

Chapters 33 through 40 of P2000 are not as mathemati-
cally focused because we concentrate on developing an
intuitive picture of the particle/wave nature of matter.
Because we have used special relativity throughout the
text, it is easy to introduce the zero rest mass photons as
the particle nature of light waves.  The wave nature of
the electron is introduced with de Broglie's hypothesis
and an electron diffraction experiment that is similar to
the laser diffraction experiments of Chapter 33.  Fourier
analysis plays a basic role in showing how the particle/
wave nature of matter leads to the uncertainty principle
discussed in Chapter 40.

After Chapter 1, the remaining chapters in Calculus
2000 use physical concepts developed in P2000 to
introduce advanced calculus techniques needed by
physicists and engineers.  The concept of a second
derivative, and the differential form of the wave equa-
tion follows from our discussion of one dimensional
waves in Chapter 12 of P2000.  The student sees how
much easier it is to determine the speed of a wave from
the differential wave equation than it is to go through
the non calculus arguments we used in Chapter 15 of
the P2000 text.

Once the student is familiar with the field plotting
models and mapping techniques discussed in Chapter
25 of P2000, she or he is ready for the discussion of the
gradient function  ∇ϕ  described in Chapter 3 of C2000.
In Chapter 4 of C2000 the divergence and curl opera-
tion are presented as the differential form of the surface
and line integrals discussed in Chapter 29 of P2000.
Maxwell's equations discussed in Chapter 32 of P2000
are presented in differential form in Chapter 5 of
C2000, and from them we derive the differential form
of the wave equation for electric and magnetic fields.
Again we see that it is easier to determine the speed of
a wave from the differential wave equation than from
the fairly complex derivation we carried out using the
integral equation. Chapter 5 ends with the introduction
of the vector potential to simplify the wave equation
when source terms are involved.
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Figure 1
Transition to instantaneous velocity.
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Calculus Chapter 1
Introduction to Calculus

This chapter, which replaces Chapter 4 in Physics
2000, is intended for students who have not had calcu-
lus, or as a calculus review for those whose calculus is
not well remembered.  If, after reading part way
through this chapter, you feel your calculus back-
ground is not so bad after all, go back to Chapter 4 in
Physics 2000, study the derivation of the constant
acceleration formulas beginning on page 4-8, and
work the projectile motion problems in the appendix to
Chapter 4.  Those who study all of this introduction to
calculus should then proceed to the projectile motion
problems in the appendix to Chapter 4 of the physics
text.

In Chapter 3 of Physics 2000, we used strobe photo-
graphs to define velocity and acceleration vectors.  The
basic approach was to turn up the strobe flashing rate
as we did in going from Figure (3-3) to (3-4) until all
the kinks are clearly visible and the successive dis-
placement vectors give a reasonable description of the
motion.  We did not turn the flashing rate too high, for
the practical reason that the displacement vectors
became too short for accurate work.

CHAPTER 1 INTRODUCTION TO
CALCULUS

LIMITING PROCESS
In our discussion of instantaneous velocity we concep-
tually turned the strobe all the way up as illustrated in
Figures (2-22a) through (2-22d), redrawn here in Fig-
ure (1).  In these figures, we initially see a fairly large
change in  v0  as the strobe rate is increased and  ∆t
reduced.  But the change becomes smaller and it looks
as if we are approaching some final value of  v0  that
does not depend on the size of  ∆t , provided  ∆t  is small
enough.  It looks as if we have come close to the final
value in Figure (1c).

The progression seen in Figure (1) is called a limiting
process.  The idea is that there really is some true value
of  v0  which we have called the instantaneous velocity,
and that we approach this true value for sufficiently
small values of  ∆t .  This is a calculus concept, and in
the language of calculus, we are taking the limit as  ∆∆ t
goes to zero.

The Uncertainty Principle
For over 200 years, from the invention of calculus by
Newton and Leibnitz until 1924, the limiting process
and the resulting concept of instantaneous velocity was
one of the cornerstones of physics.  Then in 1924
Werner Heisenberg discovered what he called the
uncertainty principle which places a limit on the
accuracy of experimental measurements.



Cal 1-4    Calculus  2000

Heisenberg discovered something very new and unex-
pected.  He found that the act of making an experimen-
tal measurement unavoidably affects the results of an
experiment.  This had not been known previously
because the effect on large objects like golf balls is
undetectable.  But on an atomic scale where we study
small systems like electrons moving inside an atom, the
effect is not only observable, it can dominate our study
of the system.

One particular consequence of the uncertainly prin-
ciple is that the more accurately we measure the
position of an object, the more we disturb the motion of
the object.  This has an immediate impact on the
concept of instantaneous velocity.  If we turn the strobe
all the way up, reduce  ∆t  to zero, we are in effect trying
to measure the position of the object with infinite
precision.  The consequence would be an infinitely big
disturbance of the motion of the object we are studying.
If we actually could turn the strobe all the way up, we
would destroy the object we were trying to study.

It turns out that the uncertainty principle can have a
significant impact on a larger scale of distance than the
atomic scale.  Suppose, for example, that we con-
structed a chamber 1 cm on a side, and wished to study
the projectile motion of an electron inside.  Using
Galileo’s idea that objects of different mass fall at the
same rate, we would expect that the motion of the
electron projectile should be the same as more massive
objects.  If we took a strobe photograph of the electron’s
motion, we would expect get results like those shown
in Figure (2).  This figure represents projectile motion
with an acceleration g = 980 cm/sec2 and    ∆t = .01sec,
as the reader can easily check.

When we study the uncertainty principle in Chapter 40
of the physics text, we will see that a measurement
which is accurate enough to show that Position (2) is
below Position (1), could disturb the electron enough to
reverse its direction of motion.  The next position
measurement could find the electron over where we
drew Position (3), or back where we drew Position (0),
or anywhere in the region in between.  As a result we
could not even determine what direction the electron is
moving.  This uncertainty would not be the result of a
sloppy experiment, it is the best we can do with the most
accurate and delicate measurements possible.

The uncertainty principle has had a significant impact
on the way physicists think about motion.  Because we
now know that the measuring process affects the results
of the measurement, we see that it is essential to provide
experimental definitions to any physical quantity we
wish to study.  A conceptual definition, like turning the
strobe all the way up to define instantaneous velocity,
can lead to fundamental inconsistencies.

Even an experimental definition like our strobe defini-
tion of velocity can lead to inconsistent results when
applied to something like the electron in Figure (2).  But
these inconsistencies are real.  Their existence is telling
us that the very concept of velocity is beginning to lose
meaning for these small objects.

On the other hand, the idea of the limiting process and
instantaneous velocity is very convenient when ap-
plied to larger objects where the effects of the uncer-
tainty principle are not detectable.  In this case we can
apply all the mathematical tools of calculus developed
over the past 250 years.  The status of instantaneous
velocity has changed from a basic concept to a useful
mathematical tool.  Those problems for which this
mathematical tool works are called problems in classi-
cal physics; and those problems for which the uncer-
tainty principle is important, are in the realm of what we
call quantum physics.

Figure 2
Hypothetical electron projectile motion experiment.
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CALCULUS DEFINITION OF VELOCITY
With the above perspective on the physical limita-
tions on the limiting process, we can now return to
the main topic of this chapter—the use of calculus in
defining and working with velocity and accelera-
tion.

In discussing the limiting process in calculus, one
traditionally uses a special set of symbols which we can
understand if we adopt the notation shown in Figure
(3).  In that figure we have drawn the coordinate vectors

 Ri and  Ri+1 for the i th and (i + 1) th positions of the
object.  We are now using the symbol   ∆Ri to represent
the displacement of the ball during the i to i+1 interval.
The vector equation for   ∆Ri  is

  ∆Ri = Ri+1 – Ri (1)

In words, Equation (1) tells us that   ∆Ri  is the change,
during the time   ∆t,  of the position vector  R  describing
the location of the ball.

The velocity vector  vi  is now given by

  
vi =

∆Ri
∆t (2)

This is just our old strobe definition   vi = si/∆t , but
using a notation which emphasizes that the displace-
ment   s i = ∆Ri  is the change in position that occurs
during the time  ∆t .  The Greek letter ∆  (delta) is used
both to represent the idea that the quantity   ∆Ri  or  ∆t
is small, and to emphasize that both of these quantities
change as we change the strobe rate.

The limiting process in Figure (1) can be written in the
form

  
vi ≡ limit

∆t→0
∆Ri
∆t (3)

where the word “limit” with   ∆t→0 underneath, is to be
read as “limit as  ∆t  goes to zero”.  For example we
would read Equation (3) as “the instantaneous veloc-
ity   vi   at position i is the limit, as   ∆t  goes to zero, of
the ratio   ∆Ri /∆t .

 
”

For two reasons, Equation (3) is not quite yet in
standard calculus notation.  One is that in calculus, only
the limiting value, in this case, the instantaneous veloc-
ity, is considered to be important.  Our strobe definition

  vi = ∆Ri /∆t  is only a step in the limiting process.
Therefore when we see the vector  vi , we should
assume that it is the limiting value, and no special
symbol like the underline is used.  For this reason we
will drop the underline and write

  
vi = limit

∆t→0
∆Ri
∆t (3a)

Figure 3
Definitions of   ∆∆Ri  and vi .
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The second change deals with the fact that when  ∆t
goes to zero we need an infinite number to time steps
to get through our strobe photograph, and thus it is not
possible to locate a position by counting time steps.
Instead we measure the time t that has elapsed since the
beginning of the photograph, and use that time to tell us
where we are, as illustrated in Figure (4).  Thus instead
of using  vi  to represent the velocity at position i, we
write  v(t)  to represent the velocity at time  t.  Equation
(3) now becomes

  
v(t) = limit

∆t→0
∆R(t)

∆t (3b)

where we also replaced   ∆Ri  by its value   ∆R(t) at
time t.

Although Equation (3b) is in more or less standard
calculus notation, the notation is clumsy.  It is a pain to
keep writing the word “limit” with a   ∆t→0 under-
neath.  To streamline the notation, we replace the Greek
letter ∆  with the English letter  d  as follows

  
limit
∆t→0

∆R(t)
∆t

≡ dR(t)
dt (4)

(The symbol ≡  means defined equal to.) To a
mathematician, the symbol   dR(t)/dt   is just shorthand

notation for the limiting process we have been describ-
ing.  But to a physicist, there is a different, more
practical meaning.  Think of dt as a short  ∆t , short
enough so that the limiting process has essentially
occurred, but not too short to see what is going on.  In
Figure (1), a value of dt less than .025 seconds is
probably good enough.

If dt is small but finite, then we know exactly what the
 dR(t)  is.  It is the small but finite displacement vector

at the time  t.  It is our old strobe definition of velocity,
with the added condition that dt is such a short time
interval that the limiting process has occurred.  From
this point of view, dt is a real time interval and  dR(t)

 
a

real vector, which we can work with in a normal way.
The only thing special about these quantities is that
when we see the letter d instead of ∆ , we must
remember that a limiting process is involved.  In this
notation, the calculus definition of velocity is

 

v(t) =
dR(t)

dt
(5)

where  R(t)  and  v(t)  are the particle’s coordinate vector
and velocity vector respectively, as shown in Figure
(5).  Remember that this is just fancy shorthand nota-
tion for the limiting process we have been describing.

t = .3sec

t = .2sect = .1sec

t = 0sec

t = .4sec

t = .5sec

R(t)
at t = .3 sec

Figure 4
Rather than counting individual images, we can
locate a position by measuring the elapsed time t.
In this figure, we have drawn the displacement
vector   R(t) at time t = .3 sec.

Figure 5
Instantaneous position and velocity at time t.

R(t)

V(t)
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ACCELERATION
In the analysis of strobe photographs, we defined both
a velocity vector v and an acceleration vector a.  The
definition of a, shown in Figure (2-12) reproduced
here in Figure (6) was

  
ai ≡

vi+1 – vi
∆t (6)

In our graphical work we replaced  vi  by   s i/∆t  so that
we could work directly with the displacement vectors

 s i and experimentally determine the behavior of the
acceleration vector for several kinds of motion.

Let us now change this graphical definition of accelera-
tion over to a calculus definition, using the ideas just
applied to the velocity vector.  First, assume that the ball
reached position  i  at time  t  as shown in Figure (6).
Then we can write

 vi = v(t)

  vi+1 = v(t+∆t)

to change the time dependence from a count of strobe
flashes to the continuous variable t.  Next, define the
vector   ∆v(t) by

  ∆v(t) ≡ v(t+∆t) – v(t) = vi+1– vi (7)

We see that   ∆v(t) is the change in the velocity vector as
the time advances from  t  to    t+∆t . The strobe
definition of  ai can now be written

   
a(t)

strobe
definition

=
v(t + ∆t) – v(t)

∆t
≡ ∆v(t)

∆t (8)

Now go through the limiting process, turning the strobe
up, reducing  ∆t  until the value of  a(t)  settles down to
its limiting value.  We have

   
a(t)

calculus
definition

= limit
∆t→0

v t + ∆t – v t
∆t

= limit
∆t→0

∆v(t)
∆t

(9)

Finally use  the shorthand notation d/dt for the limiting
process:

 
a(t) =

dv(t)
dt

(10)

Equation (10) does not make sense unless you remem-
ber that it is notation for all the ideas expressed above.
Again, physicists think of dt as a short but finite time
interval, and  dv(t)  as the small but finite change in the
velocity vector during the time interval dt.  It’s our
strobe definition of acceleration with the added re-
quirement that  ∆t  is short enough that the limiting
process has already occurred.

Components
Even if you have studied calculus, you may not recall
encountering formulas for the derivatives of vectors,
like   dR(t)/∆t  and   dv(t)/∆t  which appear in Equations
(5) and (10).  To bring these equations into a more
familiar form where you can apply standard calculus
formulas, we will break the vector Equations (5) and
(10) down into component equations.

In the chapter on vectors, we saw that any vector
equation like

 A = B + C (11)

is equivalent to the three component equations

 Ax = Bx + Cx

Ay = By + Cy

Az = Bz + Cz

(12)

The advantage of the component equations was that
they are simply numerical equations and no graphical
work or trigonometry is required.

Vi

Vi  1+

–Vi
a i –V )iVi  1+(

∆t
=

–ViVi  1+( )

position at 
time t position at 

time t + ∆t

Figure 6
Experimental definition of the acceleration vector.
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The limiting process in calculus does not affect the
decomposition of a vector into components, thus Equa-

tion (5) for  v(t)  and Equation (10) for  a(t)
 
become

 v(t) = dR(t)/dt (5)

 vx(t) = dRx(t)/dt (5a)

 vy(t) = dRy(t)/dt (5b)

 vz(t) = dRz(t)/dt (5c)

and

 a(t) = dv(t)/dt (10)

 ax(t) = dvx(t)/dt (10a)

 ay(t) = dvy(t)/dt (10b)

 az(t) = dvz(t)/dt (10c)

Often we use the letter x for the x coordinate of the
vector R and we use y for  Ry and z for  Rz .  With this
notation, Equation (5) assumes the shorter and perhaps
more familiar form

 vx(t) = dx(t)/dt (5a’)

 vy(t) = dy(t)/dt (5b’)

 vz(t) = dz(t)/dt (5c’)

At this point the notation has become deceptively short.
You now have to remember that x(t) stands for the x
coordinate of the particle at a time t.

We have finally boiled the notation down to the point
where it would be familiar from any calculus course.  If
we restrict our attention to one dimensional motion
along the x axis.  Then all we have to concern ourselves
with are the x component equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt

(10a)

INTEGRATION
When we worked with strobe photographs, the photo-
graph told us the position  R(t)  of the ball as time
passed.  Knowing the position, we can then use Equa-
tion (5) to calculate the ball's velocity  v(t)  and then
Equation (10) to determine the acceleration  a(t) .  In
general, however, we want to go the other way, and
predict the motion from a knowledge of the accelera-
tion.  For example, imagine that you were in Galileo's
position, hired by a prince to predict the motion of
cannonballs.  You know that a cannonball should not
be much affected by air resistance, thus the acceleration
throughout its trajectory should be the constant gravi-
tational acceleration g .  You know that  a(t) = g ; how
then do you use that knowledge in Equations (5) and
(10) to predict the motion of the ball?

The answer is that you cannot with the equations in
their present form.  The equations tell you how to go
from  R(t) to  a(t),  while to predict motion you need to
go the other way, from  a(t)  to  R(t) .  The topic of this
section is to see how to reverse the directions in which
we use our calculus equations.  Equations (5) and (10)
involve the process called differentiation.  We will see
that when we go the other way the reverse of differen-
tiation is a process called integration.  We will see that
integration is a simple concept, but a process that is
sometimes hard to perform without the aid of a com-
puter.

R

y

x
Figure 7
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Prediction of Motion
In our earlier discussion, we have used strobe photo-
graphs to analyze motion.  Let us see what we can learn
from such a photograph for predicting motion.  Figure
(8) is our familiar projectile motion photograph show-
ing the displacement s  of a ball during the time the ball
traveled from a position labeled (0) to the position
labeled (4).  If the ball is now at position (0) and each
of the images is .1 seconds apart, then the vector s  tells
us where the ball will be at a time of .4 seconds from
now.  If we can predict s , we can predict the motion of
the ball.  The general problem of predicting the motion
of the ball is to be able to calculate  s(t)  for any time t.

From Figure (8) we see that s  is the vector sum of the
individual displacement vectors  s1 ,  s2 ,  s3  and  s4

 s = s1 + s2 + s3 + s4 (11)

We can then use the fact that   s1 = v1∆t ,   s2 = v2∆t ,
etc. to get

  s = v1∆t + v2∆t + v3∆t + v4∆t (12)

Rather than writing out each term, we can use the
summation sign Σ to write

  
s = vi∆tΣ

i = 1

4
(12a)

Equation (12) is approximate in that the  vi  are approxi-
mate (strobe) velocities, not the instantaneous veloci-

ties we want for a calculus discussion.  In Figure (9) we
improved the situation by cutting  ∆t  to 1/4  of its
previous value, giving us four times as many images
and more accurate velocities  vi .

We see that the displacement s  is now the sum of 16
vectors

 s = s1 + s2 + s3 + ... + s15 + s16 (13)

Expressing this in terms of the velocity vectors  v1  to
 v16 we have

  s = v1∆t + v2∆t + v3∆t + ... + v15∆t + v16∆t (14)

or using our more compact notation

  
s = vi∆tΣ

i = 1

16
(14a)

While Equation (14) for s  looks quite different than
Equation (12), the sum of sixteen vectors instead of
four, the displacement vectors s  in the two cases are
exactly the same.  Adding more intermediate images
did not change where the ball was located at the time of
t = .4 seconds.  In going from Equation (12) to (14),
what has changed in shortening the time step  ∆t , is that
the individual velocity vectors  vi  become more nearly
equal to the instantaneous velocity of the ball at each
image.

Figure 8
To predict the total displacement
s , we add up the individual
displacements si .

1

2

3

4

0 S 1

S =   S + 1 S + 2 ... + S 16

S 2

S 3

S 4

S 

t=0 

t=.4 sec 

4

8

12

16

0S 1 1 2 3

S =   S + 1 S + 2 ... + S 16

S 

t=0 

t=.4 sec 

S 16

Figure 9
With a shorter time interval, we
add up more displacement vectors
to get the total displacement s .
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If we reduced  ∆t  again by another factor of 1/4, so that
we had 64 images in the interval t = 0 to t = .4 sec, the
formula for s  would become

  
s = vi∆tΣ

i = 1

64
(15a)

where now the  vi  are still closer to representing the
ball's instantaneous velocity.  The more we reduce  ∆t ,
the more images we include, the closer each  vi  comes
to the instantaneous velocity  v t .  While adding more
images gives us more vectors we have to add up to get
the total displacement s , there is very little change in
our formula for s .  If we had a million images, we
would simply write

  
s = vi∆tΣ

i = 1

1000000
(16a)

In this case the  vi  would be physically indistinguish-
able from the instantaneous velocity  v(t) .  We have
essentially reached a calculus limit, but we have prob-
lems with the notation. It is clearly inconvenient to
label each  vi  and then count the images.  Instead we
would like notation that involves the instantaneous
velocity  v(t)  and expresses the beginning and end
points in terms of the initial time  t1  and final time tf ,
rather than the initial and final image numbers i.

In the calculus notation, we replace the summation sign
 Σ  by something that looks almost like the summation

sign, namely the integral sign  .  (The French word
for integration is the same as their word for summa-
tion.)  Next we replaced the individual  vi  by the
continuous variable  v(t)  and finally express the end
points by the initial time ti  and the final time tf .  The
result is

   
s = vi∆tΣ

i = 1

n
→

as the number
n becomes
infinitely
large

v(t)dt
ti

tf (17)

Calculus notation is more easily handled, or is at least
more familiar, if we break vector equations up into
component equations.  Assume that the ball started at
position  i which has components  xi = x(ti)  [read  x(ti)
as “ x at time ti” ] and  yi = y(ti)  as shown in Figure
(10).  The final position f is at  xf = x(tf)  and  yf = y(tf) .

Thus the displacement s  has x and y components

 sx = x(tf) – x(ti)

 sy = y(tf) – y(ti)

Breaking Equation (17) into component equations
gives

 
sx = x(tf) – x(ti) = vx(t)dt

ti

tf

(18a)

 
sy = y(tf) – y(ti) = vy(t)dt

ti

tf

(18b)

Here we will introduce one more piece of notation
often used in calculus courses.  On the left hand side of
Equation (18a) we have  x(tf) – x(ti)  which we can
think of as the variable x(t) evaluated over the interval
of time from ti  to tf .  We will often deal with variables
evaluated over some interval and have a special nota-
tion for that.  We will write

  
x(tf) – x(ti) ≡ x(t)

ti

tf
(19)

You are to read the symbol  x(t) ti
tf  as "x of t evaluated

from ti  to tf ".  We write the initial time ti  at the bottom
of the vertical bar, the final time tf  at the top.

f

i

x f

f

x 

(x  – x )      

x(t ) 
i

i

i x(t ) f

y 
f

y 
i

f
(y

  –
 y

 )
   

   
i

S 

Figure 10
Breaking the vector s  into components.
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We use similar notation for any kind of variable, for
example

  
f(x)

x1

x2

≡ f(x2) – f(x1) (19a)

Remember to subtract the variable when evaluated at
the value at the bottom of the vertical bar.

With this notation, our Equation (18) can be written

 
sx = x(t)

ti

tf
= vx(t)dt

ti

tf
(18  a′)

 
sy = y(t)

ti

tf
= vy(t)dt

ti

tf
(18  b′)

Calculating Integrals
Equation (20) is nice and compact, but how do you use
it?  How do you calculate integrals?  The key is to
remember that an integral is just a fancy notation for a
sum of terms, where we make the time step   ∆(t)  very
small.  Keeping this in mind, we will see that there is a
very easy way to interpret an integral.

To get this interpretation, let us start with the simple
case of a ball moving in a straight line, for instance, the
x direction, at a constant velocity  vx .  A strobe picture
of this motion would look like that shown in Figure
(11a).

Figure (11b) is a graph of the ball's velocity  vx(t)  as a
function of the time t.  The vertical axis is the value of

 vx , the horizontal axis is the time t.  Since the ball is
traveling at constant velocity,  vx  has a constant value
and is thus represented by a straight horizontal line.  In
order to calculate the distance that the ball has traveled
during the time interval from ti  to tf , we need to
evaluate the integral

  

sx = vx(t)dt
ti

tf
distance ball
travels in
time interval
t i to t f

(18a)

To actually evaluate the integral, we will go back to our
summation notation

  
sx = vxi∆tΣ

i initial

ifinal

(20)

and show individual time steps   ∆t  in the graph of  vx
versus t, as in Figure (11c).

We see that each term in Equation (20) is represented
in Figure (11c) by a rectangle whose height is  vx  and
whose width is  ∆t .  We have shaded in the rectangle
representing the 7th term   vx7∆t .  We see that   vx7∆t  is
just the area of the shaded rectangle, and it is clear that
the sum of all the areas of the individual rectangles is the
total area under the curve, starting at time ti  and ending
at time tf .  Here we are beginning to see that the process
of integration is equivalent to finding the area under a
curve.

With a simple curve like the constant velocity  vx(t)  in
Figure (11c), we see by inspection that the total area
from ti  to tf  is just the area of the complete rectangle
of height  vx  and width  (tf – ti) .  Thus

  sx = vx × (t f – ti) (21)

This is the expected result for constant velocity, namely

   distance
traveled = velocity × time

for
constant
velocity

(21a)

Figure 11b
Graph of   vx(t)  versus t for the ball of Figure 11a.

Figure 11a
Strobe photograph of ball moving at
constant velocity in x direction.

t 

x 

ft i

t  
t i

v x

v (t) x

t f

Figure 11c
Each    vx∆∆ t  is the area of a rectangle.

t  
t ∆t 

i

v x
v x7

v (t) x

t f
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To see that you are not restricted to the case of constant
velocity, suppose you drove on a freeway due east (the
x direction) starting at 9:00 AM and stopping for lunch
at 12 noon.  Every minute during your trip you wrote
down the speedometer reading so that you had an
accurate plot of  vx(t)  for the entire morning, a plot like
that shown in Figure (12).  From such a plot, could you
determine the distance  sx  that you had travelled?

Your best answer is to multiply each value  vi  of your
velocity by the time  ∆t  to calculate the average dis-
tance traveled each minute.  Summing these up from
the initial time  ti = 9:00AM  to the final time  tf = noon ,
you have as your estimate

  sx ≈ vxi∆tΣ
i

(The symbol ≈  means approximately equal.)

To get a more accurate value for the distance traveled,
you should measure your velocity at shorter time
intervals  ∆t  and add up the larger number of smaller
rectangles.  The precise answer should be obtained in
the limit as  ∆t  goes to zero

  
sx = limit

∆t → 0
vxi∆tΣ

i
= vx(t)dt

ti

tf
(22)

This limit is just the area under the curve that is
supposed to represent the instantaneous velocity  vx(t) .

Thus we can interpret the integral of a curve as the area
under the curve even when the curve is not constant or
flat.  Mathematicians concern themselves with curves
that are so wild that it is difficult or impossible to
determine the area under them.  Such curves seldom
appear in physics problems.

While the basic idea of integration is simple—just
finding the area under a curve–in practice it can be quite
difficult to calculate the area.  Much of an introductory
calculus course is devoted to finding the formulas for
the areas under various curves.  There are also books
called tables of integrals where you look up the for-
mula for a curve and the table tells you the formula for
the area under that curve.

In Chapter 16 of the physics text, we will discuss a
mathematical technique called Fourier analysis.  This
is a technique in which we can describe the shape of any
continuous curve in terms of a sum of sin waves.  (Why
we want to do that will become clear then.)  The process
of Fourier analysis involves finding the area under
some very complex curves, curves often involving
experimental data for which we have no formula, only
graphs.  Such curves cannot be integrated by using a
table of integrals, with the result that Fourier analysis
was not widely used until the advent of the modern
digital computer.

The computer made a difference, because we can find
the area under almost any curve by breaking the curve
into short pieces of length  ∆t , calculating the area   vi∆t
of each narrow rectangle, and adding up the area of the
rectangles to get the total area.  If the curve is so wild
that we have to break it into a million segments to get
an accurate answer, that might be too hard to do by
hand, but it usually a very simple and rapid job for a
computer.  Computers can be much more efficient than
people at integration.

t  
9am ∆t 

v x7

v (t) x

noon

Figure 12
Plot of   vx(t)  for a trip starting at 9:00 AM and
finishing at noon.  The distance traveled is the
area under the curve.
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The Process of Integrating
There is a language for the process of integration which
we will now take you through.  In each case we will
check that the results are what we would expect from
our summation definition, or the idea that an integral is
the area under a curve.

The simplest integral we will encounter in the calcula-
tion of the area under a curve of unit height as shown in
Figure (13).  We have the area of a rectangle of height
1 and length  (tf – ti)

 
1dt

ti

t f
= dt

ti

t f
= (tf – t i ) (22)

t  
t 

area = 1(t  – t )

i

1 

t f

f i 

Figure 13
Area under a curve of unit height.

We will use some special language to describe this
integration.  We will say that the integral of dt is simply
the time t, and that the integral of dt from ti  to tf  is
equal to t  evaluated from ti  to tf .  In symbols this is
written as

 
dt

ti

t f
= t

ti

t f
= (tf – t i ) (23)

Recall that the vertical line after a variable means to
evaluate that variable at the final position tf  (upper
value), minus that variable evaluated at the initial
position ti  (lower value).  Notice that this prescription
gives the correct answer.

The next simplest integral is the integral of a constant,
like a constant velocity  vx  over the interval ti  to tf

 
vx dt

ti

t f
= vx(tf – t i ) (24)

t  
t 

area = v (t  – t )

i

v x

x

t f

f i 

Figure 14
Area under the constant  vx  curve.

Since 
 

(tf – t i ) = dtti

t f , we can replace  (tf – t i ) in
Equation (24) by the integral to get

  
vx dt

ti

t f
= vx dt

ti

t f
vx a constant (25)

and we see that a constant like  vx  can be taken outside
the integral sign.

Let us try the simplest case we can think of where  vx
is not constant.  Suppose  vx  starts at zero at time  ti = 0
and increases linearly according to the formula

 vx = at (26)

t  
0

v x

v  = at 
x

t f

at f

Figure 15

When we get up to the time tf  the velocity will be  (atf)
as shown in Figure (15).  The area under the curve

 vx = at  is a triangle whose base is of length tf  and
height is  atf .  The area of this triangle is one half the
base times the height, thus we get for the distance  sx
traveled by an object moving with this velocity

  
sx = vx dt

0

tf
= 1

2(base) × (altitude)

= 1
2(tf)(atf) = 1

2 atf
2

(27)

Now let us repeat the same calculation using the
language one would find in a calculus book.  We have

  
sx = vx dt

0

tf
= (at)dt

0

tf
(28)

The constant (a) can come outside, and we know that
the answer is  1/2atf

2 , thus we can write

  
sx = a tdt

0

tf
= 1

2atf
2 (29)

In Equation (29) we can cancel the a's to get the result

 
tdt

0

tx

= 1
2tf

2 (30)



Cal 1-14    Calculus  2000

In a calculus text, you would find the statement that the
integral  tdt  is equal to  t2/2  and that the integral
should be evaluated as follows

 

tdt
0

tf
=

t2

2
0

tf
=

tf
2

2 – 0
2 =

tf
2

2 (31)

Indefinite Integrals
When we want to measure an actual area under a curve,
we have to know where to start and stop.  When we put
these limits on the integral sign, like ti  and tf , we have
what is called a definite integral.  However there are
times where we just want to know what the form of the
integral is, with the idea that we will put in the limits
later.  In this case we have what is called an indefinite
integral, such as

  
tdt = t2

2
indefinite integral (32)

The difference between our definite integral in Equa-
tion (31) and the indefinite one in Equation (32) is that
we have not chosen the limits yet in Equation (32).  If
possible, a table of integrals will give you a formula for
the indefinite integral and let you put in whatever limits
you want.

Integration Formulas
For some sets of curves, there are simple formulas for
the area under them.  One example is the set of curves
of the form  tn .  We have already considered the cases
where n = 0 and n = 1.

  n = 0

t0dt = dt = t       
t 

1 

  n = 1

t1dt = tdt = t2

2    
t 

t 

Some results we will prove later are

  n = 2

t2dt = t3

3

  n = 3

t3dt = t4

4

(33a,b,c,d)

Looking at the way these integrals are turning out, we
suspect that the general rule is

 
tndt = tn + 1

n + 1 (34)

It turns out that Equation (34) is a general result for any
value of n except  n = –1.  If   n = –1, then you would
have division by zero, which cannot be the answer.
(We will shortly discuss the special case where n = –1.)

As long as we stay away from the n = –1 case, the
formula works for negative numbers.  For example

 t– 2dt = dt
t2 = t(– 2 +1)

–2 +1 = t–1

(–1)

 
dt
t2 = – 1

t (35)

In our discussion of gravitational and electrical poten-
tial energy, we will encounter integrals of the form seen
in Equation (35).

Exercise 1
Using Equation (34) and the fact that constants can
come outside the integral, evaluate the following inte-
grals:

(a)     xdx it does not matter whether
we call the variable t or x

(b)   
  

x5dx
x = 1

x = 2
also sketchthe area
being evaluated

(c)    
  dt

t2t = 1

t = 2
Show that you get
a positivearea.

(d)      GmM
r2 dr whereG, m, and M

are constants

(e)     a
y3 / 2dy (a) is a constantt

t 2

t 

t 3
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NEW FUNCTIONS
Logarithms
We have seen that when we integrate a curve or
function like  t2 , we get a new function  t3/3 .  The
functions  t2  and  t3  appear to be fairly similar; the
integration did not create something radically differ-
ent.  However, the process of integration can lead to
some curves with entirely different behavior.  This
happens, for example, in that special case n = –1 when
we try to do the integral of  t– 1 .

It is certainly not hard to plot  t– 1 , the result is shown
in Figure (16).  Also there is nothing fundamentally
difficult or peculiar about measuring the area under the

 t– 1  curve from some ti  to tf , as long as we stay away
from the origin t = 0 where  t– 1  blows up.  The formula
for this area turns out, however, to be the new function
called the natural logarithm, abbreviated by the sym-
bol ln.  The area in Figure (16) is given by the formula

 
1
t dt

ti

t f
= ln(t f) – ln(t i) (36)

Two of the important but peculiar features of the
natural logarithm are

 ln(ab) = ln(a) + ln(b) (37)

 ln(1
a ) = – ln(a) (38)

Thus we get, for example

 ln(t f) – ln(t i) = ln(t f) + ln 1
ti

= ln
tf

t i

(39)

Thus the area under the curve in Figure (16) is
 

dt
tt i

t f
= ln

tf
t i (40)

While the natural logarithm has some rather peculiar
properties it is easy to evaluate because it is available on
all scientific calculators.  For example, if ti = .5 seconds
and tf = 4 seconds, then we have

 
ln

tf
ti

= ln 4
.5

= ln (8) (41)

Entering the number 8 on a scientific calculator and
pressing the button labeled ln, gives

 ln (8) = 2.079 (42)

which is the answer.

Exercise 2
Evaluate the integrals

 dx
x.001

1000 dx
x.000001

1

Why are the answers the same?

t  
t  t  

t  
1  

i

t  –1

f

curve

Figure 16
Plot of   t – 1.  The area under this curve
is the natural logarithm ln.
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The Exponential Function
We have just seen that, while the logarithm function
may have some peculiar properties, it is easy to evalu-
ate using a scientific calculator.  The question we now
want to consider is whether there is some function that
undoes the logarithm.  When we enter the number 8
into the calculator and press ln, we get the number
2.079.  Now we are asking if, when we enter the number
2.079, can we press some key and get back the number
8?  The answer is, you press the key labeled  ex .  The

 ex  key performs the exponential function which
undoes the logarithm function.  We say that the expo-
nential function  ex  is the inverse of the logarithm
function ln.

Exponents to the Base 10
You are already familiar with exponents to the base 10,
as in the following examples

  100 = 1
101 = 10
102 = 100
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
106 = 1,000,000

10– 1 = 1/10 = .1
10– 2 = 1/100 = .01
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
10– 6 = .000001

(43)

The exponent, the number written above the 10, tells us
how many factors of 10 are involved.  A minus sign
means how many factors of 10 we divide by.  From this
alone we deduce the following rules for the exponent to
the base 10.

  
10–a = 1

10a (44)

  
10a × 10b = 10a + b (45)

(Example   102 × 103 = 100 × 1000 = 100,000 .)

The inverse of the exponent to the base 10 is the
function called logarithm to the base 10 which is
denoted by the key labeled log on a scientific calcula-
tor.  Formally this means that

  
log 10y = y (46)

Check this out on your scientific calculator.  For
example, enter the number 1,000,000 and press the log
button and see if you get the number 6.  Try several
examples so that you are confident of the result.

The Exponential Function  yx

Another key on your scientific calculator is labeled  yx .
This allows you to determine the value of any number
y raised to the power (or exponent) x.  For example,
enter the number  y = 10, and press the  yx  key.  Then
enter the number   x = 6  and press the = key.  You should
see the answer

 yx = 106 = 1000000

It is quite clear that all exponents obey the same rules
we saw for powers of 10, namely

  
ya × yb = ya + b (47)

(Example   y2 × y3 = y × y y × y × y = y5 .)

And as before

  
y– a ≡ 1

ya (48)
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Exercise 3
Use your scientific calculator to evaluate the following
quantities.  (You should get the answers shown.)

 (a) 106

(b) 23

(c) 230

(d) 10– 1

(1000000)
(8)
(1)
(.1)

(To do this calculation, enter 10, then press  yx .  Then
enter 1, then press the +/– key to change it to –1, then
press = to get the answer .1)

 (e) 2– .5

(f) log (10)
(g) ln (2.7183)

(1/ 2= .707)
(1)
(1) (veryclose to 1)

Try some other examples on your own to become
completely familiar with the  yx  key.  (You should note
that any positive number raised to the 0 power is 1.  Also,
some calculators, in particular the one I am using,
cannot handle any negative values of y, not even  (– 2)2

which is +4)

Euler's  Number e = 2.7183. . .
We have seen that the function log on the scientific
calculator undoes, is the inverse of, powers of 10.  For
example, we saw that

 log 10x = x (46 repeated)

 Example: log 106 = 6

Earlier we saw that the exponential function  ex  was the
inverse of the natural logarithm ln.  This means that

 ln ex = x (49)

The difference between the logarithm log and the
natural  logarithm  ln, is that log undoes exponents of
the number 10, while ln undoes exponents of the
number  e.  This special number e, one of the fundamen-
tal mathematical constants like π , is known as Euler's
number, and is always denoted by the letter e.

You can find the numerical value of Euler's number e
on your calculator by evaluating

 e1 = e (50)

To do this, enter 1 into your calculator, press the  ex

key, and you should see the result

 e1 = e = 2.718281828 (51)

We will run into this number throughout the course.
You should remember that e is about 2.7, or you might
even remember 2.718.  (Only remembering e as 2.7 is
as klutzy as remembering π  as 3.1)

The terminology in math courses is that the function
log, which undoes exponents of the number 10, is the
logarithm to the base 10.  The function ln, what we
have called the natural logarithm, which undoes
exponents of the number e, is the logarithm to the
base e.  You can have logarithms to any base you
want, but in practice we only use base 10 (because
we have 10 fingers) and the base e.  The base e is
special, in part because that is the logarithm that
naturally arises when we integrate the function 1/x.
We will see shortly that the functions ln and  ex

have several more, very special features.



Cal 1-18    Calculus  2000

DIFFERENTIATION AND INTEGRATION
The scientific calculator is a good tool for seeing how
the functions like ln and  ex  are inverse of each other.
Another example of inverse operations is integration
and differentiation.  We have seen that integration
allows us to go the other way from differentiation
[finding x(t) from v(t), rather than v(t) from x(t)].
However it is not so obvious that integration and
differentiation are inverse operations when you think
of integration as finding the area under a curve, and
differentiation as finding limits of   ∆x/∆t  as  ∆t  goes to
zero.  It is time now to make this relationship clear.

First, let us review our concept of a derivative.  Going
back to our strobe photograph of Figure (3), replacing

 Ri by  R(t)  and  Ri+1 by   R(t+∆t) , as shown in Figure
(3a), our strobe velocity was then given by

  
v(t) =

R(t+∆t) – R(t)
∆t (52)

The calculus definition of the velocity is obtained by
reducing the strobe time interval  ∆t  until we obtain the
instantaneous velocity v .

  

vcalculus = limit
∆t→0

R(t + ∆t) – R(t)
∆t (53)

While Equation (53) looks like it is applied to the
explicit case of the strobe photograph of projectile
motion, it is easily extended to cover any  process of
differentiation.  Whatever function we have [we had

 R(t), suppose it is now f(t)], evaluate it at two closely
spaced times, subtract the older value from the newer
one, and divide by the time difference   ∆t.   Taking the
limit as  ∆t  becomes very small gives us the derivative

  d f(t)
dt

≡ limit
∆t→0

f(t + ∆t) – f(t)
∆t

(54)

The variable with which we are differentiating does not
have to be time t.  It can be any variable that we can
divide into small segments, such as x;

  
d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (55)

Let us see how the operation defined in Equation (55)
is the inverse of finding the area under a curve.

Suppose we have a curve, like our old  vx(t)  graphed as
a function of time, as shown in Figure (17).  To find out
how far we traveled in a time interval from ti  to some
later time T, we would do the integral

 
x(T) = vx(t) dt

ti

T
(56)

The integral in Equation (56) tells us how far we have
gone at any time T during the trip.  The quantity x(T)
is a function of this time T.

Figure 3a
Defining the strobe velocity.

 R(t+∆t)

 R(t+∆t)

R(t)

R(t)

V(t) =

∆R   = –

 R(t+∆t) R(t)∆R   =
–

∆t ∆t

i

i  1+

t  
t  

x(T)

v (t) x

i
T

Figure 17
The distance traveled by the time T is the area under
the velocity curve up to the time T.
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Now let us differentiate the function x(T) with respect
to the variable T.  By our definition of differentiation
we have

  d
dT

x(T) = limit
∆T→0

x(T + ∆T) – x(T)
∆T

(57)

Figure (17) shows us the function x(T).  It is the area
under the curve v(t) starting at ti  and going up to time
t = T.  Figure (18) shows us the function   x(T + ∆T) .  It
is the area under the same curve, starting at ti  but going
up to   t = T + ∆t .  When we subtract these two areas, all
we have left is the area of the slender rectangle shown
in Figure (19).

The rectangle has a height approximately v(T) and a
width   ∆T  for an area

  x(T + ∆T) – x(T) = vx(T)∆t (58)

Dividing through by   ∆T  gives

  vx(T) =
x(T + ∆T) – x(T)

∆T
(59)

The only approximation in Equation (59) is at the top
of the rectangle.  If the curve is not flat,   vx(T + ∆T)
will be different from  vx(T)  and the area of the sliver
will have a value somewhere between   vx(T)∆t  and

  vx(T + ∆t)∆t .  But if we take the limit as   ∆T  goes to
zero, the value of   vx(T + ∆T)  must approach  vx(T) ,
and we end up with the exact result

  vx(T) = limit
∆t→0

x(T + ∆t) – x(T)
∆t

(60)

This is just the derivative dx(t)/dt evaluated at t = T.

 
vx(T) =

dx(t)
dt t = T

(61a)

where we started from

 
x(T) = vx(t) dt

ti

T
(61b)

Equations (61a) and (61b) demonstrate explicitly how
differentiation and integration are inverse operations.
The derivative allowed us to go from x(t) to  vx(t)  while
the integral took us from  vx(t)  to x(t).  This inverse is
not as simple as pushing a button on a calculator to go
from ln to  ex .  Here we have to deal with limits on the
integration and a shift of variables from   t to T.  But
these two processes do allow us to go back and forth.

t  
t  

x(T+∆t)

v (t) x

i T T+∆t

t  
t  

x(T)

v (t) x

i
T

t  

v (t) x

v (T) x

x

T T+∆t

v (T)∆t

Figure 17 repeated
The distance x(T) traveled by the time T

Figure 18

The distance    x (T+∆∆ t )  traveled by the time    T+∆∆ t .

Figure 18
The distance    x (T+∆∆ t ) – x(T)
traveled during the time  ∆∆ t .
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A Fast Way to go Back and Forth
We introduced our discussion of integration by point-
ing out that equations

 vx(t) =
dx(t)

dt ;           
 

ax(t) =
dvx(t)

dt (62a,b)

went the wrong way in that we were more likely to
know the acceleration  ax(t)  and from that want to
calculate the velocity  vx(t)  and distance traveled x(t).
After many steps, we found that integration was what
we needed.

We do not want to repeat all those steps.  Instead we
would like a quick and simple way to go the other way
around.  Here is how you do it.  Think of the dt in (62a)
as a small but finite time interval.  That means we can
treat it like any other number and multiply both sides of
Equation (62a) through by it.

 vx(t) =
dx(t)

dt

 dx(t) = vx(t)dt (63)

Now integrate both sides of Equation (63) from some
initial time  ti  to a final time T.  (If you do the same thing
to both sides of an equation, both sides should still be
equal to each other.)

 
dx(t)

t i

T
= vx(t)dt

t i

T

(64)

If dt is to be thought of as a small but finite time step,
then dx(t) is the small but finite distance we moved in
the time dt.  The integral  on the left side of Equation
(64) is just the sum of all these short distances moved,
which is just the total distance moved during the time
from ti  to T.

 
dx(t)

t i

T
= x(t)

t i

T
= x(T) – x (ti) (65)

Thus we end up with the result
 

x(t)
t i

T
= vx(t)dt

t i

T

(66)

Equation (66) is a little more general than (62b) for it
allows for the fact that  x(ti)  might not be zero.  If,

however, we say that we started our trip at  x(ti) = 0 ,
then we get the result

 
x(T) = vx(t)dt

t i

T

(67)

representing the distance traveled since the start of the
trip.

Constant Acceleration Formulas
The constant acceleration formulas, so well known
from high school physics courses, are an excellent
application of the procedures we have just described.

We will begin with motion in one dimension.  Suppose
a car is traveling due east, in the x direction, and for a
while has a constant acceleration  ax .  The car passes us
at a time  ti = 0 , traveling at a speed  vx0 .  At some later
time T, if the acceleration  ax  remains constant, how far
away from us will the car be?

We start with the equation

 
ax(t) =

dvx(t)
dt

(68)

Multiplying through by dt to get

 dvx(t) = ax(t)dt

then integrating from time  ti = 0  to time  tf = T,  we get

 
dvx(t)

0

T
= ax(t)dt

0

T
(69)

Since the integral  dvx(t) = vx(t) , we have

 
dvx(t)

0

T
= vx(t)

0

T
= vx(T) – vx(0) (70)

where  vx(0)  is the velocity  vx0  of the car when it
passed us at time t = 0.

While we can always do the left hand integral in
Equation (69), we cannot do the right hand integral
until we know  ax(t) .  For the constant acceleration
problem, however, we know that  ax(t) = ax  is con-
stant, and we have

 
ax(t)dt

0

T
= axdt

0

T
(71)
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Since constants can come outside the integral sign, we
get

 
axdt

0

T
= ax dt

0

T
= axt

0

T
= axT (72)

where we used  dt = t .  Substituting Equations (70)
and (72) in (69) gives

 vxT – vx0 = axT (73)

Since Equation (73) applies for any time T, we can
replace T by t to get the well known result

   vx(t) = vx0 + axt (a x constant) (74)

Equation (74) tells us the speed of the car at any time t
after it passed us, as long as the acceleration remains
constant.

To find out how far away the car is, we start with the
equation

 
vx(t) =

dx(t)
dt

(62a)

Multiplying through by dt to get

 dx(t) = vx(t) dt

then integrating from time t = 0 to time t = T gives
(as we saw earlier)

 
dx(t)

0

T
= vx(t)dt

0

T
(75)

The left hand side is

 
dx(t)

0

T
= x(t)

0

T
= x(T) – x(0) (76)

If we measure along the x axis, starting from where we
are (where the car was at t = 0) then x(0) = 0.

In order to do the right hand integral in Equation (75),
we have to know what the function  vx(t) is.  But for
constant acceleration, we have from Equation (74)

 vx(t) = vx0 + axt , thus

 
vx(t)dt

0

T
= (vx 0 + axt)dt

0

T
(77)

One of the results of integration that you should prove
for yourself (just sketch the areas) is the rule

 
a(x) + b(x) dx

i

f
= a(x)dx

i

f
+ b(x)dx

i

f

(78)

thus we get

 
(vx0 + axt)dt

0

T
= vx0dt

0

T
+ axt dt

0

T
(79)

Since constants can come outside the integrals, this is
equal to

 
(vx0 + axt)dt

0

T
= vx0 dt

0

T
+ ax t dt

0

T
(80)

Earlier we saw that

 
dt

0

T
= t

0

T
= T – 0 = T (23)

 

tdt
0

T
=

t2

2
0

T

=
T2

2
– 0 =

T2

2 (30)

Thus we get

 
(vx0 + axt)dt

0

T
= vx0T +

1
2

axT
2

(81)

Using Equations (76) and (81) in (75) gives

 
x(T) – x0 = vx0T +

1
2

axT2

Taking  x0 = 0  and replacing T by t gives the other
constant acceleration formula

   
x(t) = vx0t +

1
2

axt
2 (a x constant) (82)

You can now see that the factor of  t2/2  in the constant
acceleration formulas comes from the integral  tdt .
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Exercise 4
Find the formula for the velocity v(t) and position x(t) for
a car moving with constant acceleration  ax , that was
located at position xi  at some initial time ti .

Start your calculation from the equations

 vx(t) = dx(t)
dt

 ax(t) =
dvx(t)

dt

and go through all the steps that we did to get Equations
(74) and (82).  See if you can do this without looking at
the text.

If you have to look back to see what some steps are, then
finish the derivation looking at the text.  Then a day or so
later, clean off your desk, get out a blank sheet of paper,
write down this problem, put the book away and do the
derivation.  Keep doing this until you can do the deriva-
tion of the constant acceleration formulas without look-
ing at the text.

Constant Acceleration Formulas
in Three Dimensions
To handle the case of motion with constant  accelera-
tion in three dimensions, you start with the separate
equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt

vy(t) =
dy(t)

dt
ay(t) =

dvy(t)
dt

vz(t) =
dz(t)

dt
az(t) =

dvz(t)
dt (83)

Then repeat, for each pair of equations, the steps that led
to the constant acceleration formulas for motion in the
x direction.  The results will be

 x(t) = vx0t + 1
2axt2 vx(t) = vx0 + axt

y(t) = vy0t + 1
2ayt2 vy(t) = vy0 + ayt

z(t) = vz0t + 1
2azt

2 vz(t) = vz0 + azt

(84)

The final step is to combine these six equations into the
two vector equations

 
x(t) = v0t + 1

2 at2 ; v(t) = v0 + at (85)

These are the equations we analyzed graphically in
Chapter 3 of the physics text, in Figure (3-34) and
Exercise (3-9).  (There we wrote s  instead of  x(t) , and

 vi  rather than  v0 .)

In many introductory physics courses, considerable
emphasis is placed on solving constant acceleration
problems.  You can spend weeks practicing on solving
these problems, and become very good at it.  However,
when you have done this, you have not learned very
much physics because most forms of motion are not
with constant acceleration, and thus the formulas do
not apply.  The formulas were important historically,
for they were the first to allow the accurate prediction
of motion (of cannonballs).  But if too much emphasis
is placed on these problems, students tend to use them
where they do not apply.  For this reason we have
placed the exercises using the constant acceleration
equations in an appendix at the end of chapter 4 of the
physics text.  There are plenty of problems there for all
the practice you will need with these equations.  Doing
these exercises requires only algebra, there is no prac-
tice with calculus.  To get some experience with
calculus, be sure that you can confidently do Exercise
4.
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MORE ON DIFFERENTIATION
In our discussion of integration, we saw that the basic
idea was that the integral of some curve or function f(t)
was equal to the area under that curve.  That is an easy
enough concept.  The problems arose when we actu-
ally tried to find the formulas for the areas under various
curves.  The only areas we actually calculated were the
rectangular area under f(t) = constant and the triangular
area under f(t) = at.  It was perhaps a surprise that the
area under the simple curve 1/t should turn out to be a
logarithm.

For differentiation, the basic idea of the process is given
by the formula

  df(t)
dt

= limit
∆t→0

f t + ∆t – f(t)
∆t (54 repeated)

Equation (54) is short hand notation for a whole series
of steps which we introduced through the use of strobe
photographs.  The basic idea of differentiation is more
complex than integration, but, as we will now see, it is
often a lot easier to find the derivative of a curve than
its integral.

Series Expansions
An easy way to find the formula for the derivative of a
curve is to use a series expansion.  We will illustrate the
process by using the binomial expansion to calculate
the derivative of the function  xn  where n is any
constant.

We used the binomial expansion, or at least the first two
terms, in Chapter 1 of the physics text. That was during
our discussion of the approximation formulas that are
useful in relativistic calculations.  As we mentioned in
Exercise (1-5), the binomial expansion is

  (x + α)n = xn + nαxn – 1 +
n(n – 1)

2!
α2xn – 2 ⋅ ⋅ ⋅

(86)

When α  is a number much smaller than 1   (α < < 1) ,
we can neglect   α2   compared to α  (if   α = .01,

  α2 = .0001 ), with the result that we can accurately
approximate   (x + α)n by

  
(x + α)n ≈ xn + nαxn–1 α << 1 (87)

Equation (87) gives us all the approximation formulas
found in Equations (1-20) through (1-25) on page 1-28
of the physics text.

As an example of Equation (87), just to see that it
works, let us take x = 5, n = 7 and  α  = .01 to calculate

 (5.01)7 .  From the calculator we get

 (5.01)7 = 79225.3344 (88)

(To do this enter 5.01, press the  yx  button, then enter
7 and press the = button.)  Let us now see how this result
compares with

  (x + α)n ≈ xn + nαxn – 1

(5 + .01)7 ≈ 57 + 7(.01)56
(89)

We have

 57 = 78125 (90)

  7 × .01 × 56 = 7 × .01 × 15625 = 1093.75 (91)

Adding the numbers in (90) and (91) together gives

 57 + 7(.01)56 = 79218.75 (92)

Thus we end up with 79218 instead of 79225, which is
not too bad a result.  The smaller α  is compared to one,
the better the approximation.
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Derivative of the Function  xn

We are now ready to use our approximation formula
(87) to calculate the derivative of the function  xn .
From the definition of the derivative we have

  d(xn)
dx

=
limit
∆x→0

(x + ∆x)n – xn

∆x
(93)

Since   ∆x  is to become infinitesimally small, we can
use our approximation formula for   (x + α )n .  We get

  (x + α )n ≈ xn + n(α)xn–1 (α << 1)

  (x + ∆x)n ≈ xn + n(∆x)xn–1 (∆x << 1) (94)

Using this in Equation (93) gives

  
d(xn)

dx
= limit

∆x→0

xn + n(∆x)xn–1 – xn

∆x (95)

We used an equal sign rather than an approximately
equal sign in Equation (95) because our approximation
formula (94) becomes exact when   ∆x  becomes infini-
tesimally small.

In Equation (95), the terms  xn  cancel and we are left
with

  d(xn)
dx

=
limit
∆x→0

n(∆x)xn–1

∆x
(96)

At this point, the factors   ∆x  cancel and we have

  d(xn)
dx

= limit
∆x→0 nxn–1 (97)

Since no   ∆x's  remain in our formula, we end up with
the exact result

 d(xn)
dx

= nxn–1 (98)

Equation (98) is the general formula for the derivative
of the function  xn .

In our discussion of integration, we saw that a constant
could come outside the integral.  The same thing
happens with a derivative.  Consider, for example,

  d
dx

af(x) = limit
∆x→0

a f(x + ∆x) – af(x)
∆x

Since the constant a has nothing to do with the limiting
process, this can be written

  d
dx

af(x) = a limit
∆x→0

f(x + ∆x) – f(x)
∆x

= a
df(x)
dx

(99)

Exercise 5
Calculate the derivative with respect to x (i.e., d/dx) of
the following functions.  (When negative powers of x are
involved, assume x is not equal to zero.)

(a)    x

(b)     x2

(c)     x3

(d)     5x2 – 3x

(Before you do part (d), use the definition of the deriva-

tive to prove that  d
dx f(x) + g(x) = df(x)

dx + dg(x)
dx )

(e)     x– 1

(f)      x– 2

(g)     x

(h)     1/ x

(i)      3x.73

(j)     7x– .2

(k)   1

(In part (k) first show that this should be zero from the
definition of the derivative.  Then write  1 = x0 and show
that Equation (98) also works, as long as x is not zero.)

(l)    5
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The Chain Rule
There is a simple trick called the chain rule that makes
it easy to differentiate a wide variety of functions.  The
rule is

  
df y(x)

dx
=

df(y)
dy

dy
dx

chain rule (100)

To see how this rule works, consider the function

 f(x) = x2 n
(101)

We know that this is just  f(x) = x2n , and the derivative
is

 df(x)
dx

=
d
dx

x2n = 2nx2n– 1 (102)

But suppose that we did not know this trick, and
therefore did not know how to differentiate  (x2)n. We
do, however, know how to differentiate powers like  x2

and  yn. The chain rule allows us to use this knowledge
in order to figure out how to differentiate the more
complex function  (x2)n.

We begin by defining y(x) as

 y(x) = x2 (103)

Then our function  f(x) = (x2)ncan be written in terms
of y as follows

 f(x) = (x2)
n

= y(x)
n

= (y)n = f(y)

 f(y) = (y)n (104)

Differentiating (103) and (104) gives

 dy(x)
dx

=
d
dx

x2 = 2x (105)

 df(y)
dy

= d
dy

yn = nyn–1 (106)

Using (104) and (105) in the chain rule (100) gives

  df(y)
dx

=
df
dy

× dy
dx

= nyn–1 × 2x

= 2nyn–1x

= 2n x2 n–1
x

= 2n x2(n–1) x

= 2n x(2n–2) x

= 2n x(2n– 2) + 1

= 2nx2n– 1

(107)

which is the answer we expect.

In our example, using the chain rule was more difficult
than differentiating directly because we already knew
how to differentiate  x2n .  But we will shortly encounter
examples of new functions that we do not know how to
differentiate directly, but which can be written in the
form f[y(x)]; and where we know df/dy and dy/dx.  We
can then use the chain rule to evaluate the derivative
df/dx.  We will give you practice with the chain rule
when we encounter these functions.

Remembering The Chain Rule
The chain rule can be remembered by thinking of the
dy's as cancelling as shown.

  
df(y)
dy

dy
dx

=
df(y)
dx

remembering
the chain rule

(108)
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Partial Proof of the Chain Rule (optional)
The proof of the chain rule is closely related to cancel-
lation  we showed in Equation (108).  A partial proof of
the rule proceeds as follows.

Suppose we have some function f(y) where y is a
function of the variable x.  As a result f[y(x)] is itself a
function of x and can be differentiated with respect to
x.

  
d
dx

f y(x) = limit
∆x→0

f y(x + ∆x) – f y(x)

∆x
(123)

Now define the quantity   ∆y  by

  ∆y ≡ y(x + ∆x) – y(x) (124)

so that

  y(x + ∆x) = y(x) + ∆y

  f[y(x + ∆x)] = f(y + ∆y)

and Equation (123) becomes

  d
dx

f y(x) = limit
∆x→0

f(y + ∆y) – f(y)
∆x

(125)

Now multiply (125) through by

  1 =
∆y
∆y

=
y(x + ∆x) – y(x)

∆y
(126)

to get

  d
dx

f y(x)

=
limit
∆x→0

f(y + ∆y) – f(y)
∆x

×
y(x + ∆x) – y(x)

∆y

=
limit
∆x→0

f(y + ∆y) – f(y)
∆y

×
y(x + ∆x) – y(x)

∆x

(127)

where we interchanged   ∆x and   ∆yin the denominator.

(We call this a partial proof for the following reason.
For some functions y(x), the quantity

  ∆y = y x + ∆x – y(x)  may be identically zero for a
small range of   ∆x .  In that case we would be dividing
by zero (the   1/∆y ) even before we took the limit as   ∆x
goes to zero.  A more complete proof handles the
special cases separately.  The resulting chain rule still
works however, even for these special cases.)

Since   ∆y = y(x + ∆x) – y(x)  goes to zero as   ∆x
goes to zero, we can write Equation (127) as

  d
dx

f y(x)

= limit
∆y→0

f(y + ∆y) – f(y)
∆y

× limit
∆x→0

y(x + ∆x) – y(x)
∆x

       
 

=
df(y)

dy
dy
dx (100 repeated)

This rule works as long as the derivatives df/dy and
dy/dx are meaningful, i.e., we stay away from kinks or
discontinuities in f and y.
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INTEGRATION FORMULAS
Knowing the formula for the derivative of the function

 xn , and knowing that integration undoes differentia-
tion, we can now use Equation (98)

 dxn

dx
= nxn – 1 (98 repeated)

to find the integral of the function  xn .  We will see that
this trick works for all cases except the special case
where n = –1, i.e., the special case where the integral is
a natural logarithm.

To integrate  xn,  let us go back to our calculation of the
distance  sx  or x(t) traveled by an object moving in the
x direction at a velocity  vx .  This was given by
Equations (19) or (56) as

 
x(t)

ti

T
= vx(t) dt

ti

T
(128)

where the instantaneous velocity  vx(t)  is defined as

 vx(t) =
dx(t)

dt
(129)

Suppose x(t) had the special form

  x(t) = tn + 1 (a special case) (130)

then we know from our derivative formulas that

 v(t) =
dx(t)

dt
= dt(n+1)

dt
= (n+1)tn (131)

Substituting  x(t) = tn + 1  and  v(t) = (n+1)tn  into
Equation (128) gives

  
 

x(t)
t i

T
= vx(t) dt

ti

T
(128)

 
tn + 1

ti

T
= (n+1)tndt

ti

T

= (n+1) tndt
ti

T (132)

Dividing through by (n+1) gives

 
tndt

ti

T
= 1

n+1 tn+1

ti

T
(133)

If we choose  ti = 0 , we get the simpler result

 
tndt

0

T
= Tn+1

n+1 (134)

and the indefinite integral can be written

 
tn dt = tn+1

n+1 (135) (also 34)

This is the general rule we stated without proof back in
Equation (34).  Note that this formula says nothing
about the case  n = –1, i.e., when we integrate  t– 1 = 1/t ,
because  n +1 = –1 +1 = 0 and we end up with division
by zero.  But for all other values of n, we now have
derived a general formula for finding the area under any
curve of the form  xn  (or  tn ).  This is a rather powerful
result considering the problems one encounters actu-
ally finding areas under curves.  (If you did not do
Exercise 1, the integration exercises on page 14, or had
difficulty with them, go back and do them now.)
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Derivative of the Exponential Function
The previous work shows us that if we have a series
expansion for a function, it is easy to obtain a formula
for the derivative of the function.  We will now apply
this technique to calculate the derivative and integral of
the exponential function  ex .

There is a series expansion for the function   ex  that
works for any value of α  in the range –1 to +1.

  eα ≈ 1 + α + α2

2!
+ α3

3!
+ ⋅ ⋅ ⋅ (136)

where   2! = 2 ×1,   3! = 3×2×1 = 6 , etc. (The quanti-
ties 2!, 3! are called  factorials. For example 3! is called
three factorial.)

To see how well the series (136) works, consider the
case α = .01 .  From the series we have, up to the   α3

term
  α = .01

α2 = .0001 ; α2/2 = .00005

α3 = .000001 ; α3/ 6 = .000000167
Giving us the approximate value

  1 + α + α2

2!
+ α3

3!
= 1.010050167 (137)

When we enter .01 into a scientific calculator and press
the  ex  button, we get exactly the same result.  Thus the
calculator is no more accurate than including the   α3

term in the series, for values of α  equal to .01 or less.

Let us now see how to use the series 136 for calculating
the derivative of  ex .  We have, from the definition of
a derivative,

  d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (56 repeat)

If  f(x) = ex , we get

  d(ex)
dx

= limit
∆x→0

ex + ∆x – ex

∆x (138)

To do this calculation, we have to evaluate the quantity
  ex + ∆x .  First, we use the fact that for exponentials

 ea + b = eaeb

(Remember that   102 + 3 = 102 × 103 = 105 .)  Thus

  ex +∆x = ex e∆x (139)

Now use the approximation formula (136), setting
  α = ∆x  and throwing out the   α2  and   α3  and higher

terms because we are going to let   ∆x  go to zero

  e∆x ≈ 1 + ∆x (140)

Substituting (140) in (139) gives

  ex+∆x ≈ ex(1 + ∆x)

= ex + ex∆x (141)

Next use (141) in (138) to get

  
d ex

dx
= limit

∆x→0

ex + ex ∆x – ex

∆x (142)

The  ex  terms cancel and we are left with

  d ex

dx
= limit

∆x→0
ex∆x
∆x

= limit
∆x→0ex (143)

Since the   ∆x′s  cancelled, we are left with the exact
result

 
d ex

dx
= ex (144)

We see that the exponential function  ex  has the special
property that it is its own derivative.
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We will often want to know the derivative, not just of
the function  ex  but of the slightly more general result

 eax  where a is a constant.  That is, we want to find

  d
dx

eax (a = constant) (145)

Solving this problem provides us with our first mean-
ingful application of the chain rule

 df(y)
dx

=
df(y)

dy
dy
dx

(100 repeated)

If we set

y = ax  (146)

then we have

 deax

dx
= dey

dy
dy
dx (147)

Now

 dey

dy
= ey (148)

  dy
dx

=
d
dx

(ax) = a
dx
dx

= a × 1 = a (149)

Using (148) and (149) in (147) gives

 deax

dx
= ey (a) = eax (a) = aeax

Thus we have

 d
dx

eax = aeax (150)

This result will be used so often it is worth memorizing.

Exercise 6
For further practice with the chain rule, show that

  deax2

dx
= 2axeax2

Do this by choosing  y = ax2 , and then do it again by
choosing  y = x2 .

Integral of the Exponential Function
To calculate the integral of  eax , we will use the same
trick as we used for the integral of  xn , but we will be
a bit more formal this time.  Let us start with Equation
(128) relating position x(t) and velocity v(t) = dx(t)/dt
go get

 
x(t)

ti

t f
= vx(t) dt

ti

t f
=

dx(t)
dt

dt
ti

t f

(128)

Since Equation (128) holds for any function x(t) [we
did not put any restrictions on x(t)], we can write
Equation (128) in a more abstract way relating any
function f(x) to its derivative df(x)/dx;

 

f(x)
xi

xf
=

df(x)
dx

dx
xi

xf
(151)

To calculate the integral of  eax , we set  f(x) = eax  and
 df(x)/dx = aeax  to get

 
eax

xi

xf
= aeaxdx

xi

xf
(152)

Dividing (157) through by (a) gives us the definite
integral

  
eaxdx

xi

xf
= 1

a eax
xi

xf
(a = constant) (153)

The corresponding indefinite integral is

  
eaxdx =

eax

a (a = constant) (154)

Exercise 7
The natural logarithm is defined by the equation

 ln (x) = 1
x dx (see Equations 33-40)

Use Equation (151) to show that

 d
dx(ln x) = 1

x (155)

(Hint—integrate both sides of Equation (155) with re-
spect to x.)
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DERIVATIVE AS THE SLOPE OF A CURVE

Up to now, we have emphasized the idea that the
derivative of a function f(x) is given by the limiting
process

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x (55 repeated)

We saw that this form was convenient when we had an
explicit way of calculating   f(x + ∆x) , as we did by
using a series expansion.  However, a lot of words are
required to explain the steps involved in doing the
limiting process indicated in Equation (55).  In contrast,
the idea of an integral as being the area under a curve
is much easier to state and visualize.  Now we will
provide an easy way to state and interpret the derivative
of a curve.

Consider the function f(x) graphed in Figure (20).  At
a distance x down the x  axis, the curve had a height
f(x) as shown.  Slightly farther down the x axis, at

  x + ∆x , the curve has risen to a height   f(x + ∆x) .

Figure (20a) is a blowup of the curve in the region
between x and   x + ∆x .  If the distance   ∆x  is suffi-
ciently small, the curve between x and   x + ∆x  should
be approximately a straight line and that part of the
curve should be approximately the hypotenuse of the
right triangle abc seen in Figure (20a).  Since the side
opposite to the angle   θ*  is   f(x + ∆x) – f(x) , and the
adjacent side is   ∆x , we have the result that the tangent
of the angle   θ*  is

  tan θ* =
f(x + ∆x) – f(x)

∆x (156)

When we make   ∆x  smaller and smaller, take the limit
as   ∆x → 0 , we see that the angle   θ*  becomes more
nearly equal to the angle θ  shown in Figure (21), the
angle of the curve when it passes through the point x.
Thus

  tan θ = limit
∆x→0

f(x + ∆x) – f(x)
∆x

(157)

The tangent of the angle at which the curve passes
through the point x is called the slope of the curve at the
point x.  Thus from Equation (157) we see that the slope
of the curve is equal to the derivative of the curve at that
point.  We now have the interpretation that the deriva-
tive of a curve at some point is equal to the slope of the
curve at that point, while the integral of a curve is equal
to the area under the curve up to that point.

x 

f(x) 

f(x) 

f(x+∆x) 

x+∆xx

∆x

Figure 20

Two points on a curve, a distance   ∆∆ x  apart.

f(x) 

f(x+∆x) 
f(x+∆x) 
– f(x)

∆x

}θ*a

c

b

Figure 20a
At this point, the curve is tilted
by approximately an angle θθ *.

f(x) 

x

θ

Figure 21
The tangent of the angle θθ  at which the curve
passes through the point x is called the slope
of the curve at that point.
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Negative Slope
In Figure (22) we compare the slopes of a rising and a
falling curve.  In (22a), where the curve is rising, the
quantity   f(x + ∆x)  is greater than f(x) and the deriva-
tive or slope

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x

is a positive number.

In contrast, for the downward curve of Figure (22b),
  f(x + ∆x)  is less than  f(x) and the slope is negative.

For a curve headed downward, we have

   df(x)
dx

= – tan(θ) downward heading
curve (158)

(For this case you can think of θ  as a negative angle,
so that   tan(θ)  would automatically come out negative.
However it is easier simply to remember that the slope
of an upward directed curve is positive and that of a
downward directed cure is negative.)

Exercise 8

Estimate the numerical value of the slope of the curve
shown in Figure (23) at points (a), (b), (c), (d) and (e).  In
each case do a sketch of   f(x + ∆x) – f(x)  for a small   ∆x ,
and let the slope be the ratio of   f(x + ∆x) – f(x) to   ∆x .
Your answers should be roughly 1, 0, –1, + ∞ , – ∞ .

po
sit

ive
slope

f(x) 
f(x+∆x) 

f(x+∆x) – f(x) 

x+∆xx

θ

is positive
∆x

Figure 22
Going uphill is a positive slope,
downhill is a negative slope.

negative slope

f(x) 

f(x+∆x) 

x+∆xx

θ

f(x+∆x) – f(x) is negative
∆x

x  

f(x) 

a

b

c d
e

Figure 23
Estimate the slope at the
various points indicated.
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THE EXPONENTIAL DECAY
A curve that we will encounter several times during the
course is the function  e– ax  shown in Figure (24),
which we call an exponential decay.  Since exponents
always have to be dimensionless numbers, we are
writing the constant (a) in the form  1/x0  so that the
exponent  x/x0  is more obviously dimensionless.

The function  e– x/x0  has several very special proper-
ties.  At x = 0, it has the numerical value 1  (e0 = 1) .
When we get up to  x = x0 , the curve has dropped to a
value

   e– x/x0 = e– 1 = 1
e (at x = x0)

≈ 1
2.7

(159)

When we go out to  x = 2xo , the curve has dropped to

 e– 2x0/x0 = e– 2 = 1
e2 (160)

Out at  x = 3x0 , the curve has dropped by another
factor of e to (1/e)(1/e)(1/e).  This decrease continues
indefinitely.  It is the characteristic feature of an expo-
nential decay.

Muon Lifetime
In the muon lifetime experiment, we saw that the
number of muons surviving decreased with time.  At
the end of two microseconds, more than half of the
original 648 muons were still present.  By 6 microsec-

onds, only 27 remained.  The decay of these muons is
an example of an exponential decay of the form

  number of
surviving
muons

=
number of
muons at
time t = 0

× e– t/t0 (161)

where  t0  is the time it takes for the number of muons
remaining to drop by a factor of 1/e = 1/2.7.  That time
is called the muon lifetime.

We can use Equation (161) to estimate the muon
lifetime  t0 .  In the movie, the number of mesons at the
top of the graph, reproduced in Figure (25), is 648.  That
is at time t = 0.  Down at time t = 6 microseconds, the
number surviving is 27.  Putting these numbers into
Equation (161) gives

  
27 surviving

muons = 648 initial
muons × e– 6/t0

 e– 6/t0 = 27
648 = .042 (162)

Take the natural logarithm ln of both sides of Equation

(162), [remembering that   ln ex = x ] gives

  ln e– 6/t0 = – 6
t0

= ln .042 = – 3.17

where we entered .042 on a scientific calculator and
pressed the ln key.  Solving for  t0  we get

 t0 = 6
3.17 = 1.9 microseconds (163)

This is close to the accepted value of  t0 = 2.2 0
microseconds which has been determined from the
study of many thousands of muon decays.

Figure 24
As we go out an additional distance

 x0 , the exponential curve drops by
another factor of 1/e.

x
x0 

1/e  

1/e  

0

2x00 3x0

e  

2

–x/x

1

Figure 25
The lifetime of each detected muon is represented
by the length of a vertical line. We can see that
many muons live as long as 2 microseconds (2µs),
but few live as long as 6 microseconds.
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Half Life

The exponential decay curve  e– t/t0  decays to
1/e = 1/2.7 of its value at time  t0 .  While  1/e  is a very
convenient number from a mathematical point of view,
it is easier to think of the time  t1/2  it takes for half of the
muons to decay.  This time  t1/2  is called the half life of
the particle.

From Figure (26) we can see that the half life  t1/2  is
slightly shorter than the lifetime  t0 .  To calculate the
half life from  t0 , we have

 e– t/t0
t = t1/2

= e– t1/2/t0 = 1
2 (164)

Again taking the natural logarithm of both sides of
Equation (164) gives

  ln e– t1/2/t0 =
– t1/2

t0
= ln 1

2 = – .693

 t1/2 = .693 t0 (165)

From Equation (165) you can see that a half life  t1/2  is
about .7 of the lifetime  t0 .  If the muon lifetime is
2.2   µsec  (we will abbreviate microseconds as   µsec ),
and you start with a large number of muons, you would
expect about half to decay in a time of

  t1/2 muon = .693 × 2.2µsec = 1.5 µsec

The basic feature of the exponential decay curve  e– t/t0

is that for every  time  t0  that passes, the curve decreases
by another factor of 1/e.  The same applies to the half
life  t1/2 .  After one half life,  e– t/t0  has decreased to half
its value.  After a second half life, the curve is down to
1/4 = 1/2 x 1/2.  After 3 half lives it is down to 1/8 =
1/2 x 1/2 x 1/2 as shown in Figure (27).

To help illustrate the nature of exponential decays,
suppose that you started with a million muons. How
long would you expect to wait before there was, on the
average, only one left?

To solve this problem, you would want the number
 e– t/t0  to be down by a factor of 1 million

  e– t/t0 = 1 × 10– 6

Taking the natural logarithm of both sides gives

   ln e– t/ t0 = –t
t0

= ln 1×10– 6 = –13.8 (166)

(To calculate    ln 1×10– 6 , enter 1, then press the exp
key and enter 6, then press the +/– key to change it to
–6.  Finally press = to get the answer –13.8.)

Solving Equation (166) for t gives

  t = 13.8 t0 = 13.8 × 2.2 µsec

 t = 30 microseconds (167)

That is the nature of an exponential decay.  While you
have nearly half a million left after around 2 microsec-
onds, they are essentially all gone by 30 microseconds.

Exercise 9

How many factors of 1/2 do you have to multiply
together to get approximately 1/1,000,000? Multiply this
number by the muon half-life to see if you get about
30 microseconds.

t
t

0 

1/e  
1/2  

0

0
t1/2

e  –t /t

1

0 

1

1/2  

1/4  
1/8  

0

t1/2 2t1/2 3t1/2

e  –t /t

Figure 26
Comparison of the lifetime t0  and the half-life   t1 /2 .

Figure 27
After each half-life, the curve
decreases by another factor of 1/2.
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Measuring the Time
Constant from a Graph
The idea that the derivative of a curve is the slope of the
curve, leads to an easy way to estimate a lifetime  t0
from an exponential decay curve   e– t/t0 .

The formula for the derivative of an exponential curve
is

 deat

dt
= aeat (150 repeated)

Setting  a = – 1/t0  gives

 d
dt

e– t/t0 = – 1
t0

e– t/t0 (168)

Since the derivative of a curve is the slope of the curve,
we set the derivative equal to the tangent of the angle
the curve makes with the horizontal axis.

  d
dt

e– t/t0 = – 1
t0

e– t/t0 = tanθ (168a)

The minus sign tells us that the curve is headed down.

In Figure (28), we have drawn a line tangent to the
curve at the point  t = T.  This line intersects the (t) axis
(the axis where  e– t/t0  goes to zero) at a distance (x)
down the  t  axis.

 The height  (y) of the point where we drew the tangent
curve is just the value of the function  e– T/t0 .  The
tangent of the angle θ  is the opposite side  (y)  divided
by the adjacent side  (x)

  
tanθ =

y
x =

e– T/t0

x (169)

Equating the two magnitudes of tanθ  in Equations
(169) in (168a) gives us

 1
t0

e– T/t0 = 1
xe– T/t0

which requires that

 x = t0 (170)

Equation (170) tells us that the distance (x), the distance
down the axis where the tangent lines intersect the axis,
is simply the time constant  t0 .

The result gives us a very quick way of determining the
time constant  t0  of an exponential decay curve.  As
illustrated in Figure (29), choose any point on the
curve, draw a tangent to the curve at that point and
measure the distance down the axis where the tangent
line intersects the axis.  That distance will be the time
constant  t0 .  We will use this technique in several
laboratory exercises later in the course.

T
t

0e  –T/t

0e  –t /t

x      

x      

y

θ

0e  –t/t

0t

t

Figure 28
A line, drawn tangent to the exponential decay
curve at some point T, intersects the axis a
distance x down the axis. We show that this
distance x is equal to the time constant t0 . This
is true no matter what point T we start with.

Figure 29
A quick way to estimate the time constant t0
for an exponential decay curve is to draw the
tangent line as shown.
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THE SINE AND COSINE FUNCTIONS
The final topic in our introduction to calculus will be the
functions   sinθ  and   cosθ  and their derivatives and
integrals.  We will need these functions when we come
to rotational motion and wave motion.

The definition of   sinθ  and   cosθ , which should be
familiar from trigonometry, are

   
sinθ = a

c
opposite
hypotenuse (171a)

   
cosθ = b

c
adjacent
hypotenuse (171b)

          θ
b

a
c

      Figure 30

where θ  is an angle of a right triangle as sown in Figure
(30), (a) is the length of the side opposite to θ , (b) the
side adjacent to θ  and (c) the hypotenuse.

The formulas are simplified if we consider a right
triangle whose hypotenuse is of length  c = 1 as in
Figure (31). Then we have

  sinθ = a (172a)

  cosθ = b (172b)

          θ
b

a
1

      Figure 31

We can then fit our right triangle inside a circle of radius
1 as shown in Figure (32).

Radian Measure
We are brought up to measure angles in degrees, but
physicists and mathematicians usually measure angles
in radians.  The angle θ  measured in radians is defined
as the arc length  subtended by the angle θ  on a circle
of unit radius, as shown in Figure (32).

   
θradians = arc length subtended

by θ on a unit circle (173)

(If we had a circle of radius c, then we would define
  θradians = /c , a dimensionless ratio.  In the special case

c = 1, this reduces to   θradians = .)

Since the circumference of a unit circle is   2π , we see
that θ  for a complete circle is   2π  radians, which is the
same as 360 degrees.  This tells us how to convert from
degrees to radians.  We have the conversion factor

  360 degrees
2π radians

= 57.3
degrees
radian

(174)

As an example of using this conversion factor, suppose
we want to convert 30 degrees to radians.  We would
have

 30 degrees
57.3 degrees/radian

= .52 radians (175)

To decide whether to divide by or multiply by a
conversion factor, use the dimensions of the conver-
sion factor.  For example, if we had multiplied 30
degrees by our conversion factor, we would have
gotten

  
30 degrees × 57.3

degrees
radian

= 1719
degrees2

radian

This answer may be correct, but it is useless.

The numbers to remember in using radians are the
following:

  90° = π/2 radians
180° = π radians
270° = 3π/2 radians
360° = 2π radians

(176)

The other values you can work out as you need them.θ
b

a
1

Figure 32
Fitting our right triangle inside a unit radius circle.



Cal 1-36  Calculus  2000

The Sine Function
In Figure (33) we have started with a circle of radius 1
and, in a somewhat random way, labeled 10 points
around the circle.  The arc length up to each of these
points is equal to the angle, in radian measure, sub-
tended by that point.  The special values are:

  θ0 = 0 radians
θ4 = π/2 radians (90°)
θ6 = π radians (180°)
θ8 = 3π/2 radians (270°)
θ10 = 2π radians (360°)

In each case the   sinθ  is equal to the height (a) at that
point.  For example

  sinθ1 = a1

sinθ2 = a2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
sinθ10 = a10

We see that the height (a) starts out at  a0 = 0  for   θ0 ,
increases up to  a4 = 1  at the top of the circle, drops
back down to  a6 = 0  at   θ6 = π , goes negative, down
to  a8 = – 1  at   θ8 = 3π/2 , and returns to  a10 = 0  at

  θ10 = 2π .

Our next step is to construct a graph in which θ  is
shown along the horizontal axis, and we plot the value
of   sinθ  = (a)  on the vertical axis.  The result is shown
in Figure (34).  The eleven points, representing the
heights  a0  to  a10  at   θ0  to   θ10  are shown as large dots
in Figure (34).  We have also sketched in a smooth
curve through these points, it is the curve we would get
if we had plotted the value of (a) for every value of θ
from   θ = 0  to   θ = 2π .  The smooth curve is a graph of
the function    sinθθ .

Exercise 10
Using the fact that the cosine function is defined as

  cos θ = b (b is defined in Figures 31, 32)

plot the values of    b0, b1, ⋅ ⋅ ⋅ , b10  on a graph similar to
Figure (34), and show that the cosine function   cos θ
looks like the curve shown in Figure (35).

Figure 33
The heights ai  at various points around a unit circle.

Figure 34
Graph of the function   sin θ .
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There is nothing that says we have to stop measuring
the angle θ  after we have gone around once.  On the
second trip around, θ  increases from   2π  up to   4π , and
the curve   sinθ  repeats itself.  If we go around several
times, we get a result like that shown in Figure (36).

Several cycles of the curve   cosθ  are shown in Figure
(37).  You can see that the only difference between a
sine and a cosine curve is where you set   θ = 0 .  If you
move the origin of the cosine axis back (to the left) 90°

  (π/2) , you get a sine wave.

Amplitude of a Sine Wave
A graph of the function    y(θ) = c sinθ  looks just like
the curve in Figure (36), except the curve goes up to a
height c and down to –c as shown in Figure (38). We
would get the curve of Figure (38) by plotting points
around a circle as in Figure (33), but using a circle of
radius c.  We call this factor c the amplitude of the sine
wave.  The function   sinθ  has an amplitude 1, while the
sine wave in Figure (38) has an amplitude c (its values
range from +c to –c).

Figure 35
The cosine function.

θπ π
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c

c sin θ

0

– c

Figure 37
Several cycles of the curve   cos θ .

Figure 36
Several cycles of the curve   sin θ .

Figure 38
A sine wave of amplitude c.
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Derivative of the Sine Function
Since the sine and cosine functions are smooth curves,
we should be able to calculate the derivatives and
integrals of them.  We will do this by first calculating
the derivative, and then turning the process around to
find the integral, just as we did for the functions  xn  and

 ex .

The derivative of the function   sinθ  is defined as usual
by

  d sinθ
dθ = limit

∆θ→0

sin θ +∆θ – sinθ
∆θ (177)

where  ∆θ  is a small change in the angle θ .

The easiest way to evaluate this limit is to go back to the
unit circle of Figure (25) and construct both   sinθ  and

  sin θ +∆θ  as shown in Figure (39).  We see that   sinθ
is the height of the triangle with an angle  θ,  while

  sin θ +∆θ  is the height of the triangle whose center
angle is   θ +∆θ .   What we have to do is calculate the
difference in heights of these two triangles.

In Figure (40) we start by focusing our attention on the
slender triangle abc with an angle  ∆θ  at (a) and long
sides of length 1 (since we have a unit circle).  Since the
angle  ∆θ  is small, the short side of this triangle is
essentially equal to the arc length along the circle from
point (b) to point (c).  And since we are using radian
measure, this arc length is equal to the angle  ∆θ .

Now draw a line vertically down from point (c) and
horizontally over from point (b) to form the triangle bcd
shown in Figure (40).  The important point is that the
angle at point (c) in this tiny triangle is the same as the
angle θ  at point (a).  To prove this, consider the sketch
in Figure (41).  A line bf is drawn tangent to the circle
at point (b), so that the angle abf is a right angle.  That
means the other two angles in the triangle add up to 90°,
the total angle in any triangle being 180°

  θ + ϕ = 90° (178)

Since the angle at (e) in triangle bef is also a right angle,
the other two angles in the triangle bef, must also add
up to 90°.

  α + ϕ = 90° (179)

For both Equations (178) and (179) to be true, we must
have   α = θ .

sin(θ)
sin(θ+∆θ)

∆θ

θ

r=1

Figure 39
Triangles for the   sinθθ  and the    sin θθ + ∆θ∆θ .

∆θ

∆θ

∆θ

θ

θ

θ

a

b

b c

c

d

d

r=1

θ
  θ + φ  =  90°
  α + φ  =  90°
    ∴ α  =  θ

α

φ
a

b

e f

Figure 40
The difference between   sinθθ  and

   sin θθ + ∆θ∆θ is equal to the height
of the side cd of the triangle cdb.

Figure 41
Demonstration that the angle αα  equals the angle θθ .
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The final step is to note that when  ∆θ  in Figure (40) is
very small, the side cb of the very small triangle is
essentially tangent to the circle, and thus parallel to the
side bf in Figure (41).  As a result the angle between cb
and the vertical is also the same angle θ .

Because the tiny triangle, shown again in Figure (42)
has a hypotenuse  ∆θ  and a top angle θ , the vertical
side, which is equal to the difference between   sinθ  and

  sin θ +∆θ  has a height   (cos θ)∆θ .  Thus we have

  sin θ +∆θ – sinθ = (cosθ)∆θ (180)

Equation (180) becomes exact when  ∆θ  becomes an
infinitesimal

 
angle.

We can now evaluate the derivative

  
d sinθ

dθ = limit
∆θ→0

sin θ +∆θ – sinθ
∆θ

= limit
∆θ→0

cosθ ∆θ
∆θ

= limit
∆θ→0 cosθ

Thus we get the exact result

  d
dθ (sinθ) = cosθ (181)

Exercise 11
Using a similar derivation, show that

   d
dθ (cosθ) = – sinθ (182)

Exercise 12
Using the chain rule for differentiation, show that

   d
dθ (sinaθ) = a cosaθ

d
dθ (cosaθ) = – a sinaθ

a = constant (183)

(Hint—if you need to, look at Equation (145) through
(150).

Exercise 13
Using the fact that integration reverses differentiation,
as we did in integrating the function  ex  (Equations (151)
through (154), show that

   
(cosaθ)

θi

θf
dθ = 1

asinaθ
θi

θf

(sinaθ)
θi

θf
dθ = – 1

acosaθ
θi

θf

Use sketches of the integrals from    θi = 0 to    θf = π /2  to
show that Equations (184a) and (184b) have the correct
numerical sign.  (Explicitly explain the minus sign in
(184b).

∆θ

∆θ
cosθ

∆θ

∆θ

θ

θ

a
r=1

sin(θ)
sin(θ+∆θ)

Figure 42
The difference between   sinθθ  and

   sin θθ + ∆θ∆θ is equal to    ∆θ∆θ cos θθ .

(184a)

(184b)

(a = constant)
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P2000 Index
Symbols
µ zero, definition of 31-19
π meson 40-23
∆E∆t>=h, Uncertainty principle 40-19
∆x∆p>=h, Uncertainty principle 40-15
10 dimensions, String theory int-16
100 billion to one, Matter over anti matter int-30
13.6 eV, hydrogen spectrum 35-4
1836 times, proton/electron mass ratio int-17
1987 supernova 6-14, 20-14
2.74 degrees, cosmic background radiation int-29
2D or 3D? equipotential plotting experiment 25-8
4 dimensions int-16

A
Aberration

Astigmatism Optics-21
Chromatic Optics-21

Newton's reflecting telescope Optics-22
Spherical Optics-21

In Hubble telescope mirror Optics-22
Absolute zero 17-9, 17-21
Abundance of the elements 34-24
AC voltage generator 30-21

Magnetic flux in 30-21
Accelerating field in electron gun 26-10
Acceleration

Angular 12-3
Angular analogy 12-3
Calculus definition of 4-5, Cal 1-7

Component equations Cal 1-8
Vector equation Cal 1-7

Constant acceleration formulas
Calculus derivation 4-9, Cal 1-20
In three dimensions 4-11, Cal 1-22

Definition of 3-13
Due to gravity 3-21
From a strobe photograph 3-15
Intuitive discussion 3-20
On inclined plane 9-11
Radial 12-5
Tangential 12-4
Uniform circular motion

Direction of 3-18
Magnitude of 3-18

Vector, definition of 3-15
Acceleration versus time graphs 4-7
Accelerators, particle int-1, 28- 22
Accurate values of Fourier coefficients 16-32
Adding sines and cosines in Fourier analysis 16-28
Addition of charge 19-10
Addition of forces 9-2

Adiabatic expansion
Calculation of work 18-26
In Carnot cycle 18-11
Introduction to 18-9

Air cart
Analysis of coupled carts 16-12
Construction of 6-2
In impulse experiments 11-9
In recoil experiments 6-2
Oscillating cart 14-5
Speed detector 30-5. See also Experiments II: - 6-

Faraday's law air cart speed detector
Air Resistance

Calculus analysis for projectile motion 4-12
Computer analysis for projectile motion 5-24, 8-3
Strobe analysis for projectile motion 3-22

Airplane wing, Bernoulli's equation 23-13
Allowed orbits, Bohr theory int-8, 35-1
Allowed projections, spin 39-3
Allowed standing wave patterns 37-1
Alpha particles 20-8
Amount of sin(3t) present in a wave 16-28
Ampere

Definition of 27- 2
MKS units 24-2

Ampere's law
Applied to a solenoid 29-15
Chapter on 29-1
Derivation of line integral 29-7
Field of straight wire 29-11
Final result 29-11
Maxwell’s correction to 32- 4

Amplitude
And intensity, Fourier analysis lecture 16-33
And phase

Fourier analysis lecture 16-31
Wave motion 15-17

Diffraction pattern by Fourier analysis 16-33
Fourier coefficients 16-32
Of a sine wave Cal 1-37

Analysis
Fourier 16-6
Of coupled air carts 16-12
Of path 1 for electromagnetic pulse 32- 14
Of path 2 for electromagnetic pulse 32- 16

Analytic solution
Of the RC circuit 27- 22
Oscillation of mass on spring 14-7
Projectile motion with air resistance 4-12

Anderson, C., positrons int-13
Andromeda galaxy int-2, int-3, 1-22
Angle of reflection (scattering of light) 36-3, Optics-

1
Angles of incidence and reflection Optics-3
Angular acceleration 12-3
Angular analogy 12-3

For Newton’s second law 12-14
Torque (angular force) 12-15
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Angular frequency
Definition of 14-4
Wave motion 15-14

Angular magnification of magnifier Optics-39
Angular mass

Moment of inertia 12-7
Rotational kinetic energy 12-22

Angular momentum
As a Vector 7- 14, 12-7

Movie 7- 15
Bohr model 35-1, 35-8

Planck's constant 35-8
Conservation of 7- 9, 12-16

Derivation from F = ma 12-16
X. See also Experiments I: - 4- Conservation of
angular momentum

Definition of 7- 10
Definition of,  more general 7- 12
Definition of,  still more general 12-6
Definition of, cross product 12-11
Formation of planets 7- 17
Gyroscopes 12-18
Kepler's second law 8-32
Magnetic moment 31-24
Movie on vector nature 7- 15, 12-6, 12-17
Of bicycle wheel 12-6
Projections of, classical 7- 14
Projections of electron spin 39-3
Quantized int-9
Quantized projections 38-5
Quantum number 38-7

Angular velocity
As a vector 12-7
Definition of 12-2
Mass on spring 14-9
Oscillating cart 14-5

Annihilation of antimatter 34-17
Antielectron int-13
Antielectron type neutrino int-22
Antimatter 34-16

Annihilation of 34-17
Excess of matter over, in early universe 34-17, 34-29
Introduction to int-12, 34-16
Neutrino int-22
Neutron int-13
Positron int-13
Positron electron pair 34-17
Proton int-13
Wave equation for 15-2

Antiparticle int-13
Created by photon 34-17

Applications of Bernoulli’s equation 23-12
Airplane wing 23-13
Aspirator 23-16
Hydrostatics 23-12
Leaky tank 23-12
Sailboat 23-14
Venturi meter 23-15

Applications of Faraday’s law 30-21
AC voltage generator 30-21
Gaussmeter 30-23

Applications of Newton’s Second Law 9-1
Applications of the second law of thermodynam-

ics 18-17
Arbitrary wave, Fourier analysis 16-28
Area

As a vector 24-22
Negative or positive 16-29
Related to integration Cal 1-11
Under the curve Cal 1-12

Arecibo radio telescope int-15, Optics-48
Arithmetic of vectors. See also Vector

Addition 2-3
Associative law 2-4
Commutative law 2-4
Multiplication by number 2-5
Negative of 2-5
Scalar or dot product 2-12, 10-13
Subtraction of 2-5
Vector cross product 2-15, 12-9

Aspirator, Bernoulli's equation 23-16
Associative law, Exercise 2-7
Astigmatism Optics-21
Astronomy

1987 supernova int-19, 6-14, 20-14
Abundance of the elements 34-24
Big bang model of universe 33-25, 34-26
Binary stars int-2
Black dwarf star int-19
Black holes 10-29

Introduction to int-19
Blackbody radiation, color of stars 34-2
Copernicus 8-25
Crab nebula 20-16
Decoupling of light and matter 34-31
Doppler effect 33-23
Eagle nebula 7- 18, Optics-44
Early universe int-27, 34-29
Escape velocity 10-28
Evolution of the universe 34-21
Excess of matter over antimatter 34-29
Expanding universe, Hubble int-3
Formation of planets 7- 17
Galaxy

Andromeda int-2
Introduction to int-2
Most distant int-3
Sombrero int-2

General relativity 8-29
Globular cluster 11-2
Gravitational lensing 34-20
Helium abundance in universe 34-26
Helium core of massive star 20-15
Hubble rule for expanding universe int-3
Iron core of massive star 20-15
Kepler's laws 8-24
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Astronomy Continued
Light years int-2
Magnetic field of the earth 28- 11
Models of the universe 34-23
Neutrino 6-14, 11-21
Neutron star

And black holes 20-18
In Crab nebula 20-17
Introduction to int-19

Nuclear fusion and stellar evolution 20-12
Orion nebula 7- 17
Penzias and Wilson, cosmic radiation 34-27
Powering the sun 34-23
Ptolemy, epicycle in Greek astronomy 8-25
Quantum fluctuations in space 40-25
Quasar, gravitational lens 34-20
Radio galaxy Optics-48
Radio images of variable star Optics-49
Radio telescope. See Radio telescope
Radio telescope, three degree radiation int-30, 34-

27
Radio telescopes Optics-48
Red shift and expanding universe int-3, 33-24, 34-

21
Red supergiant star 20-15
Retrograde motion of Mars 8-24
Space travel and time dilation 1-22
Star, blackbody spectrum 34-3
Steady state model of the universe 34-25
Stellar evolution int-19
Telescopes Optics-40

Arecibo radio telescope Optics-48
Galileo's Optics-41
Hubbel Space Telescope Optics-44
Issac Newton’s Optics-42
Mt. Hopkins Optics-43
Mt. Palomar Optics-43
Very Large Array, radio telescopes Optics-48
Very Long Baseline Array (VLBA) Optics-49
William Hershel’s Optics-43
World’s Largest Optical, Keck Optics-45
Yerkes Optics-41

Thermal equilibrium of the universe 34-28
Three degree cosmic radiation int-29, 34-27
Tycho Brahe 8-25
Van Allen radiation belts 28- 32
Visible universe int-3
White dwarf star 20-15

Atmospheric pressure 17-23
Atomic

And molecular forces, electric interaction 19-1
Clocks 1-21
Microscopes 17-1

Scanning Tunneling Microscope Optics-51
Processes 17-4
Spectra 33-16
Structure 19-3
Units 19-22

Atoms
Angular momentum quantum number 38-7
Atomic nucleus, chapter on 20-1
Atomic processes 17-4
Avogadro’s law 17-24
BASIC program, hydrogen molecule ion 19-24
Beryllium in periodic table 38-13
Bohr model int-8
Boron in periodic table 38-13
Brownian motion 17-7
Chapter on 17-1, 38-1
Classical hydrogen atom 35-2
Effective nuclear charge 38-12
Electron binding energy 19-20, 38-11
Electron energy in hydrogen molecule ion 19-21
Electron spin 38-9
Equipartition of energy 17-28
Expanded energy level diagram 38-8
Failure of classical physics 17-31
Freezing out of degrees of freedom 17-32
Heat capacity 17-26
Hydrogen molecule 19-16
Introductory view of int-16
Ionic bonding 38-15
L= 0 Patterns in hydrogen 38-4
Lithium 38-12
Model atom 37-4
Molecular and atomic processes 17-1
Molecular forces 19-15
Multi electron 38-9
Nuclear matter, chapter on 20-1
Nucleus. See also Nuclear

Discovery of 11-19
Particle-wave nature of matter int-10
Pauli exclusion principle 38-9
Periodic table 38-10
Potassium to krypton 38-14
Precession of, in magnetic field 39-15
Quantized projections of angular momentum 38-5
Schrödinger’s equation for hydrogen 38-2
Silicon, surface (111 plane) of Optics-51
Sodium to argon 38-13
Standing wave patterns in hydrogen 38-3
Table of 19-5
Thermal motion of 17-6
Up to neon 38-13
Xenon, photograph of 17-1

Atwood’s machine 9-16
Avogadro’s law 17-24
Avogadro's number, the mole 17-24
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B
Balancing weights, equilibrium 13-2
Ball Spring Pendulum. See Pendulum: Spring
Balmer series

Energy level diagram for 35-6
Formula from Bohr theory 35-5
Hydrogen spectrum 35-4
Introduction to, hydrogen star 33-19

Barometer, mercury, pressure measurement 17-22
Basic electric circuits 27- 1
BASIC program. See also Computer

Calculating circle 5-6
Calculational loop for satellite motion 8-19
Comment lines in 5-7
Computer time step 5-14
Conservation of angular momentum 8-32
Conservation of energy 8-35
DO LOOP 5-4
For drawing circle 5-11
For hydrogen molecule ion 19-24
For oscillating cart 14-32
For oscillatory motion 14-21, 14-30
For projectile motion 5-18, 5-19, 5-21, 8-21
For projectile motion with air resistance 5-22
For satellite motion 8-21
For spring pendulum 9-20
Kepler's first law 8-26
Kepler's second law 8-27
Kepler's third law 8-28
LET Statement 5-5
Modified gravity 8-29
Multiplication 5-6
New calculational loop 8-17
Orbit-1  program 8-21
Perihelion, precession of 8-30
Plotting a point 5-6
Plotting window 5-7
Prediction of satellite orbits 8-16
Satellite motion laboratory 8-23
Selected printing (MOD command) 5-10
Sine wave products 16-29
Unit vectors 8-18
Variable names 5-6

Bathtub vortex 23-2
Baud rate, for fiber optics Optics-14
Bell Telephone Lab, electron waves 35-12
Berkeley synchrotron 28- 22
Bernoulli’s equation

Applications of
Airplane Wing 23-13
Aspirator 23-16
Leaky tank 23-12
Sailboat 23-14
Venturi meter 23-15

Applies along a streamline 23-11
Care in applying 23-16
Derivation of 23-9
Formula for 23-11
Hydrodynamic voltage 23-17

Beryllium
Binding energy of last electron 38-12
In periodic table 38-13

Beta decay
And energy conservation int-21
Neutrinos 20-6
Neutrons 20-7
Protons 20-7
Recoil experiment 6-6

Beta, Hans, proton cycle, energy from sun 34-23
Beta ray int-21
Betatron 30-16
Bi-concave lens Optics-27
Bi-convex lens Optics-27
Bicycle wheel

As a collection of masses 12-5
As a gyroscope 12-18
Right hand rule for rotation 12-11
Vector nature of angular momentum 7- 14, 12-

6, 12-17
Big bang model of universe int-4, 33-25, 34-26
Binary stars int-2
Binding energy

Hydrogen molecule ion 19-23
Molecular forces 17-13
Nuclear 20-9
Nuclear stability 20-10
Of inner electrons 38-12

Binomial expansion 1-31, Cal 1-23
Black dwarf star int-19
Black holes

And neutron stars 20-18
Critical radius for sun mass 10-30
Introduction to int-19
Stellar evolution int-20
Theory of 10-29

Blackbody radiation
Electromagnetic spectrum 32- 22
Photon picture of 34-22
Planck's formula 34-4
Theory of 34-2
Wein's displacement law 34-2

Blood flow, fluid dynamics 23-23
Bohr magneton

Dirac wave equation 39-5
Unit of magnetic moment 39-4

Bohr model int-8
Allowed orbits 35-1
Angular momentum 35-1, 35-8
Chapter on 35-1
De Broglie explanation 35-1
Derivation of 35-8
Energy levels 35-4
Introduction to int-8
Planck's constant 35-1, 35-8
Quantum mechanics 35-1
Rydberg constant 35-9

Bohr orbits, radii of 35-7
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Boltzman
Constant 17-11
Formula for entropy 18-24

Bonding
Covalent 19-15
Ionic 38-15

Born interpretation of particle waves 40-6
Boron

Binding energy of last electron 38-12
In periodic table 38-13

Bottom quark int-24
Bragg reflection 36-4
Brahe, Tycho 8-25
Brownian motion

Discussion 17-7
Movie 17-7

Bubble chambers 28- 26
Bulk modulus 15-8
Button labeled ø on MacScope 16-32

C
c (speed of light) int-2, 1-12. See also Speed of

light
Calculating Fourier coefficients 16-28
Calculational loop 5-17

For projectile motion 5-19, 8-17
For projectile motion with air resistance 5-24
Satellite Motion 8-19

Calculations
Computer, step-by-step 5-1
Of flux 24-22
Of integrals Cal 1-11

Calculus
And the uncertainty principle 4-1, Cal 1-3
Calculating integrals Cal 1-11
Calculus in physics 4-1, Cal 1-3
Chain rule Cal 1-25
Definition of acceleration 4-5, Cal 1-7

Component equations Cal 1-8
Vector equation Cal 1-7

Definition of velocity 4-3, Cal 1-5
Component equations Cal 1-8
Vector equation Cal 1-6

Derivation, electric force of charged rod 24-6
Derivation of constant acceleration formulas 4-

9, Cal 1-20
In three dimensions 4-11, Cal 1-22

Limiting process 4-1, Cal 1-3, Cal 1-5
Vector equation for Cal 1-5

Line integral 29-5
Special chapter on Cal 1-3
Surface integral 29-2

Calculus in Physics 4-1
Calibration of force detector 11-10
Camera

Depth of field Optics-34
Pinhole Optics-35
Single lens reflex Optics-33

Capacitance
Electrical 27- 16
Introduction to 27- 14

Capacitor
Electrolytic 27- 17
Energy storage in 27- 18
Examples of 27- 17
In circuits. See also Circuits

As circuit elements 27- 20
Hydrodynamic analogy 27- 14
LC circuit 31-10
Parallel connection 27- 20
RC circuit 27- 22
Series connection 27- 21

Introduction to 27- 14
Magnetic field in 32- 6
Parallel plate

Capacitance of 27- 16
Deflection plates 26-16
Introduction to 26-14
Voltage in 26-15

Carbon
Burning in oxygen 17-5
Graphite crystal, electron diffraction 36-8

Carnot cycle
As thought experiment 18-4
Efficiency of

Calculation of 18-28
Discussion 18-12
Formula for 18-13, 18-29
Reversible engines 18-18

Energy flow diagrams 18-15
Entropy 18-22
Introduction to 18-11
Maximally efficient engines 18-15
Refrigerator, energy flow diagrams 18-15
Reversible engines 18-13
Reversiblility 18-17
Second law of thermodynamics 18-4

Cassegrain telescope Optics-42
Cavendish experiment 8-7
Center of mass

Diver movie 11-1
Dynamics of 11-4
Formula for 11-3
Gravitational force acting  on 13-4
Introduction to 11-2

Center of our galaxy Optics-47
Cerenkov radiation Optics-10
CERN

Electroweak theory int-26
Proton synchrotron at 28- 24

CGS units Back cover-1
Classical hydrogen atom 35-2
Coulomb's law 24-2
Definition of electric charge 19-8

Chain rule Cal 1-25
Proving it (almost) Cal 1-26
Remembering it Cal 1-25
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Chaos 23-1
Charge

Addition of 19-10
Conservation of int-21
Density, created by Lorentz contraction 28- 6
Discussion of int-6
Electric, definition of (CGS units) 19-8
Fractional (quarks) int-24, 19-15
Magnetic moment for circular orbit 31-24
On electron, Millikan oil drop experiment 26-17
Positive and negative int-6, 19-10
Quantization of electric 19-14
Surface 26-2
Unit test 24-11

Charges, static, line integral for 30-2
Charm quark int-24
Chemistry. See Atoms: Angular momentum quantum

number
Cholera molecule 17-2
Chromatic aberration Optics-21

Newton's reflecting telescope Optics-22
Ciliary muscle, eye Optics-31
Circuits

Basic 27- 1
Grounding 26-8
Inductor as a circuit element 31-7
Kirchoff’s law 27- 10
LC circuit

Experiment 31-13
Fourier analysis of 31-31
Introduction to 31-10
Ringing like a bell 31-36

LR circuit
Exponential decay 31-9
Introduction to 31-8

Neon oscillator circuit 27- 29
Power in 27- 9
RC circuit

Exponential decay 27- 23
Exponential rise 27- 26
Initial slope 27- 25
Introduction to 27- 22
Measuring time constant 27- 25
Time constant 27- 24
X. See Experiments II: - 3- The RC Circuit

Short 27- 9
Simple 27- 8
The voltage divider 27- 13

Circular electric field 30-13
Line integral for 30-13

Circular motion
Force causing 8-2
Particles in magnetic field 28- 20
Uniform

Introduction to 3-17
Magnitude of acceleration 3-18

Circular orbit, classical hydrogen atom 35-2
Circular wave patterns, superposition of 33-2
Classical hydrogen atom 35-2

Classical physics int-7
Clock

Atomic clocks 1-21
Lack of simultaneity 1-32
Light pulse clock 1-14
Muon clock 1-20
Time dilation 1-22

Cluster, globular 11-2
Cochlea (inside of the ear) 16-34
Coefficient of friction 9-13
Coefficients, Fourier (Fourier analysis lecture) 16-28
Coil

As a circuit element 31-7
Field of a solenoid 28- 17, 29-14
Inductance of 31-5
Magnetic field of  Helmholtz coils 28- 19
Primary 30-26
Toroidal 31-6

In LC circuit 31-11
Torroidal 29-17

Coil, primary 30-26
Collisions

Discovery of the atomic nucleus 11-19
Energy loss 11-14
Experiments on momentum conservation 7- 4
Force detector 11-10
Impulse 11-9
Introduction to 11-9
Momentum conservation during 11-13
Subatomic 7- 7
That conserve momentum and energy (elastic) 11-

16
X. See Experiments I: - 8- Collisions

Color force 19-15
Colors

And Fourier analysis 16-28
Blackbody radiation 32- 22

Color of stars 34-2
Electromagnetic Spectrum 32- 20
Glass prism and rainbow of colors Optics-15

Comment lines, computer 5-7
Commutative law, exercise on 2-7
Compass needles, direction of magnetic field 28-

12
Component sine wave, Fourier analysis 16-28
Components, vector Cal 1-7

Formula for cross product 2-17
Introduction to 2-8

Compton scattering, photon momentum 34-15
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Computer. See also BASIC program
BASIC. See also BASIC program
Calculations

Introduction to 5-2
Step-by-step 5-1

Commands
Comment lines 5-7
DO LOOP 5-4
LET Statement 5-5
Multiplication notation 5-6
Selected Printing (MOD command) 5-10
Variable names 5-6

English program
For projectile motion 5-16, 5-19
For satellite motion 8-19

Plot of electric fields
Field plot model 25-12
In electron gun 26-13
Of various charge distributions 24-19

Plotting
A point 5-6
Crosses 5-11
Window 5-7

Prediction of motion 5-12
Chapter on 5-1
Satellite orbits 8-16
Satellite with modified gravity 8-30

Program for
Air resistance 5-24
Damped harmonic motion 14-34
Harmonic motion 14-30
Hydrogen molecule ion 19-24
Plotting a circle 5-2, 5-4, 5-11
Projectile motion, final one 5-21
Projectile motion, styrofoam projectile 5-28
Projectile motion with air resistance 5-22
Satellite motion 8-21

Programming, introduction to 5-4
Satellite motion calculational loop 8-19
Time Step and Initial Conditions 5-14

Computer analysis of satellite motion. See Experi-
ments I: - 5- Computer analysis of satellite motion

Computer prediction of projectile motion. See
Experiments I: - 2- Computer prediction of
projectile motion

Computers
Why they are so good at integration Cal 1-12

Conductors
And electric fields, chapter on 26-1
Electric field in hollow metal sphere 26-4
Electric field inside of 26-1
Surface charge density 26-3

Cones, nerve fibers in eye Optics-31
Conical pendulum 9-18

And simple pendulum 14-17

Conservation of
Angular momentum 8-32

Derivation from F = ma 12-16
Introduction to 7- 9

Electric charge 19-13
Energy int-11, 8-35

Feynman's introduction to 10-2
Mass on spring 14-11
Uncertainty principle 40-24
Work Energy Theorem 10-20
X. See Experiments I: - 9- Conservation of energy

Energy and momentum, elastic collisions 11-16
Linear and angular momentum, chapter on 7- 1
Linear momentum 7- 2, 11-7

during collisions 11-13
Conservative force 25-5

And non-conservative force 10-21
Definition of 29-6

Conserved field lines, flux tubes 24-17
Constant acceleration formulas

Angular analogy 12-3
Calculus derivation 4-9, Cal 1-20

In three dimensions 4-11, Cal 1-22
Constant, integral of Cal 1-13
Constant voltage source 27- 15
Continuity equation

For electric fields 24-14
For fluids 23-5

Continuous creation theory int-4
Contour map 25-1
Contraction, Lorentz relativistic 1-24
Conversion factors Back cover-1
Cook’s Bay, Moorea, rainbow over Optics-17
Coordinate system, right handed 2-18
Coordinate vector

Definition of 3-11
In computer predictions 5-12, 8-17
In definition of velocity vector 3-13

Cornea Optics-31
Corner reflector

How it works Optics-7
On the surface of the moon Optics-7

Cosine function
Amplitude of Cal 1-37
Definition of Cal 1-35
Derivative of Cal 1-38

Cosine waves
Derivative of 14-8
Fourier analysis lecture 16-28
Phase of 14-6

Cosmic background neutrinos int-30
Cosmic background radiation int-30, 34-27
Cosmic radiation int-30
Cosmic rays int-13
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Coulomb's law
And Gauss' law, chapter on 24-1
Classical hydrogen atom 35-2
For hydrogen atom 24-4
For two charges 24-3
Units, CGS 24-2
Units, MKS 24-2

Coupled air cart system, analysis of 16-12
Covalent bonding 19-15
Cp = Cv + R, specific heats 18-7
Cp and Cv, specific heats 18-6
Crab nebula 20-16
Creation of antimatter, positron-electron pairs 34-17
Critical damping 14-23
Cross product

Angular momentum 12-11
Component formula for 2-17
Discussion of 2-15
Magnitude of 2-17
Review of 12-9
Right hand rule 12-10

Crystal
Diffraction by Thin 36-6
Graphite, electron diffraction by 36-8
Structures

Graphite 36-8
Ice, snowflake 17-4

X ray diffraction 36-5
Crystalline lens, eye Optics-31
Current and voltage

Fluid analogy 27- 6
Ohm’s law 27- 7
Resistors 27- 6

Current, electric
Inertia of (inductance) 31-12
Introduction to 27- 2
Magnetic force on 31-18
Positive and negative 27- 3

Current loop
Magnetic energy of 31-22
Torque on 31-20

Currents
Magnetic force between 28- 14, 31-19

Curve
Area under, integral of Cal 1-12
Slope as derivative Cal 1-30
That increases linearly, integral of Cal 1-13
Velocity, area under Cal 1-12

Curved surfaces, reflection from Optics-3
Cycle, Carnot 18-11

D
Damped harmonic motion

Computer program for 14-34
Differential equation for 14-21

Damping, critical 14-23
Davisson & Germer, electron waves 35-12
De Broglie

Electron waves int-10, 35-11
Formula for momentum 35-11
Hypothesis 35-10
Introduction to wave motion 15-1
Key to quantum mechanics 35-1
Wavelength, formula for 35-11
Waves, movie of standing wave model 35-11

Debye, on electron waves 37-1, 38-2
Decay

Exponential decay Cal 1-32
Decoupling of light and matter in early universe 34-

31
Definite integral

Compared to indefinite integrals Cal 1-14
Defining new functions Cal 1-15
Introduction to Cal 1-11
Of  velocity Cal 1-11
Process of integrating Cal 1-13

Deflection plates in electron gun 26-16
Degrees of freedom

Freezing out of 17-32
Theory of 17-28

Depth of field, camera Optics-34
Derivative

As a limiting process Cal 1-6, Cal 1-18, Cal 1-
23, Cal 1-28, Cal 1-30

Constants come outside Cal 1-24
Negative slope Cal 1-31
Of exponential function e to the  x Cal 1-28
Of exponential function e to the ax Cal 1-29
Of function  x to the n'th power Cal 1-24
Of sine function Cal 1-38

Derivative as the Slope of a Curve Cal 1-30
Descartes, explanation of rainbow Optics-16
Description of motion 3-3
Detector for radiated magnetic field 32- 26
Diagrams, PV (pressure, volume) 18-8
Differential equation

For adiabatic expansion 18-27
For damped harmonic motion 14-21
For forced harmonic motion 14-25, 14-28
For LC circuit 31-10
For LR circuit 31-9
For oscillating mass 14-8
Introduction to 4-14

Differentiation. See also Derivative
Chain rule Cal 1-25
More on Cal 1-23
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Differentiation and integration
As inverse operations Cal 1-18

Velocity and position Cal 1-18, Cal 1-19
Fast way to go back and forth Cal 1-20
Position as integral of velocity Cal 1-20
Velocity as derivative of position Cal 1-20

Diffraction
By thin crystals 36-6
Electron diffraction tube 36-9
Of water waves 33-5
X Ray 36-4

Diffraction, electron. See Experiments II: -11- Elec-
tron diffraction experiment

Diffraction grating 33-12. See also Experiments II: -
10- Diffraction grating and hydrogen spectrum

Diffraction limit, telescopes Optics-45
Diffraction pattern 16-33, 33-5

Analysis of 36-11
By strand of hair 36-14
Electron 36-10
For x rays 36-5
Of human hair 36-14
Recording 33-28
Single slit 33-27
Student projects 36-13
Two-slit 33-6

Dimensional analysis
For predicting the speed of light 15-9
For predicting the speed of sound 15-6

Dimensions
Period and frequency 14-4
Using, for remembering formulas 14-4

Dimensions of
Capacitance Front cover-2
Electric charge Front cover-2
Electric potential Front cover-2
Electric resistance Front cover-2
Energy Front cover-2
Force Front cover-2
Frequency Front cover-2
Inductance Front cover-2
Magnetic field Front cover-2
Magnetic flux Front cover-2
Power Front cover-2
Pressure Front cover-2

Dirac equation
Antimatter int-13, 15-2, 34-16
Electron spin 39-3

Bohr magneton 39-5
Dirac, P. A. M., prediction of antiparticles int-13
Direction an induced electric field 31-3
Direction of time

And strobe photographs 3-27
Dive movie 18-1
Entropy 18-25
Neutral K meson 18-25
Rising water droplets 18-3

Discovery of the atomic nucleus 11-19

Disorder
Direction of time 18-25
Entropy and the second law of thermodynamics 18-

4
Formula for entropy 18-24

Displacement vectors
From strobe photos 3-5
Introduction to 2-2

Distance, tangential 12-4
Distant galaxies, Hubble photograph int-3
Dive movie, time reversed 18-1
Diver, movie of 11-1
Diverging lenses Optics-26
DO LOOP, computer 5-4
Doppler effect

Astronomer's Z factor 33-23
For light 33-22
In Astronomy 33-23
Introduction to 33-20
Relativistic formulas 33-22
Stationary source, moving observer 33-21
Universe, evolution of 34-21

Dot product
Definition of 2-12
Interpretation 2-14
Work and energy 10-13

Down quark int-24
Drums, standing waves on 16-22
Duodenum, medical imaging Optics-15

E
e - charge on an electron 19-9
E = hf, photoelectric effect formula 34-7
E = mc2, mass energy int-11, 10-3
E.dl meter 30-18
Eagle nebula

Big photo of 7- 18
Hubble telescope photo Optics-44
Planet formation 7- 16

Ear, human
Inside of cochlea 16-34
Structure of 16-15

Early universe. See Universe, early
Earth

Gravitational field inside of 24-24
Mass of 8-8

Earth tides 8-12
Eclipse expedition, Eddington 34-19
Edit window for Fourier transform data 16-32
Effective nuclear charge, periodic table 38-12
Efficiency

Of Carnot cycle, calculation of 18-26
Of electric cars 18-19
Of heat pump 18-19
Of reversible engines 18-18
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Einstein
General relativity int-15, 8-29
Mass formula 6-10
Photoelectric effect int-8
Photoelectric effect formula 34-7
Principle of relativity, chapter on 1-12

Einstein cross, gravitational lens 34-20
Elastic collisions, conservation, energy, momen-

tum 11-16
Elasticity of rubber 17-35
Electric and weak interactions unified 19-3
Electric cars, efficiency of 18-19
Electric charge

Conservation of 19-13
Definition (CGS units) 19-8
Definition (MKS units) 31-19
Quantization of 19-14

Electric circuits
Basic 27- 1
Grounding 26-8
Kirchoff’s law 27- 10
LC circuit, oscillation of 31-10
LR circuit, exponential decay of 31-9
Power in 27- 9
RC circuit

Equations for 27- 22
Exponential decay of 27- 23
Half life 27- 25
Initial slope 27- 25
Time constant 27- 24

The voltage divider 27- 13
Electric current

Inertia of, due to inductance 31-12
Introduction to 27- 2
Positive and negative 27- 3

Electric discharge of Van de Graaff generator 26-7
Electric field

And conductors 26-1
And light int-7, 32- 20
Circular electric field

Introduction to 30-13
Line integral for 30-13
The betatron 30-16

Computer plot, -3,+5 charges 24-19
Computer plotting programs 25-12
Continuity equation for 24-14
Contour map 25-1
Created by changing magnetic flux 31-2
Created by moving magnetic field, Lorentz force 30-

9
Direction of, when created by magnetic flux 31-3
Energy density in 27- 19
Equipotential lines 25-3
Flux, definition of 24-15
Gauss’ law 24-20
In electromagnetic waves 32- 18
Inside a conductor 26-1
Integral of E.dl meter 30-20

Electric field continued
Introduction to 24-10
Line integral of 30-14
Lines 24-12
Mapping 24-12
Mapping convention for 24-17
Of a line charge

Using calculus 24-6
Using Gauss' law 24-21

Of electromagnet 30-15
Of static charges, conservative field 30-2, 30-16
Radiation by line charge 32- 28
Radiation by point charge 32- 30
Van de Graaff generator 26-6

Electric force
Between garden peas 19-12
Produced by a line charge 24-6
Produced by a short rod 24-9

Electric force law
Four basic interactions 19-2
In CGS units 19-8
Introduction to 19-7
Lorentz force law, electric and magnetic forces 28-

15
Electric force or interaction int-6, int-13

Atomic & molecular forces 19-1
Electroweak theory int-26
Strength of

Between garden peas 28- 2
Comparison to gravity int-6, 19-8
Comparison to nuclear force int-18, 20-2
Origin of magnetic forces 28- 6

Electric potential
Contour map 25-1
Field plots 25-1
Of a point charge 25-5
Plotting experiment 25-7

Electric potential energy. See Potential energy:
Electric

Electric voltage. See also Voltage
Introduction to 25-6
Van de Graaff generator 26-6

Electrical capacitance 27- 16. See also Capacitor
Electrically neutral int-6
Electromagnet 31-28
Electromagnetic radiation

Energy radiated by classical H atom 35-3
Observed by telescopes

Infrared Optics-46
Radio Optics-48
Visible Optics-42

Pulse 32- 10
Analysis of path 1 32- 14
Analysis of path 2 32- 16
Calculation of speed 32- 14

Electromagnetic spectrum int-7, 32- 20, 34-11
Photon energies 34-11

Electromagnetic waves 32- 18
Probability wave for photons 40-7
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Electron
Beam, magnetic deflection 28- 9
Charge on 19-8
Diffraction Pattern 36-10
In classical hydrogen atom 35-2
Lepton family int-22
Mass in beta decay 6-7
Motion of in a magnetic field. See Experiments II: - 5-

Motion of electrons in a magnetic field
Radius 39-3
Rest energy in electron volts 26-12
Spin

And hydrogen wave patterns 38-9
Chapter on 39-1

Spin resonance
Details of experiment 39-9
Introduction to 39-5
X. See Experiments II: -12- Electron spin resonance

Stability of 19-14
Two slit experiment for 40-3

Electron binding energy
A classical approach 19-21
And the periodic table 38-11
In classical hydrogen molecule ion 19-23

Electron diffraction experiment 36-8
Diffraction tube 36-9
X. See Experiments II: -11- Electron diffraction

experiment
Electron gun

Accelerating field 26-10
Electron volt 26-12
Equipotential plot 26-11, 26-13
Filament 26-9
In magnetic field

Bend beam in circle 28- 20
Magnetic focusing 28- 29

Introduction to 26-8
X. See Experiments II: - 2- The Electron Gun

Electron positron pair 34-17
Electron scattering

Chapter on scattering 36-1
First experiment on wave nature 35-12

Electron screening, periodic table 38-10
Electron type neutrino int-22
Electron volt

As a Unit of Energy 19-21, 26-12
Electron gun used to define 26-12

Electron waves
Davisson & Germer experiment 35-12
De Broglie picture 35-11
In hydrogen 38-1
Scattering of 35-12
Wavelength of 36-9

Electroweak interaction 19-3
Theory of int-26
Weak interaction int-26
Z and W mesons int-26

Electroweak interactions 19-3

Elementary particles
A confusing picture int-22
Short lived 40-23

Elements
Abundance of 34-24
Creation of int-4
Table of 19-5

Ellipse
Becoming a parabola Optics-4
Drawing one 8-26, Optics-3
Focus of 8-26, Optics-3

Empty space, quantum fluctuations 40-25
Energy

Bernoulli's equation 23-10
Black holes 10-29
Capacitors, storage in 27- 18
Chapter on 10-1
Conservation of energy

And the uncertainty principle 40-24
Conservative and non-conservative forces 10-21
Derivation from work theorem 10-20
Feynman story 10-2
In collisions 11-14
In satellite motion 8-35
Mass on spring 14-11
Neutrinos in beta decay 11-20
Overview int-11
Work energy theorem 10-20
X. See Experiments I: - 9- Conservation of energy

E = Mc2 10-3
Electric potential energy

And molecular force 17-12
Contour map of 25-1
In classical hydrogen atom 35-3
In hydrogen atom int-11
In hydrogen molecule ion 19-21
In nuclear fission int-18, 20-5
Negative and positive 25-4
Of a point charge 25-5
Plotting 25-7. See also Experiments II: - 1- Potential
plotting
Storage in capacitors 27- 18

Electron binding and the periodic table 38-11
Electron, in the hydrogen molecule ion 19-21
Electron volt as a unit of energy 19-21, 26-12
Energy density in an electric field 27- 19
Energy level 35-1
Energy loss during collisions 11-14
Equipartition of energy 17-28

Failure of classical physics 17-31
Freezing out of degrees of freedom 17-32
Real molecules 17-30

From nuclear fission 20-4
From sun int-18
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Energy Continued
Gravitational potential energy int-11, 8-35

Bernoulli's equation 23-10
Black holes 10-29
In a room 10-25
In satellite motion 8-36, 10-26
In stellar evolution 20-13
Introduction to 10-8
Modified 8-37
On a large scale 10-22
Zero of 10-22

Joules and  Ergs 10-4
Kinetic energy int-8

Always positive 8-35
Bohr model of hydrogen 35-3
Classical hydrogen atom 35-3
Electron diffraction apparatus 36-9
Equipartition of energy 17-28
Escape velocity 10-28
Hydrogen molecule ion 19-21
Ideal gas law 17-18
In collisions 11-14
In model atom 37-5
Nuclear fusion 20-12
Origin of 10-5
Oscillating mass 14-11
Overview int-8
Pendulum 10-10
Relativistic definition of 10-5
Rotational 12-22
Satellite motion 8-36, 10-26
Slowly moving particles 10-6, 10-29
Temperature scale 17-11
Theorem on center of mass 12-26
Thermal motion 17-6
Translation and rotation 12-24
Work energy theorem 10-18

Magnetic energy of current loop 31-22
Mass energy int-18, 10-3
Negative and positive potential energy 25-4
Neutron mass energy int-22
Nuclear potential energy

Fusion int-18, 20-12
Nuclear binding 20-9
Nuclear energy well. 20-10
Nuclear structure int-22

Pendulum motion, energy in 10-10
Photon energy 34-9
Photon pulse, uncertainty principle 40-21
Potential. See also Potential energy
Powering the sun 34-23
Rest energy of electron and proton 26-12
Rotational kinetic energy 12-26
Spin magnetic energy

Dirac equation 39-15
Magnetic moment 39-4
Magnetic potential 39-1

Spring potential energy int-11, 10-16, 14-11
Thermal energy int-8, 17-7

Total energy
Classical H atom 35-3
Escape velocity 10-28
Satellite motion 8-36, 10-26

Uncertainty principle
Energy conservation 40-24
Energy-time form of 40-19
Fourier transform 40-20

Voltage as energy per unit charge 25-6
Work

Conservation of energy int-11
Definition of 10-12
Vector dot product 10-13
Work energy theorem 10-18

X Ray photons, energy of 36-4
Zero of potential energy 10-22
Zero point energy 37-7

Chapter on 37-1
Energy flow diagrams for reversible engines 18-15
Energy from sun, proton cycle 34-24
Energy, kinetic, in terms of momentum 37-5
Energy level diagram

Balmer series 35-6
Bohr theory 35-4
Expanded 38-8
Lyman series 35-6
Model atom 37-4
Paschen series 35-6
Photon in laser 37-4

Energy-time form of the uncertainty principle 40-19
Engines

Internal combustion 18-21
Maximally efficient 18-15
Reversible, efficiency of 18-18

English program
For oscillatory motion 14-31
For projectile motion 5-16
For satellite motion 8-19

English program for projectile motion 5-16
Entropy

Boltzman's formula for 18-24
Definition of 18-22
Number of ways to hang tools 18-23
Second law of thermodynamics 18-1

Epicycle, in Greek astronomy 8-25
Equations, differential. See Differential equation
Equations, vector

Components with derivatives Cal 1-7
In component form 2-10

Equilibrium
Balancing weights 13-2
Chapter on 13-1
Equations for 13-2
Example - bridge problem 13-9
Example - wheel and curb 13-5
How to solve equilibrium problems 13-5
Thermal equilibrium 17-8
Working with rope 13-10
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Equipartition of energy
Failure of classical physics 17-31
Freezing out of degrees of freedom 17-32
Normal modes 17-28
Real molecules 17-30
Theory of 17-28

Equipotential lines 25-3
Model 25-10
Plotting experiment, 2D or 3D? 25-8

Equipotential plot for electron gun 26-11
Ergs and joules 10-4
Ergs per second, power in CGS units 24-2
Escape velocity 10-28
Euler's  number e = 2.7183. . . Cal 1-17
Evaporation

Of water 17-5
Surface tension 17-14

Even harmonics in square wave 16-28
Evolution

Of stars int-19, 17-17, 20-13
Neutrinos role in 20-15

Of the universe 34-21
Excess of matter over antimatter 34-29
Exclusion principle 38-1, 38-9
Exercises, finding them. See under x in this index
Expanding gas, work done by 18-5
Expanding universe

Hubble, Edwin int-3
Hubble rule for int-3
Red shift 33-24, 34-19, 34-21

Expansion
Adiabatic

Carnot cycle 18-11
Equation for 18-26
PV Diagrams 18-9
Reversible engines 18-13

Isothermal
Carnot cycle 18-11
Equation for 18-26
PV Diagrams 18-8
Reversible engines 18-13

Thermal 17-33
Uniform, of the universe int-3

Expansion, binomial 1-31, Cal 1-23
Experimental diffraction pattern 16-33
Experiments I

- 1- Graphical analysis of projectile motion 3-17
- 2- Computer prediction of projectile motion 5-21
- 3- Conservation of linear momentum 7- 4
- 4- Conservation of  angular momentum 7- 10
- 5- Computer analysis of satellite motion 8-23
- 6- Spring pendulum 9-4
- 7- Conservation of energy

Check for, in all previous experiments 10-26
- 8- Collisions 11-9
- 9- The gyroscope 12-18
-10- Oscillatory motion of various kinds 14-2
-11- Normal modes of oscillation 16-4
-12- Fourier analysis of sound waves 16-18

Experiments II
- 1- Potential plotting 25-7
- 2- The electron gun 26-8
- 3- The RC circuit 27- 22
- 4- The neon bulb oscillator 27- 28
- 5- Motion of electrons in a magnetic field 28- 19
- 5a- Magnetic focusing, space physics 28- 30
- 6- Faraday's law air cart speed detector 30-5
- 7- Magnetic field mapping using Faraday's law 30-

24
- 8- Measuring the speed of light with LC circuit 31-

15
- 9- LC circuit and Fourier analysis 31-31
-10- Diffraction grating and hydrogen spectrum 33-

17
-11- Electron diffraction experiment 36-8
-12- Electron spin resonance 39-9
-13- Fourier analysis and uncertainty principle 40-21

Exponential decay Cal 1-32
In LR circuits 31-9
In RC circuits 27- 23

Exponential function
Derivative of Cal 1-28
Exponential decay Cal 1-32
Indefinite integral of Cal 1-29
Integral of Cal 1-29
Introduction to Cal 1-16
Inverse of the logarithm Cal 1-16
Series expansion Cal 1-28
y to the x power Cal 1-16

Eye glasses experiment Optics-36
Eye, human

Ciliary muscle Optics-31
Cornea Optics-31
Crystalline lens Optics-31
Farsightedness Optics-32
Focusing Optics-32
Introduction Optics-31
Iris Optics-31
Nearsightedness Optics-32
Nerve fibers Optics-31

Cones Optics-31
Rods Optics-31

Eyepiece Optics-37
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F
F = ma. See also Newton's second law

Applied to Newton’s law of gravity 8-5
Applied to satellite motion 8-8
For Atwood’s machine 9-16
For inclined plane 9-10
For spring pendulum 9-7
For string forces 9-15
Introduction to 8-4
Vector addition of forces 9-6

f number
For camera Optics-33
For parabolic mirror Optics-5

F(t) =   (1)sin(t)  +  (1/3)sin(3t)  +  ...
Fourier analysis of square wave 16-28

Failure of classical physics 17-31
Faraday's law

AC voltage generator 30-21
Applications of 30-15
Chapter on 30-1
Derivation of 30-11
Field mapping experiment 30-24
Gaussmeter 30-23
Induced Voltage 31-4
Line integral 30-15
One form of 30-12
Right hand rule for 30-15
The betatron 30-16
Velocity detector 30-25
Voltage transformer 30-26
X. See Experiments II: - 6- Faraday's law air cart

speed detector; Experiments II: - 7- Magnetic field
mapping using Faraday's law

Farsightedness Optics-32
Fermi Lab accelerator 28- 23
Feynman, R. P. int-14
FFT Data button 16-32
Fiber optics

Introduction to Optics-14
Medical imaging Optics-15

Field
Conserved lines, fluid and electric 24-17
Electric

Circular, line integral for 30-13
Computer plot of (–3,+5) 24-19
Continuity equation for 24-14
Created by changing magnetic flux 31-2
Direction of circular or induced 31-3
Inside a conductor 26-1
Inside hollow metal sphere 26-4
Integral of - E.dl meter 30-20
Introduction to 24-10
Line integral of 30-14
Mapping convention 24-17
Mapping with lines 24-12
Of electromagnet (turned on or off) 30-15
Of line charge 24-21
Of static charges 30-2, 30-16
Radiation by line charge 32- 28
Radiation by point charge 32- 30
Van de Graaff generator 26-6

Field continued
Electromagnetic field 32- 18
Flux, introduction of concept 24-15
Gauss’ law 24-20
Gravitational field

Definition of 23-3
Inside the earth 24-24
Of point mass 24-23
Of spherical mass 24-24

Magnetic field
Between capacitor plates 32- 6
Detector, radio waves 32- 26
Direction of, north pole 28- 11
Gauss's law for (magnetic monopole) 32- 2
In coils 28- 17
In Helmholtz coils 28- 18
Interaction with Spin 39-4
Introduction  to 28- 10
Of a solenoid 29-14
Of a toroid 29-17
Of straight wire 29-11
Surface integral 32- 2
Thought experiment on radiated field 32- 11
Uniform 28- 16
Visualizing using compass needles 28- 12
Visualizing using iron filings 28- 12

Plotting experiment 25-7
Vector field

Definition of 23-3
Two kinds of 30-18

Velocity field
Introduction to 23-2
Of a line source 23-7
Of a point source 23-6

Field lines
Computer plots, programs for 25-12
Electric

Definition of 24-12
Drawing them 24-13

Three dimensional model 25-10
Field mapping

Magnetic field of Helmholtz coils 30-24
Magnetic field of solenoid 30-24

Field plots and electric potential, chapter on 25-1
Filament, electron gun 26-9
First maxima of two-slit pattern 33-8
Fission, nuclear 20-3
Fitch, Val, K mesons and the direction of time 18-27
Fluctuations, quantum, in empty space 40-25
Fluid dynamics, chapter on 23-1
Fluid flow, viscous effects 23-19
Fluorescence and reflection 40-8
Flux

Calculations, introduction to 24-22
Definition of 24-15
Of magnetic field 30-11
Of velocity and electric fields 24-15
Of velocity field 23-8
Tubes of flux, definition of 24-17
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Flux, magnetic
AC voltage generator 30-21
Definition of 30-11
Faraday's law

Line integral form 30-15
Voltage form 30-12

Field mapping experiment 30-24
Gaussmeter 30-23
In the betatron 30-16
Integral E.dl meter 30-19
Magnetic field detector 32- 26
Maxwell's equations 32- 8
Velocity detector 30-25
Voltage transformer 30-26

Focal length
For parabolic mirror Optics-5
Negative, diverging lenses Optics-26
Of a spherical surface Optics-20
Two lenses together Optics-29

Focus
Eye, human Optics-32
Of a parabolic mirror Optics-4
Of an ellipse 8-26, Optics-3

Focusing, magnetic 28- 29
Focusing of sound waves 8-26, Optics-3
Force 8-2

Color force 19-15
Conservative and non-conservative 10-21
Conservative forces 25-5
Electric force

Classical hydrogen atom 35-2
Introduction to 19-7
Produced by a line charge 24-6
Strength of (garden peas) 28- 2

Four basic forces or interactions 19-1
Introduction to force 8-2
Lorentz force law 32- 8
Magnetic force

Between currents 31-19
On a current 31-18
Origin of 28- 10

Magnetic force law
Derivation of 28- 10
Vector form 28- 14

Molecular force
A classical analysis 19-19
Analogous to spring force 14-20
Introduction to 19-15
Potential energy for 17-12

Non linear restoring force 14-19
Nuclear force int-18

Introduction to 20-2
Range of 20-3

Particle nature of forces int-13
Pressure force 17-16
Spring force

As molecular force 14-20, 17-12
Hook's law 9-3

String force
Atwood’s machine 9-16
Tension 9-15

Force detector 11-10
Forced harmonic motion, differential equation

for 14-25, 14-28
Forces, addition of 9-2
Formation of planets 7- 17
Four basic interactions int-25, 19-1
Fourier analysis

Amplitude and intensity 16-33
Amplitude and phase 16-31
And repeated wave forms 16-11
Calculating Fourier coefficients 16-28
Energy-time form of the uncertainty principle 40-20
Formation of pulse from sine waves 40-27
In the human ear 16-16
Introduction to 16-6
Lecture on Fourier analysis 16-28
Normal modes and sound 16-1
Of a sine wave 16-7
Of a square wave 16-9, 16-28
Of coupled air carts, normal modes 16-12
Of LC circuit 31-31
Of slits forming a diffraction pattern 16-33
Of sound waves. See Experiments I: -12- Fourier

analysis of sound waves
Of violin, acoustic vs electric 16-19
X. See Experiments II: -13- Fourier analysis & the

uncertainty principle
Fourier coefficients

Accurate values of 16-32
Calculating 16-31
Lecture on 16-28

Fourier, Jean Baptiste 16-2
Fractional charge int-24
Freezing out of degrees of freedom 17-32
Frequencies (Fourier analysis) 16-28
Frequency

Angular 15-14
Of oscillation of LC circuit 31-10
Photon energy E=hf 34-7
Spacial frequency 15-14

Frequency, period, and wavelength 15-13
Friction

Coefficient of 9-13
Inclined plane 9-12

Functions obtained from integration Cal 1-15
Logarithms Cal 1-15

Fusion, nuclear int-18, 20-12
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G
Galaxy

Andromeda int-2
Center of our galaxy Optics-47
Introduction to int-2
Most distant int-3
Sombrero int-2
Space travel 1-22

Galileo
Falling objects (Galileo Was Right!) 8-6
Inclined plane 9-10
Portrait of 9-11

Galileo’s inclined plane 9-11
Galileo’s telescope Optics-41
Gallbladder operation, medical image Optics-15
Gamma = Cp/Cv, specific heats 18-7
Gamma rays 32- 20, 32- 22

Photon energies 34-11
Wavelength of 32- 20

Gamov, George, big bang theory int-4
Garden peas

Electric force between 19-12
Garden peas, electric forces between 28- 2
Gas constant R 17-25
Gas, expanding, work done by 18-5
Gas law, ideal 17-18
Gaudsmit and Uhlenbeck, spin 39-1
Gauss' law

Electric field of line charge 24-21
For gravitational fields 24-23
For magnetic fields 32- 2
Introduction to 24-20
Solving problems 24-26
Surface integral 29-3

Gauss, tesla, magnetic field dimensions 28- 16
Gaussmeter 30-23
Gell-Mann

Quarks int-24, 19-14
General relativity int-15, 8-29

Modified gravity 8-29
Geometrical optics

Chapter on Optics-1
Definition of Optics-2

Glass prism Optics-13
Globular cluster 11-2
Gluons, strong nuclear force int-25
Graph paper

For graphical analysis 3-33
For projectile motion 3-29

Graphical analysis
Of instantaneous velocity 3-26
Of projectile motion 3-17
Of projectile motion with air resistance 3-22
X. See Experiments I: - 1- Graphical analysis of

projectile motion

Graphite crystal
Electron diffraction experiment 36-8
Electron scattering 36-1
Structure of 36-8

Grating
Diffraction 33-12
Multiple slit

Fourier analysis of 16-33
Interference patterns for 33-12

Three slit 16-33
Gravitational field

An abstract concept 23-3
Gauss' law for 24-23
Inside the earth 24-24
Of point mass 24-23
Of spherical mass 24-24

Gravitational force. See Gravity
Gravitational lens, Einstein cross 34-20
Gravitational mass 6-5
Gravitational potential energy

Energy conservation int-11
Graviton int-15
Gravity int-15

Acceleration due to 3-21
And satellite motion 8-8
Black hole int-20, 10-29
Cavendish experiment 8-7
Deflection of photons 34-19
Earth tides 8-12
Einstein's general relativity int-15
Four basic interactions 19-1
Gravitational force acting at center of mass 13-4
Gravitational potential energy

Bernoulli's equation 23-10
Black holes 10-29
Conservation of Energy 8-35
Energy conservation int-11
In a room 10-25
In satellite motion 8-36
Introduction to 10-8
Modified 8-37
On a large scale 10-22
Zero of 10-22

Inertial and gravitational mass 8-8
Interaction with photons 34-18
Modified, general relativity 8-29
Newton's universal law int-15, 8-5
Potential energy. See also Potential energy: Gravita-

tional
Introduction to 10-8
On a Large Scale 10-22

Quantum theory of int-16
Strength, comparison to electricity int-6, 19-8
Weakness & strength int-20
"Weighing” the Earth 8-8
Weight 8-11

Green flash Optics-17
Grounding, electrical circuits 26-8
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Guitar string
Sound produced by 15-22
Waves 15-20
Waves, frequency of 15-21

Gun, electron. See Electron gun
Gyromagnetic ratio for electron spin 39-14
Gyroscopes

Atomic scale 39-15
Movie 12-18
Precession formula 12-21
Precession of 12-19
Theory of 12-18
X. See Experiments I: - 9- The gyroscope

H
h bar, Planck's constant 35-9
Hair, strand of, diffraction pattern of 36-14
Half-life

In exponential decay Cal 1-33
In RC circuit 27- 25
Of muons (as clock) 1-20
Of muons, exponential decay Cal 1-33

Halos around sun Optics-18
Harmonic motion

Computer program 14-30
Damped

Computer program 14-34
Critical damping 14-23
Differential equation for 14-21

Forced
Analytic solution 14-28
Differential equation for 14-25, 14-28

Harmonic oscillator 14-12
Differential equation for 14-14

Harmonic series 16-3
Harmonics and Fourier coefficients 16-28
Hays, Tobias

Dive Movie, center of mass 11-1
Dive movie, time reversed 18-1

Heat capacity 17-26
Molar 17-26

Heat pump, efficiency of 18-19
Heat, specific. See Specific heat
Heisenberg, Werner 4-1, Cal 1-3
Hele-Shaw cell, streamlines 23-4
Helium

Abundance in early universe 34-26
And electron spin 38-9
And the Pauli exclusion principle 38-9
Binding energy of last electron 38-12
Creation of in universe int-4
Energy to ionize 38-9
In periodic table 38-11
Isotopes helium 3 and 4 int-17

Helmholtz coils 28- 17, 28- 18
100 turn search coil 39-12
Electron spin resonance apparatus 39-11
Field mapping experiment 30-24. See also Experi-

ments II: - 7- Magnetic field mapping using
Faraday's law

Motion of electrons in 28- 20, 28- 29
Uniform magnetic field inside 28- 17

Hertz, Heinrich, radio waves 34-1
Hexagonal array

Graphite crystal and diffraction pattern 36-9
Homework exercises, finding them. See X-Ch (chap-

ter number): Exercise  number
Hooke’s law 9-4

In dimensional analysis 15-7
Horsehead nebula in visible & infrared light Optics-

46
Hot early universe int-4
Hubbel space telescope Optics-44
Hubble, Edwin, expanding universe int-3
Hubble photograph of most distant galaxies int-3
Hubble rule for expanding universe int-3, 33-24
Hubble telescope mirror Optics-44

Spherical aberration in Optics-22
Human ear

Description of 16-15
Inside of cochlea 16-34

Human Eye Optics-31
Huygens

Wave nature of light 34-1, Optics-1
Huygens' principle 33-4

Preliminary discussion of 15-2
Hydrodynamic voltage

Bernoulli's equation 23-17
Resistance 27- 7
Town water supply 23-18

Hydrogen atom
Angular momentum quantum number 38-7
Big bang theory int-4
Binding energy of electron 38-12
Bohr theory 35-1
Classical 35-2
Coulomb's law 24-4
Expanded energy level diagram 38-8
Quantized projections of angular momentum 38-5
Solution of Schrödinger’s equation 38-2
Standing wave patterns in 38-3
The L = 0 Patterns 38-4
The L ≠ 0 Patterns 38-5

Hydrogen atom, classical
Failure of Newtonian mechanics 35-3

Hydrogen bomb int-18, 20-13
Hydrogen molecule

Formation of 19-16
Hydrogen molecule ion

Binding energy and electron clouds 19-23
Computer program for 19-24
Formation of 19-16
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Hydrogen nucleus int-6, 19-3
Isotopes of 19-6

Hydrogen spectrum
Balmer series 33-19, 35-4
Bohr model int-8
Experiment on 33-17
Lyman series 35-6
Of star 35-4
Paschen series 35-6
X. See Experiments II: -10- Diffraction grating and

hydrogen spectrum
Hydrogen wave patterns

Intensity at the origin 38-5
L= 0 patterns 38-4
Lowest energy ones 38-3
Schrödinger’s Equation 38-2

Hydrogen-Deuterium molecule, NMR experi-
ment 39-12

Hydrostatics, from Bernoulli's equation 23-12

I
IBM Labs, atomic microscopes 17-1
Ice crystal 17-4
Ideal gas law 17-18

Chemist's form 17-25
Ideal gas thermometer 17-20

Absolute zero 17-21
Image

Image distance
Lens equation Optics-24
Negative Optics-26

In focal plane of telescope mirror Optics-5
Medical Optics-15

Gallbladder operation Optics-15
Of duodenum Optics-15

Impulse
Change in momentum 11-12
Experiment on 11-9
Measurement 11-11

Inclined plane 9-10
Galileo’s inclined plane, photo of 9-11
Objects rolling  down 12-25
With friction 9-12

Indefinite integral
Definition of Cal 1-14
Of exponential function Cal 1-29

Index of refraction
Definition of Optics-9
Glass prism and rainbow of colors Optics-15
Introduction to Optics-2
Of gas of supercooled sodium atoms Optics-9
Table of some values Optics-9

Induced voltage
In moving loop of wire 30-4
Line integral for 31-4

Inductance
Chapter on 31-1
Derivation of formulas 31-5

Inductor
As a circuit element 31-7
Definition of 31-2
Iron core 31-29
LC Circuit 31-10
LR circuit 31-8
Toroidal coil 31-6

Inertia
Inertial mass 6-5
Moment of (Angular mass) 12-7
Of a massive object 31-12
Of an electric current 31-12

Infrared light
Ability to penetrate interstellar dust Optics-46
Center of our galaxy Optics-47
Horsehead nebula in visible & infrared Optics-46
In the electromagnetic spectrum int-7
Paschen series, hydrogen spectra 35-6
Wavelength of 32- 20

Infrared Telescopes Optics-46
Infrared camera Optics-46
IRAS satellite Optics-47

Map of the entire sky Optics-47
Mt. Hopkins 2Mass telescope Optics-46

Viewing center of our galaxy Optics-47
Initial conditions in a computer program 5-14
Initial slope in RC circuit 27- 25
Inside the cochlea 16-34
Instantaneous velocity

And the uncertainty principle 4-2, Cal 1-4
Calculus definition of 4-3, Cal 1-5
Definition of 3-24
From strobe photograph 3-26

Instruments
Percussion 16-22
Stringed 16-18
Violin, acoustic vs electric 16-19
Wind 16-20

Integral
As a sum Cal 1-10
Calculating them Cal 1-11
Definite, introduction to Cal 1-11
Formula for integrating x to n'th power Cal 1-14, Cal

1-27
Indefinite, definition of Cal 1-14
Of 1/x, the logarithm Cal 1-15
Of a constant Cal 1-13
Of a curve that increases linearly Cal 1-13
Of a velocity curve Cal 1-12
Of exponential function e to the ax Cal 1-29
Of the velocity vector Cal 1-10

As area under curve Cal 1-12
Of x to n'th power

Indefinite integral Cal 1-27
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Integral, line
Ampere’s law 29-7
Conservative force 29-6
Evaluation for solenoid 29-15
Evaluation for toroid 29-17
Faraday's law 30-15
For circular electric field 30-13
For static charges 30-2
In Maxwell's equations 32- 8
Introduction to 29-5
Two kinds of fields 30-18

Integral of E.dl meter 30-18, 30-20
Integral sign Cal 1-10
Integral, surface 29-2

For magnetic fields 32- 2
Formal introduction 29-2
Gauss’ law 29-3
In Maxwell's equations 32- 8
Two kinds of fields 30-18

Integration
Equivalent to finding area Cal 1-11
Introduction to Cal 1-8
Introduction to finding areas under curves Cal 1-13
Why computers do it so well Cal 1-12

Integration and differentiation
As inverse operations Cal 1-18

Velocity and position Cal 1-19
Fast way to go back and forth Cal 1-20
Position as integral of velocity Cal 1-20
Velocity as derivative of position Cal 1-20

Integration formulas Cal 1-27
Intensity

And amplitude, Fourier analysis lecture 16-33
Of diffraction pattern 16-33
Of harmonics in Fourier analysis of light pulse 40-22
Of probability wave 40-22
Sound intensity, bells and decibels 16-24
Sound intensity, speaker curves 16-27

Interactions. See also the individual forces
Electric int-14
Four basic 19-1
Gravitational int-15
Nuclear int-14
Photons and gravity 34-18
Weak int-14

Interactions, four basic 19-1
Interference patterns

A closer look at 33-26
Introduction to 33-3
Two-slit

Light waves 33-10
Probability waves 40-9
Water waves 33-6

Internal combustion engine 18-21
Internal reflection Optics-13
Interval, evaluating variables over Cal 1-10
Ionic Bonding 38-15
Iris Optics-31

Iron 56, most tightly bound nucleus int-18, 20-11
Iron core inductor 31-29
Iron core of massive star 20-15
Iron fillings, direction of magnetic field 28- 12
Iron magnets 31-26
Isothermal expansion

Calculation of work 18-26
PV Diagrams 18-8

Isotopes of nuclei int-17, 19-6
Stability of int-22

J
Jeweler using magnifier Optics-38
Joules and  Ergs 10-4

K
K meson and direction of time int-23, 40-23
Karman vortex street 14-25
Kepler's laws

Conservation of angular momentum 8-32
First law 8-26
Introduction to 8-24
Second law 8-27
Third law 8-28

Kilobaud, fiber optics communication Optics-14
Kinetic energy

Always positive 8-35
Bohr model of hydrogen 35-3
Classical hydrogen atom 35-3
Electron diffraction apparatus 36-9
Equipartition of energy 17-28
Escape velocity 10-28
Hydrogen molecule ion 19-21
Ideal gas law 17-18
In collisions 11-14
In model atom 37-5
In terms of momentum 37-5
Nonrelativistic 10-6
Nuclear fusion 20-12
Origin of 10-5
Oscillating mass 14-11
Overview int-8
Pendulum 10-10
Relativistic definition of 10-5
Rotational 12-22
Satellite motion 8-36, 10-26
Slowly moving particles 10-6, 10-29
Temperature scale 17-11
Theorem on center of mass 12-26
Thermal motion 17-6
Translation and rotation 12-24
Work energy theorem 10-18

Kirchoff’s law
Applications of 27- 11
Introduction to 27- 10
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L
L = 0 Patterns, hydrogen standing waves 38-4
Lack of simultaneity 1-32
Lambda max. See Blackbody radiation: Wein's

displacement law
Lambda(1520), short lived elementary particle 40-

23
Landé g factor 39-14
Largest scale of distance int-25
Laser

Chapter on 37-1
Diffraction patterns, Fourier analysis 16-33
Pulse in gas of supercooled sodium atoms Optics-9
Standing light waves 37-2

LC circuit
Experiment on 31-13
Fourier analysis of 31-31
Introduction to 31-10
Ringing like a bell 31-36

LC oscillation, intuitive picture of 31-12
Left hand rule, as mirror image Optics-6
Leibnitz 4-1, Cal 1-3
Lens

Crystalline, eye Optics-31
Diverging Optics-26
Eye glasses experiment Optics-36
Eyepiece Optics-37
Introduction to theory Optics-18
Lens equation

Derivation Optics-25
Introduction Optics-24
Multiple lens systems Optics-28
Negative focal length, diverging lens Optics-26
Negative image distance Optics-26
Negative object distance Optics-27
The lens equation itself Optics-25
Two lenses together Optics-29

Magnification of lenses Optics-30
Magnifier Optics-38

Jeweler using Optics-38
Magnification of Optics-39

Magnifying glass Optics-37
Multiple lens systems Optics-28
Optical properties due to slowing of light Optics-9
Simple microscope Optics-50
Spherical surface

Grinding one Optics-19
Optical properties of Optics-19

Thin lens Optics-23
Two lenses together Optics-29
Zoom lens Optics-18

Lens, various types of
Bi-concave Optics-27
Bi-convex Optics-27
Meniscus-concave Optics-27
Meniscus-convex Optics-27
Planar-concave Optics-27
Planar-convex Optics-27

Lenses, transmitted waves 36-3
Lensing, gravitational 34-20
Lepton family

Electron int-22
Electron type neutrino int-22
Muon int-22
Muon type neutrino int-22
Tau int-22
Tau type neutrino int-22

Leptons, conservation of int-22
LET statement, computer 5-5
Lifetime

Muon, exponential decay Cal 1-32
Lifting weights and muscle injuries 13-11
Light int-7

Atomic spectra 33-16
Balmer series 33-19
Blackbody radiation 34-2

Another View of 34-22
Chapter on 33-1
Decoupling from matter in early universe 34-31
Diffraction of light

By thin crystals 36-6
Fourier analysis of slits 16-33
Grating for 33-12
Pattern, by strand of hair 36-14
Patterns, student projects 36-13

Doppler effect
In astronomy 33-23
Introduction to 33-20
Relativistic 33-22

Electromagnetic spectrum int-7, 32- 20
Photon energies 34-11

Electromagnetic waves 32- 18
Gravitational lensing of 34-20
Hydrogen spectrum. See Experiments II: -10- Diffrac-

tion grating and hydrogen spectrum
Balmer formula 35-5
Bohr model. See Bohr Model
Lab experiment 33-17
Spectrum of star 33-19

Infra red. See Infrared light
Interaction with gravity 34-18
Interference patterns for various slits 33-12
Laser pulse in gas of supercooled sodium

atoms Optics-9
Lasers, chapter on 37-1
Light pulse clock 1-14
Maxwell’s theory of int-7
Microwaves. See Microwaves
Mirror images Optics-6
Motion through a Medium Optics-8
Particle nature of 34-1
Photoelectric effect 34-5
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Photon
Chapter on 34-1
Creates antiparticle 34-17
Energies in  short laser pulse 40-21
In electron spin resonance experiment 39-9
Introduction to int-8
Mass 34-12
Momentum 34-13
Thermal, 2.74 degrees int-29, 34-27, 34-31

Polarization of light 32- 23
Polarizers 32- 25
Prism, analogy to Fourier analysis 16-28
Radiated electric fields 32- 28
Radiation pressure of 34-14
Radiation pressure, red supergiant stars 20-15
Radio waves. See Radio waves
Rays Optics-1
Red shift and the expanding universe 33-24, 34-21
Reflection 36-3, Optics-1
Reflection and fluorescence 40-8
Reflection from curved surfaces Optics-4
Spectral lines, hydrogen int-7

Bohr theory 35-4
Speed in a medium Optics-8
Speed of light

Electromagnetic pulse 32- 14
Experiment to measure 1-9, 31-15
Same to all observers 1-12

Structure of electromagnetic wave 32- 19
Thermal, 2.74 degrees 34-27
Three degree radiation 34-27
Two-slit interference pattern for 33-10
Ultraviolet. See Ultraviolet light
Visible. See Visible light
Visible spectrum of 33-15
Wave equation for int-7
Waves, chapter on 33-1
X ray diffraction 36-4
X rays. See X-rays

Light-hour int-2
Light-minute int-2
Light-second int-2
Light-year int-2
Limiting process 4-1, Cal 1-3

Definition of derivative Cal 1-30
In calculus Cal 1-5
Introduction to derivative Cal 1-6
With strobe photographs Cal 1-2

Line charge, electric field of
Calculated using calculus 24-6
Calculated using Gauss' law 24-21

Line integral. See Integral, line
Linear and nonlinear wave motion 15-10
Linear momentum. See Momentum
Lines, equipotential 25-3

Lithium
And the Pauli exclusion principle 38-9
Atom 38-12
Binding energy of last electron 38-12
In the periodic table 38-11
Nucleus int-6

Logarithms
Integral of 1/x Cal 1-15
Introduction to Cal 1-15
Inverse of exponential function Cal 1-16

Lorentz contraction 1-24
Charge density created by 28- 6

Lorentz force law
And Maxwell's equations 32- 8
Electric and magnetic forces 28- 15
Relativity experiment 30-9

Lorenz, chaos 23-1
LR circuit 31-8

Exponential decay time constant 31-9
LRC circuit, ringing like a bell 31-36
Lyman series, energy level diagram 35-6

M
Magnetic bottle 28- 31
Magnetic constant (µ zero), definition of 28- 11
Magnetic energy

Of current loop 31-22
Of spin 39-1
Of spin, semi classical formula 39-14

Magnetic field 28- 10
Between capacitor plates 32- 6
Detector 32- 26
Dimensions of, tesla and gauss 28- 16
Direction of

Compass needles 28- 12
Definition 28- 11
Iron fillings 28- 12

Gauss' law for 32- 2
Helmholtz coils 28- 17, 28- 18

100 turn search coil 39-12
Electron spin resonance apparatus 39-11
Field mapping experiment 30-24
Motion of electrons in 28- 20, 28- 29

In electromagnetic waves 32- 18
In light wave int-7
Interaction with spin 39-4
Mapping. See Experiments II: - 7- Magnetic field

mapping using Faraday's law
Mapping experiment with Helmholtz coils 30-24
Motion of charged particles in 28- 19
Motion of electrons in. See Experiments II: - 5- Motion

of electrons in a magnetic field
Oersted, Hans Christian 28- 12
Of a solenoid 28- 17, 29-14
Of a straight wire 29-11
Of a toroid 29-17
Of permanent magnet, experiment to measure 30-25
Radiated, a thought experiment 32- 11
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Magnetic field Continued
Right-hand rule for current 28- 13
Right-hand rule for solenoids 29-14
Surface integral of 32- 2
Uniform 28- 16

Between Helmholtz coils 28- 17
Between pole pieces 28- 16
Inside coils 28- 17

Magnetic flux
AC voltage generator 30-21
Definition of 30-11
Faraday's law

Line integral form 30-15
Voltage form 30-12

Field mapping experiment 30-24
Gaussmeter 30-23
In the betatron 30-16
Integral E.dl meter 30-19
Magnetic field detector 32- 26
Maxwell's equations 32- 8
Velocity detector 30-25
Voltage transformer 30-26

Magnetic focusing 28- 29. See also Experiments II:
- 5a- Magnetic focusing and space physics

Movie 28- 30
Magnetic force

Between currents 31-19
Deflection of electron beam 28- 9

Movie 28- 9
On a current 31-18
On electrons in a wire 30-3
Origin of 28- 8
Parallel currents attract 28- 14
Relativity experiment (Faraday's law) 30-9
Thought experiment (on origin of) 28- 7

Magnetic force law
Lorentz force law, electric and magnetic forces 28-

15
Magnetic force law, derivation of

F = qvB 28- 10
Vector form 28- 14

Magnetic moment
And angular momentum 31-24
Bohr magneton 39-4
Definition of 31-21
Nuclear 39-6
Of charge in circular orbit 31-24
Of electron 39-4
Of neutron 39-6
Of proton 39-6
Summary of equations 31-24

Magnetic resonance
Classical picture of 39-8, 39-14

Precession of atom 39-15
Electron spin resonance experiment 39-5
X. See Experiments II: -12- Electron spin resonance

Magnetism
Chapter on 28- 1
Thought experiment to introduce 28- 4

Magnets
Electromagnet 31-28
Iron 31-26
Superconducting 31-30

Magnification
Definition Optics-30
Negative (inverted image) Optics-30
Of Magnifier Optics-39
Of two lenses, equation for Optics-30

Magnifier Optics-38
Jeweler using Optics-38
Magnification of Optics-39

Magnifying glass Optics-30, Optics-37
Magnitude of a Vector 2-6
Map, contour 25-1
Mapping convention for electric fields 24-17
Mars, retrograde motion of 8-24
Mass

Addition of 6-4
Angular

Moment of inertia 12-7
Center of mass

Diver movie 11-1
Dynamics of 11-4
Formula 11-3
Introduction to 11-2

Chapter on mass 6-1
Definition of mass

Newton's second law 8-3
Recoil experiments 6-2

Electron mass in relativistic beta decay 6-7
Energy

In nuclei int-18
Introduction to 10-3
Of neutron int-22

Gravitational force on int-6
Gravitational mass 6-5
Inertial mass 6-5
Measuring mass 6-4
Of a moving object 6-5
Of a neutrino 6-13
Of a photon 34-12
Properties of 6-3
Relativistic formula for 6-10
Relativistic mass

Beta decay 6-6
Beta decay of Plutonium 246 6-8
Beta decay of Protactinium 236 6-9
Intuitive discussion 6-6

Rest mass int-11, 6-10, 10-5
Role in mechanics 8-3
Standard mass 6-3
Zero rest mass 6-11

Mass on a spring, analytic solution 14-7
Mass, oscillating, differential equation for 14-8
Mass spectrometer 28- 28
Mathematical prism, Fourier analysis 16-28
Matter over antimatter, in early universe int-30, 34-

17
Matter, stability of 19-14
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Mauna Kea, Hawaii Optics-45
Maxima, first, of two-slit pattern 33-8
Maximally efficient engines 18-15
Maxwell’s correction to Ampere’s law 32- 4
Maxwell's equations 32- 8

Chapter on 32- 1
Failure of

In classical hydrogen atom 35-2
In photoelectric effect 34-6

In empty space 32- 10
Probability wave for photons 40-7
Symmetry of 32- 9

Maxwell’s theory of light int-7, 1-9, 32- 2
Maxwell's wave equation int-7, 15-1, 32- 18
Measurement limitation

Due to photon momentum 40-11
Due to uncertainty principle 4-2, Cal 1-4
Two slit thought experiment 40-9
Using waves 40-10

Measuring short times using uncertainty prin-
ciple 40-22

Measuring time constant from graph Cal 1-34
Mechanics

Newtonian
Chapter on 8-1
Classical H atom 35-3

Newton's second law 8-4
Newton’s Third Law 11-6
Photon mechanics 34-12
Relativistic int-12
The role of mass in 8-3

Medical imaging Optics-15
Megabit, fiber optics communication Optics-14
Meiners, Harry, electron scattering apparatus 36-1
Meniscus-concave lens Optics-27
Meniscus-convex lens Optics-27
Mercury barometer, pressure measurement 17-22
Meter, definition of int-2
Microscope int-1, Optics-50

Atomic 17-1
Scanning tunneling microscope Optics-51

Surface (111 plane) of a silicon Optics-51
Simple microscope Optics-50

Microwaves
Electromagnetic spectrum int-7, 32- 20
Microwave polarizer 32- 24
Photon energies 34-11

Milky Way int-2
Center of our galaxy Optics-47

Millikan oil drop experiment 26-17
Mirror images

General discussion Optics-6
Reversing front to back Optics-7
Right-hand rule Optics-6

Mirror, parabolic
Focusing properties of Optics-4, Optics-42

MKS units
Ampere, volt, watt 24-2
Coulomb's law in 24-2

MOD command, computer 5-10
Model Atom 37-4

Chapter on 37-1
Energy levels in 37-4

Model showing equipotential and field lines 25-10
Modulus

Bulk 15-8
Definition of 15-8
Young’s 15-8

Molar heat capacity 17-26
Molar specific heat of helium gas 17-27
Mole

Avogadro's number 17-24
Volume of 17-25

Molecular forces int-6, 14-20, 17-12
A classical analysis 19-18

The bonding region 19-19
A more quantitative look 19-18
Binding energy 17-13
Electric interaction 19-1
Four basic interactions 19-2
Introduction to 19-15
Represented by springs 17-13

Molecular weight 17-24
Molecules 17-2

Cholera 17-2
Hydrogen, electric forces in 19-16
Hydrogen molecule ion 19-16
Myoglobin 17-3
Water 17-2

Moment, magnetic
And angular momentum 31-24
Definition of 31-21
Of charge in circular orbit 31-24
Summary of equations 31-24

Moment of inertia
Angular mass 12-7

Calculating 12-8
Rotational kinetic energy 12-22

Momentum
Angular. See Angular momentum
Collisions and impulse 11-9
Conservation of 7- 2

Derivation from Newton's second law 11-7
During collisions 11-13
General discussion 7- 1
In collision experiments 7- 4
In subatomic collisions 7- 7
X. See also Experiments I: - 3- Conservation of linear
momentum

De Broglie formula for momentum 35-11
Kinetic energy in terms of momentum 37-5
Linear momentum, chapter on 7- 1
Momentum of photon

Compton scattering. 34-15
Formula for 34-13

Momentum version of Newton’s second law 11-8
Uncertainty principle, position-momentum form 40-

15
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Mormon Tabernacle,  ellipse Optics-3
Mormon Tabernacle, focusing of sound waves 8-

26, Optics-3
Motion

Angular analogy 12-3
Damped harmonic motion 14-21

Differential equation for 14-21
Description of, chapter on 3-3
Forced harmonic motion

Differential equation for 14-25, 14-28
Harmonic motion 14-12

Computer program for 14-30
Of charged particles

In magnetic fields 28- 19
In radiation belts 28- 32

Of electrons in a magnetic field. See Experiments II: -
5- Motion of electrons in a magnetic field

Of light through a medium Optics-8
Oscillatory motion 14-2. See also Experiments I: -

10- Oscillatory motion of various kinds
Prediction of motion 5-12
Projectile. See Projectile Motion
Resonance 14-24

Tacoma Narrows bridge 14-24
Rotational motion 12-1

Angular acceleration 12-3
Angular velocity 12-2
Radian measure 12-2

Satellite. See Satellite motion
Thermal motion 17-6
Translation and rotation 12-24
Uniform circular motion 3-17, 8-2

Particles in magnetic field 28- 20
Wave motion, amplitude and phase 15-17

Movie
Angular momentum as a Vector 7- 15
Brownian motion 17-7
Circular motion of particles in magnetic field 28- 20
Diver 11-1
Magnetic deflection 28- 9
Magnetic focusing 28- 30
Muon Lifetime 1-21
Standing De Broglie like waves 35-11
Time reversed dive, second law of thermodynam-

ics 18-1
Mt. Hopkins telescope Optics-43
Mt. Palomar  telescope Optics-43
Mu (µ) zero, definition of 31-19
Multi Electron Atoms 38-9
Multiple lens systems Optics-28
Multiple slit grating 16-33
Multiple slit interference patterns 33-12
Multiplication notation, computer 5-6
Multiplication of vectors

By a number 2-5
Scalar or dot product 2-12
Vector cross product 2-15, 12-9

Muon
And Mt. Washington, Lorentz contraction 1-29
Discovery of int-23
Half life used as clock 1-20
Lepton family int-22
Lifetime, exponential decay Cal 1-32
Movie on lifetime 1-21

Cerenkov radiation Optics-10
Muon type neutrino int-21

Muscle, ciliary, in the eye Optics-31
Muscle injuries lifting weights 13-11
Myoglobin molecule 17-3
Myopia, nearsightedness Optics-32

N
Nature’s speed limit int-12, 6-11
Nearsightedness Optics-32
Nebula

Crab, neutron star 20-16
Eagle 7- 16, 7- 18
Orion 7- 17

Negative and positive charge 19-10
Negative focal length, diverging lenses Optics-26
Negative image distance Optics-26
Negative object distance Optics-27
Negative slope Cal 1-31
Neon bulb oscillator 27- 28

Experimental setup 27- 31
X. See Experiments II: - 4- The Neon Bulb Oscillator

Neon, up to, periodic table 38-13
Nerve fibers, human eye Optics-31

Cones Optics-31
Rods Optics-31

Net area (Fourier analysis) 16-29
Neutrino astronomy 6-14, 11-21
Neutrinos 6-13, 11-20

1987 Supernova 6-14
Beta (ß) decay reactions 20-6
Cosmic background int-30
Created in the weak interaction 20-6
Electron type int-21
From the sun 6-13, 11-21
In nuclear structure 20-7
In stellar evolution 20-15
In supernova explosions 20-16
Muon type int-21
Passing through matter int-22
Pauli's prediction of int-21, 20-6
Rest mass 20-6
Stability of 19-14
Tau type int-21
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Neutron
Decay

Beta decay reactions 20-7
Charge conservation in int-21
Energy problems int-21
Weak interaction 20-6

Formation of deuterium in early universe 34-30
In alpha particles 20-8
In isotopes int-17, 19-6
In nuclear matter 20-1
Neutron proton balance in early universe 34-30
Neutron proton mass difference in early universe 34-

30
Nuclear binding energies 20-9
Quark structure of int-24
Rest mass energy int-22, 20-9
Role in nuclear structure 20-7

Neutron star
And black holes int-20, 20-18
Binary int-15
In Crab nebula 20-17
Pulsars 20-17
Stellar evolution int-19

New functions, obtained from integration Cal 1-15
Newton

Particle nature of light 34-1, Optics-1
Newtonian mechanics 8-1

Classical H atom 35-3
Failure of

In specific heats 17-31
In the classical hydrogen atom 35-3

The role of mass 8-3
Newton’s laws

Chapter on 8-1
Classical physics int-7
Gravity int-15, 8-5
Second law 8-4

And Newton’s law of gravity 8-5
Angular analogy 12-14
Applications of, chapter on 9-1
Atwood’s machine 9-16
Inclined plane 9-10
Momentum version of 11-8
Satellite motion 8-8
String forces 9-15
Vector addition of forces 9-6

Third law 11-6
Newton’s reflecting telescope Optics-22, Optics-42
NMR experiment, the hydrogen-deuterium mol-

ecule 39-12
Nonlinear restoring forces 14-19
Nonrelativistic wave equation int-12, 15-2, 34-16
Normal modes

Degrees of freedom 17-29
Fourier analysis of coupled air cart system 16-12
Modes of oscillation 16-4
X. See Experiments I: -11- Normal modes of oscilla-

tion

Nuclear
Binding energy 20-9
Charge, effective, in periodic table 38-12
Energy well, binding energies 20-10
Fission int-18, 20-3

Energy from 20-4
Force int-18, 20-2

Four basic interactions 19-2
Meson, Yukawa theory int-22
Range of 20-3
Range vs. electric force int-18

Fusion int-18, 20-12
Binding energies, stellar evolution 20-13

Nuclear interaction int-14
Alpha particles 20-8
Binding energy 20-9
Neutron stars 20-17

Nuclear magnetic moment 39-6
Nuclear matter, chapter on 20-1
Nuclear reactions, element creation int-4
Nuclear stability, binding energy 20-10
Nuclear structure int-22, 20-7

Nucleon int-17
Nucleus int-17

Discovery of, Rutherford 35-1
Hydrogen int-6
Isotopes of 19-6
Large int-22
Lithium int-6
Most tightly bound (Iron 56) 20-11

O
Odd harmonics in a square wave 16-28
Odor of violets 17-6
Oersted, Hans Christian 28- 12
Off axis rays, parabolic mirror Optics-4
Ohm’s law 27- 7
One cycle of a square wave 16-28
One dimensional wave motion 15-1
Optical properties

Parabolic reflectors Optics-4
Spherical surface Optics-19

Optics, fiber
Introduction to Optics-14
Medical imaging Optics-15

Optics, geometrical
Chapter on Optics-1
Definition of Optics-2

Optics of a simple microscope Optics-50
Orbitals 19-15. See also Hydrogen atom: Standing

wave patterns in
Orbits

Allowed, Bohr theory int-8
Bohr, radii of 35-7
Classical hydrogen atom 35-2
Orbit-1  program 8-21
Precession of, general relativity 8-30
Satellite. See Satellite motion
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Order and disorder
Direction of time 18-25
Entropy and the second law of thermodynamics 18-

4
Formula for entropy 18-24

Orion nebula 7- 17
Oscillation 14-1

Critical damping 14-23
Damped

Computer approach 14-21
Differential equation for 14-21

LC circuit 31-10
Intuitive picture of 31-12

Mass on a spring
Analytic solution 14-7
Computer solution 14-30
Differential equation for 14-8

Non linear restoring forces 14-19
Normal modes 16-4. See also Experiments I: -11-

Normal modes of oscillation
Period of 14-4
Phase of 14-6
Resonance

Analytic solution for 14-26, 14-28
Differential equation for 14-25
Introduction to 14-24

Small oscillation
Molecular forces 14-20
Simple pendulum 14-16

Torsion pendulum 14-12
Transients 14-27

Oscillator
Harmonic oscillator 14-12

Differential equation for 14-14
Forced 14-28

Neon bulb oscillator 27- 28
Period of oscillation 27- 30
X. See also Experiments II: - 4- The neon bulb
oscillator

Oscillatory motion 14-2. See also Experiments I: -
10- Oscillatory motion of various kinds

Osmotic pressure 17-34
Overview of physics int-1

P
Parabola

How to make one Optics-4
Parabolic mirror

f number Optics-5
Focusing properties of Optics-4, Optics-42
Off axis rays Optics-4

Parallel currents attract 28- 14
Parallel plate capacitor 26-14

Capacitance of 27- 16
voltage in 26-15

Parallel resistors 27- 12
Particle

Point size int-14
Systems of particles 11-1

Particle accelerators 28- 22
Particle decays and four basic interactions int-23
Particle nature of light 34-1

Photoelectric effect 34-5
Particle-wave nature

Born’s interpretation 40-6
De Broglie picture int-10, 35-10
Energy level diagrams resulting from 37-4
Of electromagnetic spectrum 34-11
Of electrons

Davisson and Germer experiment 35-12
De Broglie picture int-10, 35-10
Electron diffraction experiment 36-8
Electron waves in hydrogen 38-2
Pauli exclusion principle 38-9

Of forces int-13
Of light

Electromagnetic spectrum 34-11
Photoelectric effect 34-5
Photon mass 34-12
Photon momentum 34-13
Photon waves 40-6
Photons, chapter on 34-1

Of matter int-10, 34-11
Probability interpretation of 40-6

Fourier harmonics in a laser pulse 40-22
Reflection and fluorescence 40-8

Quantum mechanics, chapter on 40-1
Two slit experiment from a particle point of view

Probability interpretation 40-9
The experiment 40-3

Uncertainty principle 40-14
Energy conservation 40-24
Position-momentum form of 40-15
Quantum fluctuations 40-25
Time-energy form of 40-19

Paschen series
Energy level diagram 35-6
Hydrogen spectra 35-6

Pauli exclusion principle 38-1, 38-9
Pauli, W., neutrinos int-21, 20-6
Peebles, radiation from early universe 34-27
Pendulum

Conical 9-18
Energy conservation 10-10
Simple and conical 14-17
Simple pendulum 14-15
Spring pendulum 9-4

Ball spring program 9-20
Computer analysis of 9-8
F = ma 9-7
X. See Experiments I: - 6- Spring pendulum

Torsion pendulum 14-12
Differential equation for 14-14

Penzias and Wilson, cosmic background
radiation int-29, 34-27

Percussion instruments 16-22
Period of oscillation 14-4

Neon bulb circuit 27- 30
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Period, wavelength, and frequency 15-13
Periodic table 38-1, 38-10

Beryllium 38-13
Boron 38-13
Effective nuclear charge 38-12
Electron binding energies 38-11
Electron screening 38-10
Lithium 38-12
Potassium to krypton 38-14
Sodium to argon 38-13
Summary 38-14

Phase and amplitude
Fourier analysis lecture 16-31
Wave motion 15-17

Phase of an oscillation 14-6
Phase transition, electroweak theory int-26
Phases of Fourier coefficients 16-32
Photoelectric effect int-8

Einstein's formula 34-7
Introduction to 34-5
Maxwell's theory, failure of 34-6
Planck's constant 34-8

Photon int-8
Blackbody radiation 34-22
Chapter on 34-1
Creates antiparticle 34-17
Electric interaction int-23
Energies in  short laser pulse 40-21
Energy 34-9

Energy levels in laser 37-4
Uncertainty principle, Fourier transform 40-20

Gravitational deflection of 34-19
Hydrogen spectrum 35-5
In electron spin resonance experiment 39-9
Interaction with gravity 34-18
Mass 34-12
Mechanics 34-12
Momentum 34-13

Compton scattering 34-15
Measurement limitation 40-11

Probability wave 40-7
Rest mass int-12
Stability of 19-14
Standing waves 37-3
Thermal, 2.74 degrees int-29, 34-27, 34-31

Photon pulse
Photon energy in 40-21
Probability Interpretation of 40-22

Photon waves, probability interpretation 40-6
Physical constants

In CGS units Back cover-1
Pi mesons int-23
Piela, electron clouds and binding energy 19-23
Pinhole camera Optics-35
Planar-concave lens Optics-27
Planar-convex lens Optics-27
Planck, M., blackbody radiation law 34-4

Planck's constant
And blackbody radiation 34-4, 34-22
Angular momentum, Bohr model 35-8
Bohr theory 35-1
In Bohr magneton formula 39-4
In de Broglie wavelength formula 35-11
In photon mass formula 34-12
In photon momentum formula 34-13
In the photoelectric effect 34-7
In the uncertainty principle 40-15, 40-19
Introduction to 34-8
Spin angular momentum 39-3

Plane, inclined 9-10
Planetary units 8-14
Planets

Formation of 7- 17
Plates, electron gun deflection 26-16
Plotting

A point by computer 5-6
Experiment, electric potential 25-7
Potentials and fields. See Experiments II: - 1- Poten-

tial plotting
Window, computer 5-7

Plutonium 246 6-8
Point

Mass, gravitational field of 24-23
Particle int-14
Source, velocity field of 23-6

Polarization of light waves 32- 23
Polarizer

Light 32- 25
Microwave 32- 24

Polaroid, light polarizer 32- 25
Position measurement, uncertainty principle 40-15
Positive and negative

Charge 19-10
Electric current 27- 3

Positive area in Fourier analysis 16-29
Positron (antimatter) int-13, 34-17
Positronium, annihilation into photons 34-17
Potassium to krypton, periodic table 38-14
Potential, electric

Contour map 25-1
Of a point charge 25-5
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Potential energy
Conservative forces 25-5
Electric potential energy

Contour map of 25-1
In classical hydrogen atom 35-3
In hydrogen atom int-11
In hydrogen molecule ion 19-21
In molecules 17-12
In nuclear fission int-18, 20-5
Negative and positive 25-4
Of a point charge 25-5
Potential plotting 25-7
Storage in capacitors 27- 18

Energy conservation int-11, 8-35, 10-20
Conservative and non-conservative forces 10-21
Mass on spring 14-11
Uncertainty principle 40-24

Equipartition of energy 17-28
Gravitational potential energy int-11, 8-35

Bernoulli's equation 23-10
Black holes 10-29
In a room 10-25
In satellite motion 8-36, 10-26
In stellar evolution 20-13
Introduction to 10-8
Modified 8-37
On a large scale 10-22
Zero of 10-22

In collisions 11-14
Negative and positive 25-4
Nuclear potential energy int-18

Binding energies 20-9
Fusion 20-12

Spin potential energy
Magnetic 39-1
Magnetic moment 39-4

Spring potential energy int-11, 10-16, 14-11
Work int-11, 10-15
Work energy theorem 10-18

Potential plotting. See Experiments II: - 1- Potential
plotting

Power
1 horsepower = 746 watts 18-20
Definition of watt 10-31
Efficiency of a power plant 18-18
In electric circuits 27- 9
Of the sun 34-23
Sound intensity 16-24

Powers of 10, names of Front cover-2
Practical system of units 10-31
Precession

Of atom, magnetic interaction 39-15
Of orbit, modified gravity 8-30

Prediction of motion
Using a computer 5-12
Using calculus Cal 1-9

Pressure
Atmospheric 17-23
Bernoulli's equation 23-9, 23-11

Airplane wing 23-13
Care in applying 23-16
Sailboats 23-14
Superfluid helium 23-17

Ideal gas law 17-18
In stellar evolution 17-17
Measurement, using mercury barometer 17-22
Osmotic pressure 17-34
Pressure in fluids

Aspirator 23-16
Definition of 23-10
Hydrodynamic voltage 23-17
Hydrostatics 23-12
Venturi meter 23-15
Viscous effects 23-19

Pressure of a gas 17-16
Pressure of light

Nichols and Hull experiment 34-14
Red giant stars 20-15, 34-15

PV diagrams 18-8
Adiabatic expansion 18-9, 18-26
Internal combustion engine 18-21
Isothermal expansion 18-8, 18-26
Reversible engines 18-13
The Carnot cycle 18-11, 18-26, 18-28

Work dome by pressure, Bernoulli's equation 23-10
Primary coil 30-26
Principle of relativity. See also Relativistic physics

A statement of 1-4
And the speed of light 1-11
As a basic law of physics 1-4
Chapter on 1-1
Einstein’s theory of 1-12
Introduction to 1-2
Special theory of 1-13

A consistent theory 1-32
Causality 1-36
Lack of simultaneity 1-32
Light pulse clock 1-14
Lorentz contraction 1-24
Mass energy 10-3
Nature’s speed limit 6-11
Origin of magnetic forces 28- 8
Photon mass 34-12
Photon momentum 34-13
Relativistic energy and momenta 28- 24
Relativistic mass 6-6
Relativity experiment leading to Faraday's law 30-9
Time dilation 1-16, 1-22
Zero rest mass particles 6-11

Principle of superposition
For 1 dimensional waves 15-11
For 2 dimensional waves 33-2
Preliminary discussion of 15-2, 33-1
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Prism
Atmospheric, the green flash Optics-17
Glass Optics-13
Glass, rainbow of colors Optics-15

Prism, mathematical (Fourier analysis) 16-28
Probability interpretation

And the uncertainty principle 40-14
Of electron diffraction pattern 40-6
Of particle waves 40-6
Of photon pulse 40-22
Of two slit experiment 40-2

Probability wave
For photons 40-7
Intensity of 40-22
Reflection and Fluorescence 40-8

Probe for scanning tunneling microscope Optics-51
Problem solving. See Solving problems

Gauss' law problems 24-26
How to go about it 24-29
Projectile motion problems 4-16

Program, BASIC. See BASIC program
Program, English

For oscillatory motion 14-31
For projectile motion 5-16
For satellite motion 8-19

Project suggestion on wave speed 15-8
Projectile motion

Analysis of
Calculus 4-9
Computer 5-16
Graphical 3-16

And the uncertainty principle 4-2, Cal 1-4
BASIC program for 5-19
Calculus definition of velocity 4-3, Cal 1-5
Computer program for 8-21
Constant acceleration formulas

Calculus derivation 4-9
Graphical analysis of 3-26

Determining acceleration for 3-16
English program for 5-16
Graph paper tear out pages 3-29
Gravitational force 8-2
Instantaneous velocity 3-24
Solving problems 4-16
Strobe photograph of 3-7
Styrofoam projectile 5-28
With air resistance

Calculus analysis 4-12
Computer calculation 5-22
Graphical analysis 3-22

X. See Experiments I: - 2- Computer prediction of
projectile motion

Projections of angular momentum
Classical 7- 14
Electron spin 39-3
Quantized 38-5

Protactinium 236, recoil definition of mass 6-9

Proton int-17
In alpha particles 20-8
In atomic structure 19-4
In hydrogen molecule 19-16
In nuclear structure 20-2
In the weak interaction 20-6
Quark structure int-24
Rest energy in electron volts 26-12
Stability of 19-14

Proton cycle, energy from sun 34-24
Proton synchrotron at CERN 28- 24
Proton-neutron mass difference, early universe 34-

30
Ptolemy, epicycle, in Greek astronomy 8-25
Pulleys

Atwood’s machine 9-16
Working with 9-16

Pulsars, neutron stars 20-17
Pulse

Formation from sine waves 40-27
Of electromagnetic radiation 32- 10

PV = NRT 17-25
PV diagrams

Adiabatic expansion 18-9
Carnot cycle 18-11
Isothermal expansion 18-8

Q
Quantization of electric charge 19-14
Quantized angular momentum int-9

Angular momentum quantum number 38-7
Electron spin 38-9

Chapter on 39-1
Concept of spin 39-3

In Bohr theory 35-9
In de Broglie's hypothesis 35-10
In hydrogen wave patterns 38-3
Quantized projections 38-5

Quantized vortices in superfluids 23-22
Quantum electrodynamics int-14
Quantum fluctuations in empty space 40-25
Quantum mechanics. See also Particle-wave

nature; Schrödinger’s equation
Bohr theory of hydrogen 35-1
Chapter on 40-1
Concept of velocity 4-2, Cal 1-4
Electron and nuclear spin 39-1
Model atom 37-4
Schrodinger's equation applied to atoms 38-1
Uncertainty principle 40-14
Zero point energy 37-7

Quantum number, angular momentum 38-7
Quantum theory of gravity int-16, int-20
Quark confinement 19-15
Quarks int-24

Quantization of electric charge 19-14
Quasars

Gravitational lens, Einstein cross 34-20
Size of 34-19
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R
R, gas constant 17-25
Radar waves

Photon energies in 34-11
Wavelength of 32- 20

Radial acceleration 12-5
Radian measure 12-2, Cal 1-35
Radiated electromagnetic pulse 32- 10
Radiated magnetic field thought experiment 32- 11
Radiation

Blackbody 32- 22
Photon picture of 34-22
Theory of 34-2
Wein's displacement law 34-2

Cerenkov Optics-10
Electromagnetic field

Analysis of path 1 32- 14
Analysis of path 2 32- 16
Calculation of speed 32- 14
Spectrum of 32- 20

Radiated electric fields 32- 28
Radiated energy and the classical H atom 35-3
Radiated field of point charge 32- 30
Three degree cosmic radiation int-30, 34-27
UV, X Rays, and Gamma Rays 32- 22

Radiation belts, Van Allen 28- 32
Radiation pressure

In red supergiant stars 20-15
Of light 34-14

Radio galaxy Optics-48
Radio images of variable star Optics-49
Radio telescope int-15

Arecibo int-15
Three degree radiation 34-27

Radio telescopes Optics-48
Arecibo Optics-48
Radio galaxy image Optics-48
Radio images of variable star Optics-49
Very Large Array Optics-48
Very Long Baseline Array Optics-49

Radio waves
Hertz, Heinrich 34-1
In the electromagnetic spectrum int-7, 32- 20
Photon energies 34-11
Predicted from the classical hydrogen atom 35-2
Wavelength of 32- 20

Radius of electron 39-3
Rainbow

Glass prism Optics-15
Photograph of Optics-16

Range of nuclear force 20-3
RC circuit 27- 22

Exponential decay 27- 23
Exponential rise 27- 26
Half-lives 27- 25
Initial slope 27- 25
Measuring time constant 27- 25
X. See Experiments II: - 3- The RC Circuit

Reactive metal, lithium int-6, 38-9
Recoil experiments, definition of mass 6-2
Red shift and the expanding universe

Doppler effect 34-21
Evolution of universe 34-21
Uniform expansion 33-24

Red supergiant star 20-15
Reflecting telescope Optics-42

Cassegrain design Optics-42
Diffraction limit Optics-45
Hubbel space telescope Optics-44
Keck, world’s largest optical Optics-45
Mt. Hopkins Optics-43
Mt. Palomar Optics-43
Newton's Optics-22
Newton’s Optics-42
Secondary mirror Optics-42
William Hershel’s Optics-43

Reflection
And fluorescence, probability interpretation 40-8
Bragg reflection 36-4
From curved surfaces Optics-3
Internal Optics-13
Of light 36-3, Optics-1

Refracting telescopes Optics-40
Galileo's Optics-41
Yerkes Optics-41

Refraction, index of
Definition of Optics-9
Glass prism and rainbow of colors Optics-15
Introduction to Optics-2
Of gas of supercooled sodium atoms Optics-9
Table of some values Optics-9

Relativistic mass. See Relativistic physics: Relativis-
tic mass

Relativistic physics. See also Principle of Relativity
A consistent theory 1-32
Antimatter int-12, 34-16
Black holes 10-29
Blackbody radiation 34-22
Causality 1-36
Chapter on 1-1
Clock

Light pulse 1-14
Moving 1-13
Muon 1-20
Muon lifetime movie 1-21
Other kinds 1-18
Real ones 1-20

Creation of positron-electron pair 34-17
Definition of mass 6-2
Doppler effect for light 33-22
Einstein mass formula 6-10
Electric or magnetic field: depends on viewpoint 30-

10
Electric or magnetic force: depends on view-

point 28- 10
Electromagnetic radiation, structure of 32- 19
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Relativistic physics Continued
Electron mass in beta decay 6-7
Gravitational lensing 34-20
Interaction of photons and gravity 34-18
Kinetic energy 10-5

Slowly moving particles 10-6
Lack of simultaneity 1-32
Longer seconds 1-16
Lorentz contraction 1-24

Origin of magnetic forces 28- 8
Thought experiment on currents 28- 4

Lorentz force law 28- 15
Mass energy 10-3
Mass-energy relationship int-11
Maxwell’s equations 32- 8
Motion of charged particles in magnetic fields 28-

19
Muon lifetime movie 1-21
Nature's speed limit int-2, int-12, 6-11
Neutrino astronomy 6-14
Neutrinos 6-13
Origin of magnetic forces 28- 8
Particle accelerators 28- 22
Photon mass 34-12

Photon rest mass 6-12
Photon momentum 34-13

Compton scattering 34-15
Principle of relativity 1-2

As a basic law 1-4
Radiated electric fields 32- 28
Red shift and the expansion of the universe 34-21
Relativistic calculations 1-28

Approximation formulas 1-30
Muons and Mt. Washington 1-29
Slow speeds 1-29

Relativistic energy and momenta 28- 24
Relativistic mass 6-6

Formula for 6-10
In beta decay 6-6

Relativistic mechanics int-12
Relativistic speed limit 6-11
Relativistic wave equation int-12
Relativity experiment for Faraday's law 30-9
Short lived elementary particles 40-23
Space travel 1-22
Special theory of relativity 1-13
Speed of light, measurement of 1-9
Speed of light wave 32- 17
Spiraling electron in bubble chamber 28- 27
The betatron 30-16
The early universe 34-29
Thought experiment on expanding magnetic

field 32- 11
Time dilation 1-22
Time-energy form of the uncertainty principle 40-

19, 40-23
Zero rest mass int-12
Zero rest mass particles 6-11

Relativity, general int-15, 8-29

Renormalization int-14, int-17
Repeated wave forms in Fourier analysis 16-11
Resistors

In parallel 27- 12
In series 27- 11
Introduction to 27- 6
LR circuit 31-8
Ohm's law 27- 7

Resonance
Electron spin

Classical picture of 39-14
Experiment 39-9
Introduction to 39-5
X. See Experiments II: -12- Electron spin resonance

Introduction to 14-24
Phenomena 14-26
Tacoma Narrows bridge 14-24

Vortex street 14-25
Transients 14-27

Rest energy of proton and electron in eV 26-12
Rest mass int-11

And kinetic energy 10-5
Einstein formula 6-10

Restoring forces
Linear 14-7
Non linear 14-19

Retrograde motion of Mars 8-24
Reversible engines

As thought experiment 18-13
Carnot cycle 18-17
Efficiency of 18-18

Rifle and Bullet, recoil 7- 7
Right handed coordinate system 2-18
Right-hand rule

For cross products 12-10
For Faraday's law 30-15
For magnetic field of a current 28- 13
For magnetic field of a solenoid 29-14
For surfaces 29-16
Mirror images of Optics-6

Rods, nerve fibers in eye Optics-31
Rope, working with 13-10
Rotational motion

Angular acceleration 12-3
Angular analogy 12-3
Angular velocity 12-2
Bicycle wheel as a collection of masses 12-5
Chapter on 12-1
Radian measure 12-2
Rolling  down inclined plane 12-25
Rotational kinetic energy 12-22

Proof of theorem 12-26
Translation and rotation 12-24

Rubber, elasticity of 17-35
Rutherford and the nucleus 35-1
Rydberg constant, in Bohr theory 35-9
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S
Sailboats, Bernoulli's equation 23-14
Salt

Dissolving 17-6
Ionic bonding 38-15

Satellite motion 8-8
Calculational loop for 8-19
Classical hydrogen atom 35-2
Compare with projectile, Newton's sketch 8-10
Computer lab 8-23
Computer prediction of 8-16
Conservation of angular momentum 8-32
Conservation of energy 8-35
Earth tides 8-12
Gravitational potential energy 10-22
Kepler's  laws 8-24
Kepler's first law 8-26
Kepler's second law 8-27
Kepler's third law 8-28
Modified gravity 8-29
Moon 8-8
Orbit, circular 10-27
Orbit, elliptical 10-27
Orbit, hyperbolic 10-27
Orbit, parabolic 10-27
Planetary units for 8-14
Program for (Orbit 1) 8-21
Total energy 10-26
X. See Experiments I: - 5- Computer analysis of

satellite motion
Scalar dot product 2-12

Definition of work 10-13
Scanning tunneling microscope Optics-51

Surface (111 plane) of a silicon Optics-51
Scattering of waves

By graphite crystal, electron waves 36-8
By myoglobin molecule 36-5
By small object 36-2
By thin crystals 36-6
Chapter on 36-1
Davisson-Germer experiment 35-12
Reflection of light 36-3
Two slit thought experiment 40-10
X ray diffraction 36-4

Schmidt, Maarten, quasars 34-19
Schrödinger  wave equation

Felix Block story on 37-1
Introduction to wave motion 15-1
Particle-wave nature of matter int-10
Solution for hydrogen atom 38-2
Standing waves in fuzzy walled box 38-1

Schrödinger, Erwin int-10, 37-1
Schwinger, J., quantum electrodynamics int-14
Search coil

For magnetic field mapping experiment 30-24
Inside Helmholtz coils 39-12

Second law, Newton's. See Newton’s laws: Second
law

Second law of thermodynamics. See also Carnot
cycle; Thermal energy

Applications of 18-17
Chapter on 18-1
Statement of 18-4
Time reversed movie 18-1

Second, unit of time, definition of int-2
Secondary mirror, in telescope Optics-42
Semi major axis, Kepler's laws 8-28
Series expansions Cal 1-23

Binomial Cal 1-23
Exponential function e to the x Cal 1-28

Series, harmonic 16-3
Series wiring

Capacitors 27- 21
Resistors 27- 11

Set Window, BASIC computer command 5-7
Short circuit 27- 9
Short rod, electric force exerted by 24-9
Silicon, surface (111 plane) of Optics-51
Simple electric circuit 27- 8
Simple pendulum

Simple and conical pendulums 14-17
Theory of 14-15

Simultaneity, lack of 1-32
Sine function

Amplitude of Cal 1-37
Definition of Cal 1-35, Cal 1-36
Derivative of, derivation Cal 1-38

Sine waves
AC voltage generator 30-22
Amplitude of 14-10
As solution of differential equation 14-9
Definition of 14-3
Derivative of 14-8
Formation of pulse from 40-27
Fourier analysis lecture 16-28
Fourier analysis of 16-7
Harmonic series 16-3
Normal modes 16-4
Phase of 14-6
Pulse in air 15-3
Sinusoidal waves motion 15-12
Standing waves on a guitar string 15-20
Traveling wave 15-16
Traveling waves add to standing wave 15-20

Single slit diffraction 33-26
Analysis of pattern 33-27
Application to uncertainty principle 40-16
Huygens principle 33-4
Recording patterns 33-28

Slit pattern, Fourier transform of 16-33
Slope of a curve

As derivative Cal 1-30
Formula for Cal 1-30
Negative slope Cal 1-31
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Small angle approximation
Simple pendulum 14-16
Snell’s law Optics-19

Small oscillations
For non linear restoring forces 14-19
Molecular forces act like springs 14-20
Of simple pendulum 14-16

Smallest scale of distance, physics at int-25
Snell’s law

Applied to spherical surfaces Optics-19
Derivation of Optics-12
For small angles Optics-19
Introduction to Optics-2, Optics-11

Sodium to argon, periodic table 38-13
Solar neutrinos 6-13. See also Neutrinos
Solenoid

Ampere's law applied to 29-15
Magnetic field of 28- 17, 29-14
Right hand rule for 29-14
Toroidal, magnetic field of 29-17

Solving problems
Gauss' law problems 24-26
How to go about it 24-29
Projectile motion problems 4-16

Sombrero galaxy int-2
Sound

Focusing by an ellipse 8-26, Optics-3
Fourier analysis, and normal modes 16-1
Fourier analysis of violin notes 16-18
Intensity

Bells and decibels 16-24
Definition of 16-24
Speaker curves 16-27

Percussion instruments 16-22
Sound meters 16-26
Sound produced by guitar string 15-22
Stringed instruments 16-18
The human ear 16-16
Wind instruments 16-20
X. See Experiments I: -12- Fourier analysis of sound

waves
Sound waves, speed of

Calculation of 15-8
Formula for 15-9
In various materials 15-9

Space
And time int-2, 1-1
Quantum fluctuations in 40-25
The Lorentz contraction 1-24
Travel 1-22

Space physics 28- 31. See also Experiments II: -
5a- Magnetic focusing and space physics

Space telescope
Hubble Optics-44
Infrared (IRAS) Optics-47

Spacial frequency k 15-14
Speaker curves 16-27

Specific heat
Cp and Cv 18-6
Definition of 17-26
Failure of Newtonian mechanics 17-31
Gamma = Cp/Cv 18-7

Spectral lines
Atomic spectra 33-16
Bohr's explanation of int-9
Hydrogen

Bohr theory of 35-4
Colors of int-7
Experiment to measure 33-17
The Balmer Series 33-19

Introduction to int-7
Spectrometer, mass 28- 28
Spectrum

Electromagnetic
Photon energies 34-11
Visible spectrum 33-15
Wavelengths of 32- 20

Hydrogen
Balmer series 33-19
Bohr theory of 35-4
Experiment to measure 33-17
Lyman series, ultraviolet 35-6
Paschen series, infrared 35-6

Hydrogen star 33-19, 35-4
Spectrum.

Electromagnetic
Photon energies 34-11

Speed and mass increase int-11
Speed detector, air cart 30-5. See also Experi-

ments II: - 6- Faraday's law air cart speed
detector

Speed limit, nature’s int-12, 6-11
Speed of an electromagnetic pulse 32- 14
Speed of light

Absolute speed limit int-2, int-12
Calculation of speed of light

Analysis of path 1 32- 14
Analysis of path 2 32- 16
Using Maxwell's Equations 32- 14

Dimensional analysis 15-9
Experiment to measure 1-9, 31-15
In a medium Optics-8
Same to all observers 1-12

Speed of sound
Formula for and values of 15-9
Theory of 15-8

Speed of wave pulses
Dimensional analysis 15-6
On rope 15-4

Sphere
Area of 23-6
Electric field inside of 26-4

Spherical aberration Optics-21
In Hubble telescope mirror Optics-22

Spherical lens surface Optics-19
Formula for focal length Optics-20
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Spherical mass, gravitational field of 24-24
Spin

Allowed projections 39-3
Chapter on 39-1
Concept of 39-3
Dirac equation 39-3
Electron, introduction to 38-1
Electron, periodic table 38-9
Electron Spin Resonance

Experiment 39-5, 39-9
Gyroscope like 39-15
Interaction with magnetic field 39-4
Magnetic energy 39-1

Semi classical formula 39-14
Uhlenbeck and Gaudsmit 39-1
X. See Experiments II: -12- Electron spin resonance

Spin flip energy, Dirac equation 39-15
Spring

Constant 9-3
Forces 9-3
Mass on a spring

Computer analysis of 14-30
Differential equation for 14-8
Theory 14-7

Oscillating cart 14-5
Spring model of molecular force 17-13
Spring pendulum

Ball spring program 9-20
Computer analysis of 9-8
F = ma 9-7
Introduction to 9-4

Spring potential energy int-11
Square of amplitude, intensity 16-33
Square wave

Fourier analysis of 16-9, 16-28
Stability of matter 19-14
Standard model of basic interactions int-25
Standing waves

Allowed standing waves in hydrogen 37-1
De Broglie waves

Movie 35-11
Formulas for 15-20
Hydrogen, L= 0 patterns 38-4
Introduction to 15-18
Light waves in laser 37-2
Made from traveling waves 15-19
On a guitar string 15-20

Frequency of 15-21
On drums 16-22
On violin backplate 16-23
Particle wave nature int-13
Patterns in hydrogen 38-3
Photons in laser 37-3
The L= 0 patterns in hydrogen 38-4
Two dimensional 37-8

Electrons on copper crystal 37-9
On drumhead 37-8

Star
Binary int-2

Black hole 20-19
Black dwarf int-19
Black hole int-20, 20-18
Blackbody spectrum of 34-3
Hydrogen spectrum of 33-19, 35-4
Neutron int-20, 20-17
Red supergiant 20-15
Stellar evolution 17-17
White dwarf 20-15

Statamps, CGS units 24-2
Static charges

Electric field of 30-16
Line integral for 30-2

Stationary source, moving observer, Doppler ef-
fect 33-21

Statvolts, CGS units of charge 24-2
Steady state model of the universe 34-25
Stellar evolution

General discussion int-19
Role of neutrinos 20-15
Role of the four basic interactions 20-13
Role of thermal energy 17-17

Step-By-Step Calculations 5-1
Stomach, medical image Optics-15
Strain, definition of 15-8
Strange quark int-24
Streamlines

And electric field lines 24-14, 24-17
Around airplane wing 23-13
Around sailboat sail 23-14
Bernoulli’s equation 23-11
Bounding flux tubes 23-8
Definition of 23-4
Hele-Shaw cell 23-4
In blood flow experiment 23-23
In superfluid helium venturi meter 23-17
In venturi meter 23-15

Strength of the electric interaction 19-8
And magnetic forces 28- 6
In comparison to gravity int-6
In comparison to nuclear force int-18, 20-2
Two garden peas 28- 2

Stress, definition of 15-8
String forces

Atwoods machine 9-16
Conical pendulum 9-18
Introduction to 9-15
Solving pulley problems 9-16
Working with rope 13-10

String theory int-16
Stringed instruments 16-18

Violin, acoustic vs electric 16-19
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Strobe photographs
Analyzing 3-8, 3-11
And the uncertainty principle 4-2, Cal 1-4
Defining the acceleration vector 3-15
Defining the velocity vector 3-11
Taking 3-7

Structure, nuclear 20-7
Styrofoam projectile 5-28
SU3 symmetry 19-15

Gell-Mann and Neuman int-24
Subtraction of vectors 2-7
Summation

Becoming an integral Cal 1-10
Of velocity vectors Cal 1-10

Sun
Age of 34-23
And neutron stars 20-17
Energy source int-18
Halos around Optics-18
Kepler's laws 8-24
Neutrinos from 6-13, 11-21
Stellar evolution 17-17, 20-13
Sun dogs Optics-18

Superconducting magnets 31-30
Superfluids

Quantized vortices in 23-22
Superfluid helium venturi meter 23-15

Supernova, 1987
In stellar evolution 20-14
Neutrino astronomy 6-14
Neutrinos from 20-16
Photograph of int-19, 6-14

Superposition of waves
Circular waves 33-2
Principle of 15-11
Two slit experiment 40-2

Surface (111 plane) of silicon Optics-51
Surface charges 26-2
Surface integral. See also Integral

Definition of 29-2
For magnetic fields 32- 3
Gauss’ law 29-3
In Maxwell's equations 32- 8
Two kinds of vector fields 30-19

Surface tension 17-14
Symmetry

SU3 19-15
Gell-Mann and Neuman int-24

Symmetry of Maxwell’s equations 32- 9
Synchrotron 28- 22
Systems of particles, chapter on 11-1

T
Table of elements 19-5
Tacoma narrows bridge 14-24
Tangential distance, velocity and acceleration 12-4
Tau particle, lepton family int-22
Tau type neutrino int-22
Taylor, Joe, binary neutron stars int-15
Telescope, parabolic reflector Optics-4
Telescopes int-1

Infrared
IRAS satellite Optics-47
Mt. Hopkins, 2Mass Optics-46

Radio Optics-48
Arecibo Optics-48
Arecibo, binary neutron stars int-15
Holmdel, three degree radiation int-30
Radio galaxy image Optics-48
Radio images of variable star Optics-49
Very Large Array Optics-48
Very Long Baseline Array Optics-49

Reflecting Optics-42
Cassegrain design Optics-42
Diffraction limit Optics-45
Hubbel space telescope Optics-44
Image plane Optics-5
Keck, world’s largest optical Optics-45
Mt. Hopkins Optics-43
Mt. Palomar Optics-43
Newton’s Optics-42
Secondary mirror Optics-42
William Hershel’s Optics-43

Refracting Optics-40
Galileo's Optics-41
Yerkes Optics-41

Television waves
Photon energies 34-11
Wavelength of 32- 20

Temperature
Absolute zero 17-9
And zero point energy 37-8
Boltzman’s constant 17-11
Heated hydrogen int-9
Ideal gas thermometer 17-20
Introduction to 17-9
Temperature scales 17-10

Tesla and Gauss, magnetic field dimensions 28- 16
Test charge, unit size 24-11
Text file for FFT data 16-32
Thermal efficiency of Carnot cycle. See Carnot cycle,

efficiency of
Thermal energy

Dollar value of 18-1
In a bottle of hydrogen int-8
Time reversed movie of dive 18-1

Thermal equilibrium
And temperature 17-9
Introduction to 17-8
Of the universe 34-28
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Thermal expansion
Adiabatic expansion 18-9

Derivation of formula 18-26
Formula for 18-10

In stellar evolution 17-17, 20-13
Isothermal expansion 18-8

Derivation of formula for 18-26
Molecular theory of 17-33
Of gas in balloon 17-16
Work done by an expanding gas 18-5

Thermal motion
Boltzman’s constant 17-11
Brownian motion 17-6

Movie 17-7
Thermal photons. See Three degree radiation

In blackbody radiation 34-22
Thermometer

Ideal gas 17-20
Mercury or alcohol 17-9
Temperature scales 17-10

Thin lenses Optics-23
Thought experiments

Carnot cycle 18-4
Causality 1-36
Lack of simultaneity 1-32
Light pulse clock 1-13
Lorentz contraction and space travel 1-22
Magnetic force and Faraday's law 30-3
No width contraction 1-28
Origin of magnetic forces 28- 8
Two slit experiment and the uncertainty principle 40-

9
Three degree cosmic radiation int-30, 34-27

Penzias and Wilson 34-27
Tides, two a day 8-12
Time

Age of sun 34-23
And the speed of light int-2
Behavior of 1-1
Dilation 1-22
Dilation formula 1-16
Direction of

Entropy 18-26
Neutral K meson 18-26

In early universe int-27, 34-29
Measuring short times using uncertainty prin-

ciple 40-22
Moving clocks 1-13
Muon lifetime movie 1-21
On light pulse clock 1-14
On other clocks 1-18
On real clocks 1-20
Steady state model of universe 34-25

Time constant
For RC circuit 27- 24
Measuring from a graph 27- 25, Cal 1-34

Time, direction of
And strobe photographs 3-27

Time reversal
Dive movie 18-1
Water droplets 18-2

Time step and initial conditions 5-14
Time-energy form of the uncertainty principle 40-19
Top quark

Mass of int-24
Quark family int-24

Toroid
Inductor 31-6

In LC experiment 31-11
In resonance 31-14
Speed of light measuerment 1-9, 31-15

Magnetic field of 29-17
Torque

As angular force 12-15
In torsion pendulum 14-12
On a current loop 31-20

Torsion pendulum 14-12. See also Cavendish
experiment

Total energy
Classical hydrogen atom 35-3
Escape velocity 10-28
Satellite motion 8-36

Town water supply, hydrodynamic voltage 23-18
Transients 14-27
Translation and rotation 12-24
Transmitted wave and lenses 36-3
Traveling waves, formula for 15-16
Tritium, a hydrogen isotope int-17, 19-7
True BASIC. See BASIC program
Tubes of flux 24-17
Two dimensional standing waves 37-8
Two kinds of vector fields 30-18
Two lenses together Optics-29
Two slit experiment

And the uncertainty principle 40-9
Measurement limitations 40-9
One particle at a time 40-3
One slit experiment 40-2
Particle point of view 40-3
Particle/wave nature 40-2
Using electrons 40-3

Two-slit interference patterns 33-6
A closer look at 33-26
First maxima 33-8
For light 33-10

Tycho Brahe’s apparatus 8-25

U
Uhlenbeck and Gaudsmit, electron spin 39-1
Ultraviolet light

Electromagnetic spectrum int-7, 32- 20, 32- 22
Photon energies 34-11
Wavelength of 32- 20
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Uncertainty principle Cal 1-3
∆x∆p>=h 40-15
And definition of velocity 4-1, Cal 1-3
And strobe photographs 4-2, Cal 1-4
Applied to projectile motion 4-2, Cal 1-4
Elementary particles, short lived 40-23
Energy conservation 40-24
Fourier transform 40-20
Introduction to 40-14
Particle/wave nature int-10
Position-momentum form 40-15
Single slit experiment 40-16
Time-energy form 40-19
Used as clock 40-22
X. See Experiments II: -13- Fourier analysis & the

uncertainty principle
Uniform circular motion. See Circular motion
Uniform expansion of universe int-3, 33-24
Uniform magnetic fields 28- 16
Unit of angular momentum int-9

Electron spin 39-3
In Bohr theory 35-9

Unit test charge 24-11
Unit vectors 8-18
Units

Atomic units 19-22
CGS

centimeter, gram, second Back cover-1
Coulomb's law 24-2
Statamp, statvolt, ergs per second 24-2

Checking  MKS calculations 24-3
MKS

Ampere, volt, watt 24-2
Coulomb's law 24-2
Meter, kilogram, second Front cover-2

Planetary units 8-14
Practical System of units (MKS) 10-31

Universe
Age of int-3
As a laboratory int-1
Becomes transparent, decoupling 34-31
Big bang model int-4, 33-25, 34-26
Continuous creation theory int-4, 34-25
Decoupling  (700,000 years) 34-31
Early. See Universe, early
Evolution of, Doppler effect 34-21
Excess of matter over antimatter int-27, 34-29
Expanding int-3

Quasars and gravitational lensing 34-19
Red shift 33-24

Helium abundance in 34-26
Models of 34-23
Steady state model of 34-25
The First Three Minutes 34-32
Thermal equilibrium of 34-28
Three degree cosmic radiation int-30, 34-27
Visible int-3, 34-32

Universe, early int-27, 34-29
10 to the 10 degrees int-27
10 to the 13 degrees int-27
10 to the 14 degrees int-27
13.8 seconds int-28
24% neutrons int-28
38% neutrons int-27
At .7 million years, decoupling int-29
At various short times 34-30
Big bang model 34-26
Books on

Coming of Age in the Milky Way 34-32
The First Three Minutes 34-32

Decoupling  (700,000 years) 34-31
Deuterium bottleneck int-28
Excess of Matter over Antimatter 34-29
Frame #2  (.11 seconds) 34-30
Frame #3  (1.09 seconds) 34-30
Frame #4  (13.82 seconds) 34-30
Frame #5  (3 minutes and 2 seconds) 34-30
Helium abundance 34-26
Helium created int-28
Hot int-4
Matter particles survive int-27, 34-29
Neutrinos escape at one second int-28
Overview int-27, 34-29
Positrons annihilated int-28
Thermal equilibrium of 34-28
Thermal photons int-29, 34-28
Three degree cosmic radiation int-30, 34-27, 34-32
Transparent universe int-29
Why it is hot 34-29

Up quark int-24
Uranium

Binding energy per nucleon 20-10
Nuclear fission 20-4
Nuclear structure int-17, 20-2

V
Van Allen radiation belts 28- 32
Van de Graaff generator 26-6
Variable names, computer 5-6
Variables

Evaluated over interval Cal 1-10
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Vector
Addition 2-3
Addition by components 2-9
Angular momentum 7- 14, 12-7
Angular velocity 12-7
Area 24-22
Components 2-8
Cross Product 12-9
Definition of acceleration Cal 1-7

Component equations Cal 1-8
Definition of velocity Cal 1-6

Component equations Cal 1-8
Dot product 10-13
Equations

Components with derivatives 4-6, Cal 1-7
Constant acceleration formulas 4-11
Exercise on 2-7, 2-8
In component form 2-10

Magnitude of 2-6
Measuring length of 3-9
Multiplication 2-11
Multiplication, cross product 2-15, 12-9

Formula for 2-17
Magnitude of 2-17
Right hand rule 12-10

Multiplication, scalar or dot product 2-12, 10-13
Interpretation of 2-14

Velocity from coordinate vector 3-13
Vector fields 23-3

Electric field 24-10
Magnetic field 28- 10
Two kinds of 30-18
Velocity field 23-2

Vectors 2-2
Arithmetic of 2-3
Associative law 2-4
Commutative law 2-4
Coordinate 3-11
Displacement 2-2

from Strobe Photos 3-5
Graphical addition and subtraction 3-10
Multiplication by number 2-5
Negative of 2-5
Subtraction of 2-5
Unit 8-18

Velocity 3-11
And the uncertainty principle 4-2, Cal 1-4
Angular 12-2, 14-5
Angular analogy 12-3
Calculus definition of 4-3, Cal 1-5

Component equations Cal 1-8
Curve, area under Cal 1-12
Definite integral of Cal 1-11
Instantaneous 3-24

From strobe photograph 3-26
Integral of Cal 1-10
Of escape 10-28
Tangential 12-4
Using strobe photos 3-11

Velocity detector
Air cart 30-5
Magnetic flux 30-25

Velocity field 23-2
Flux of 23-8, 24-15
Of a line source 23-7
Of a point source 23-6

Velocity vector from coordinate vector 3-13
Venturi meter

Bernoulli's equation 23-15
With superfluid helium 23-17

Very Large Array, radio telescopes Optics-48
Very Long Baseline Array , radio telescopes Optics-

49
Violets, odor of 17-6
Violin

Acoustic vs electric 16-19
Back, standing waves on 16-23

Viscous effects in fluid flow 23-19
Visible light int-7, 32- 20

Photon energies 34-11
Spectrum of 33-15
Wavelength of 32- 20

Visible universe int-3, 34-32
Volt

Electron 26-12
MKS units 24-2

Voltage
Air cart speed detector 30-5
Divider, circuit for 27- 13
Electric 25-6
Fluid analogy

Hydrodynamic voltage 23-17
Resistance 27- 7
Town water supply 23-18

Induced 31-4
Induced in a moving loop 30-4

Voltage and current 27- 6
Resistors 27- 6

Ohm’s law 27- 7
Voltage source, constant 27- 15
Voltage transformer and magnetic flux 30-26
Volume of mole of gas 17-25
Vortex

Bathtub 23-2, 23-20
Hurricane 23-20
Tornado 23-20

Vortex street, Karman 14-25
Vortices 23-20

Quantized, in superfluids 23-22
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W
W and Z mesons, electroweak interaction int-26
Water

Evaporating 17-5
Molecule 17-2

Water droplets, time reversal 18-2
Watt, MKS units 24-2
Wave

Circular water waves 33-2
Cosine waves 16-28
De Broglie, standing wave movie 35-11
Diffraction pattern 33-5
Electromagnetic waves 32- 18

Probability wave for photons 40-7
Electron waves, de Broglie picture 35-11
Electron waves, in hydrogen 38-1
Forms, repeated, in Fourier analysis 16-11
Fourier analysis

Of a sine wave 16-7
Of a square wave 16-9

Huygens' principle, introduction to 33-4
Interference patterns 33-3
Light waves

Chapter on 33-1
Polarization of 32- 23

Patterns, superposition of 33-2
Photon wave 40-6
Probability wave

Intensity of 40-22
Reflection and Fluorescence 40-8

Scattering, measurement limitation 40-10
Single slit experiment, uncertainty principle 40-16
Sinusoidal waves 15-12

Time dependent 14-3
Speed of waves

Dimensional analysis 15-6
Project suggestion 15-8

Standing waves
Allowed 37-1
Formulas for 15-20
Frequency of 15-21
Hydrogen L= 0 Patterns 38-4
Introduction to 15-18
On a guitar string 15-20
Two dimensional 37-8

Transmitted waves 36-3
Traveling waves, formula for 15-16
Wave pulses 15-3

Speed of 15-4
Wave equation int-7, 15-1

Dirac's 15-2
Bohr magneton 39-5
Spin 39-3

For light int-7
Maxwell's 15-1
Nonrelativistic int-12, 34-16
Relativistic int-12, 15-2
Schrödinger's 15-1

Discovery of 37-1

Wave motion
Amplitude and phase 15-17
Linear and nonlinear 15-10
One dimensional 15-1
Principle of superposition 15-11

Wave nature of light
Young, Thomas 34-1, Optics-1

Wave patterns
Hydrogen

Intensity at the Origin 38-5
Schrödinger’s equation 38-2
Standing waves 38-3

Wave/particle nature. See also Particle-wave nature
Born Interpretation 40-6
Probability interpretation 40-6
Two slit experiment 40-2

Wavelength
De Broglie 35-11
Electron 36-9
Fourier analysis 16-28
Laser beam 16-33
Period, and frequency 15-13

Weak interaction int-14, int-20, 19-2
Creation of neutrinos 20-6
Electroweak theory int-26
Four basic interactions 19-2
Neutron decay 20-6
Range of int-21
Strength of int-21

Weighing the earth 8-8
Weight 8-11

Lifting 13-11
Weinberg, S., book "The first Three Minutes" 34-32
Wein's displacement law for blackbody radia-

tion 34-2
White dwarf star 20-15
White light  (Fourier analysis) 16-28
William Hershel’s telescope Optics-43
Wilson, Robert, 3 degree radiation int-29, 34-27
Wind instruments 16-20
Work int-11

And potential energy 10-14
Bernoulli's equation 23-10
Calculation of in adiabatic expansion 18-26
Calculation of in isothermal expansion 18-26
Definition of 10-12
Done by an expanding gas 18-5
Integral formula for 10-14, 10-15
Non-constant forces 10-14
Vector dot product 10-13

Work energy theorem 10-18
World’s largest optical telescope Optics-45
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X
x-Cal 1

Exercise  1 Cal 1-14
Exercise  2 Cal 1-15
Exercise  3 Cal 1-17
Exercise  4 Cal 1-22
Exercise  5 Cal 1-24
Exercise  6 Cal 1-29
Exercise  7 Cal 1-29
Exercise  8 Cal 1-31
Exercise  9 Cal 1-33
Exercise 10 Cal 1-36
Exercise 11 Cal 1-39
Exercise 12 Cal 1-39
Exercise 13 Cal 1-39

X-Ch 1
Exercise  1 1-3
Exercise  2 1-4
Exercise  3 1-11
Exercise  4 1-16
Exercise  5 1-31
Exercise  6 1-31
Exercise  7 1-31

X-Ch 2
Exercise  1 2-7
Exercise  2 2-7
Exercise  3 2-7
Exercise  4 2-7
Exercise  5 2-8
Exercise  6 2-10
Exercise  7 2-12
Exercise  8 2-13
Exercise  9 2-15
Exercise 10 2-16
Exercise 11 2-17
Exercise 12 2-17
Exercise 13 2-18

X-Ch 3
Exercise  1 3-10
Exercise  2 3-10
Exercise  3 3-10
Exercise  4 3-12
Exercise  5 3-17
Exercise  6 3-18
Exercise  7 3-22
Exercise  8 3-27
Exercise  9 3-27
Exercise 10 3-27

X-Ch 4
Exercises 1-7 4-19

X-Ch 5
Exercise  1 5-3
Exercise  2  A running program 5-8
Exercise  3  Plotting a circular line 5-8
Exercise  4   Labels and axes 5-9
Exercise  5a   Numerical output 5-9
Exercise  5b 5-10
Exercise  6   Plotting crosses 5-11

Exercise  7 5-20
Exercise  8   Changing the time step 5-20
Exercise  9   Numerical Output 5-20
Exercise 10   Attempt to reduce output 5-20
Exercise 11   Reducing numerical output 5-20
Exercise 12   Plotting crosses 5-21
Exercise 13   Graphical analysis 5-25
Exercise 14   Computer prediction 5-26
Exercise 15   Viscous fluid 5-26
Exercise 16   Nonlinear air resistance (optional) 5-27
Exercise 17   Fan Added 5-27

X-Ch 6
Exercise 1 6-4
Exercise 2   Decay of Plutonium 246 6-8
Exercise 3  Protactinium 236  decay. 6-9
Exercise 4  Increase in Electron Mass. 6-9
Exercise 5   A Thought Experiment. 6-9
Exercise 6 6-10
Exercise 7 6-10
Exercise 8 6-10

X-Ch 7
Exercise  1 7- 6
Exercise  2 7- 8
Exercise  3   Frictionless Ice 7- 8
Exercise  4   Bullet and Block 7- 8
Exercise  5   Two Skaters Throwing Ball 7- 8
Exercise  6   Rocket 7- 8
Exercise  7 7- 10
Exercise  8 7- 10
Exercise  9 7- 10
Exercise 10 7- 13
Exercise 11 7- 14
Exercise 12 7- 16
Exercise 13 7- 16
Exercise 14 7- 18

X-Ch 8
Exercise  1 8-5
Exercise  2 8-8
Exercise  3 8-9
Exercise  4 8-11
Exercise  5 8-12
Exercise  6 8-15
Exercise  7 8-15
Exercise  8 8-16
Exercise  9 8-16
Exercise 10 8-22
Exercise 11 8-23
Exercise 12 8-23
Exercise 13 8-27
Exercise 14 8-27
Exercise 15 8-28
Exercise 16 8-28
Exercise 17 8-28
Exercise 18 8-31
Exercise 19 8-34
Exercise 20 8-34
Exercise 21 8-36
Exercise 22 8-36
Exercise 23 8-37
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X-Ch 9
Exercise 1 9-7
Exercise 2 9-11
Exercise 3 9-17
Exercise 4 9-17
Exercise 5  Conical Pendulum 9-19
Exercise 6 9-19

X-Ch10
Exercise  1 10-4
Exercise  2 10-6
Exercise  3 10-8
Exercise  4 10-9
Exercise  5 10-9
Exercise  6 10-9
Exercise  7 10-11
Exercise  8 10-12
Exercise  9 10-13
Exercise 10 10-17
Exercise 11 10-17
Exercise 12 10-28
Exercise 13 10-28
Exercise 14 10-28
Exercise 15 10-31

X-Ch11
Exercise  1 11-4
Exercise  2 11-4
Exercise  3 11-4
Exercise  4 11-6
Exercise  5 11-8
Exercise  6 11-12
Exercise  7 11-13
Exercise  8 11-13
Exercise  9 11-13
Exercise 10 11-14
Exercise 11 11-14
Exercise 12 11-15
Exercise 13 11-16

X-Ch12
Exercise 1 12-2
Exercise 2 12-3
Exercise 3 12-5
Exercise 4 12-9
Exercise 5 12-10
Exercise 6 12-11
Exercise 7 12-13
Exercise 8 12-15
Exercise 9 12-21
Exercise A1 12-24
Exercise A2 12-26
Exercise A3  potential lab experiment 12-26

X-Ch13
Exercise  1 13-3
Exercise  2 13-3
Exercise  3 13-4
Exercise  4 13-6
Exercise  5 13-8
Exercise  6  Ladder problem 13-8
Exercise  7 13-9

Exercise  8  Working with rope 13-10
Exercise  9 13-11
Exercise 10 13-12
Exercise 11 13-12

X-Ch14
Exercise  1 14-4
Exercise  2 14-5
Exercise  3 14-5
Exercise  4 14-7
Exercise  5 14-8
Exercise  6 14-9
Exercise  7 14-10
Exercise  8 14-10
Exercise  9 14-10
Exercise 10 14-11
Exercise 11 14-11
Exercise 12 14-14
Exercise 13 14-14
Exercise 14 14-15
Exercise 15 14-16
Exercise 16 14-16
Exercise 17 14-17
Exercise 18 14-18
Exercise 19  Physical pendulum 14-18
Exercise 20  Damped harmonic motion 14-23
Exercise 21 14-27
Exercise 22 14-33
Exercise 23 14-34

X-Ch15
Exercise  1 15-4
Exercise  2 15-9
Exercise  3 15-9
Exercise  4 15-9
Exercise  5 15-14
Exercise  6 15-15
Exercise  7 15-16
Exercise  8 15-22
Exercise  9 15-22
Exercise 10 15-22

X-Ch16
Exercise 1 16-21
Exercise 2 16-27
Exercise 3 16-27

X-Ch17
Exercise 1 17-8
Exercise 2 17-11
Exercise 3 17-11
Exercise 4 17-11
Exercise 5 17-14
Exercise 6 17-24
Exercise 7 17-25
Exercise 8 17-26
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X-Ch18
Exercise  1 18-5
Exercise  2 18-7
Exercise  3 18-10
Exercise  4 18-13
Exercise  5 18-13
Exercise  6 18-14
Exercise  7 18-16
Exercise  8 18-19
Exercise  9 18-20
Exercise 10 18-20

X-Ch19
Exercise 1 19-9
Exercise 2 19-11
Exercise 3 19-11
Exercise 4 19-12
Exercise 5 19-12

X-Ch20
Exercise 1 20-9

X-Ch23
Exercise 1 23-12
Exercise 2 23-12
Exercise 3 23-15
Exercise 4 23-15
Exercise 5 23-22
Exercise 6 23-22

X-Ch24
Exercise  1 24-5
Exercise  2 24-5
Exercise  3 24-5
Exercise  4 24-5
Exercise  5 24-8
Exercise  6 24-9
Exercise  7 24-12
Exercise  8 24-25
Exercise  9 24-27
Exercise 10 24-27
Exercise 11 24-27
Exercise 12 24-27
Exercise 13 24-28
Exercise 14 24-28

X-Ch25
Exercise 1 25-5
Exercise 2 25-9
Exercise 3 25-12
Exercise 4 25-12

X-Ch26
Exercise  1 26-5
Exercise  2 26-5
Exercise  3 26-5
Exercise  4 26-5
Exercise  5 26-11
Exercise  6 26-13
Exercise  7 26-13
Exercise  8 26-16
Exercise  9 26-17
Exercise 10 Millikan oil drop experiment 26-17

X-Ch27
Exercise  1 27- 10
Exercise  2 27- 13
Exercise  3 The voltage divider 27- 13
Exercise  4 - Electrolytic capacitor 27- 17
Exercise  5 27- 19
Exercise  6 27- 21
Exercise  7 27- 24
Exercise  8 27- 26
Exercise  9 27- 28
Exercise 10 27- 30
Exercise 11 27- 32

X-Ch28
Exercise  1 28- 3
Exercise  2 28- 9
Exercise  3 28- 15
Exercise  4 28- 21
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Physical Constants in CGS Units    (link to MKS units)   
speed of light   c = 3 × 1010cm/sec = 1000 ft /µsec = 1 ft /nanosecond
acceleration due to gravity
at the surface of the earth  g = 980 cm/sec2 = 32 ft/sec2

gravitational constant   G = 6.67× 10– 8cm3/(gm sec2)
charge on an electron   e = 4.8× 10– 10esu
Planck's constant   h = 6.62× 10– 27erg sec (gm cm2/sec )
Planck constant / 2π    h = 1.06× 10– 27erg sec (gm cm2 / sec )

Bohr radius    a0 = .529× 10– 8cm

rest mass of electron   me = 0.911×10– 27gm
rest mass of proton   Mp = 1.67× 10 – 24gm
rest energy of electron   mec2 = 0.51 MeV ( ≈ 1 / 2 MeV)
rest energy of proton   Mpc2 = 0.938 BeV ( ≈ 1 BeV)
proton radius   rp = 1.0×10– 13cm
Boltzmann's constant   k = 1.38× 10 – 16ergs/ kelvin
Avogadro's number   N0 = 6.02× 10 23molecules/mole

absolute zero =  0°K = –273°C
density of mercury =  13.6 gm / cm3

mass of earth =   5.98× 10 27gm
mass of the moon =   7.35× 10 25gm
mass of the sun =   1.97× 10 33gm
earth radius =   6.38× 10 8cm = 3960 mi
moon radius =   1.74× 10 8cm = 1080 mi
mean distance to moon =   3.84× 10 10cm
mean distance to sun =   1.50× 10 13cm

 mean earth velocity in orbit about sun = 29.77 km / sec

Conversion Factors
1 meter = 100 cm  (100 cm/meter)
1 in. = 2.54 cm  (2.54 cm/in.)
1 mi = 5280 ft  (5280 ft/mi)
1 km (kilometer) =  105cm (105cm / km)
1 mi = 1.61 km =   1.61× 105cm (1.61× 105cm/mi)

   1 A° (angstrom ) = 10 – 8cm (10 – 8cm / A° )
1 day = 86,000 sec   (   8.6× 104sec / day )
1 year =   3.16× 107sec (3.16× 107sec/year)

  1 µ sec (microsecond ) = 10 – 6sec (10 – 6sec / µ sec )
1 nanosecond =  10 – 9sec (10 – 9sec /nanosecond )
1 mi/hr = 44.7 cm/sec
60 mi/hr = 88 ft/sec
1 kg (kilogram) =  10 3gm (10 3gm / kg)
1 coulomb =    3 × 109esu (3× 109esu/coulomb)
1 ampere =    3 × 109statamps (3× 109statamps/ampere)
1 statvolt = 300 volts    (300 volts/statvolt)
1 joule =  107ergs (107ergs / joule )
1 W (watt) =  107ergs/ sec (107erg / W)
1 eV =    1.6× 10– 12ergs (1.6× 10– 12ergs/eV)
1 MeV =  106eV (106eV /MeV)
1 BeV =  109eV (109eV /BeV)

  1 µ (micron ) pressure = 1.33 dynes / cm2

1 cm Hg pressure =   104 µ
  1 atm = 76 cm Hg = 1.01×106dynes/cm2
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speed of light c   3.00 × 108 m / s

gravitational constant G   6.67 × 10 –11N⋅m2 / kg2

permittivity constant  ε0
  8.85 × 10 – 12F / m

permeability constant   µ0
  1.26 × 10 – 6H / m

elementary charge e   1.60 × 10 –19C

electron volt eV   1.60 × 10 –19J

electron rest mass  me
  9.11 × 10 – 31kg

proton rest mass  mp
  1.67 × 10 – 27kg

Planck constant h   6.63 × 10 – 34J⋅ s

Planck constant / 2π     h          1.06 × 10 – 34J⋅ s

Bohr radius  rb   5.29 × 10 – 11m

Bohr magneton   µb
  9.27 × 10 – 24J / T

Boltzmann constant k   1.38 × 10 –23J / K

Avogadro constant  NA
  6.02 × 1023mol– 1

universal gas constant R   8.31 J /mol⋅K

Powers of 10

Power Prefix Symbol

 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10– 1 deci d
 10– 2 centi c
 10– 3 milli m
 10– 6 micro µ
 10– 9 nano n
 10– 12 pico p
 10– 15 femto f

MKS Units
m = meters kg = kilograms s = seconds
N = newtons J = joules C = coulombs
T = tesla F = farads H = henrys
A = amperes K = kelvins mol = mole

Dimensions

Quantity Unit Equivalents

Force newton N J/m   kg•m/ s2

Energy joule J   N• m   kg• m2/s2

Power watt W J/s   kg• m2/s3

Pressure pascal Pa N/  m2   kg/m• s2

Frequency hertz Hz cycle/s  s–1

Electric charge coulomb C   A•s

Electric potential volt V J/C   kg• m2/A• s3

Electric resistance ohm Ω V/A   kg• m2/A2
• s3

Capacitance farad F C/V   A2
• s4/kg• m2

Magnetic field tesla T   N•s/C •m   kg/A• s2

Magnetic flux weber Wb   T• m2
  kg• m2/A• s2

Inductance henry H   V•s/A   kg• m2/A2
• s2
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Calculus 2000
A Physics-Based Calculus Text

When developing a physics curriculum, a major
concern is the mathematical background of the
student.  The Physics 2000 text was developed
teaching premedical students who were supposed to
have had one semester of calculus.  Because many
of the students had taken calculus several years
previously, and had forgotten much of it, the physics
text used strobe photographs and the computer to
carefully introduce the calculus concepts such as
velocity, acceleration, and the limiting process.  By
the time  we got to electricity and magnetism in Part
2 of Physics 2000 we relied on the student being
familiar with the basic steps of differentiation and
integration.

For students who have forgotten much of their
calculus course, or those who have not had calculus
but wish to study the Physics 2000 text, we have
written Chapter 1 of Calculus 2000.  This chapter
not only covers all the calculus needed for the
Physics 2000 text, but is also carefully integrated
with it.  The chapter is much shorter than the typical
introductory calculus text because the basic calcu-
lus concepts are discussed in the physics text and the
calculus chapter only has to deal with the formal-
ism.

After the introductory courses, the standard physics
curriculum repeatedly goes over the same topics at
successively higher mathematical levels.  A typical
example is the subject of electricity and magnetism
which is taught using integral equations in the
introductory course, using differential operators in
an upper level undergraduate course, and then
taught all over again in a graduate level course.  In
each of the courses it takes a while for the student to
realize that this is just the same old subject dressed
up in new math.

With Chapters 2 through 13 of the Calculus 2000,
we introduce a different approach.  We take the
topics that we have already introduced in Physics
2000, and show how these topics can be handled in
progressively more sophisticated mathematical
ways.  Once we have introduced the mathematical
concepts of gradient, divergence and curl in the
calculus text, we can turn the integral form of
Maxwell's equation into a wave equation for elec-
tric and magnetic fields.  With the introduction of
the Laplacian and complex variables, we can study
Schrödinger's equation and begin to solve for the
hydrogen wave patterns discussed in Chapter 38 of
the physics text.
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Beyond seeing the same topics in a more sophisti-
cated way, the student finds that new insights can
result from the advanced mathematical approach.
Chapter 10 of the calculus text is a short chapter less
than two pages.  But it is one of the most significant
chapters in the text.  For there we see that Maxwell's
equations for electric and magnetic fields require
that electric charge be conserved.  This intimate
connection between a conservation law and field
theory becomes clear when we have sufficiently
powerful mathematical tools to handle the theory.

The physics text began its discussion of vector fields
in Chapter 23, using the velocity field as its first
example.  We did that because it is much easier to
visualize the familiar flow of water than the abstract
concept of an electric field.  We saw that the stream-
lines in fluid flow went over to electric field lines,
Gauss's law in fluid theory simply represented the
incompressibility of the fluid, and Bernoulli's equa-
tion provided an introduction to the concept of
voltage and potential.

However our discussion of electric and magnetic
fields, particularly in this calculus text, go way
beyond the simple fluid flow topics we introduced in
the physics text.  In the last two chapters of the
calculus text, we turn the tables and apply to fluid
theory the mathematical techniques we learned
studying electricity and magnetism.  In Chapter 12
we discuss the concept of vorticity which is the curl
of the velocity field.  The focus is to develop an
intuitive  understanding of the nature of vorticity
and the role it plays in fluid flows, particularly
vortices and vortex rings.

Chapter 13 is an introduction to fluid dynamics.
The idea is to bring our discussion of the velocity
field up to the same level as our treatment of electric
and magnetic fields.  We begin with a derivation of
the Navier-Stokes equation which applies to con-
stant density viscous fluids.  This is then converted
into an equation for vortex dynamics from which we
derive an extended form of the famous Helmholtz
equation.  We then use that to derive the well known
properties of vortex motion such as the so called
Magnus force, and discuss the experiment Rayfield
and Reif used to measure the circulation and core
diameter of quantized vortices in superfluid helium.
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Magnus lift force  Cal 13-24
Wing vortex  Cal 13-24

Allowed standing wave patterns, hydrogen  Cal 6-7
Ampere's law

In differential form  Cal 8-3
Derivation of  Cal 8-7

Amplitude
Of a sine wave  Cal 1-37

Angular momentum
Quantum vortices as giant Bohr atom  Cal 12-15
Schrödinger's equation solutions  Cal 6-18

Area
Related to integration  Cal 1-11
Under the curve  Cal 1-12

Atoms
Standing wave patterns in hydrogen  Cal 6-8

B
Bernoulli’s equation

Applies along a streamline  Cal 13-9
Derivation from Navier-Stokes equation  Cal 13-8
For potential flow  Cal 13-9
Gradient of hydrodynamic voltage  Cal 13-9
Hydrodynamic voltage  Cal 13-9

Besier curves  Cal 2-6
Binomial expansion  Cal 1-23

Derivation of  Cal 2-6, Form.-9
Boat lofting  Cal 2-5
Bohr atom

Quantum vortices  Cal 12-15
Bohr radius  Cal 6-7
Born, Max

Interpretation of solutions to Schrödinger's Eq.  Cal
6-9

C
Calculation of integrals  Cal 1-11
Calculus

And the uncertainty principle  Cal 1-2
Calculating integrals  Cal 1-11
Calculus in physics  Cal 1-1
Chain rule  Cal 1-25
Definition of acceleration  Cal 1-7

Component equations  Cal 1-8
Vector equation  Cal 1-7

Definition of velocity  Cal 1-5
Component equations  Cal 1-8
Vector equation  Cal 1-6

Derivation of constant acc. formulas  Cal 1-20
In three dimensions  Cal 1-22

Limiting process  Cal 1-2, Cal 1-5
Vector equation for  Cal 1-5

Special chapter on  Cal 1-1
Calculus in Physics  i, Cal 2-1, Cal 3-1, Cal 4-1, Cal

5-1, Cal 6-1, Cal 7-1, Cal 8-1, Cal 9-1, Cal 10-
1, Cal 11-1, Form.-1

Capacitance
Dimensions of Front cover-2

Cartesian coordinates
Del squared  Cal 4-3
Gradient  Cal 3-12
Right hand rule  Cal 3-12
Unit vectors  Cal 3-12

Center of mass
Vortex line motion  Cal 13 A2-4

Center of mass motion
Conserved vortex current  Cal 13 A2-5
Vortex line  Cal 13 A2-5

CGS units Back cover-1
Chain rule  Cal 1-25

Proving it (almost)  Cal 1-26
Remembering it  Cal 1-25

Charge
Electric

Conservation due to Maxwell's equations  Cal 10-1
Continuity equation for  Cal 10-2

Choice of gauge  Cal 11-4
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Circuits
Driven LRC circuit  Cal 5-19

Resonance in  Cal 5-21
Impedance  Cal 5-15
Impedance formulas  Cal 5-18
LC circuit

Ringing like a bell  Cal 5-11
RC circuit

Solving with complex numbers  Cal 5-8
RLC circuit

Decaying oscillation  Cal 5-10
Differential equation for  Cal 5-11
Solution using complex variables  Cal 5-12

Transient  solutions  Cal 5-22
Circulation

Density of  Cal 12-11
For roller bearings  Cal 12-13
For vortex sheet  Cal 12-13
For wheel on fixed axle  Cal 12-13

Flux of vorticity in flow tube  Cal 12-18
Measurement of quantized value  Cal 13-20
Of a quantum vortex  Cal 12-15
Of a Vortex  Cal 12-14

Unchanged by local non potential forces  Cal 13-17
Total  Cal 12-11

Circulation, total
Of rotating shaft  Cal 12-12

Classical theory of electromagnetism  Cal 11-3
Coaxial cable

Example of gradient in Cyl. Coord.  Cal 3-21
Voltage in  Cal 3-21

Coefficient of viscosity  Cal 4-4
Measuring  Cal 4-9

Experimental formula for  Cal 4-11
Second viscosity coefficient  Cal 4-6

Complex analysis
Of driven LRC circuit  Cal 5-19

Complex conjugate  Cal 5-6
Of Schrödinger wave function  Cal 6-9

Complex numbers  Cal 5-2
Analogy to coordinate vector  Cal 5-2
As a complex exponential  Cal 5-5
Exponential form  Cal 5-3
Plotting  Cal 5-2
Real part, imaginary part  Cal 5-2
Solving the LC circuit  Cal 5-9
Solving the RLC circuit  Cal 5-12

Transient  solutions  Cal 5-22

Complex variables
Chapter on  Cal 5-1
Complex numbers  Cal 5-2
Exponential function

Series expansion  Cal 5-4
Fast way to find real solutions  Cal 5-10
Imaginary numbers  Cal 5-2
Impedance  Cal 5-15

Driven LRC circuit  Cal 5-19
Formulas for  Cal 5-18

Why Schrödinger's equation is complex  Cal 6-5
Component notation

Appendix on  Cal 13 A1-1
Components, vector  Cal 1-7

In rotated coordinate system  Cal 3-26
Compressible fluids

Continuity equation
Integral form  Cal 10-3

Compressional waves on spring  Cal 2-15
Computers

Why they are so good at integration  Cal 1-12
Conjugate, complex  Cal 5-6
Conservation law

For vorticity  Cal 12-13
Related field  Cal 10-3

Conservation of
Electric charge

Chapter on  Cal 10-1
Conservation of charge

Related to electric fields  Cal 10-3
Conservation of energy

In vortex ring motion  Cal 13-19
Related to gravity  Cal 10-3

Conservative field
Fluid flow  Cal 12-3

Conservative force
And Faraday's law  Cal 11-2

Conserved current
Vortex, intuitive discussion of  Cal 13 A2-2

Constant acceleration formulas
Calculus derivation  Cal 1-20

In three dimensions  Cal 1-22
Second derivative  Cal 2-9

Constant, integral of  Cal 1-13
Continuity equation

Derivation from Maxwell's equations  Cal 10-2
For compressible fluids

Differential form  Cal 10-2
Integral form  Cal 10-3

For electric charge and current  Cal 10-2
For flow of mass  Cal 13-5

Formula for  Cal 13-6
For flow of vorticity  Cal 13 A2-1

Derivation of  Cal 13 A2-3
Conversion factors Back cover-1
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Coordinate system
Cartesian  Cal 3-12

Del squared  Cal 4-3
Unit vectors  Cal 3-12

Cylindrical  Cal 3-14
Unit vectors  Cal 3-14

Spherical  Cal 3-16
Derivation of del squared in  Cal 4-12
Unit vectors  Cal 3-16

Coordinate system rotated
Components of a vector in  Cal 3-26

Core
Vortex core structure  Cal 12-10

Analogy to magnetic field  Cal 12-10
Cosine function

Amplitude of  Cal 1-37
As function of complex exponential  Cal 5-5
Definition of  Cal 1-35
Derivative of  Cal 1-38
Series expansion  Cal 5-4

Coulomb potential in Schrödinger's equation  Cal 6-6
Creating a smoke ring  Cal 12-21
Creation of vorticity  Cal 13 A2-9
Cross product

Multiple, easy way to handle  Cal 13 A1-5
Relation to curl  Cal 8-2
Use of epsilon i,j,k  Cal 13 A1-3
Working with  Form.-6

Curl
Chapter on  Cal 8-1
Definition of  Cal 8-2
In cylindrical coordinates  Cal 8-11

Vorticity calculation  Cal 12-9
Introduction to  Cal 8-2
Line integral shrunk down  Cal 8-1, Cal 8-3
Of a divergence = 0  Cal 11-1
Of magnetic field of wire  Cal 8-10

Calculating the curl  Cal 8-12
Of solid body rotation velocity field  Cal 12-10
Of vector potential  Cal 11-4

Gauge invarience  Cal 11-4
Of vortex velocity field  Cal 12-9
Of vorticity

Viscosity term in Navier-Stokes equation  Cal 13-10
Curl and  divergence

Uniquely determined field  Cal 12-2
Curl theorem

Called Stokes law  Cal 8-3
Current, vortex

Appendix on  Cal 13 A2-1
Conserved, intuitive discussion of  Cal 13 A2-2
Continuity equation for  Cal 13 A2-3

Curvature, radius of
Definition  Cal 2-4
Rope waves  Cal 2-10
Second derivative  Cal 2-4

Curve
Area under, integral of  Cal 1-12
Besier (Adobe Illustrator)  Cal 2-6
Slope as derivative  Cal 1-30
That increases linearly, integral of  Cal 1-13
Velocity, area under  Cal 1-12

Curve fitting  Cal 2-5
Cylindrical coordinates

Curl in  Cal 8-11
Curl in solid body rotation  Cal 12-9
Curl of magnetic field of wire  Cal 8-12
Div, grad, curl, del squared, A dot del B  Form.-2
Gradient in  Cal 3-14

Radial component  Cal 3-14
Theta component  Cal 3-15

Unit vectors  Cal 3-14
Viscous force in  Cal 4-7

D
De Broglie

Schrödinger's equation  Cal 6-2
Debye, on electron waves  Cal 6-1
Decay

Exponential decay  Cal 1-32
Decaying oscillation

RLC circuit  Cal 5-10
Definite integral

Compared to indefinite integrals  Cal 1-14
Defining new functions  Cal 1-15
Introduction to  Cal 1-11
Of  velocity  Cal 1-11
Process of integrating  Cal 1-13

Del
Relation to curl  Cal 8-2

Del - gradient operator  Cal 3-7
Del cross; curl

Chapter on  Cal 8-1
Del squared

Chapter on  Cal 4-1
In Cartesian coordinates  Cal 4-3
In spherical polar coordinates

Derivation of  Cal 4-12
Spherical harmonics  Cal 6-18

Relation to curl  Cal 8-2
Relation to potential flow  Cal 12-4
Schrödinger's equation

Applied to hydrogen atom  Cal 6-14
Schrödinger's equation  Cal 4-2
Viscous force  Cal 4-1

For 3D flows  Cal 4-6
In cylindrical coordinates  Cal 4-7
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Delta function
Definition of  Cal 7-8
In three dimensions  Cal 7-8
Used in Gauss' law  Cal 7-9

Delta i,j
Handling multiple cross products  Cal 13 A1-5
Used in dot product  Cal 13 A1-2

Delta i,j and epsilon i,j,k
Appendix on  Cal 13 A1-1

Density of circulation
Stokes' law  Cal 12-11

Derivative
As a limiting process  Cal 1-6, Cal 1-18, Cal 1-

23, Cal 1-28, Cal 1-30
As the Slope of a Curve  Cal 1-30
Constants come outside  Cal 1-24
Negative slope  Cal 1-31
Of exponential function e to the  x  Cal 1-28
Of exponential function e to the ax  Cal 1-29
Of function  x to the n'th power  Cal 1-24
Of sine function  Cal 1-38
Partial  Cal 5-24
Second

Chapter on  Cal 2-1
Constant acceleration formulas  Cal 2-9

Third, boat lofting  Cal 2-5
Derivative, partial

Order of, appendix on  Cal 9-8
Derivative, second  Cal 2-2

Geometrical interpretation  Cal 2-3
Of a sine wave  Cal 2-2

Differential equation
Fast way to find real solutions  Cal 5-10
For LC circuit

Solving with complex numbers  Cal 5-8
For LRC circuit

Transient  solutions  Cal 5-22
For R, L, and C circuits  Cal 5-6
Homogenous  Cal 5-9
To integral equation  Cal 3-4

Differentiation. See also Derivative
Chain rule  Cal 1-25
More on  Cal 1-23

Differentiation and integration
As inverse operations  Cal 1-18

Velocity and position  Cal 1-18
Fast way to go back and forth  Cal 1-20
Position as integral of velocity  Cal 1-20
Velocity as derivative of position  Cal 1-20

Dimensions of
Capacitance Front cover-2
Electric charge Front cover-2
Electric potential Front cover-2
Electric resistance Front cover-2
Energy Front cover-2
Force Front cover-2
Frequency Front cover-2
Inductance Front cover-2
Magnetic field Front cover-2
Magnetic flux Front cover-2
Power Front cover-2
Pressure Front cover-2

Dirac equation
Discussion of  Cal 6-12

Divergence
Chapter on  Cal 7-1
Relation to curl  Cal 8-2
Shrinking the surface integral  Cal 7-2
Theorem  Cal 7-5

Handling a point charge  Cal 7-7
Relation to curl  Cal 8-3

Divergence and curl
Surface & line integrals shrunken  Cal 7-1, Cal 7-2
Uniquely determined field  Cal 12-2

Divergence and gradient compared  Cal 7-5
Divergence free fields  Cal 7-10
Dot product

Relation to curl  Cal 8-2
Use of delta i,j  Cal 13 A1-2

Driven LRC circuit  Cal 5-19
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E
Einstein

Summation convention  Cal 13-5
Electric and magnetic fields

In terms of scalar and vector potentials  Cal 11-3
Electric charge

Conservation of
Consequence of Maxwell's equations  Cal 10-1

Continuity equation for  Cal 10-2
Dimensions of Front cover-2

Electric field
Gradient of voltage  Cal 3-3

Equation for  Cal 3-7
Field of point charge  Cal 3-10
Interpretation  Cal 3-6

In terms of scalar & vector potentials  Cal 11-3
Of a line charge

Using gradient in cylind. coord.  Cal 3-19
Of a point charge

Using gradient in spherical coord.  Cal 3-18
Wave equation for

With sources  Cal 11-6
Electric potential

Dimensions of Front cover-2
Plotting experiment  Cal 3-2
Related to fluid flows  Cal 12-3

Electric resistance
Dimensions of Front cover-2

Electromagnetic waves
Chapter on wave equation  Cal 9-1

Electromagnetism
Classical theory of  Cal 11-3

Electron
In Standard model of elementary particles  Cal 7-7
Point particle?  Cal 7-7

Energy
Dimensions of Front cover-2

Energy levels, hydrogen
Calculation of lowest  Cal 6-15
Lowest two from Schrödinger's equation  Cal 6-7

Epsilon i,j,k
Use in cross product  Cal 13 A1-3

Handling multiple cross products  Cal 13 A1-5
Epsilon i,j,k and delta i,j

Appendix on  Cal 13 A1-1

Equation
Continuity

For electric charge and current  Cal 10-2
Extended Helmholtz equation  Cal 13-15
Magnus  Cal 13-21

Airplane wing  Cal 13-24
Maxwell's

Derivation of the wave equation  Cal 9-4
Vector identities for  Cal 9-2

Navier-Stokes  Cal 13-2
Nonlinear effects  Cal 13-7

Schrödinger's. See Schrödinger  wave equation
Vector

Components with derivatives  Cal 1-7
Vortex dynamics equation  Cal 13-12
Wave, one dimensional  Cal 2-1

General form of  Cal 2-14
Solutions using complex variables  Cal 5-24

Wave, relativistic
Dirac's  Cal 6-12
For zero rest mass particles  Cal 6-2
Particles with rest mass  Cal 6-3
Schrödinger's  Cal 6-3

Euler's  number e = 2.7183. . .  Cal 1-17
Expansion, binomial  Cal 1-23

Derivation of  Cal 2-6, Form.-9
Expansion, series

Exponential function in complex variables  Cal 5-4
Sin and cosine  Cal 5-4
Taylor series  Cal 2-7

Experiments II
Potential plotting  Cal 3-2

Exponential decay  Cal 1-32
Exponential form complex number  Cal 5-3
Exponential function

As function of sin and cos  Cal 5-5
Derivative of  Cal 1-28
Exponential decay  Cal 1-32
Indefinite integral of  Cal 1-29
Integral of  Cal 1-29
Introduction to  Cal 1-16
Inverse of the logarithm  Cal 1-16
Series expansion  Cal 1-28
y to the x power  Cal 1-16

Extended Helmholtz's theorem  Cal 13-15
Discussion of  Cal 13-16
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F
Fall line. See Gradient: Of voltage: Interpretation

As a field line  Cal 3-23
Faraday's law

In terms of the vector potential  Cal 11-3
Non potential field  Cal 12-3

Feynman  Cal 7-7
Quantized vortices  Cal 12-16

Parabolic surface of rotating helium  Cal 12-6
Field

Divergence free  Cal 7-10
Plotting experiment  Cal 3-2
Pressure field  Cal 3-1
Scalar field  Cal 3-7
Uniquely determined, conditions for  Cal 12-2
Vector field

Created by gradient  Cal 3-1
Vorticity field  Cal 12-18

Field lines
And contour lines  Cal 3-23
Two dimensional slope  Cal 3-24

Fluid dynamics
Introductory chapter on  Cal 13-1
Vorticity  Cal 12-1

Fluids
Compressible

Continuity equation for  Cal 10-3
Laminar flow  Cal 4-8
Newtonian, definition of  Cal 4-4
Potential flow  Cal 12-3

In a straight pipe  Cal 12-5
Zero vorticity  Cal 12-3

Solid body rotation  Cal 12-9
Viscous force on  Cal 4-5
Vorticity as a source of fluid motion  Cal 12-7

Flux
Of vorticity in flow tube  Cal 12-18
Rate of change of through moving circuit  Cal 13-

15
Flux equation, derivation of  Cal 7-11
Force

Conservative forces
And Faraday's law  Cal 11-2

Dimensions of Front cover-2
Non potential

In Navier-Stokes equation  Cal 13-11
Viscous

In cylindrical coordinates  Cal 4-7
In pipe flow  Cal 4-7
On a fluid element  Cal 4-5

Formulary  Form.-1
Discussion of  Cal 4-2

Fractal geometry  Cal 3-23
Frequency

Dimensions of Front cover-2

Functions delta i,j and epsilon i,j,k
Appendix on  Cal 13 A1-1

Functions obtained from integration  Cal 1-15
Logarithms  Cal 1-15

G
Gamma

Speed of sound  Cal 2-18
Gauge invariance

Choice of vector potential divergence  Cal 11-4
Gauge invariant theory  Cal 11-4

Gauss' law
Derived from differential equation  Cal 7-7
Electric field of point charge

Using delta function  Cal 7-9
Geometrical interpretation

Of Gradient  Cal 3-4, Cal 3-22
Equations for  Cal 3-25

Of second derivative  Cal 2-3
Geometry, fractal  Cal 3-23
Gibbs, Willard; gradient notation  Cal 3-7
Gradient

A summary of gradient formulas  Cal 3-18
As a vector field  Cal 3-28
Chapter on  Cal 3-1
From a Geometrical Perspective  Cal 3-4, Cal 3-22

Equations for  Cal 3-25
In Cartesian coordinates  Cal 3-12
In cylindrical coordinates  Cal 3-14

Coaxial cable  Cal 3-21
Electric field of line charge  Cal 3-19
Radial component  Cal 3-14
Theta component  Cal 3-15

In spherical coordinates
Phi component  Cal 3-17
Theta component  Cal 3-17

Of pressure  Cal 3-29
Of voltage  Cal 3-3

Field of point charge  Cal 3-10
Interpretation  Cal 3-6
Parallel plate capacitor  Cal 3-8
Voltage inside conductor  Cal 3-9

Operator "del"  Cal 3-7
Relation to curl  Cal 8-2
Vector and scalar fields  Cal 3-1

Gradient vector
In three dimensions  Cal 3-28
Steepest slope  Cal 3-25
Transformation of  Cal 3-25

Gravity
Quantum theory of  Cal 7-7

Gyroscope like behavior
Of vortex line due to non potential force  Cal 13-18

Gyroscopes
Superfluid  Cal 12-17
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H
Half-life

In exponential decay  Cal 1-33
Of muons, exponential decay  Cal 1-33

Heisenberg, Werner  Cal 1-2
Helium, superfluid  Cal 12-6
Helmholtz theorem

Application to smoke rings  Cal 12-21
Derivation from Navier-Stokes equation  Cal 13-11
From extended Helmholtz theorem  Cal 13-16
Introduction to  Cal 12-19

Helmholtz theorem extended
Discussion of  Cal 13-16
Including non potential forces  Cal 13-15

Homogeneous solution for RLC equation  Cal 5-23
Homogenous differential equation  Cal 5-9, Cal 5-23
Hydrodynamic voltage

Gradient of and Bernoulli's equation  Cal 13-9
Hydrogen atom

Bohr radius  Cal 6-7
Schrödinger's equation for  Cal 6-6
Schrödinger's equation solutions  Cal 6-7

Lowest two energy levels  Cal 6-7
Non spherically symmetric  Cal 6-18
Spherical harmonics  Cal 6-18

Standing wave patterns in  Cal 6-8
Hydrogen wave patterns

Lowest energy ones  Cal 6-8

I
Illustrator™, Adobe  Cal 2-6
Imaginary numbers  Cal 5-2
Impedance  Cal 5-15

Formulas for  Cal 5-18
Impulse

Of a vortex ring  Cal 13-23
Impulse equation  Cal 13-23

Indefinite integral
Definition of  Cal 1-14
Of exponential function  Cal 1-29

Inductance
Dimensions of Front cover-2

Infinities in the gravitational interaction
String theory  Cal 7-7

Instantaneous velocity
And the uncertainty principle  Cal 1-2
Calculus definition of  Cal 1-5

Integral
As a sum  Cal 1-10
Calculating them  Cal 1-11
Definite, introduction to  Cal 1-11
Formula for integrating x to n'th power  Cal 1-

14, Cal 1-27
Indefinite, definition of  Cal 1-14
Of 1/x, the logarithm  Cal 1-15
Of a constant  Cal 1-13
Of a curve that increases linearly  Cal 1-13
Of a velocity curve  Cal 1-12
Of exponential function e to the ax  Cal 1-29
Of the velocity vector  Cal 1-10

As area under curve  Cal 1-12
Of x to n'th power

Indefinite integral  Cal 1-27
Integral formulas

Many of them  Form.-5
Integral, line

Becomes curl for infinitesimal paths  Cal 8-3
Integral sign  Cal 1-10
Integral, surface

Shrinking for divergence  Cal 7-2
Integral to differential equations  Cal 3-4
Integration

Equivalent to finding area  Cal 1-11
Introduction to  Cal 1-8
Introduction to finding areas under curves  Cal 1-13
Why computers do it so well  Cal 1-12

Integration and differentiation
As inverse operations  Cal 1-18
Fast way to go back and forth  Cal 1-20
Position as integral of velocity  Cal 1-20
Velocity as derivative of position  Cal 1-20

Integration formulas  Cal 1-27
Intensity

Of wave function  Cal 6-9
Interpretation of solutions to Schrödinger's Eq.  Cal

6-9
Interval, evaluating variables over  Cal 1-10
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L
Laminar flow  Cal 4-8, Cal 7-10
Landau, Lev

Superfluid helium  Cal 12-6
Landau's prediction for  Cal 12-6

Laplacian
Relation to curl  Cal 8-2

Laplacian (del squared)
Chapter on  Cal 4-1
Relation to potential flow  Cal 12-4

LC circuit
Ringing like a bell  Cal 5-11

Leibnitz  Cal 1-2
Leptons

Standard model of elementary particles  Cal 7-7
Lifetime

Muon, exponential decay  Cal 1-32
Light

Speed of light
From one dimensional wave equation  Cal 9-7

Structure of electromagnetic wave  Cal 9-1, Cal 9-
6

Limiting process  Cal 1-2
Definition of derivative  Cal 1-30
In calculus  Cal 1-5
Introduction to derivative  Cal 1-6
With strobe photographs  Cal 1-3

Line charge, electric field of
Calculated using calculus

In cylindrical coordinates  Cal 3-19
Line integral

Becomes curl for infinitesimal paths  Cal 8-3
Localized non potential force

Effect on vortex motion  Cal 13-17
Lofting, boat  Cal 2-5
Logarithms

Integral of 1/x  Cal 1-15
Introduction to  Cal 1-15
Inverse of exponential function  Cal 1-16

LRC circuit. See RLC circuit
LRC circuit, ringing like a bell  Cal 5-11

M
Magnetic and electric fields

In terms of scalar and vector potentials  Cal 11-3
Magnetic field

Analogous to vorticity in fluids  Cal 12-7
Of a straight wire

Calculating curl of  Cal 8-12
Curl of  Cal 8-10

Wave equation for
With sources  Cal 11-6

Magnetic flux
Dimensions of Front cover-2

Magnus equation
Airplane wing  Cal 13-24
Relative motion of vortex line and fluid particles

Cal 13-20
The equation  Cal 13-21

Magnus formula
Exact for curved vortices  Cal 13 A2-1

Magnus lift force  Cal 13-25
On fluid core vortices - a pseudo force  Cal 13-26

Mass
Continuity equation for flow of  Cal 13-5

Maxwell's equations
All forms of  Cal 11-6
Conservation of electric charge  Cal 10-1
Derivation of the wave equation  Cal 9-4
In differential form  Cal 8-9
In terms of scalar and vector potentials  Cal 11-3
Introducing vector potential into  Cal 11-3
One dimensional wave equation

Gives speed of light  Cal 9-7
Plane wave solution  Cal 9-6
Relativistic wave equation for photons  Cal 6-3
Vector identities for  Cal 9-2
Vector potential in  Cal 11-2

Measurement limitation
Due to uncertainty principle  Cal 1-2

Measurement of quantized circulation  Cal 13-20
Measuring time constant from graph  Cal 1-34
MKS units Front cover-2
Modulus

Spring  Cal 2-15
Momentum of fluid particles

Navier-Stokes equation  Cal 13-2
Motion

Of charged vortex rings  Cal 13-18
Of vortex line, relative directions  Cal 13-22

Moving circuit
Vector Identity for  Cal 13-12

Multiple cross products
Easy way to handle  Cal 13 A1-5

Muon
In Standard model of elementary particles  Cal 7-7
Lifetime, exponential decay  Cal 1-32
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N
Navier-Stokes equation  Cal 13-2

As starting point for fluid theory  Cal 13-7
Bernoulli equation derivation  Cal 13-8
Derivation of Helmholtz's theorem from  Cal 13-11
Final equation!  Cal 13-7
Momentum of fluid particles  Cal 13-2
Newton’s second law for fluids  Cal 13-2
Non potential forces in  Cal 13-11
Nonlinear equation  Cal 13-7
Rate of change of momentum  Cal 13-2
Role of  viscosity  Cal 13-7
Viscosity term in  Cal 13-10

Curl of vorticity  Cal 13-10
Negative slope  Cal 1-31
Neutrinos

In Standard model of elementary particles  Cal 7-7
New functions, obtained from integration  Cal 1-15
Newtonian Fluids

Definition of  Cal 4-4
Newton’s laws

Second law
For fluids, the Navier-Stokes equation  Cal 13-2

Non potential field  Cal 12-3
Non potential forces

In extended Helmholtz theorem  Cal 13-15
In Navier-Stokes equation  Cal 13-11
Localized

Causing sideways motion  Cal 13-17
Rayfield-Reif experiment  Cal 13-16

Nonlinear equation
Navier-Stokes equation  Cal 13-7

Normalization of wave function  Cal 6-10

O
One dimensional wave equation  Cal 2-1, Cal 2-14

Maxwell's equations
Gives speed of light  Cal 9-7

Solutions using complex variables  Cal 5-24, Cal
5-25

Order of partial derivative  Cal 9-8
Oscillation

Decaying  Cal 5-10

P
Parabolic profile, pipe flow  Cal 4-8
Parabolic surface, rotating fluid

Superfluid helium  Cal 12-6
Telescope mirror  Cal 12-6

Parallel plate capacitor
Example of  voltage gradient  Cal 3-8

Partial derivative  Cal 5-24
Order of

Appendix on  Cal 9-8
Partial derivative operator  Cal 8-2
Particular solution, driven RLC circuit  Cal 5-22
Perpendicular components of flow  Cal 12-2
Phi component

Gradient in spherical coordinates  Cal 3-17
Photons

Relativistic wave equation for  Cal 6-3
Physical constants

In CGS units Back cover-1
In MKS units Front cover-2

Pipe flow
Calculating viscous forces  Cal 4-7
Measuring viscosity coefficient  Cal 4-9
Parabolic profile  Cal 4-8
Potential flow in  Cal 12-5
Pressure force  Cal 4-9
Viscous force formula  Cal 4-8

Plane, tangent  Cal 3-23
Plane wave

Discussion of  Cal 9-6
Solution for Maxwell's equations  Cal 9-6

Plotting
Experiment, electric potential  Cal 3-2

Plywood model. See Gradient: Of voltage: Interpre-
tation

Point charge
Divergence theorem  Cal 7-7
Quantum electrodynamics  Cal 7-7

Point particles
Delta function  Cal 7-8
Problems with gravity theory  Cal 7-7
Standard model  Cal 7-7

Postscript™  language  Cal 2-6
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Potential,  magnetic
Wave equation for  Cal 11-4

Potential, electric
Wave equation for  Cal 11-4

Potential energy
Electric potential energy

Electric field as gradient of  Cal 3-4
Schrödinger's Equation  Cal 6-6

Potential flow
And the Laplacian (del squared)  Cal 12-4
Bernoulli’s equation in  Cal 13-9
Definition of  Cal 12-3
Examples of

In a sealed container  Cal 12-4
In a straight pipe  Cal 12-5

Superfluids  Cal 12-6
Zero curl, no vorticity  Cal 12-3

Power
Dimensions of Front cover-2

Power series. See Series expansions
Powers of 10, names of Front cover-2
Prediction of motion

Using calculus  Cal 1-9
Pressure

Dimensions of Front cover-2
Pressure field  Cal 3-1

Pressure force
As gradient of pressure  Cal 3-29
In pipe flow  Cal 4-9
Per unit volume  Cal 3-30
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Calculus Chapter 1
Introduction to Calculus
This first chapter covers all the calculus that is needed
for the Physics 2000 text. The remaining chapters allow
students to look at the physics from an advanced
mathematical point of view.

This chapter, which replaces Chapter 4 in Physics
2000, is intended for students who have not had
calculus, or as a calculus review for those whose
calculus is not well remembered.  If, after reading
part way through this chapter, you feel your calculus
background is not so bad after all, go back to
Chapter 4 in Physics 2000, study the derivation of
the constant acceleration formulas beginning on
page 4-8, and work the projectile motion problems
in the appendix to Chapter 4.  Those who study all of
this introduction to calculus should then proceed to
the projectile motion problems in the appendix to
Chapter 4 of the Physics text.

CHAPTER 1 INTRODUCTION TO
CALCULUS
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LIMITING PROCESS
In Chapter 3 of Physics 2000, we used strobe photo-
graphs to define velocity and acceleration vectors.
The basic approach was to turn up the strobe flashing
rate, as we did in going from Figure (3-3) to (3-4)
shown below. We turned the rate up until all the
kinks are clearly visible and the successive displace-
ment vectors give a reasonable description of the
motion.  We did not turn the flashing rate too high,
for the practical reason that the displacement vectors
became too short for accurate work.

In our discussion of instantaneous velocity we con-
ceptually turned the strobe all the way up as illus-
trated in Figures (2-22a) through (2-22d), redrawn
here in Figure (1).  In these figures, we initially see
a fairly large change in  v0  as the strobe rate is
increased and  ∆t  reduced.  But then the change
becomes smaller, and it looks as if we are approach-
ing some final value of  v0  that does not depend on
the size of  ∆t , provided  ∆t  is small enough.  It looks
as if we have come close to the final value in Figure
(1c).

The progression seen in Figure (1) is called a limit-
ing process.  The idea is that there really is some true
value of  v0  which we have called the instantaneous
velocity, and that we approach this true value for
sufficiently small values of  ∆t .  This is a calculus
concept, and in the language of calculus, we are
taking the limit as   ∆∆ t  goes to zero.

THE UNCERTAINTY PRINCIPLE
For over 200 years, from the invention of calculus by
Newton and Leibnitz until 1924, the limiting pro-
cess and the resulting concept of instantaneous ve-
locity was one of the cornerstones of physics.  Then
in 1924 Werner Heisenberg discovered what he
called the uncertainty principle which places a limit
on the accuracy of experimental measurements.

Heisenberg discovered something very new and
unexpected.  He found that the act of making an
experimental measurement unavoidably affects the
results of an experiment.  This had not been known
previously because the effect on large objects like
golf balls is undetectable.  But on an atomic scale
where we study small systems like electrons moving
inside an atom, the effect is not only observable, it
can dominate our study of the system.

One particular consequence of the uncertainly prin-
ciple is that the more accurately we measure the
position of an object, the more we disturb the motion
of the object.  This has an immediate impact on the
concept of instantaneous velocity.  If we turn the
strobe all the way up, reduce  ∆t  to zero, we are in
effect trying to measure the position of the object
with infinite precision.  The consequence would be
an infinitely big disturbance of the motion of the
object we are studying.  If we actually could turn the
strobe all the way up, we would destroy the object
we were trying to study.

Figures 3-3 and 3-4 from Physics 2000
Strobe photographs of a moving object.  In the first photograph,
the time between flashes is so long that the motion is difficult to
understand. In the second, the time between flashes was reduced
and the motion is more easily understood.
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1

∆t = 0.4 Sec

0

V0

V01

∆t = 0.025 Sec

0

V0

1

∆t = 0.1 Sec

0

Vi~

instantaneous velocity

(c)

(d)

(a)

(b)

Figure 1
Transition to instantaneous velocity. As we reduce  ∆∆ t ,
there is less and less change in the vector  V0 . It looks
as if we are approaching an exact final value.
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Uncertainty Principle on a Larger Scale
It turns out that the uncertainty principle can have a
significant impact on a larger scale of distance than
the atomic scale.  Suppose, for example, we con-
structed a chamber that is 1 cm on each side, and
wished to study the projectile motion of an electron
inside.  Using Galileo’s idea that objects of different
mass fall at the same rate, we would expect that the
motion of the electron projectile should be the same
as more massive objects.  If we took a strobe photo-
graph of the electron’s motion, we would expect to
get results like those shown in Figure (2).  This
figure represents projectile motion with an accelera-
tion g = 980 cm/sec2 and    ∆t = .01sec,  as the reader
can easily check.

When we study the uncertainty principle in Chapter
40 of the Physics text, we will see that a measure-
ment which is accurate enough to show that position
(2) is below position (1), could disturb the electron
enough to reverse its direction of motion.  The next
position measurement could find the electron over
where we drew position (3), or back where we drew
position (0), or anywhere in the region in between.
As a result we could not even determine what
direction the electron is moving.  This uncertainty
would not be the result of a sloppy experiment, it is
the best we can do with the most accurate and
delicate measurements possible.

The uncertainty principle has had a significant im-
pact on the way physicists think about motion.
Because we now know that the measuring process
affects the results of the measurement, we see that it
is essential to provide experimental definitions to
any physical quantity we wish to study.  A concep-
tual definition, like turning the strobe all the way up
to define instantaneous velocity, can lead to funda-
mental inconsistencies.

Even an experimental definition like our strobe
definition of velocity can lead to inconsistent results
when applied to something like the electron in
Figure (2).  But these inconsistencies are real.  Their
existence is telling us that the very concept of
velocity is beginning to lose meaning for these small
objects.

On the other hand, the idea of the limiting process
and instantaneous velocity is very convenient when
applied to larger objects where the effects of the
uncertainty principle are not detectable.  In this case
we can apply all the mathematical tools of calculus
developed over the past 250 years.  The status of
instantaneous velocity has changed from a basic
concept to a useful mathematical tool.  Those prob-
lems for which this mathematical tool works are
called problems in classical physics; those problems
for which the uncertainty principle is important, are
in the realm of what we call quantum physics.

Figure 2
Hypothetical electron projectile motion experiment.
The uncertainty principle tells us that such an
experiment cannot lead to predictable results.
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Figure 3
Definitions of      ∆∆Ri  and vi .

i

i  1
∆Ri

Ri  1

Ri

+

+

∆R   i Ri= –Ri  1+

V i = ∆R   i
∆t

CALCULUS DEFINITION OF VELOCITY
With the above perspective on the physical limita-
tions of the limiting process, we can now return to
the main topic of this chapter—the use of calculus in
defining and working with velocity and accelera-
tion.

In discussing the limiting process in calculus, one
traditionally uses a special set of symbols which we
can understand if we adopt the notation shown in
Figure (3).  In that figure we have drawn the coordi-
nate vectors  Ri  and  Ri+1  for the i th and (i + 1)
positions of the object.  We are now using the
symbol   ∆Ri to represent the displacement of the ball
during the i to i+1 interval.  The vector equation for

  ∆Ri  is

  ∆Ri = Ri+1 – Ri (1)

In words, Equation (1) tells us that   ∆Ri  is the
change, during the time   ∆t,  of the position vector  R
describing the location of the ball.

The velocity vector  vi  is now given by

  
vi =

∆Ri
∆t (2)

This is just our old strobe definition   vi = si/∆t , but
using a notation which emphasizes that the displace-
ment   s i = ∆Ri  is the change in position that occurs
during the time  ∆t .  The Greek letter ∆  (delta) is
used both to represent the idea that the quantity   ∆Ri
or  ∆t  is small, and to emphasize that both of these
quantities change as we change the strobe rate.

The limiting process in Figure (1) can be written in
the form

  
vi ≡ limit

∆t→0
∆Ri
∆t (3)

where the word “limit” with   ∆t→0  underneath, is to
be read as “limit as  ∆t  goes to zero”.  For example
we would read Equation (3) as “the instantaneous
velocity   vi   at position i is the limit, as   ∆t  goes to
zero, of the ratio   ∆Ri /∆t .

 
”

For two reasons, Equation (3) is not quite yet in
standard calculus notation.  One is that in calculus,
only the limiting value, in this case, the instanta-
neous velocity, is considered to be important.  Our
strobe definition   vi = ∆Ri /∆t  is only a step in the
limiting process.  Therefore when we see the vector

 vi , we should assume that it is the limiting value, and
no special symbol like the underline is used.  For this
reason we will drop the underline and write

  
vi = limit

∆t→0
∆Ri
∆t (3a)
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The second change deals with the fact that when  ∆t
goes to zero we need an infinite number of time steps
to get through our strobe photograph, and thus it is
not possible to locate a position by counting time
steps. Instead we measure the time t that has elapsed
since the beginning of the photograph, and use that
time to tell us where we are, as illustrated in Figure
(4).  Thus instead of using  vi  to represent the
velocity at position i, we write  v(t)  to represent the
velocity at time  t.  Equation (3) now becomes

  
v(t) = limit

∆t→0
∆R(t)

∆t (3b)

where we also replaced   ∆Ri  by its value   ∆R(t)  at
time t.

Although Equation (3b) is in more or less standard
calculus notation, the notation is clumsy.  It is a pain to
keep writing the word “limit” with a   ∆t→0 under-
neath.  To streamline the notation, we replace the
Greek letter ∆  with the English letter  d  as follows

  
limit
∆t→0

∆R(t)
∆t

≡ dR(t)
dt (4)

(The symbol ≡  means defined equal to.) To a
mathematician, the symbol   dR(t)/dt   is just short-

hand notation for the limiting process we have been
describing.  But to a physicist, there is a different,
more practical meaning.  Think of dt as a short  ∆t ,
short enough so that the limiting process has essen-
tially occurred, but not too short to see what is going
on.  In Figure (1), a value of dt less than .025 seconds
is probably good enough.

If dt is small but finite, then we know exactly what
the  dR(t)  is.  It is the small but finite displacement
vector at the time  t.  It is our old strobe definition of
velocity, with the added condition that dt is such a
short time interval that the limiting process has
occurred.  From this point of view, dt is a real time
interval and  dR(t)

 
a real vector, which we can work

with in a normal way.  The only thing special about
these quantities is that when we see the letter d
instead of ∆ , we must remember that a limiting
process is involved.  In this notation, the calculus
definition of velocity is

 

v(t) =
dR(t)

dt
(5)

where  R(t)  and  v(t)  are the particle’s coordinate vec-
tor and velocity vector respectively, as shown in Figure
(5).  Remember that this is just fancy shorthand nota-
tion for the limiting process we have been describing.

t = .3sec

t = .2sect = .1sec

t = 0sec

t = .4sec

t = .5sec

R(t)
at t = .3 sec

Figure 4
Rather than counting individual images, we can
locate a position by measuring the elapsed time t.
In this figure, we have drawn the displacement
vector   R(t) at time t = .3 sec.

Figure 5
Instantaneous position and velocity at time t.

R(t)

V(t)
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ACCELERATION
In the analysis of strobe photographs, we defined both
a velocity vector v and an acceleration vector a .  The
definition of a , shown in Figure (2-12) reproduced
here in Figure (6), was

  
ai ≡

vi+1 – vi
∆t (6)

In our graphical work we replaced  vi  by   s i/∆t  so that
we could work directly with the displacement vectors

 s i and experimentally determine the behavior of the
acceleration vector for several kinds of motion.

Let us now change this graphical definition of accel-
eration over to a calculus definition, using the ideas
just applied to the velocity vector.  First, assume that
the ball reached position  i  at time  t  as shown in
Figure (6).  Then we can write

 vi = v(t)

  vi+1 = v(t+∆t)

to change the time dependence from a count of
strobe flashes to the continuous variable t.  Next,
define the vector   ∆v(t)  by

  ∆v(t) ≡ v(t+∆t) – v(t) = vi+1– vi (7)

We see that   ∆v(t) is the change in the velocity vector
as the time advances from  t  to    t+∆t . The strobe
definition of  ai can now be written

   
a(t)

strobe
definition

=
v(t + ∆t) – v(t)

∆t
≡ ∆v(t)

∆t (8)

Now go through the limiting process, turning the
strobe up, reducing  ∆t  until the value of  a(t)  settles
down to its limiting value.  We have

   
a(t)

calculus
definition

= limit
∆t→0

v(t + ∆t) – v(t)
∆t

= limit
∆t→0

∆v(t)
∆t

(9)

Finally use  the shorthand notation d/dt for the
limiting process:

 
a(t) =

dv(t)
dt

(10)

Equation (10) does not make sense unless you re-
member that it is notation for all the ideas expressed
above.  Again, physicists think of dt as a short but
finite time interval, and  dv(t)  as the small but finite
change in the velocity vector during the time interval
dt.  It’s our strobe definition of acceleration with the
added requirement that  ∆t  is short enough that the
limiting process has already occurred.

Components
Even if you have studied calculus, you may not
recall encountering formulas for the derivatives of
vectors, like  dR(t)/dt  and  dv(t)/dt  which appear in
Equations (5) and (10).  To bring these equations
into a more familiar form where you can apply
standard calculus formulas, we will break the vector
Equations (5) and (10) down into component equa-
tions.

In the chapter on vectors, we saw that any vector
equation like

 A = B + C (11)
is equivalent to the three component equations

 Ax = Bx + Cx

Ay = By + Cy

Az = Bz + Cz

(12)

The advantage of the component equations was that
they are simply numerical equations and no graphi-
cal work or trigonometry is required.

Vi

Vi  1+

–Vi
a i –V )iVi  1+(

∆t
=

–ViVi  1+( )

position at 
time t position at 

time t + ∆t

Figure 6
Experimental definition of the acceleration vector.
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The limiting process in calculus does not affect the
decomposition of a vector into components, thus
Equation (5) for  v(t)  and Equation (10) for  a(t)
become

 v(t) = dR(t)/dt (5)

 vx(t) = dRx(t)/dt (5a)
 vy(t) = dRy(t)/dt (5b)

 vz(t) = dRz(t)/dt (5c)

and

 a(t) = dv(t)/dt (10)

 ax(t) = dvx(t)/dt (10a)

 ay(t) = dvy(t)/dt (10b)

 az(t) = dvz(t)/dt (10c)

Often we use the letter x for the x coordinate of the
vector R and we use y for  Ry and z for  Rz .  With this
notation, Equation (5) assumes the shorter and perhaps
more familiar form

 vx(t) = dx(t)/dt (5a’)
 vy(t) = dy(t)/dt (5b’)
 vz(t) = dz(t)/dt (5c’)

At this point the notation has become deceptively short.
You now have to remember that x(t) stands for the x
coordinate of the particle at a time t.

We have finally boiled the notation down to the point
where it would be familiar in any calculus course.  If we
restrict our attention to one dimensional motion along
the x axis, then all we have to concern ourselves with
are the x component equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt
(10a)

INTEGRATION
When we worked with strobe photographs, the pho-
tograph told us the position  R(t)  of the ball as time
passed.  Knowing the position, we can then use
Equation (5) to calculate the ball's velocity  v(t)  and
then Equation (10) to determine the acceleration

 a(t) .  In general, however, we want to go the other
way, and predict the motion from a knowledge of the
acceleration.  For example, imagine that you were in
Galileo's position, hired by a prince to predict the
motion of cannonballs.  You know that a cannonball
should not be much affected by air resistance, thus
the acceleration throughout its trajectory should be
the constant gravitational acceleration g .  You know
that  a(t) = g . How then do you use that knowledge
in Equations (5) and (10) to predict the motion of the
ball?

The answer is that you cannot with the equations in
their present form.  The equations tell you how to go
from  R(t) to  a(t),  while to predict motion you need
to go the other way, from  a(t)  to  R(t) .  The topic of
this section is to see how to reverse the directions in
which we use our calculus equations.  Equations (5)
and (10) involve the process called differentiation.
We will see that when we go the other way the
reverse of differentiation is a process called integra-
tion.  We will see that integration is a simple con-
cept, but a process that is sometimes hard to perform
without the aid of a computer.

R

y

x
Figure 7
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Prediction of Motion
In our earlier discussion, we have used strobe pho-
tographs to analyze motion.  Let us see what we can
learn from such a photograph for predicting motion.
Figure (8) is our familiar projectile motion photo-
graph showing the displacement s  of a ball during
the time the ball traveled from a position labeled (0)
to the position labeled (4).  If the ball is now at
position (0) and each of the images is (.1) seconds
apart, then the vector s  tells us where the ball will be
at a time of (.4) seconds from now.  If we can predict
s , we can predict the motion of the ball.  The general
problem of predicting the motion of the ball is to be
able to calculate  s(t)  for any time t.

From Figure (8) we see that s  is the vector sum of the
individual displacement vectors  s1 ,  s2 ,  s3  and  s4

 s = s1 + s2 + s3 + s4 (11)

We can then use the fact that   s1 = v1∆t ,   s2 = v2∆t ,
etc. to get

  s = v1∆t + v2∆t + v3∆t + v4∆t (12)

Rather than writing out each term, we can use the
summation sign Σ to write

  
s = vi∆tΣ

i = 1

4
(12a)

Equation (12) is approximate in that the  vi  are
approximate (strobe) velocities, not the instanta-
neous velocities we want for a calculus discussion.
In Figure (9) we improved the situation by cutting

  ∆t  to 1/4  of its previous value, giving us four times
as many images and more accurate velocities  vi .

We see that the displacement s  is now the sum of 16
vectors

 s = s1 + s2 + s3 + ... + s15 + s16 (13)

Expressing this in terms of the velocity vectors  v1  to
 v16  we have

  s = v1∆t + v2∆t + v3∆t + ... + v15∆t + v16∆t (14)

or using our more compact notation

  
s = vi∆tΣ

i = 1

16
(14a)

While Equation (14) for s  looks quite different than
Equation (12)—the sum of sixteen vectors instead
of four—the displacement vectors s  in the two cases
are exactly the same.  Adding more intermediate
images did not change where the ball was located at
the time of t = .4 seconds.  In going from Equation
(12) to (14), what has changed as a result of shorten-
ing the time step   ∆t , is that the individual velocity
vectors  vi  become more nearly equal to the instan-
taneous velocity of the ball at each image.

Figure 8
To predict the total displacement s , we
add up the individual displacements si .

1

2

3

4

0 S 1

S =   S + 1 S + 2 ... + S 16

S 2

S 3

S 4

S 

t=0 

t=.4 sec 

4

8

12

16

0S 1 1 2 3

S =   S + 1 S + 2 ... + S 16

S 

t=0 

t=.4 sec 

S 16

Figure 9
With a shorter time interval, we add up more
displacement vectors to get the total displacement s .
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If we reduced   ∆t  again by another factor of 1/4, so
that we had 64 images in the interval t = 0 to t = .4 sec,
the formula for s  would become

  
s = vi∆tΣ

i = 1

64
(15a)

where now the  vi  are still closer to representing the
ball's instantaneous velocity.  The more we reduce

  ∆t , the more images we include, the closer each  vi
comes to the instantaneous velocity  v(t) .  While
adding more images gives us more vectors that we
have to add up to get the total displacement s , there
is very little change in our formula for s .  If we had
a million images, we would simply write

  
s = vi∆tΣ

i = 1

1000000
(16a)

In this case the  vi  would be physically indistinguish-
able from the instantaneous velocity  v(t) .  We have
essentially reached a calculus limit, but we have
problems with the notation. It is clearly inconve-
nient to label each  vi  and then count the images.
Instead we would like notation that involves the
instantaneous velocity  v(t)  and expresses the begin-
ning and end points in terms of the initial time ti  and
final time tf , rather than the initial and final image
numbers i.

In the calculus notation, we replace the summation
sign  Σ  by something that looks almost like the
summation sign, namely the integral sign  .  (The
French word for integration is the same as their word
for summation.)  Next we replaced the individual  vi
by the continuous variable  v(t)  and finally express
the end points by the initial time ti  and the final time
tf .  The result is

   
s = vi∆tΣ

i = 1

n
→

as the number
n becomes
infinitely
large

v(t)dt
ti

tf (17)

Calculus notation is more easily handled, or is at
least more familiar, if we break vector equations up
into component equations.  Assume that the ball
started at position i which has components  xi = x(ti)
[read  x(ti)  as “x at time ti ”] and  yi = y(ti)  as shown
in Figure (10).  The final position f is at  xf = x(tf)
and  yf = y(tf) .

Thus the displacement s  has x and y components

 sx = x(tf) – x(ti)

 sy = y(tf) – y(ti)

Breaking Equation (17) into component equations
gives

 
sx = x(tf) – x(ti) = vx(t)dt

ti

tf

(18a)

 
sy = y(tf) – y(ti) = vy(t)dt

ti

tf

(18b)

Here we will introduce one more piece of notation
often used in calculus courses.  On the left hand side
of Equation (18a) we have  x(tf) – x(ti)  which we
can think of as the variable x(t) evaluated over the
interval of time from ti  to tf .  We will often deal with
variables evaluated over some interval and have a
special notation for that.  We will write

  
x(tf) – x(ti) ≡ x(t)

ti

tf
(19)

You are to read the symbol  x(t) ti
tf  as "x of t evaluated

from ti  to tf ".  We write the initial time ti  at the bottom
of the vertical bar, the final time tf  at the top.

f

i

x f

f

x 

(x  – x )      

x(t ) 
i

i

i x(t ) f

y 
f

y 
i

f
(y

  –
 y

 )
   

   
i

S 

Figure 10
Breaking the vector s  into components.



We use similar notation for any kind of variable, for
example

  
f(x)

x1

x2

≡ f(x2) – f(x1) (19a)

(Remember to subtract when the variable is evalu-
ated at the value at the bottom of the vertical bar.)

With this notation, our Equation (18) can be written

 
sx = x(t)

ti

tf
= vx(t)dt

ti

tf
(18  a′ )

 
sy = y(t)

ti

tf
= vy(t)dt

ti

tf
(18  b′ )

Calculating Integrals
Equation (18) is nice and compact, but how do you
use it?  How do you calculate integrals?  The key is
to remember that an integral is just a fancy notation
for a sum of terms, where we make the time step  ∆t
very small.  Keeping this in mind, we will see that
there is a very easy way to interpret an integral.

To get this interpretation, let us start with the simple
case of a ball moving in a straight line, for instance,
the x direction, at a constant velocity  vx .  A strobe
picture of this motion would look like that shown in
Figure (11a).

Figure (11b) is a graph of the ball's velocity  vx(t)  as
a function of the time t.  The vertical axis is the value
of  vx , the horizontal axis is the time t.  Since the ball
is traveling at constant velocity,  vx  has a constant
value and is thus represented by a straight horizontal
line.  In order to calculate the distance that the ball
has traveled during the time interval from ti  to tf ,
we need to evaluate the integral

  

sx = vx(t)dt
ti

tf
distance ball
travels in
time interval
t i to t f

(18a)

To actually evaluate the integral, we will go back to
our summation notation

  
sx = vxi∆tΣ

i initial

ifinal

(20)

and show individual time steps   ∆t  in the graph of  vx
versus t, as in Figure (11c).

We see that each term in Equation (20) is repre-
sented in Figure (11c) by a rectangle whose height is

 vx  and whose width is   ∆t .  We have shaded in the
rectangle representing the 7th term   vx7∆t .  We see
that   vx7∆t  is just the area of the shaded rectangle,
and it is clear that the sum of all the areas of the
individual rectangles is the total area under the
curve, starting at time ti  and ending at time tf .  Here
we are beginning to see that the process of integra-
tion is equivalent to finding the area under a curve.

With a simple curve like the constant velocity  vx(t)
in Figure (11c), we see by inspection that the total
area from ti  to tf  is just the area of the complete
rectangle of height  vx  and width  (tf – ti) .  Thus

  sx = vx × (t f – ti) (21)

This is the expected result for constant velocity, namely

   distance
traveled = velocity × time

for
constant
velocity

(21a)

Figure 11b
Graph of   vx(t)  versus t for the ball of Figure 11a.

Figure 11a
Strobe photograph of ball moving at
constant velocity in x direction.

t 

x 

ft i

t  
t i

v x

v (t) x

t f

Figure 11c
Each       vx∆∆ t  is the area of a rectangle.

t  
t ∆t 

i

v x
v x7

v (t) x

t f
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To see that you are not restricted to the case of
constant velocity, suppose you drove on a freeway
due east (the x direction) starting at 9:00 AM and
stopping for lunch at 12 noon.  Every minute during
your trip you wrote down the speedometer reading
so that you had an accurate plot of  vx(t)  for the entire
morning, a plot like that shown in Figure (12).  From
such a plot, could you determine the distance  sx  that
you had traveled?

Your best answer is to multiply each value  vi  of your
velocity by the time   ∆t  to calculate the average
distance traveled each minute.  Summing these up
from the initial time  ti = 9:00 AM  to the final time

 tf = noon , you have as your estimate

  sx ≈ vxi∆tΣ
i

(The symbol ≈  means approximately equal.)

To get a more accurate value for the distance trav-
eled, you should measure your velocity at shorter
time intervals   ∆t  and add up the larger number of
smaller rectangles.  The precise answer should be
obtained in the limit as   ∆t  goes to zero

  
sx = limit

∆t → 0
vxi∆tΣ

i
= vx(t)dt

ti

tf
(22)

This limit is just the area under the curve that is
supposed to represent the instantaneous velocity  vx(t) .

Thus we can interpret the integral of a curve as the
area under the curve even when the curve is not
constant or flat.  Mathematicians concern them-
selves with curves that are so wild that it is difficult
or impossible to determine the area under them.
Such curves seldom appear in physics problems.

While the basic idea of integration is simple—just
finding the area under a curve—in practice it can be
quite difficult to calculate the area.  Much of an
introductory calculus course is devoted to finding
the formulas for the areas under various curves.
There are also books called tables of integrals where
you look up the formula for a curve and the table tells
you the formula for the area under that curve.

In Chapter 16 of the Physics text, we will discuss a
mathematical technique called Fourier analysis.
This is a technique in which we can describe the
shape of any continuous curve in terms of a sum of
sine waves.  (Why we want to do that will become
clear then.)  The process of Fourier analysis involves
finding the area under some very complex curves,
curves often involving experimental data for which
we have no formula, only graphs.  Such curves
cannot be integrated by using a table of integrals,
with the result that Fourier analysis was not widely
used until the advent of the modern digital computer.

The computer made a difference, because we can
find the area under almost any curve by breaking the
curve into short pieces of length   ∆t , calculating the
area   vi∆t  of each narrow rectangle, and adding up
the area of the rectangles to get the total area.  If the
curve is so wild that we have to break it into a million
segments to get an accurate answer, that might be
too hard to do by hand, but it usually a very simple
and rapid job for a computer.  Computers can be
much more efficient than people at integration.

t  
9am ∆t 

v x7

v (t) x

noon

Figure 12
Plot of   vx(t)  for a trip starting at 9:00 AM and
finishing at noon.  The distance traveled is the
area under the curve.
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The Process of Integrating
There is a language for the process of integration
which we will now take you through.  In each case
we will check that the results are what we would
expect from our summation definition, or the idea
that an integral is the area under a curve.

The simplest integral we will encounter is the calcu-
lation of the area under a curve of unit height as
shown in Figure (13).  We have the area of a
rectangle of height 1 and length  (tf – ti)

 
1dt

ti

t f
= dt

ti

t f
= (tf – t i ) (22)

t  
t 

area = 1(t  – t )

i

1 

t f

f i 

Figure 13
Area under a curve of unit height.

We will use some special language to describe this
integration.  We will say that the integral of dt is
simply the time t, and that the integral of dt from ti
to tf  is  equal to t  evaluated from ti  to tf .  In symbols
this is written as

 
dt

ti

t f
= t

ti

t f
= (tf – t i ) (23)

Recall that the vertical line after a variable means to
evaluate that variable at the final position tf  (upper
value), minus that variable evaluated at the initial
position ti  (lower value).  Notice that this prescrip-
tion gives the correct answer.

The next simplest integral is the integral of a constant,
like a constant velocity  vx  over the interval ti  to tf

 
vx dt

ti

t f
= vx(tf – t i ) (24)

t  
t 

area = v (t  – t )

i

v x

x

t f

f i 

Figure 14
Area under the constant  vx  curve.

Since 
 

(tf – t i ) = dtti

t f , we can replace  (tf – t i ) in
Equation (24) by the integral to get

  
vx dt

ti

t f
= vx dt

ti

t f
vx a constant (25)

and we see that a constant like  vx  can be taken
outside the integral sign.

Let us try the simplest case we can think of where  vx
is not constant.  Suppose  vx  starts at zero at time

 ti = 0  and increases linearly according to the formula

 vx = at (26)

t  
0

v x

v  = at 
x

t f

at f

Figure 15

When we get up to the time tf  the velocity will be
 (atf)  as shown in Figure (15).  The area under the

curve  vx = at  is a triangle whose base is of length tf
and height is  atf .  The area of this triangle is one half
the base times the height, thus we get for the distance

 sx  traveled by an object moving with this velocity
  

sx = vx dt
0

t f = 1
2(base) × (height)

= 1
2(tf)(atf) = 1

2 atf
2

(27)

Now let us repeat the same calculation using the
language one would find in a calculus book.  We have

  
sx = vx dt

0

tf
= (at)dt

0

tf
(28)

The constant (a) can come outside, and we know that
the answer is  1/2atf

2 , thus we can write

  
sx = a tdt

0

tf
= 1

2atf
2 (29)

In Equation (29) we can cancel the a's to get the result

 
tdt

0

tx

= 1
2tf

2 (30)
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In a calculus text, you would find the statement that
the integral  tdt  is equal to  t2/2  and that the integral
should be evaluated as follows

 

tdt
0

tf
=

t2

2
0

tf
=

tf
2

2 – 0
2 =

tf
2

2 (31)

Indefinite Integrals
When we want to measure an actual area under a
curve, we have to know where to start and stop.
When we put these limits on the integral sign, like ti
and tf , we have what is called a definite integral.
However there are times where we just want to know
what the form of the integral is, with the idea that we
will put in the limits later.  In this case we have what
is called an indefinite integral, such as

  
tdt = t2

2
indefinite integral (32)

The difference between our definite integral in Equa-
tion (31) and the indefinite one in Equation (32) is
that we have not chosen the limits yet in Equation
(32).  If possible, a table of integrals will give you a
formula for the indefinite integral and let you put in
whatever limits you want.

Integration Formulas
For some sets of curves, there are simple formulas
for the area under them.  One example is the set of
curves of the form  tn .  We have already considered
the cases where n = 0 and n = 1.

  n = 0

t0dt = dt = t        
t 

1 

       (33a)

  n = 1

t1dt = tdt = t2

2      
t 

t 

       (33b)

Some results we will prove later are

  n = 2

t2dt = t3

3
(33c)

  n = 3

t3dt = t4

4
(33d)

Looking at the way these integrals are turning out,
we suspect that the general rule is

 
tndt = tn + 1

n + 1 (34)

It turns out that Equation (34) is a general result for any
value of n except  n = –1.  If   n = –1, then you would
have division by zero, which cannot be the answer.
(We will shortly discuss the special case where n = –1.)

As long as we stay away from the n = –1 case, the
formula works for negative numbers.  For example

 t– 2dt = dt
t2 = t(– 2 +1)

–2 +1 = t–1

(–1)

 
dt
t2 = – 1

t (35)

In our discussion of gravitational and electrical
potential energy, we will encounter integrals of the
form seen in Equation (35).

Exercise 1
Using Equation (34) and the fact that constants can
come outside the integral, evaluate the following inte-
grals:

(a)     xdx it does not matter whether
we call the variable t or x

(b)   
  

x5dx
x = 1

x = 2
also sketchthe area
being evaluated

(c)   
  dt

t2t = 1

t = 2
show that you get
a positive area

(d)      GmM
r2 dr whereG, m, and M

are constants

(e)     a
y3 / 2dy "a" is a constant

t

t 2

t

t 3
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NEW FUNCTIONS
We have seen that when we integrate a curve or
function like  t2 , we get a new function  t3/3 .  The
functions  t2  and  t3  appear to be fairly similar; the
integration did not create something radically differ-
ent.  However, the process of integration can lead to
some curves with entirely different behavior.  This
happens, for example, in that special case n = –1
when we try to do the integral of  t– 1 .

Logarithms
It is certainly not hard to plot  t– 1 , the result is shown
in Figure (16).  Also there is nothing fundamentally
difficult or peculiar about measuring the area under
the  t– 1  curve from some ti  to tf , as long as we stay
away from the origin t = 0 where  t– 1  blows up.  The
formula for this area turns out, however, to be the
new function called the natural logarithm, abbrevi-
ated by the symbol ln.  The area in Figure (16) is
given by the formula

 
1
t dt

ti

t f
= ln(t f) – ln(t i) (36)

Two of the important but peculiar features of the
natural logarithm are

 ln(ab) = ln(a) + ln(b) (37)

 ln(1
a ) = – ln(a) (38)

Thus we get, for example

 ln(t f) – ln(t i) = ln(t f) + ln 1
ti

= ln
tf

t i

(39)

Thus the area under the curve in Figure (16) is
 

dt
tt i

t f
= ln

tf
t i (40)

While the natural logarithm has some rather peculiar
properties it is easy to evaluate because it is available
on all scientific calculators.  For example, if ti = .5
seconds and tf = 4 seconds, then we have

 
ln

tf
ti

= ln 4
.5

= ln (8) (41)

Entering the number 8 on a scientific calculator and
pressing the button labeled ln, gives

 ln (8) = 2.079 (42)

which is the answer.

Exercise 2
Evaluate the integrals

 dx
x.001

1000 dx
x.000001

1

Why are the answers the same?

t  
t  t  

t  
1  

i

t  –1

f

curve

Figure 16
Plot of   t – 1.  The area under this curve
is the natural logarithm ln.
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The Exponential Function
We have just seen that, while the logarithm function
may have some peculiar properties, it is easy to
evaluate using a scientific calculator.  The question
we now want to consider is whether there is some
function that undoes the logarithm.  When we enter
the number 8 into the calculator and press ln, we get
the number 2.079.  Now we are asking if, when we
enter the number 2.079, can we press some key and
get back the number 8?  The answer is, you press the
key labeled  ex .  The  ex  key performs the exponen-
tial function which undoes the logarithm function.
We say that the exponential function  ex  is the
inverse of the logarithm function ln.

Exponents to the Base 10
You are already familiar with exponents to the base
10, as in the following examples

  100 = 1
101 = 10
102 = 100
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
106 = 1,000,000

10– 1 = 1/10 = .1
10– 2 = 1/100 = .01
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
10– 6 = .000001

(43)

The exponent, the number written above the 10, tells
us how many factors of 10 are involved.  A minus
sign means how many factors of 10 we divide by.
From this alone we deduce the following rules for
the exponent to the base 10.

  
10–a = 1

10a (44)

  
10a × 10b = 10a + b (45)

(Example   102 × 103 = 100 × 1000 = 100,000 .)

The inverse of the exponent to the base 10 is the
function called logarithm to the base 10 which is
denoted by the key labeled log on a scientific calcu-
lator.  Formally this means that

  log (10y) = y (46)

Check this out on your scientific calculator.  For
example, enter the number 1,000,000 and press the
log button and see if you get the number 6.  Try
several examples so that you are confident of the
result.

The Exponential Function  yx

Another key on your scientific calculator is labeled
 yx .  This allows you to determine the value of any

number y raised to the power (or exponent) x.  For
example, enter the number  y = 10, and press the  yx

key.  Then enter the number   x = 6  and press the =
key.  You should see the answer

 yx = 106 = 1000000

It is quite clear that all exponents obey the same rules
we saw for powers of 10, namely

  
ya × yb = ya + b (47)

[Example   y2 × y3 = (y × y)(y × y × y) = y5 .]

And as before

  
y– a ≡ 1

ya (48)
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Exercise 3
Use your scientific calculator to evaluate the follow-
ing quantities.  (You should get the answers shown.)

 (a) 106

(b) 23

(c) 230

(d) 10– 1

(1000000)
(8)
(1)
(.1)

(To do this calculation, enter 10, then press  yx .  Then
enter 1, then press the +/– key to change it to –1, then
press = to get the answer .1)

 (e) 2– .5

(f) log (10)
(g) ln (2.7183)

(1/ 2= .707)
(1)
(1) (veryclose to 1)

Try some other examples on your own to become
completely familiar with the  yx  key.  (You should note
that any positive number raised to the 0 power is 1.
Also, some calculators, in particular the one I am
using, cannot handle any negative values of y, not
even  (– 2)2  which is +4)

Euler's  Number e = 2.7183. . .
We have seen that the function log on the scientific
calculator undoes, is the inverse of, powers of 10.
For example, we saw that

 log (10x) = x (46) repeated

 Example: log (106) = 6

Earlier we saw that the exponential function  ex  was
the inverse of the natural logarithm ln.  This means that

 ln(ex) = x (49)

The difference between the logarithm log and the
natural  logarithm  ln, is that log undoes exponents
of the number 10, while ln undoes exponents of the
number  e.  This special number e, one of the
fundamental mathematical constants like π, is known
as Euler's number, and is always denoted by the
letter e.

You can find the numerical value of Euler's number
e on your calculator by evaluating

 e1 = e (50)

To do this, enter 1 into your calculator, press the  ex

key, and you should see the result

 e1 = e = 2.718281828 (51)

We will run into this number throughout the course.
You should remember that e is about 2.7, or you might
even remember 2.718.  (Only remembering e as 2.7 is
as klutzy as remembering π as 3.1)

The terminology in math courses is that the function
log, which undoes exponents of the number 10, is the
logarithm to the base 10.  The function ln, what we
have called the natural logarithm, which undoes
exponents of the number e, is the logarithm to the
base e.  You can have logarithms to any base you
want, but in practice we only use base 10 (because
we have 10 fingers) and the base e.  The base e is
special, in part because that is the logarithm that
naturally arises when we integrate the function 1/x.
We will see shortly that the functions ln and  ex  have
several more, very special features.
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DIFFERENTIATION AND INTEGRATION
The scientific calculator is a good tool for seeing
how the functions like ln and  ex  are inverse of each
other.  Another example of inverse operations is
integration and differentiation.  We have seen that
integration allows us to go the other way from
differentiation [finding x(t) from v(t), rather than
v(t) from x(t)].  However it is not so obvious that
integration and differentiation are inverse opera-
tions when you think of integration as finding the
area under a curve, and differentiation as finding
limits of   ∆x/∆t  as   ∆t  goes to zero.  It is time now to
make this relationship clear.

First, let us review our concept of a derivative.
Going back to our strobe photograph of Figure (3),
replacing  Ri  by  R(t)  and  Ri+1  by   R(t+∆t) , as shown
in Figure (3a), our strobe velocity was then given by

  
v(t) =

R(t+∆t) – R(t)
∆t (52)

The calculus definition of the velocity is obtained by
reducing the strobe time interval   ∆t  until we obtain
the instantaneous velocity v .

  

vcalculus = limit
∆t→0

R(t + ∆t) – R(t)
∆t (53)

While Equation (53) looks like it is applied to the
explicit case of the strobe photograph of projectile
motion, it is easily extended to cover any  process of
differentiation.  Whatever function we have [we had

 R(t), suppose it is now f(t)], evaluate it at two closely
spaced times, subtract the older value from the
newer one, and divide by the time difference   ∆t.
Taking the limit as   ∆t  becomes very small gives us
the derivative

  d f(t)
dt

≡ limit
∆t→0

f(t + ∆t) – f(t)
∆t

(54)

The variable with which we are differentiating does
not have to be time t.  It can be any variable that we
can divide into small segments, such as x

  
d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (55)

Let us see how the operation defined in Equation
(55) is the inverse of finding the area under a curve.

Suppose we have a curve, like our old  vx(t)  graphed
as a function of time, as shown in Figure (17).  To
find out how far we traveled in a time interval from
ti  to some later time T, we would do the integral

 
x(T) = vx(t) dt

ti

T
(56)

The integral in Equation (56) tells us how far we
have gone at any time T during the trip.  The quantity
x(T) is a function of this time T.

Figure 3a
Defining the strobe velocity.

 R(t+∆t)

 R(t+∆t)

R(t)

R(t)

V(t) =

∆R   = –

 R(t+∆t) R(t)∆R   =
–

∆t ∆t

i

i  1+

t  
t  

x(T)

v (t) x

i
T

Figure 17
The distance traveled by the time T is the area under
the velocity curve up to the time T.
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Now let us differentiate the function x(T) with
respect to the variable T.  By our definition of
differentiation we have

  d
dT

x(T) = limit
∆t→0

x(T + ∆t) – x(T)
∆t (57)

Figure (17) shows us the function x(T).  It is the area
under the curve v(t) starting at ti  and going up to
time t = T.  Figure (18) shows us the function

  x(T + ∆t) .  It is the area under the same curve,
starting at ti  but going up to   t = T + ∆t .  When we
subtract these two areas, all we have left is the area
of the slender rectangle shown in Figure (19).

The rectangle has a height approximately  vx(T)  and
a width  ∆t  for an area

  x(T + ∆t) – x(T) = vx(T)∆t (58)

Dividing through by  ∆t  gives

  
vx(T) =

x(T + ∆t) – x(T)
∆t (59)

The only approximation in Equation (59) is at the top
of the rectangle.  If the curve is not flat,   vx(T + ∆t)
will be different from  vx(T)  and the area of the sliver
will have a value somewhere between   vx(T)∆t  and

  vx(T + ∆t)∆t .  But if we take the limit as  ∆t  goes to
zero, the value of   vx(T + ∆t)  must approach  vx(T) ,
and we end up with the exact result

  vx(T) = limit
∆t→0

x(T + ∆t) – x(T)
∆t

(60)

This is just the derivative dx(t)/dt evaluated at t = T.

 
vx(T) =

dx(t)
dt t = T

(61a)

where we started from

 
x(T) = vx(t) dt

ti

T
(61b)

Equations (61a) and (61b) demonstrate explicitly how
differentiation and integration are inverse operations.
The derivative allowed us to go from x(t) to  vx(t)  while
the integral took us from  vx(t)  to x(t).  This inverse is
not as simple as pushing a button on a calculator to go
from ln to  ex .  Here we have to deal with limits on the
integration and a shift of variables from   t to T.  But
these two processes do allow us to go back and forth.

t  
t  

x(T+∆t)

v (t) x

i T T+∆t

t  
t  

x(T)

v (t) x

i
T

t  

v (t) x

v (T) x

x

T T+∆t

v (T)∆t

Figure 17 repeated
The distance x(T) traveled by the time T

Figure 18

The distance       x (T+∆∆ t )  traveled by the time       T+∆∆ t .

Figure 19
The distance       x (T+∆∆ t ) – x(T)
traveled during the time  ∆∆ t .
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A Fast Way to go Back and Forth
We introduced our discussion of integration by
pointing out that equations

 vx(t) =
dx(t)

dt ;           
 

ax(t) =
dvx(t)

dt (62a,b)

went the wrong way in that we were more likely to
know the acceleration  ax(t)  and from that want to
calculate the velocity  vx(t)  and distance traveled
x(t).  After many steps, we found that integration
was what we needed.

We do not want to repeat all those steps.  Instead we
would like a quick and simple way to go the other
way around.  Here is how you do it.  Think of the dt
in (62a) as a small but finite time interval.  That
means you can treat it like any other number and
multiply both sides of Equation (62a) through by it.

 vx(t) =
dx(t)

dt

 dx(t) = vx(t)dt (63)

Now integrate both sides of Equation (63) from some
initial time  ti  to a final time T.  (If you do the same thing
to both sides of an equation, both sides should still be
equal to each other.)

 
dx(t)

t i

T
= vx(t)dt

t i

T

(64)

If dt is to be thought of as a small but finite time step,
then dx(t) is the small but finite distance we moved in
the time dt.  The integral  on the left side of Equation
(64) is just the sum of all these short distances moved,
which is just the total distance moved during the time
from ti  to T.

 
dx(t)

t i

T
= x(t)

t i

T
= x(T) – x (ti) (65)

Thus we end up with the result

 
x(t)

t i

T
= vx(t)dt

t i

T

(66)

Equation (66) is a little more general than (62b) for
it allows for the fact that  x(ti)  might not be zero.  If,

however, we say that we started our trip at  x(ti) = 0 ,
then we get the result

 
x(T) = vx(t)dt

t i

T

(67)

representing the distance traveled since the start of
the trip.

Constant Acceleration Formulas
The constant acceleration formulas, so well known
from high school physics courses, are an excellent
application of the procedures we have just described.

We will begin with motion in one dimension.  Sup-
pose a car is traveling due east, in the x direction, and
for a while has a constant acceleration  ax .  The car
passes us at a time  ti = 0 , traveling at a speed  vx0 .
At some later time T, if the acceleration  ax  remains
constant, how far away from us will the car be?

We start with the equation

 
ax(t) =

dvx(t)
dt

(68)

Multiplying through by dt to get

 dvx(t) = ax(t)dt

then integrating from time  ti = 0  to time  tf = T,  we
get

 
dvx(t)

0

T
= ax(t)dt

0

T
(69)

Since the integral  dvx(t) = vx(t) , we have

 
dvx(t)

0

T
= vx(t)

0

T
= vx(T) – vx(0) (70)

where  vx(0)  is the velocity  vx0  of the car when it
passed us at time t = 0.

While we can always do the left hand integral in
Equation (69), we cannot do the right hand integral
until we know  ax(t) .  For the constant acceleration
problem, however, we know that  ax(t) = ax  is
constant, and we have

 
ax(t)dt

0

T
= axdt

0

T
(71)



Calculus  2000 - Chapter 1      Introduction to Calculus      Cal 1-21

Since constants can come outside the integral sign,
we get

 
axdt

0

T
= ax dt

0

T
= axt

0

T
= axT (72)

where we used  dt = t .  Substituting Equations (70)
and (72) in (69) gives

 vxT – vx0 = axT (73)

Since Equation (73) applies for any time T, we can
replace T by t to get the well known result

   vx(t) = vx0 + axt (a x constant) (74)

Equation (74) tells us the speed of the car at any time
t after it passed us, as long as the acceleration
remains constant.

To find out how far away the car is, we start with the
equation

 
vx(t) =

dx(t)
dt

(62a)

Multiplying through by dt to get

 dx(t) = vx(t) dt

then integrating from time t = 0 to time t = T gives
(as we saw earlier)

 
dx(t)

0

T
= vx(t)dt

0

T
(75)

The left hand side is

 
dx(t)

0

T
= x(t)

0

T
= x(T) – x(0) (76)

If we measure along the x axis, starting from where
we are (where the car was at t = 0) then x(0) = 0.

In order to do the right hand integral in Equation
(75), we have to know what the function  vx(t)  is.  But
for constant acceleration, we have from Equation
(74)  vx(t) = vx0 + axt  , thus

 
vx(t)dt

0

T
= (vx 0 + axt)dt

0

T
(77)

One of the results of integration that you should
prove for yourself (just sketch the areas) is the rule

 
a(x) + b(x) dx

i

f
= a(x)dx

i

f
+ b(x)dx

i

f

(78)

thus we get

 
(vx0 + axt)dt

0

T
= vx0dt

0

T
+ axt dt

0

T
(79)

Since constants can come outside the integrals, this
is equal to

 
(vx0 + axt)dt

0

T
= vx0 dt

0

T
+ ax t dt

0

T
(80)

Earlier we saw that

 
dt

0

T
= t

0

T
= T – 0 = T (23)

 

tdt
0

T
=

t2

2
0

T

=
T2

2
– 0 =

T2

2 (30)

Thus we get

 
(vx0 + axt)dt

0

T
= vx0T +

1
2

axT2
(81)

Using Equations (76) and (81) in (75) gives

 
x(T) – x0 = vx0T +

1
2

axT2

Taking  x0 = 0  and replacing T by t gives the other
constant acceleration formula

   
x(t) = vx0t +

1
2

axt
2 (a x constant) (82)

You can now see that the factor of  t2/2  in the constant
acceleration formulas comes from the integral  tdt .
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Exercise 4
Find the formula for the velocity v(t) and position x(t)
for a car moving with constant acceleration  ax , that
was located at position xi  at some initial time ti .

Start your calculation from the equations

 vx(t) = dx(t)
dt

 ax(t) =
dvx(t)

dt

and go through all the steps that we did to get
Equations (74) and (82).  See if you can do this without
looking at the text.

If you have to look back to see what some steps are,
then finish the derivation looking at the text.  Then a
day or so later, clean off your desk, get out a blank
sheet of paper, write down this problem, put the book
away and do the derivation.  Keep doing this until you
can do the derivation of the constant acceleration
formulas without looking at the text.

Constant Acceleration Formulas
in Three Dimensions
To handle the case of motion with constant  accelera-
tion in three dimensions, you start with the separate
equations

 
vx(t) =

dx(t)
dt

ax(t) =
dvx(t)

dt

vy(t) =
dy(t)

dt
ay(t) =

dvy(t)
dt

vz(t) =
dz(t)

dt
az(t) =

dvz(t)
dt

(83)

Then repeat, for each pair of equations, the steps that
led to the constant acceleration formulas for motion
in the x direction.  The results will be

 x(t) = vx0t + 1
2axt2 vx(t) = vx0 + axt

y(t) = vy0t + 1
2ayt2 vy(t) = vy0 + ayt

z(t) = vz0t + 1
2azt

2 vz(t) = vz0 + azt

(84)

The final step is to combine these six equations into
the two vector equations

 
x(t) = v0t + 1

2 at2 ; v(t) = v0 + at (85)

These are the equations we analyzed graphically in
Chapter 3 of the Physics text, in Figure (3-34) and
Exercise (3-9).  (There we wrote s  instead of  x(t) ,
and  vi  rather than  v0 .)

In many introductory physics courses, considerable
emphasis is placed on solving constant acceleration
problems.  You can spend weeks practicing on
solving these problems, and become very good at it.
However, when you have done this, you have not
learned very much physics because most forms of
motion are not with constant acceleration, and thus
the formulas do not apply.  The formulas were
important historically, for they were the first to
allow the accurate prediction of motion (of cannon-
balls).  But if too much emphasis is placed on these
problems, students tend to use them where they do
not apply.  For this reason we have placed the
exercises using the constant acceleration equations
in an appendix at the end of Chapter 4 of the Physics
text.  There are plenty of problems there for all the
practice you will need with these equations.  Doing
these exercises requires only algebra, there is no
practice with calculus.  To get some experience with
calculus, be sure that you can confidently do Exer-
cise 4.
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MORE ON DIFFERENTIATION
In our discussion of integration, we saw that the
basic idea was that the integral of some curve or
function f(t) was equal to the area under that curve.
That is an easy enough concept.  The problems arose
when we actually tried to find the formulas for the
areas under various curves.  The only areas we
actually calculated were the rectangular area under
f(t) = constant and the triangular area under f(t) = at.
It was perhaps a surprise that the area under the
simple curve 1/t should turn out to be a logarithm.

For differentiation, the basic idea of the process is
given by the formula

  df(t)
dt

= limit
∆t→0

f(t + ∆t) – f(t)
∆t

(54) repeated

Equation (54) is short hand notation for a whole
series of steps which we introduced through the use
of strobe photographs.  The basic idea of differentia-
tion is more complex than integration, but, as we will
now see, it is often a lot easier to find the derivative
of a curve than its integral.

Series Expansions
An easy way to find the formula for the derivative of
a curve is to use a series expansion.  We will
illustrate the process by using the binomial expan-
sion to calculate the derivative of the function  xn

where n is any constant.

We used the binomial expansion, or at least the first
two terms, in Chapter 1 of the Physics text. That was
during our discussion of the approximation formu-
las that are useful in relativistic calculations.  As we
mentioned in Exercise (1-5), the binomial expan-
sion is

  (x + α)n = xn + nαxn – 1 +
n(n – 1)

2!
α2xn – 2 ⋅ ⋅ ⋅

(86)

When α  is a number much smaller than 1   (α < < 1) ,
we can neglect   α2   compared to α  (if   α = .01,

  α2 = .0001 ), with the result that we can accurately
approximate   (x + α)n by

  
(x + α)n ≈ xn + nαxn–1 α << 1 (87)

Equation (87) gives us all the approximation formu-
las found in Equations (1-20) through (1-25) on page
1-28 of the Physics text.

As an example of Equation (87), just to see that it
works, let us take x = 5, n = 7 and  α  = .01 to calculate

 (5.01)7 .  From the calculator we get

 (5.01)7 = 79225.3344 (88)

(To do this enter 5.01, press the  yx  button, then enter
7 and press the  =   button.)  Let us now see how this
result compares with

  (x + α)n ≈ xn + nαxn – 1

(5 + .01)7 ≈ 57 + 7(.01)56
(89)

We have

 57 = 78125 (90)

  7 × .01 × 56 = 7 × .01 × 15625 = 1093.75 (91)

Adding the numbers in (90) and (91) together gives

 57 + 7(.01)56 = 79218.75 (92)

Thus we end up with 79218 instead of 79225, which
is not too bad a result.  The smaller α  is compared
to one, the better the approximation.
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Derivative of the Function  xn

We are now ready to use our approximation formula
(87) to calculate the derivative of the function  xn .
From the definition of the derivative we have

  d(xn)
dx

=
limit
∆x→0

(x + ∆x)n – xn

∆x
(93)

Since   ∆x  is to become infinitesimally small, we can
use our approximation formula for   (x + α )n .  We
get

  (x + α )n ≈ xn + n(α)xn–1 (α << 1)

  ( x + ∆x)n ≈ xn + n(∆x)xn–1 (∆x << 1) (94)

Using this in Equation (93) gives

  
d(xn)

dx
= limit

∆x→0
[xn + n(∆x)xn–1] – xn

∆x (95)

We used an equal sign rather than an approximately
equal sign in Equation (95) because our approxima-
tion formula (94) becomes exact when   ∆x  becomes
infinitesimally small.

In Equation (95), the terms  xn  cancel and we are left
with

  d(xn)
dx

=
limit
∆x→0

n(∆x)xn–1

∆x
(96)

At this point, the factors   ∆x  cancel and we have

  d(xn)
dx

= limit
∆x→0 nxn–1 (97)

Since no   ∆x's  remain in our formula, we end up with
the exact result

 d(xn)
dx

= nxn–1 (98)

Equation (98) is the general formula for the deriva-
tive of the function  xn .

In our discussion of integration, we saw that a
constant could come outside the integral.  The same
thing happens with a derivative.  Consider, for
example,

  d
dx

af(x) = limit
∆x→0

a f(x + ∆x) – af(x)
∆x

Since the constant a has nothing to do with the
limiting process, this can be written

  d
dx

af(x) = a limit
∆x→0

f(x + ∆x) – f(x)
∆x

= a
df(x)
dx

(99)

Exercise 5
Calculate the derivative with respect to x (i.e., d/dx)
of the following functions.  (When negative powers of
x are involved, assume x is not equal to zero.)

(a)    x

(b)     x2

(c)     x3

(d)     5x2 – 3x

(Before you do part (d), use the definition of the
derivative to prove that  d

dx f(x) + g(x) = df(x)
dx + dg(x)

dx )

(e)     x– 1

(f)      x– 2

(g)     x

(h)     1/ x

(i)      3x.73

(j)     7x– .2

(k)   1

(In part (k) first show that this should be zero from the
definition of the derivative.  Then write  1 = x0 and
show that Equation (98) also works, as long as x is not
zero.)

(l)    5
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The Chain Rule
There is a simple trick called the chain rule that
makes it easy to differentiate a wide variety of
functions.  The rule is

  
df y(x)

dx
=

df(y)
dy

dy
dx

chain rule (100)

To see how this rule works, consider the function

 f(x) = ( x2 )n (101)

We know that this is just  f(x) = x2n , and the deriva-
tive is

 df(x)
dx

= d
dx

(x2n) = 2nx2n– 1 (102)

But suppose that we did not know this trick, and
therefore did not know how to differentiate  (x2)n .
We do, however, know how to differentiate powers
like  x2 and  yn. The chain rule allows us to use this
knowledge in order to figure out how to differentiate
the more complex function  (x2)n .

We begin by defining y(x) as

 y(x) = x2 (103)

Then our function  f(x) = (x2)ncan be written in
terms of y as follows

 f(x) = (x2)n = [ y(x) ]n = (y)n = f(y)

 f(y) = (y)n (104)

Differentiating (103) and (104) gives

 dy(x)
dx

= d
dx

(x2) = 2x (105)

 df(y)
dy

= d
dy

(yn) = nyn–1 (106)

Using (104) and (105) in the chain rule (100) gives

  df(y)
dx

= df
dy

× dy
dx

= (nyn–1 ) × ( 2x)

= 2nyn–1x

= 2n(x2 )n–1x

= 2n(x2[n–1])x

= 2n(x[2n–2])x

= 2n(x[2n– 2] + 1)

= 2nx2n– 1

(107)

which is the answer we expect.

In our example, using the chain rule was more
difficult than differentiating directly because we
already knew how to differentiate  x2n .  But we will
shortly encounter examples of new functions that
we do not know how to differentiate directly, but
which can be written in the form f[y(x)], where we
know df/dy and dy/dx.  We can then use the chain
rule to evaluate the derivative df/dx.  We will give
you practice with the chain rule when we encounter
these functions.

Remembering the Chain Rule
The chain rule can be remembered by thinking of the
dy's as cancelling as shown.

  
df(y)
dy

dy
dx

=
df(y)
dx

remembering
the chain rule

(108)
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Partial Proof of the Chain Rule (optional)
The proof of the chain rule is closely related to
cancellation  we showed in Equation (108).  A
partial proof of the rule proceeds as follows.

Suppose we have some function f(y) where y is a
function of the variable x.  As a result f[y(x)] is itself
a function of x and can be differentiated with respect
to x.

  
d
dx

f y(x) = limit
∆x→0

f y(x + ∆x) – f y(x)

∆x
(123)

Now define the quantity   ∆y  by

  ∆y ≡ y(x + ∆x) – y(x) (124)

so that

  y(x + ∆x) = y(x) + ∆y

  f[y(x + ∆x)] = f(y + ∆y)

and Equation (123) becomes

  d
dx

f y(x) = limit
∆x→0

f(y + ∆y) – f(y)
∆x

(125)

Now multiply (125) through by

  1 =
∆y
∆y

=
y(x + ∆x) – y(x)

∆y
(126)

to get

  d
dx

f y(x)

=
limit
∆x→0

f(y + ∆y) – f(y)
∆x

×
y(x + ∆x) – y(x)

∆y

=
limit
∆x→0

f(y + ∆y) – f(y)
∆y

×
y(x + ∆x) – y(x)

∆x

(127)
where we interchanged   ∆x  and   ∆y in the denomina-
tor.

(We call this a partial proof for the following reason.
For some functions y(x), the quantity

  ∆y = y(x + ∆x) – y(x)  may be identically zero for
a small range of   ∆x .  In that case we would be
dividing by zero (the   1/∆y ) even before we took the
limit as   ∆x  goes to zero.  A more complete proof
handles the special cases separately.  The resulting
chain rule still works however, even for these special
cases.)

Since   ∆y = y(x + ∆x) – y(x)  goes to zero as   ∆x
goes to zero, we can write Equation (127) as

  d
dx

f y(x)

= limit
∆y→0

f(y + ∆y) – f(y)
∆y

× limit
∆x→0

y(x + ∆x) – y(x)
∆x

       
 

=
df(y)

dy
dy
dx (100) repeated

This rule works as long as the derivatives df/dy and
dy/dx are meaningful, i.e., we stay away from kinks
or discontinuities in f and y.
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INTEGRATION FORMULAS
Knowing the formula for the derivative of the func-
tion  xn , and knowing that integration undoes differ-
entiation, we can now use Equation (98)

 dxn

dx
= nxn – 1 (98) repeated

to find the integral of the function  xn .  We will see
that this trick works for all cases except the special
case where n = –1, i.e., the special case where the
integral is a natural logarithm.

To integrate  xn,  let us go back to our calculation of
the distance  sx  or x(t) traveled by an object moving
in the x direction at a velocity  vx .  This was given by
Equations (19) or (56) as

 
x(t)

ti

T
= vx(t) dt

ti

T
(128)

where the instantaneous velocity  vx(t)  is defined as

 vx(t) =
dx(t)

dt
(129)

Suppose x(t) had the special form

  x(t) = tn + 1 (a special case) (130)

then we know from our derivative formulas that

 v(t) =
dx(t)

dt
= dt(n+1)

dt
= (n+1)tn (131)

Substituting  x(t) = tn + 1  and  v(t) = (n+1)tn  into
Equation (128) gives

  
 

x(t)
t i

T
= vx(t) dt

ti

T
(128)

 
tn + 1

ti

T
= (n+1)tndt

ti

T

= (n+1) tndt
ti

T (132)

Dividing through by (n+1) gives

 
tndt

ti

T
= 1

n+1 tn+1

ti

T
(133)

If we choose  ti = 0 , we get the simpler result

 
tndt

0

T
= Tn+1

n+1 (134)

and the indefinite integral can be written

 
tn dt = tn+1

n+1 (135) (also 34)

This is the general rule we stated without proof back
in Equation (34).  Note that this formula says noth-
ing about the case  n = –1, i.e., when we integrate

 t– 1 = 1/t , because  n +1 = –1 +1 = 0 and we end up
with division by zero.  But for all other values of n,
we now have derived a general formula for finding
the area under any curve of the form  xn  (or  tn ).  This
is a rather powerful result considering the problems
one encounters actually finding areas under curves.
(If you did not do Exercise 1, the integration exer-
cises on page 14, or had difficulty with them, go back
and do them now.)
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Derivative of the Exponential Function
The previous work shows us that if we have a series
expansion for a function, it is easy to obtain a
formula for the derivative of the function.  We will
now apply this technique to calculate the derivative
and integral of the exponential function  ex .

There is a series expansion for the function   ex  that
works for any value of x is but is most useful for
small values of x = α  << 1, is

  eα ≈ 1 + α + α2

2!
+ α3

3!
+ ⋅ ⋅ ⋅ (136)

where   2! = 2 ×1 ,   3! = 3×2×1 = 6 , etc. (The quan-
tities 2!, 3! are called  factorials. For example 3! is
called three factorial.)

To see how well the series (136) works, consider the
case α = .01 .  From the series we have, up to the   α3

term
  α = .01

α2 = .0001 ; α2/2 = .00005

α3 = .000001 ; α3/ 6 = .000000167
Giving us the approximate value

  1 + α + α2

2!
+ α3

3!
= 1.010050167 (137)

When we enter .01 into a scientific calculator and
press the  ex  button, we get exactly the same result.
Thus the calculator is no more accurate than includ-
ing the   α3  term in the series, for values of α  equal
to .01 or less.

Let us now see how to use the series (136) for
calculating the derivative of  ex .  We have, from the
definition of a derivative,

  d
dx

f(x) ≡ limit
∆x→0

f(x + ∆x) – f(x)
∆x (56) repeat

If  f(x) = ex , we get

  d(ex)
dx

= limit
∆x→0

ex + ∆x – ex

∆x (138)

To do this calculation, we have to evaluate the
quantity   ex + ∆x .  First, we use the fact that for
exponentials

 ea + b = eaeb

(Remember that   102 + 3 = 102 × 103 = 105 .)  Thus

  ex +∆x = ex e∆x (139)

Now use the approximation formula (136), setting
  α = ∆x  and throwing out the   α2  and   α3  and higher

terms because we are going to let   ∆x  go to zero

  e∆x ≈ 1 + ∆x (140)

Substituting (140) in (139) gives

  ex+∆x ≈ ex(1 + ∆x)

= ex + ex∆x (141)

Next use (141) in (138) to get

  d(ex)
dx

= limit
∆x→0

(ex + ex ∆x) – ex

∆x (142)

The  ex  terms cancel and we are left with

  d(ex)
dx

= limit
∆x→0

ex∆x
∆x

= limit
∆x→0ex (143)

Since the   ∆x′s  cancelled, we are left with the exact
result

 d(ex)
dx

= ex (144)

We see that the exponential function  ex  has the special
property that it is its own derivative.
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We will often want to know the derivative, not just
of the function  ex  but of the slightly more general
result  eax  where a is a constant.  That is, we want to
find

  d
dx

eax (a = constant) (145)

Solving this problem provides us with our first
meaningful application of the chain rule

 df(y)
dx

=
df(y)

dy
dy
dx (100) repeated

If we set

y = ax  (146)

then we have

 deax

dx
= dey

dy
dy
dx

(147)

Now

 dey

dy
= ey (148)

  dy
dx

=
d
dx

(ax) = a
dx
dx

= a × 1 = a (149)

Using (148) and (149) in (147) gives

 deax

dx
= (ey)(a) = (eax)(a) = aeax

Thus we have

 d
dx

eax = aeax (150)

This result will be used so often it is worth memoriz-
ing.

Exercise 6
For further practice with the chain rule, show that

  deax2

dx
= 2axeax2

Do this by choosing  y = ax2 , and then do it again by
choosing  y = x2 .

Integral of the Exponential Function
To calculate the integral of  eax , we will use the same
trick as we used for the integral of  xn , but we will be
a bit more formal this time.  Let us start with
Equation (128) relating position x(t) and velocity
v(t) = dx(t)/dt go get

 
x(t)

ti

t f
= vx(t) dt

ti

t f
=

dx(t)
dt

dt
ti

t f

(128)

Since Equation (128) holds for any function x(t) [we
did not put any restrictions on x(t)], we can write
Equation (128) in a more abstract way relating any
function f(x) to its derivative df(x)/dx

 

f(x)
xi

xf
=

df(x)
dx

dx
xi

xf
(151)

To calculate the integral of  eax , we set  f(x) = eax

and  df(x)/dx = aeax  to get

 
eax

xi

xf
= aeaxdx

xi

xf
(152)

Dividing (157) through by (a) gives us the definite
integral

  
eaxdx

xi

xf
= 1

a eax
xi

xf
(a = constant) (153)

The corresponding indefinite integral is

  
eaxdx =

eax

a (a = constant) (154)

Exercise 7
The natural logarithm is defined by the equation

 ln (x) = 1
x dx (see Equations 33-40)

Use Equation (151) to show that

 d
dx(ln x) = 1

x (155)

(Hint—integrate both sides of Equation (155) with
respect to x.)
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DERIVATIVE AS THE SLOPE OF A CURVE

Up to now, we have emphasized the idea that the
derivative of a function f(x) is given by the limiting
process

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x (55) repeat

We saw that this form was convenient when we had
an explicit way of calculating   f(x + ∆x) , as we did
by using a series expansion.  However, a lot of words
are required to explain the steps involved in doing
the limiting process indicated in Equation (55).  In
contrast, the idea of an integral as being the area
under a curve is much easier to state and visualize.
Now we will provide an easy way to state and
interpret the derivative of a curve.

Consider the function f(x) graphed in Figure (20).
At a distance x down the x  axis, the curve had a
height f(x) as shown.  Slightly farther down the x
axis, at   x + ∆x , the curve has risen to a height

  f(x + ∆x) .

Figure (20a) is a blowup of the curve in the region
between x and   x + ∆x .  If the distance   ∆x  is suffi-
ciently small, the curve between x and   x + ∆x
should be approximately a straight line and that part
of the curve should be approximately the hypot-
enuse of the right triangle abc seen in Figure (20a).
Since the side opposite to the angle   θ* is

  f(x + ∆x) – f(x) , and the adjacent side is   ∆x , we
have the result that the tangent of the angle   θ* is

  tan(θ*) =
f(x + ∆x) – f(x)

∆x (156)

When we make   ∆x  smaller and smaller, take the
limit as   ∆x → 0 , we see that the angle   θ*  becomes
more nearly equal to the angle θ  shown in Figure
(21), the angle of the curve when it passes through
the point x.  Thus

  tanθ = limit
∆x→0

f(x + ∆x) – f(x)
∆x

(157)

The tangent of the angle at which the curve passes
through the point x is called the slope of the curve at
the point x.  Thus from Equation (157) we see that
the slope of the curve is equal to the derivative of the
curve at that point.  We now have the interpretation
that the derivative of a curve at some point is equal
to the slope of the curve at that point, while the
integral of a curve is equal to the area under the curve
up to that point.

x 

f(x) 

f(x) 

f(x+∆x) 

x+∆xx

∆x

Figure 20

Two points on a curve, a distance   ∆∆ x  apart.

f(x) 

f(x+∆x) 
f(x+∆x) 
– f(x)

∆x

}θ*a

c

b

Figure 20a
At this point, the curve is tilted
by approximately an angle θθ *.

f(x) 

x

θ

Figure 21
The tangent of the angle θθ  at which the curve
passes through the point x is called the slope
of the curve at that point.
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Negative Slope
In Figure (22) we compare the slopes of a rising and
a falling curve.  In (22a), where the curve is rising,
the quantity   f(x + ∆x)  is greater than f(x) and the
derivative or slope

  df(x)
dx

= limit
∆x→0

f(x + ∆x) – f(x)
∆x

is a positive number.

In contrast, for the downward curve of Figure (22b),
  f(x + ∆x)  is less than  f(x) and the slope is negative.

For a curve headed downward, we have

   df(x)
dx

= – tan(θ) downward heading
curve (158)

(For this case you can think of θ  as a negative angle,
so that   tan(θ)  would automatically come out nega-
tive.  However it is easier simply to remember that
the slope of an upward directed curve is positive and
that of a downward directed curve is negative.)

Exercise 8

Estimate the numerical value of the slope of the curve
shown in Figure (23) at points (a), (b), (c), (d) and (e).
In each case do a sketch of   f(x + ∆x) – f(x)  for a small

  ∆x , and let the slope be the ratio of   f(x + ∆x) – f(x) to
  ∆x .  Your answers should be roughly 1, 0, –1, + ∞ ,

– ∞ .

po
sit

ive
slope

f(x) 
f(x+∆x) 

f(x+∆x) – f(x) 

x+∆xx

θ

is positive
∆x

Figure 22 a,b
Going uphill is a positive slope,
downhill is a negative slope.

negative slope

f(x) 

f(x+∆x) 

x+∆xx

θ

f(x+∆x) – f(x) is negative
∆x

x  

f(x) 

a

b

c d
e

Figure 23
Estimate the slope at the
various points indicated.
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THE EXPONENTIAL DECAY
A curve that we will encounter several times during
the course is the function  e– ax  shown in Figure (24),
which we call an exponential decay.  Since expo-
nents always have to be dimensionless numbers, we
are writing the constant (a) in the form  1/x0  so that
the exponent  x/x0  is more obviously dimensionless.

The function  e– x/x0  has several very special proper-
ties.  At x = 0, it has the numerical value 1  (e0 = 1) .
When we get up to  x = x0 , the curve has dropped to
a value

   e– x/x0 = e– 1 = 1
e (at x = x0)

≈ 1
2.7

(159)

When we go out to  x = 2x0 , the curve has dropped
to

 e– 2x0/x0 = e– 2 = 1
e2 (160)

Out at  x = 3x0 , the curve has dropped by another
factor of e to (1/e)(1/e)(1/e).  This decrease contin-
ues indefinitely.  It is the characteristic feature of an
exponential decay.

Muon Lifetime
In the muon lifetime experiment, we saw that the
number of muons surviving decreased with time.  At
the end of two microseconds, more than half of the
original 648 muons were still present.  By 6 micro-

seconds, only 27 remained.  The decay of these
muons is an example of an exponential decay of the
form

  number of
surviving
muons

=
number of
muons at
time t = 0

× e– t/t0 (161)

where t0  is the time it takes for the number of muons
remaining to drop by a factor of 1/e = 1/2.7.  That
time is called the muon lifetime.

We can use Equation (161) to estimate the muon
lifetime  t0 .  In the movie, the number of muons at the
top of the graph, reproduced in Figure (25), is 648.  That
is at time t = 0.  Down at time t = 6 microseconds, the
number surviving is 27.  Putting these numbers into
Equation (161) gives

  
27 surviving

muons = 648 initial
muons × e– 6/t0

 e– 6/t0 = 27
648 = .042 (162)

Take the natural logarithm ln of both sides of Equa-
tion (162), [remembering that   ln ex = x ] gives

  ln e– 6/t0 = – 6
t0

= ln .042 = – 3.17

where we entered .042 on a scientific calculator and
pressed the ln key.  Solving for  t0  we get

 t0 = 6 microsec
3.17 = 1.9 microseconds (163)

This is close to the accepted value of  t0 = 2.2 0
microseconds which has been determined from the
study of many thousands of muon decays.

Figure 24
As we go out an additional distance

 x0 , the exponential curve drops by
another factor of 1/e.

x
x0 

1/e  

1/e  

0

2x00 3x0

e  

2

–x/x

1

Figure 25
The lifetime of each detected muon is represented
by the length of a vertical line. We can see that
many muons live as long as 2 microseconds (2µs),
but few live as long as 6 microseconds.
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Half Life
The exponential decay curve  e– t/t0  decays to
1/e = 1/2.7 of its value at time  t0 .  While  1/e  is a very
convenient number from a mathematical point of
view, it is easier to think of the time  t1/2  it takes for
half of the muons to decay.  This time  t1/2  is called
the half life of the particle.

From Figure (26) we can see that the half life  t1/2  is
slightly shorter than the lifetime  t0 .  To calculate the
half life from  t0 , we have

 e– t/t0
t = t1/2

= e– t1/2/t0 = 1
2 (164)

Again taking the natural logarithm of both sides of
Equation (164) gives

  ln e– t1/2/t0 =
– t1/2

t0
= ln 1

2 = – .693

 t1/2 = .693 t0 (165)

From Equation (165) you can see that a half life  t1/2
is about .7 of the lifetime  t0 .  If the muon lifetime is
2.2   µsec  (we will abbreviate microseconds as   µsec ),
and you start with a large number of muons, you
would expect about half to decay in a time of

  (t1/2)muon = .693 × 2.2µsec = 1.5 µsec

The basic feature of the exponential decay curve
 e– t/t0  is that for every  time  t0  that passes, the curve

decreases by another factor of 1/e.  The same applies
to the half life  t1/2 .  After one half life,  e– t/t0  has
decreased to half its value.  After a second half life,
the curve is down to   1/4 = 1/2 × 1/2 .  After 3 half
lives it is down to   1/8 = 1/2 × 1/2 × 1/2  as shown in
Figure (27).

To help illustrate the nature of exponential decays,
suppose that you started with a million muons. How
long would you expect to wait before there was, on
the average, only one left?

To solve this problem, you would want the number
 e– t/t0  to be down by a factor of 1 million

  e– t/t0 = 1 × 10– 6

Taking the natural logarithm of both sides gives

   ln e– t/ t0 = –t
t0

= ln 1×10– 6 = –13.8 (166)

(To calculate    ln 1×10– 6 , enter 1, then press the
exp key and enter 6, then press the +/– key to change
it to –6.  Finally press = to get the answer –13.8.)

Solving Equation (166) for t gives

  t = 13.8 t0 = 13.8 × 2.2 µsec

 t = 30 microseconds (167)

That is the nature of an exponential decay.  While
you have nearly half a million left after around 2
microseconds, they are essentially all gone by 30
microseconds.

Exercise 9

How many factors of 1/2 do you have to multiply
together to get approximately 1/1,000,000? Multiply
this number by the muon half-life to see if you get
about 30 microseconds.

t
t

0 

1/e  
1/2  

0

0
t1/2

e  –t /t

1

0 

1

1/2  

1/4  
1/8  

0

t1/2 2t1/2 3t1/2

e  –t /t

Figure 26
Comparison of the lifetime t0  and the half-life   t1 /2 .

Figure 27
After each half-life, the curve
decreases by another factor of 1/2.
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Measuring the Time
Constant from a Graph
The idea that the derivative of a curve is the slope of
the curve, leads to an easy way to estimate a lifetime

 t0  from an exponential decay curve   e– t/t0 .

The formula for the derivative of an exponential
curve is

 deat

dt
= aeat (150) repeated

Setting  a = – 1/t0  gives

 d
dt

e– t/t0 = – 1
t0

e– t/t0 (168)

Since the derivative of a curve is the slope of the
curve, we set the derivative equal to the tangent of
the angle the curve makes with the horizontal axis.

  d
dt

e– t/t0 = – 1
t0

e– t/t0 = tanθ (168a)

The minus sign tells us that the curve is headed
down.

In Figure (28), we have drawn a line tangent to the
curve at the point  t = T.  This line intersects the (t)
axis (the axis where  e– t/t0  goes to zero) at a distance
(x) down the  t  axis.

 The height  (y) of the point where we drew the
tangent curve is just the value of the function  e– T/t0 .
The tangent of the angle θ  is the opposite side  (y)
divided by the adjacent side  (x)

  
tanθ =

y
x =

e– T/t0

x (169)

Equating the two magnitudes of tanθ  in Equations
(169) in (168a) gives us

 1
t0

e– T/t0 = 1
xe– T/t0

which requires that

 x = t0 (170)

Equation (170) tells us that the distance (x), the
distance down the axis where the tangent lines
intersect the axis, is simply the time constant  t0 .

The result gives us a very quick way of determining
the time constant  t0  of an exponential decay curve.
As illustrated in Figure (29), choose any point on the
curve, draw a tangent to the curve at that point and
measure the distance down the axis where the tan-
gent line intersects the axis.  That distance will be the
time constant  t0 .  We will use this technique in
several laboratory exercises later in the course.

T
t

0e  –T/t

0e  –t /t

x      

x      

y

θ

0e  –t/t

0t

t

Figure 28
A line, drawn tangent to the exponential decay
curve at some point T, intersects the axis a
distance x down the axis. We show that this
distance x is equal to the time constant t0 . This
is true no matter what point T we start with.

Figure 29
A quick way to estimate the time constant t0
for an exponential decay curve is to draw the
tangent line as shown.
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THE SINE AND COSINE FUNCTIONS
The final topic in our introduction to calculus will be
the functions   sinθ and   cosθ  and their derivatives
and integrals.  We will need these functions when we
come to rotational motion and wave motion.

The definition of   sinθ and   cosθ , which should be
familiar from trigonometry, are

   
sinθ = a

c
opposite
hypotenuse (171a)

   
cosθ = b

c
adjacent
hypotenuse (171b)

          θ
b

a
c

      Figure 30

where θ  is an angle of a right triangle as shown in
Figure (30), (a) is the length of the side opposite to
θ , (b) the side adjacent to θ  and (c) the hypotenuse.

The formulas are simplified if we consider a right
triangle whose hypotenuse is of length  c = 1 as in
Figure (31). Then we have

  sinθ = a (172a)

  cosθ = b (172b)

          θ
b

a
1

      Figure 31

We can then fit our right triangle inside a circle of
radius 1 as shown in Figure (32).

Radian Measure
We are brought up to measure angles in degrees, but
physicists and mathematicians usually measure
angles in radians.  The angle θ  measured in radians
is defined as the arc length  subtended by the angle
θ  on a circle of unit radius, as shown in Figure (32).

   
θradians = arc length subtended

by θ on a unit circle (173)

(If we had a circle of radius c, then we would define
  θradians = /c , a dimensionless ratio.  In the special

case c = 1, this reduces to   θradians = .)

Since the circumference of a unit circle is   2π, we see
that θ  for a complete circle is   2π radians, which is
the same as 360 degrees.  This tells us how to convert
from degrees to radians.  We have the conversion
factor

  360 degrees
2πradians

= 57.3
degrees
radian

(174)

As an example of using this conversion factor,
suppose we want to convert 30 degrees to radians.
We would have

 30 degrees
57.3 degrees/radian

= .52 radians (175)

To decide whether to divide by or multiply by a
conversion factor, use the dimensions of the conver-
sion factor.  For example, if we had multiplied 30
degrees by our conversion factor, we would have
gotten

  
30 degrees × 57.3

degrees
radian

= 1719
degrees2

radian
This answer may be correct, but it is useless.

The numbers to remember in using radians are the
following:

  90° = π/2 radians
180° = πradians
270° = 3π/2 radians
360° = 2πradians

(176)

The other values you can work out as you need them.

θ
b

a
1

Figure 32
Fitting our right triangle inside a unit radius circle.
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The Sine Function
In Figure (33) we have started with a circle of radius
1 and, in a somewhat random way, labeled 10 points
around the circle.  The arc length up to each of these
points is equal to the angle, in radian measure,
subtended by that point.  The special values are:

  θ0 = 0 radians
θ4 = π/2 radians (90°)
θ6 = πradians (180°)
θ8 = 3π/2 radians (270°)
θ10 = 2πradians (360°)

In each case the   sinθ is equal to the height (a) at that
point.  For example

  sinθ1 = a1

sinθ2 = a2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
sinθ10 = a10

We see that the height (a) starts out at  a0 = 0  for   θ0 ,
increases up to  a4 = 1  at the top of the circle, drops
back down to  a6 = 0  at   θ6 = π , goes negative, down
to  a8 = – 1  at   θ8 = 3π/2 , and returns to  a10 = 0  at

  θ10 = 2π.

Our next step is to construct a graph in which θ  is
shown along the horizontal axis, and we plot the
value of   sinθ = (a)  on the vertical axis.  The result
is shown in Figure (34).  The eleven points, repre-
senting the heights  a0  to  a10  at   θ0  to   θ10  are shown
as large dots in Figure (34).  We have also sketched
in a smooth curve through these points, it is the curve
we would get if we had plotted the value of (a) for
every value of θ  from   θ = 0  to   θ = 2π .  The smooth
curve is a graph of the function       sinθθ .

Exercise 10
Using the fact that the cosine function is defined as

  cos θ = b (b is defined in Figures 31, 32)

plot the values of    b0, b1, ⋅ ⋅ ⋅ , b10 on a graph similar to
Figure (34), and show that the cosine function   cos θ
looks like the curve shown in Figure (35).

Figure 33
The heights ai  at various points around a unit circle.

Figure 34
Graph of the function       sin(θθ ) .
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There is nothing that says we have to stop measuring
the angle θ  after we have gone around once.  On the
second trip around, θ  increases from   2π up to   4π,
and the curve   sinθ repeats itself.  If we go around
several times, we get a result like that shown in
Figure (36). We often call that a sine wave.

Several cycles of the curve   cosθ  are shown in
Figure (37).  You can see that the only difference
between a sine and a cosine curve is where you set

  θ = 0 .  If you move the origin of the cosine axis back
(to the left) 90°   (π/2) , you get a sine wave.

Amplitude of a Sine Wave
A graph of the function    y(θ) = c sinθ  looks just like
the curve in Figure (36), except the curve goes up to
a height c and down to –c as shown in Figure (38).
We would get the curve of Figure (38) by plotting
points around a circle as in Figure (33), but using a
circle of radius c.  We call this factor c the amplitude
of the sine wave.  The function   sinθ has an ampli-
tude 1, while the sine wave in Figure (38) has an
amplitude c (its values range from +c to –c).

Figure 35
The cosine function.

θπ π

1

2

0

–1

3π 2π
2

θπ

1

0

–1

3π 4π 5π 6π2π

θ
π

1

0

–1

3π 4π 5π 6π2π

c

c sin θ

0

– c

Figure 37
Several cycles of the curve       cos (θθ ) .

Figure 36
Several cycles of the curve       sin(θθ ) .

Figure 38
A sine wave of amplitude c.
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Derivative of the Sine Function
Since the sine and cosine functions are smooth
curves, we should be able to calculate the derivatives
and integrals of them.  We will do this by first
calculating the derivative, and then turning the pro-
cess around to find the integral, just as we did for the
functions  xn  and  ex .

The derivative of the function   sinθ is defined as
usual by

  d(sinθ)
dθ = limit

∆θ→0
sin(θ +∆θ) – sinθ

∆θ (177)

where  ∆θ  is a small change in the angle θ .

The easiest way to evaluate this limit is to go back to
the unit circle of Figure (25) and construct both   sinθ
and sin   (θ +∆θ)  as shown in Figure (39).  We see
that   sinθ is the height of the triangle with an angle

 θ,  while sin   (θ +∆θ)  is the height of the triangle
whose center angle is   (θ +∆θ).  What we have to do
is calculate the difference in heights of these two
triangles.

In Figure (40) we start by focusing our attention on
the slender triangle abc with an angle  ∆θ  at (a) and
long sides of length 1 (since we have a unit circle).
Since the angle  ∆θ  is small, the short side of this
triangle is essentially equal to the arc length along
the circle from point (b) to point (c).  And since we
are using radian measure, this arc length is equal to
the angle  ∆θ .

Now draw a line vertically down from point (c) and
horizontally over from point (b) to form the triangle
bcd shown in Figure (40).  The important point is
that the angle at point (c) in this tiny triangle is the
same as the angle θ  at point (a).  To prove this,
consider the sketch in Figure (41).  A line bf is drawn
tangent to the circle at point (b), so that the angle abf
is a right angle.  That means the other two angles in
the triangle add up to 90°, the total angle in any
triangle being 180°

  θ + ϕ = 90° (178)

Since the angle at (e) in triangle bef is also a right
angle, the other two angles in the triangle bef, must
also add up to 90°.

  α + ϕ = 90° (179)

For both Equations (178) and (179) to be true, we must
have   α = θ .

sin(θ)
sin(θ+∆θ)

∆θ

θ

r=1

Figure 39
Triangles for the      sinθθ  and the       sin (θθ + ∆θ∆θ) .

∆θ

∆θ

∆θ

θ

θ

θ

a

b

b c

c

d

d

r=1

θ
  θ + φ  =  90°
  α + φ  =  90°
    ∴ α  =  θ

α

φ
a

b

e f

Figure 40
The difference between      sinθθ  and

      sin (θθ + ∆θ∆θ)  is equal to the height
of the side cd of the triangle cdb.

Figure 41
Demonstration that the angle αα  equals the angle θθ .
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The final step is to note that when  ∆θ  in Figure (40)
is very small, the side cb of the very small triangle is
essentially tangent to the circle, and thus parallel to
the side bf in Figure (41).  As a result the angle
between cb and the vertical is also the same angle θ .

Because the tiny triangle, shown again in Figure (42)
has a hypotenuse  ∆θ  and a top angle θ , the vertical
side, which is equal to the difference between   sinθ
and sin   (θ +∆θ)  has a height   (cos θ)∆θ .  Thus we
have

  sin(θ +∆θ) – sinθ = (cosθ)∆θ (180)

Equation (180) becomes exact when  ∆θ  becomes
an infinitesimal

 
angle.

We can now evaluate the derivative

  d(sinθ)
dθ = limit

∆θ→0
sin(θ +∆θ) – sinθ

∆θ

= limit
∆θ→0

(cosθ)∆θ
∆θ

= limit
∆θ→0 cosθ

Thus we get the exact result

  d
dθ (sinθ) = cosθ (181)

Exercise 11
Using a similar derivation, show that

   d
dθ (cosθ) = – sinθ (182)

Exercise 12
Using the chain rule for differentiation, show that

   d
dθ (sinaθ) = a cosaθ

d
dθ (cosaθ) = – a sinaθ

(a = constant) (183)

(Hint—if you need to, look at Equation (145) through
(150).

Exercise 13
Using the fact that integration reverses differentia-
tion, as we did in integrating the function  ex  (Equa-
tions (151) through (154), show that

   
(cosaθ)

θi

θf
dθ = 1

asinaθ
θi

θf

(sinaθ)
θi

θf
dθ = – 1

acosaθ
θi

θf

Use sketches of the integrals from    θi = 0  to    θf = π/2  to
show that Equations (184a) and (184b) have the
correct numerical sign.  (Explicitly explain the minus
sign in (184b).

∆θ

∆θ
cosθ

∆θ

∆θ

θ

θ

a
r=1

sin(θ)
sin(θ+∆θ)

Figure 42
The difference between      sinθθ  and       sin (θθ + ∆θ∆θ)  is
equal to       ∆θ∆θcos θθ . Check that this result is
reasonable by considering the special cases

      θθ = 0  and         θθ = 90° (ππ /2) .

(184a)

(184b)

(a = constant)
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Calculus 2000-Chapter 2
Second Derivatives and the One
Dimensional Wave Equation

CHAPTER 2 SECOND DERIVATIVES
AND THE ONE DIMENSIONAL WAVE
EQUATION

In our discussion of a wave pulse on a rope, in
Chapter 15 of Physics 2000, we used a combination
of physical observation and a somewhat tricky argu-
ment to show that the speed of the wave pulse was
given by the formula   v = T/ρ .  The physical obser-
vation was noting that a pulse travels down the rope
at an apparently uniform speed.  The trick was to
analyze the behavior of the rope from the point of
view of someone moving along with the pulse (as on
pages 15-4, 5).

Another way to handle the problem is to directly
apply Newton's second law to a section of the rope.
When we use this direct approach, we end up with an
equation that involves second derivatives not only
with respect in time, but also with respect to space.
The resulting equation with its second derivatives is
what is known as the wave equation.  The aim of this
chapter is to learn how to handle the wave equation,
at least for waves moving in one dimension.  (Han-
dling three dimensional wave equations comes later.)

To use the wave equation with any  real understand-
ing, not just manipulating formulas, requires more
familiarity with the properties of a second derivative
than we have needed so far.  Thus we will begin this
chapter with a discussion of the second derivative,
and then go on to the one dimensional wave equa-
tion.



 Cal 2-2      Calculus  2000 - Chapter 2      Second Derivatives and 1D Wave Eq.

THE SECOND DERIVATIVE
We have already encountered the idea of a second
derivative in our discussion of velocity and accel-
eration.  Consider a particle moving down the x axis,
whose position is described by the function x(t).  The
particle's velocity  vx(t)  is given by

  vx(t) =
dx(t)

dt
first
derivative (1)

which is the first derivative, with respect to time, of
x(t).  The particle's acceleration a(t) is given by

 
ax(t) =

dvx(t)
dt

(2)

When we use (1) for v(t) in Equation (2) we get

  
ax(t) = d

dt
dx(t)

dt
second
derivative (3)

In Equation (3), we see that  ax(t)  is obtained from
x(t) by differentiating twice with respect to time.
We say that  ax(t)  is the second derivative of x(t) and
use the simplified notation

   
d
dt

dx(t)
dt

≡ d2x(t)
dt2

simplified
notation for
second derivative

(4)

With this notation, the position  x(t), velocity  vx(t) ,
and acceleration  ax(t)  are related by

x(t)

 vx(t) =
dx(t)

dt

 
ax(t) =

d2x(t)
dt2 (5)

There is nothing particularly difficult about carrying
out a second derivative, just do the derivative opera-
tion twice as illustrated in the following example.

Example 1
Calculate the second derivative, with respect to θ ,
of   sin(aθ)

  d2sin(aθ)

dθ2 = ? (6)

Solution
Begin by taking the first derivative

  d sin(aθ)
dθ = a cos(aθ) (7)

Now differentiate again

  
d
dθ

d sin(aθ)
dθ = d

dθ a cos(aθ)

= ad
dθ cos(aθ)

= a – a sin(aθ) (8)

Thus we get

  d2sin(aθ)

dθ2 = – a2 sin(aθ) (9)

We see that the second derivative of a sine curve is
itself a sine curve, with a minus sign.

Exercise 1
Calculate the following second derivatives

(a) 
   d2

dθ2 cos (aθ)

(b) 
 d2

dx2 e– ax

(c) 
 d2

dx2 ln(x)

(d) 
 d2

dx2 ln (ax)

(e) 
 d2

dx2 xn

(f) 
 d2

dx2 (ax)n

(g) 
 d2

dx2
1

(x)n

(h) 
 d2

dx2
1

(ax)n
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Geometrical Interpretation
of the Second Derivative
We have seen that the various calculus operations
have a geometrical interpretation.  Integration was
equivalent to finding the area under a curve, while
the first derivative represented the slope of a curve.
We now want to obtain the geometrical interpreta-
tion of the second derivative.  We will see that the
second derivative is equal to what we will call the
curvature of the curve.  To see exactly what that is,
consider the following derivation.

Let y(x) be the section of a circle as shown in Figure (1).
Let us use notation found in a number of calculus
texts, and denote the derivative of y(x) by   y′(x)

   y′(x) ≡ dy(x)
dx

simplified
notation (10)

In terms of   y′(x) , the second derivative is

  d2y(x)
dx2 = limit

∆x → 0
y′(x + ∆x) – y′(x)

∆x (11)

Remember that   y′(x)  = dy/dx is the slope of the
curve at position x as shown in Figure (2) (For
example, see Figure 21 of Chapter 1).  Thus Equa-
tion (11) tells us that to find the second derivative of
y(x) we have to find the change in slope as we move
from x to   x + ∆x .

We will evaluate the second derivative at the bottom
of the circle, where the curve is horizontal and the
slope is zero.

   y′[x = 0] = 0 curve horizontal
at x = 0 (12)

Now move down the x axis a distance   ∆x  as shown
in Figure (1).  If   ∆x  is small, then   ∆x  is essentially
equal to the arc length   ∆  along the circle, and the
angle  ∆θ  in radian measure is the arc length divided
by the radius R of the circle

  ∆θ = ∆
R

≈ ∆x
R

(13)

If we draw a line tangent to the circle at position
  x = ∆x , this tangent line will make an angle  ∆θ  to the

horizontal as shown in Figure (1).  (The two angles
labeled  ∆θ  in Figure 1 are equal no matter how big  ∆θ
is.)  Thus the slope of the tangent line at   x = ∆x  is

  slope of circle
at x = ∆x

= tan(∆θ) (14)

Now if  ∆θ  is a small angle, which it will be if we take
the limit as   ∆x → 0 , we can use the approximation

  tan (∆θ) ≈ ∆θ (15)

You can see why this approximation is good for
small angles from Figure (2a).

Thus the slope of the tangent line at   x = ∆x  is given by

  slope of
tangent line
at x = ∆x

= y′[x = ∆x] = ∆θ = ∆x
R

(16)

where we used Equation (13) for  ∆θ .

Now we have values of y′ at x = 0 (Equation 12) and
at   x = ∆x  (Equation 16), we can use these values in
Equation (10) to get the value of  d2y/dx2  at x = 0,
i.e., at the bottom of the circle.

∆

tangent 

line

∆θ

∆θ

∆x
x

y(x)

R

y

θ

x

y
Figure 2
The slope is the
tangent of the angle.

      slope
at x ≡≡ dy(x)

dx = tanθθ

Figure 1
Calculating the change in the slope of the
circle, as we go from x = 0 to x =  ∆∆x.

∆θ
x

R
yFigure 2a

For small angles,
the angle and the
tangent of the angle
are essentially
equal.

  tan (∆θ) =
y
x

∆θ =
R

≈ y
x
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Introducing the notation

  
d2y(x)

dx2
x = 0

means d2y(x)/dx2

evaluated at the
point x = 0

We have from Equation (10)

  d2y(x)
dx2

x = 0
= limit

∆x → 0
y′[x=∆x] – y′[x = 0]

∆x

(17)
With   y′[x=∆x] = ∆x/R  (Equation 16) and

  y′[x=0]  = 0, we get

  d2y(x)
dx2

x = 0
= limit

∆x → 0
∆x/R – 0

∆x

= limit
∆x → 0

1

R

Since the   ∆x's  canceled, we see that 1/R is the
limiting value and we get

 d2y(x)
dx2

x = 0
= 1

R
(18)

With a slightly messier derivation we could calcu-
late  d2y/dx2  anywhere around the circle, not just at
the bottom, and we get the same answer 1/R.  Thus
we have the more general result

  
d2y(x)

dx2 = 1
R

anywhere around
the circle (19)

CURVATURE
Consider the curve shown in Figure (3) representing
some function y(x).  At point  x0  we have drawn a
circle that just fits against the curve.  The radius of
the circle is adjusted to give the closest match
possible between the curve  y(x0)  and the circle.
When we get this closest fit, both the first and the
second derivatives of the circle and y(x) are equal at

 x = x0 .  In other words

 
d2y(x)

dx2
x = x0

= 1
R (20)

In Figure (3) the quantity R is called the radius of
curvature of the curve y(x) at the point  x0 , and 1/R
is called the curvature

   1
R

≡ curvature of the curve (21)

You can see intuitively why 1/R is called curvature.
If R is very large, the curve is almost flat and we
would say it has little curvature.  As R becomes
smaller, the curve bends in a tighter circle, and the
curvature 1/R becomes greater.

This is the geometrical picture of the second deriva-
tive.  While the first derivative was equal to the slope
of the curve at some point, the second derivative is
equal to the curvature of the curve at that point.  The
curvature is explicitly the reciprocal of the radius of
curvature of the curve where the radius of curvature
is found by fitting a circle to the curve as in Figure
(3). [Exercise: under what circumstances would the
second derivative or curvature be negative?]

xx

R

y

0
Figure 3
 At any point along a curve, the curvature is
1/R or –1/R, where R is the radius of the
circle that just fits the curve as shown.
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Curve Fitting and Boat Lofting
The problem of working with curves has a number
of practical applications, one of the more interesting
of which, at least to a sailor, is the lofting of boats.

It turns out that the eye is extremely good at judging
the smoothness of a curve.  We can, for example,
easily spot the slightest wrinkle in what is supposed
to be the smooth side of a boat.  (It is an interesting
question as to how the eye and brain can do this so
well.)

Through the 16th century, boats were rather crude
looking.  Starting in the 17th century, better looking
boats were built using the following steps.  The first
was to carve a model of the hull that was to be built.
Then conceptually slice the model as you would
slice a loaf of bread.  Each of these cuts was called
a station.  Typically one used about 15 stations, each
representing a cross section of the hull at different
distances along the length of the boat.  Then points
were taken from the model to represent the shape of
the hull at each station.  Figure (4) is a typical
example of a hull cross section at a middle station.

Since the points showing the shape of the hull were
taken from a small model, any errors in measure-
ment would be greatly magnified when the hull was
laid out full scale.  An error of a fraction of a
millimeter in measuring the model would lead to a
very obvious bump in the final hull shape.

To avoid these bumps, the plans were taken up into
the loft of the boat shed (hence the name lofting), and
drawn full scale.  Wooden splines, typically thin
strips of spruce, were bent along the points of the
curve.  Since the splines bent along smooth curves,
any points that were out of place would not be fitted
by the spline and the points would be moved to fit the
smooth curve.  This process is called spline fitting.
Once all the full scale curves were smoothed by
spline fitting, then the boat hull was constructed
using these smoothed plans and the result, if done
correctly, was a smooth, good looking hull.

In the early 1970's, shortly after we had started using
the computer in teaching introductory physics, we
had lunch with a boat builder who described the
rather tedious process of lofting a boat.  He won-
dered if lofting could be done more easily on the
computer.  This was before the availability of inex-
pensive line plotters, so that the work would all have
to be done numerically.  We agreed to try, the
incentive being a reduced price on a diesel engine for
our boat if we successfully lofted the boat builder's
new lobster boat design.

The most successful part of the project was finding
an easy and very effective way to spot a smooth
curve.  Just print out a list of the third derivatives of
the curve.  Since the second derivative is the curva-
ture of the curve, the third derivative is the rate at
which the curvature is changing as you go along the
curve.  If the curvature changes slowly, then the
curve looks smooth.  A bump represents a sudden
change in curvature and therefore has a large third
derivative.  What a spruce spline essentially does is
to minimize the third derivative.

About the same time that we wrote the lofting
program, a physicist, Peter Karos in Germany, also
wrote a boat lofting program.  As one does not make
much of a living from a lofting program, Karos
turned to the problem of using the computer to create
letter forms.  The letters of the alphabet are con-
structed from different curves that depend upon
which font you are using.  And just as in boat design,
the eye is very sensitive to the smoothness of the
curves, even for relatively small letters.

points, taken from 
model, used to 
draw plans

Figure 4
 Typical cross section. (Since boats are supposed
to be symmetric, only one side is usually drawn.)
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Karos based his boat lofting and letter design pro-
grams on what are called Besier curves.  To construct
a Besier curve through a series of points, at each point
you specify the location y(x) of the point, the first
derivative   y′(x)  = dy/dx, and the second derivative

  y′′ (x) = d2y/dx2 = 1/R.  The section of curve be-
tween two adjacent points is then constructed to
match the first and second derivative at the end points
and minimize the third derivative in the region in
between.  This uniquely determines the line.

Karos's techniques using Besier curves was built into
the Postscript™  language used for letter design.  A
way of graphically handling the construction of Besier
curves was developed and became the basis of the
Adobe Illustrator™  program.

Those of you who have used Adobe Illustrator, or any
of the similar drawing programs, will be familiar
with the constructing of Besier curves.  You  place the
pen tool at a point and press the mouse button.  That
establishes the point y(x).  Then you drag the pen tool
in some direction.  That direction establishes the
slope of the curve   y′(x)  at that point.  How far out you
drag the pen tool before you let up on the mouse
button determines the radius of curvature R  at that
point, and thus establishes the second derivative

  y′′ (x) = d2y/dx2 = 1/R there (see Figure 5).  When
you move the mouse to another point, press the
mouse button and drag, you determine y(x),   y′(x)
and   y′′ (x) at the new point, and then the computer
draws the smooth Besier curve between the two
points.

When you are using Adobe Illustrator, or other draw-
ing programs, think of the fact that you are control-
ling the position, the first derivative, and the second
derivative every time you place and drag the mouse.

THE BINOMIAL EXPANSION
We have seen, starting in Chapter 1 of the Physics
text, the usefulness of the binomial expansion

  (1 + α)n = 1 + nα +
n(n – 1)

2!
α2 + ⋅ ⋅ ⋅ (22)

which is valid for any value of α  less than one, but
which gets better as α  becomes smaller.  For very
small α , we could neglect all terms involving   α2  or
higher powers of  α , giving us the approximation
formula

  (1 + α)n ≈ 1 + nα (α < < 1) (23)

which is good for any value of n.

With calculus, we can easily derive the formula for
the various terms in the binomial expansion.  We
begin with the assumption that the quantity   (1 + α)n

can be expanded in some kind of a series involving
powers of α .  We will write the series in the form

  (1 + α)n = A0α0 + A1α1 +A2α2 +A3α3 + ⋅ ⋅ ⋅
(24)

where the  A0 ,  A1 ,  A2 , etc. are unknown coeffi-
cients that we have to determine.

Equation (24) is supposed to be correct for small
values of α  including α = 0 .  Setting α = 0  gives

  (1 + 0)n = A000 + A101 +A202 +A303 + ⋅ ⋅ ⋅
(25)

Here is a peculiar convention we use.  We assume
that any number  x0 = 1  no matter what x is, includ-
ing  00 .  Thus  A000 = A0 , all the other terms on the
right side of Equation (25) are zero, and we get

 1n = 1 = A0 (26)

which determines  A0 .

(Writing   A0α0  instead of just  A0  for the first term
in the series is formalism that makes the series look
more consistent, but is unnecessary if you do not like
the idea of  00 = 1 .)

Figure 5
Constructing Besier
curves with Adobe
Illustrator®. In that
program, the radius
of curvature is set to
about 60% of the
distance that the
cursor is pulled out
from the point.

po i n t
y(x)

slope
   y ′(x)

cursor

Distance from point to
cursor is proportional to
the radius of curvature.
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To determine the value of  A1 , differentiate Equa-
tion (24) with respect to α .  We get, using the chain
rule

  d
dα (1 + α)n = d

d(1 + α)
(1 + α)n d(1 + α)

dα

= n(1 + α)n – 1 1

= n(1 + α)n – 1 (27)

Differentiating the right hand side of Equation (24)
gives

  d
dα A0α0 + A1α1 + A2α2 + A3α3 + ⋅ ⋅ ⋅

= 0 + A1 + 2A2α + 3A3α2 + ⋅ ⋅ ⋅ (28)

Thus the first derivative of Equation (24), with
respect to α , is

  n(1 + α)n – 1 = A1 + 2A2α + 3A3α2 + ⋅ ⋅ ⋅ (29)

Now set   α = 0  and we get

  n(1+0)n – 1 = A1 +2A2×0+3A3×02+⋅ ⋅ ⋅ (30)

which gives us

 n = A1 (31)

and determines the coefficient  A1 .

To determine  A2 , differentiate Equation (29) with
respect to α .  With

  d
dα (1 + α)n – 1 = (n – 1)(1 + α)n – 2

we get

  n (n – 1)(1 + α)n – 2 = 2A2 + 3(2α) + ⋅ ⋅ ⋅ (32)

Setting   α = 0  gives

 A2 =
n(n – 1)

2
(33)

Exercise 2
Differentiate Equation (32) with respect to α , set

  α = 0 , and show that  A3 is given by

   A3 =
n(n – 1)(n – 2)

3 × 2 × 1 (34)

From Equation (34) you can see the general formula
emerging

  
An =

n(n – 1)(n – 2)(n – 3)⋅ ⋅ ⋅
n! (35)

Thus by successive differentiation we can rather
easily determine all the terms in the binomial expan-
sion.

(One thing we have not worried about, but which is
of major concern in calculus texts, is the range of
values of α  for which the series is valid.  Such
questions are important from a purely mathematical
point of view, but are seldom of practical impor-
tance.  From a practical point of view, you can
usually evaluate a few terms, and if the last ones are
negligibly small, the series is probably good enough.)

The Taylor Series Expansion
The binomial expansion we have just discussed is a
special case of the more general expansion called the
Taylor series expansion.  In Figure (6) we have
sketched a curve representing some function

 y = f(x) (36)

Suppose we know everything about the function at
the point  x0  and would like to figure out where the
curve is going as we move away from that point.  By
knowing everything about f(x) at the point  x0 , we
mean that we know  f(x0)  as well as all the deriva-
tives of f(x) evaluated at  x = x0.

xx x

(x - x )

y

y

=
f(x)

0

0

Figure 6
If we know everything about the curve   y = f (x )
at the point  x0, can we predict where the curve
will be a short distance farther down the x axis?
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The derivation of the Taylor series expansion begins
with the assumption that the function f(x) can be
expanded, in the vicinity of the point  x0  by the so
called power series

  f(x) = A0(x – x0)0 + A1(x – x0)1

+ A2(x – x0)2 + ⋅ ⋅ ⋅
(37)

If you think of   (x – x0)  as being some small distance
α , then the expansion in Equation (37) is the same
form as the expansion of the function   (1 + α)n back
in Equation (24).  The difference is that for different
functions f(x) we get different coefficients  An.

To calculate the  An, we do the same thing that we
did in deriving the binomial expansion.  We dif-
ferentiate both sides of the equation and then set

  x = x0  (which corresponds to setting   α = (x – x0)
equal to zero).

First we set   x = x0  in Equation (37) to get

  f(x0) = A0(x – x0)0 + A1(x – x0)1+ ⋅ ⋅ ⋅

= A0(0)0 + A1(0)1 + ⋅ ⋅ ⋅

= A0

(38)

which determines the first coefficient  A0 .

Differentiating both sides of Equation (37) with
respect to x and then setting   x = x0  gives

  f ′(x) ≡ df(x)
dx

= A1 + 2A2(x – x0)

+ 3A3(x – x0)3 + ⋅ ⋅ ⋅
(39)

where we used the chain rule to show that

  d
dx

(x – x0)n = n(x – x0)n – 1 (40)

Setting   x = x0  in Equation (39) gives

  f ′(x0) ≡ df(x)
dx x = x0

= A1 (41)

all the other terms being zero.

Exercise 3
Show that

  
A2 = 1

2
d2f(x)
dx2

x = x0

=
f″(x0)

2 (42)

   
A3 = 1

3 × 2 × 1
d3f(x)
dx3

x = x0

=
f′′′ (x0)

3! (43)

From Exercise 3 you can see that the general form of
the Taylor series expansion is

  f(x – x0) = f(x0) + f ′ x0 (x – x0)1

+ 1
2!

f″(x0)(x – x0)2

+ 1
3!

f ′′′ (x0)(x – x0)3+ ⋅ ⋅ ⋅

This can be written in the compact form

   
f(x – x0) =

fn(x0)
n!Σ

n = 0

∞
(x – x0)n

Taylor
series
expansion

(44)

where we used the notation

  
fn(x0) ≡ dnf(x)

dxn
x = x0

(45)

The tricky part of the mathematics of the Taylor
series expansion is how far you can go, how far x can
be away from  x0 , and still have a valid expansion.
Perhaps more important to the physicist is how far
you can go before you have to include too many
terms and the expansion is not useful.

Exercise 4
Apply the Taylor series expansion, Equation (44) to
the function

 f(x) = (x – x0)n

evaluated at  x0 = 1 , and show that you get the bino-
mial expansion.  (Hint—set    α = x – x0 , i.e., substitute

  x = x0 + α  at the end.)
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The Constant Acceleration Formulas
While the Taylor series expansion, Equation (44),
looks like a very new topic, we have been using a
Taylor series expansion since the very beginning of
our discussion of calculus.  The constant accelera-
tion formulas are a simple example of this expan-
sion.

Figure (7) is a reproduction of our instantaneous
velocity drawing, Figure (3-32d) from Chapter 3 of
the Physics text and Figure (Cal 1-1d) of the Calcu-
lus text.  At some instant of time, the ball is located
at some position  (x0, y0) at time  t0 , and we wish to
predict the position of the ball at some later time t.

The location of the ball is described by two functions
x(t) and y(t). We know  x(t0),  y(t0) and all the
derivatives of these functions at time  t0 , they are
simply the velocity and acceleration

  x′(t) =
dx(t)

dt
= vx(t) (46)

  
x″(t) =

d2x(t)
dt2 = ax(t) (47)

  y′(t) =
dy(t)

dt
= vy(t) (48)

  
y′′ (t) =

d2y(t)
dt2 = ay(t) (49)

If the particle is moving with constant acceleration,
then all higher derivatives are zero. For example

   
y′′′ (t) ≡ d3y(t)

dt3 =
day(t)

dt
= 0

for
constant
acceleration

(50)
The Taylor series expansion for y directed motion
y(t) is

  
y(t – t0) = yn(t0)

(t – t0)n

n!Σ
n = 0

∞

= y0(t0) +
dy(t)

dt t0

(t – t0)
1!

+
d2y(t)

dt2
t0

(t – t0)2

2!
+ ⋅ ⋅ ⋅

With  dy/dt = vy  and  d2y/dt2 = ay , we get

  y(t – t0) = y0(t0) + vy(t0)(t – t0)

+ 1
2 ay(t0)(t – t0)2

(51)

with all higher powers of   (t – t0)  having zero coef-
ficients.

If we set  t0 = 0  Equation (51), we get the very
familiar result

 y(t) = y0 + vy0t + 1
2 ayt2 (52)

Here is an example of a Taylor series expansion that
is valid for any range of values   (t – t0)  . It is good for
all times t because all derivatives of y(t) above the
second derivative are zero.)

Exercise 5
Suppose a particle is moving in the y direction with a
constantly increasing acceleration.  I.e., assume that

   
a′y(t) ≡

day(t)
dt = constant

Find the formula for y(t) for all future times t.  (This is
one step above the constant acceleration formulas.)

Figure 7
Instantaneous velocity at time (t).

Vi~
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THE WAVE EQUATION
In the Physics text, we calculated the speed of a wave
pulse on a rope in Chapter 15, pages 15-4 and 5 .  As
we mentioned in the introduction, the calculation
was relatively simple because of two tricks we were
able to pull.  One was to walk along with the pulse,
so that it looked as if the pulse were standing still and
the rope were passing through it.  The second was to
picture the top of the pulse as an arc of a circle, so that
we would know the acceleration of the rope as it
went around the arc.  We got the right answer, but the
process did not generate much confidence that we
could handle more general cases, like calculating the
speed of a sound wave pulse, or even of a compres-
sional pulse on a Slinky.  (Remember that we used
dimensional analysis, an important but approximate
tool, to estimate the wave speeds in these cases.)

What we will do now is the more direct approach of
applying Newton's laws to a section of the wave
pulse, get a differential equation, which happens to
involve second derivatives in both space and time,
and then solve the differential equation in the usual
way.  That is, we guess a solution, plug it into the
equation, and see if we made the correct guess.  We
will use as much physical insight as we can to guide
us in making the guess.  The differential equation we
will be working with is called the wave equation.

Here we will be working with the wave equation for
waves moving in one dimension.  The three dimen-
sional wave equation will be discussed later.

Waves on a Rope
Our analysis of a wave pulse on a rope begins much
as it did in Chapter 15.  Figures (8) and (9) are similar
to Figures (15-3c) and (15-3d), except that we are
now standing still relative to the rope, and we are
assuming the pulse is passing by us.

In our current analysis of the wave pulse, we will be
somewhat more formal than we were in Chapter 15.
We will say that the rope, at the present time, lies
along a curve y(x) as shown in Figure (8).  The
quantity x is the distance down the rope (say from
one end) and y(x) is the height of the pulse there, i.e.,
the distance the rope is displaced from its equilib-
rium position.  From our various discussions of
derivatives, we know that dy(x)/dx is the slope of the
rope at position x, and  d2y(x)/dx2 = 1/R(x) is the
curvature, which is equal to the reciprocal of the
radius of curvature R(x) at that point.  In Figure (8)
we have sketched in circles to show the radius of
curvature at the two points  x1  and  x2  along the
curve.  The curvature is positive at  x1  and negative
at  x2 .

Let us consider a short section of rope of length   ∆
located at position x as shown in Figure (9).  For now
assume that this section begins at the top of the pulse
where the rope is horizontal.  Shortly we will see that
our results apply at any position along the rope.

The two ends of the section of rope are being pulled
along the rope by the tension T.  If the rope were
straight, if there were no curvature at this point, the
tension forces would cancel each other and there
would be no net force on   ∆ .  Only because there is
curvature is there a net force which we have labeled

 Ty in Figure (9).

x x x
1

1

x2

R(x )
y(x)

y

2R(x )

2

2R(x)
1

dx
d  y(x)

=

Figure 8
Wave pulse on a rope. The curvature is positive
(points up) at  x1, and negative at  x2.

Figure 9
Due to the tension pulling on both
sides, this section of rope feels a
net downward force    Ty ≈ T∆θ∆θ .

∆θ
∆θ

∆θ
∆θ

∆

T  = Tsiny

 T
T

T

R
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As long as   ∆  is short enough, this section of rope
will lie along the circle we have drawn to show the
radius of curvature, and the two tension forces  T
will be tangent to the circle at the two ends.  The
result, from geometry we have now seen several
times, is that the two angles labeled  ∆θ  will be equal
and the right hand tension force will have a down-
ward pointing component  Ty  given by

  Ty = T sin (∆θ) ≈ T∆θ (53)

where for small angles we can replace the sine of an
angle by the angle itself.

From Figure (9) we see that the angle  ∆θ  is given by

  ∆θ = ∆
R

(54)

so that

  Ty = T∆θ = T∆ 1
R

(55)

Since 1/R is the curvature  d2y(x)/dx2  at   ∆ , we get

  
Ty(x) = T∆ d2y(x)

dx2 (56)

While Equation (56) was derived starting from the
top of the pulse, we can see that as long as the sides
of the pulse are not steep, as long as we are dealing
with a shallow wave pulse, Equation (56) should
apply all along the wave.

To see this, we have in Figure (10) analyzed the net
force  Ty  acting slightly to the left side of the top of
the pulse (at point  x2  in Figure (8)).  Actually Figure
(10) is the same as Figure (9), rotated by an angle

  ϕ = dy(x)/dx  which is the slope of the rope at point
 x2 .  Here is where the shallow wave approximation

comes in.  As long as the wave is shallow and the

sides of the pulse do not become steep, the angle  ϕ
will be small, there will be very little rotation of
Figure (9), and the net force   Ty′  will point nearly
straight down and have a magnitude close to that
given by Equation (56).

On the other hand, if the pulse becomes steep, the net
force is no longer y directed and our current analysis
will no longer apply.  Whoever has watched ocean
waves break as they approach the beach and become
steeper and steeper, will recognize that steep waves
behave very differently from shallow ones.  Here we
are working only with the theory of shallow waves.

Returning to Equation (56), which we have written
here again

  
Ty(x) = T∆ d2y(x)

dx2 (56) repeated

we want to point out that this equation gives us not
only the magnitude but also the direction of the net
force  Ty.  Where the curvature  d2y(x)/dx2  is posi-
tive, as it is at point  x1  in Figure (8), the net force  Ty
is directed upwards.  Where the curvature is negative
as at point  x2 , the net force  Ty points down.  Thus
Equation (56) for  Ty(x)  correctly changes sign
when the direction of the net force changes.

Now that we have a reasonably general formula for
the net force  Ty on a section   ∆  of the rope (the only
approximation being the shallow wave approxima-
tion), we are ready to apply Newton's second law,
relating this net force to the mass   ∆m  and the
acceleration  a(t) of this section.

If the rope has a mass density µ  kg/meter, then the
mass of a section of length   ∆  is simply

   ∆m = µ∆ mass of
section ∆ (57)

We need to think a bit more about the situation to
describe the acceleration of   ∆m .  So far we have
described the rope by the curve y(x), which is
essentially a single snapshot of the rope at some
special time t.

∆θ

∆θ
∆

T  y'

T

T

Rϕ

Figure 10
If the section of rope slopes at an angle ϕϕ , then the net
force   Ty ′  slopes at the same angle. That has little effect
as long as the waves are shallow and ϕϕ  remains small.
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Another way to look at a wave pulse is to look at one
point on the rope, and watch the point move up and
down as the pulse comes by.  We can describe this
changing height by the function y(t).  The accelera-
tion  ay(t) is then given by

 
ay(t) =

d2y(t)
dt2 (58)

Equation (58) is limited in that it describes the
motion of only one point of the rope.  We can
describe the motion of the whole rope for all times
with a function y(x,t) that is a function of both space
and time.  If we look at the rope at some instant of
time  t0 , then the shape of the rope is given by

 y(x) = y(x,t)
t = t0

(59)

while if we stand at one point  x0 , the motion of the
rope is given by

 y(t) = y(x,t)
x = x0 (60)

An explicit example of such a function y(x,t) was
our traveling wave formula of Equation (15-26) of
the Physics text

  y(x,t) = A sin (kx – ωt) (61) (also 15-26)

which as we saw represented a sinusoidal wave
traveling to the right at a speed

  vwave = ω
k (62) (also 15-30)

where the special frequency k is related to the
wavelength λ  by    k = 2π/λ ,  and the angular fre-
quency ω  is related to period T by   ω = 2π/T .  (As
a quick exercise, show that   ω/k  has the dimensions
of a velocity).

With Equation (61) for y(x,t), you can easily see that
if you look at the wave at one time, say t = 0, then

 y(x,t)
t = 0

= y(x) = sin (kx) (63)

is a pure spacial sine wave.  If you look at one
particular point, for instance, x = 0, you get

  y(x,t)
x = 0

= y(t) = sin (– ωt) (64)

which is a pure sinusoidal oscillation.

Partial Derivatives
When dealing with a function of two or more variables,
like y(x,t), we have to be somewhat careful when we
talk about derivatives.  For now, we will always assume
that if we are differentiating with respect to space, we
will hold the time variable constant, i.e., consider the
curve at one instant of time.  Conversely, if we are
differentiating with respect to time, we will consider
only one point in space, i.e., hold x constant.  There is
a special notation for these so called partial derivatives,
where we differentiate with respect to one variable
holding the other constant.  In this notation we replace
the d's, as in dx or dt by the symbol ∂ .  Thus

  dy(x,t)
dx holding t constant

≡ ∂y(x,t)
∂x (65)

  dy(x,t)
dx holding x constant

≡ ∂y(x,t)
∂t (66)

With this notation we get, for

  y(x,t) = sin (kx – ωt) (67a)

  ∂y(x,t)
∂x

= k cos (kx – ωt) (67b)

  ∂y(x,t)
∂t

= – ω cos kx – ωt (67c)

Using this new notation for partial derivatives, our
Equations (56) for the net force  Ty  on   ∆ , and (58)
for the acceleration   ay  of   ∆  becomes

  
Ty(x,t) = T∆ ∂2y(x,t)

∂x2 (56a)

  
ay(x,t) =

∂2y(x,t)
∂t2 (58a)

To apply Newton's second law, we equate the net
force  Ty(x,t)  to the mass   ∆m = µ∆  times the accel-
eration  ay(x,t) to get

  Ty(x,t) = ∆m ay(x,t)

  
T∆ ∂2y(x,t)

∂x2 = (µ∆ )
∂2y(x,t)

∂t2 (68)
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The factors of   ∆  cancel, and after dividing through
by µ  we get

  
T
µ

∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (69)

as our final differential equation for the motion of
the wave pulse on the rope.

How do you solve such a differential equation?  As
we have mentioned several times, we guess an
answer for y(x,t), and plug the guess into the differ-
ential equation to see if we have made the correct
guess.  Also, we use whatever physics we have
available to help us make a good guess.

Right now we do not have a formula for a single
pulse that we can use as a guess for a solution to
Equation (69).  However we do have the formula in
Equation (61) for a sine wave traveling to the right
at a speed   v = ω/k

  y(x,t) = A sin(kx – ωt) (61) repeated

To see if this traveling wave is a solution to our
differential Equation (69), we have to take a number
of partial derivatives.  They are

  ∂y(x,t)
∂x = ∂

∂x A sin(kx – ωt)

= A k cos(kx – ωt) (70a)

  ∂2y(x,t)
∂x2 = ∂

∂x Ak cos(kx – ωt)

= – A k2 sin(kx – ωt) (70b)

  ∂y(x,t)
∂t = ∂

∂t Asin(kx – ωt)

= – ω Acos(kx – ωt) (70c)

  ∂2y(x,t)
∂t2 = ∂

∂t (– ω A)cos(kx – ωt)

= – (– ω A)(– ω) sin(kx – ωt) (70d)

Using Equations (70b) and (70d) in Equation (69)
gives

   T
µ (– Ak2) sin(kx – ωt) = – Aω2sin(kx – ωt)

(71)
The question mark in Equation (71) means that this
is a guess, and we still have to see if the guess works.

First we notice that the functions   sin(kx – ωt)  can-
cel.  We had to have this cancellation or there was no
chance of making the two sides equal for all times t
and all positions x.  We also note that the amplitudes
A cancel, which means that the solution does not
depend upon the amplitude A.  After these cancella-
tions we get

  T
µ (–k2) = – ω2

  T
µ = ω2

k2 = vwave
2 (72)

where we noted that   vwave = ω/k .  Taking the square
root of Equation (72) gives

  
vwave = T

µ (73)

which is the answer we got in the Physics text,
Equation (15-5), for the speed of a pulse on a rope.

?
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The One Dimensional Wave Equation
If we go back to Equation (69), and replace   T/µ  by

 vwave
2 , we get

   
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2

one
dimensional
wave equation

(74)
This is a general form of what is called the one
dimensional wave equation.  As we have just seen, a
traveling sine wave, moving to the right at a speed

 vwave  is a solution to this equation.  The following
exercises demonstrate that waves traveling to the left,
and standing waves, are also solutions to this equation.

Exercise 6
(a) The formula for a sine wave moving to the left at a
speed   vwave = ω/k  was given in Equation (15-33) of the
Physics text as

  y(x,t)wave movingleft = A sin (kx + ωt) (15-33)

Show that this wave also obeys the wave Equation (73).

(b) Later in Chapter 15 we saw that a standing wave,
which is the sum of a left moving and a right moving
traveling wave, was given by the formula

  y = A sin kx cos ωt (15-35)

Show that this wave is also a solution to the wave
Equation.

Exercise 7
Suppose you have two solutions  y1(x,t)  and  y2(x,t) , both
of which are a solution to the wave equation with the
same speed  vwave .  Show that the sum wave

 y(x,t) = y1(x,t) + y2(x,t) (75)

is also a solution of the same wave equation.

Exercise 7 gives us an important result.  For our
wave equation, which we got by considering wave
pulses that were not too steep, the sum of two or
more waves, each of which is a solution of the wave
equation, is itself a solution.

In our discussion of Fourier analysis, introduced on
page 16-6 of the Physics text, we saw that any
continuous curve can be constructed from a sum of
sine wave shapes.  This suggests that we could
construct a single wave pulse, moving to the left at
a speed  vwave , by adding up a bunch of traveling sine
waves of different wavelengths   λ i = 2π/k i, but all
with the same speed   vwave = ωi/ki.  The construc-
tion in Figure (11) suggests how we could add the
sine (actually cosine) waves to get a pulse.  Since
each wave is a solution to the same wave Equation
(73), the sum, i.e., the single pulse, is also a solution.

From Figure (11), it should be clear that we can
construct a solution to the wave equation represent-
ing a pulse with very steep sides.  However, in our
analysis of the motion of the rope, we had to restrict
ourselves to shallow waves in order to derive the
wave equation for pulses on the rope.  What this
means is that the wave equation has solutions that we
will not see on the rope.  The shallow pulses on the
rope will obey the wave equation, but we should
expect that a steep pulse on the rope will behave
differently.  Not as differently as a breaking ocean
wave, but differently.

Figure 11
How to add cosine waves to get a pulse.  At x = 0, all
the waves add to give a big amplitude y.  As we go out
from x = 0, there is more and more cancellation until
the sum wave adds to zero.  If all these are traveling
waves moving to the right at the same speed

      vwave = ωωi ki,  then the whole pulse must move at the
same speed, maintaining its shape.
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Compressional Waves on a Spring
When we came to the discussion of compressional
waves on a spring, in particular the compressional
Slinky wave we saw in Figure (Phys1-6) reproduced
here, we resorted to dimensional analysis in Chapter
15 of the Physics text because there are no obvious
tricks to calculate the speed of the pulse.  Now we are
in a position to set up a differential equation describ-
ing the motion of a short segment   ∆  of the spring.
We will get the wave equation, and from that we can
immediately tell the speed of the pulse.

Suppose we have a stretched spring of length L as
shown in Figure (12).  The force required to stretch
the spring, which is equal to the tension T in the
spring, is given by Hook's law as

 T = k(L – L0) (76)

where  L0  is the unstretched length of the spring.

Now suppose that we stretch the spring an additional
amount   ∆L.  The tension will increase by an amount

  ∆T  given by

   T + ∆T = k(L + ∆L – L0)

= k(L – L0) + k∆L

Using Equation (76) to cancel the T and  k(L – L0)
terms, we are left with

  
∆T = k∆L = kL

∆L
L (77)

There are two reasons why we have written   ∆T  as
  kL(∆L /L) rather than just   k∆L .  The first is that
  ∆L /L is the amount of stretch per unit length, a

quantity engineers call strain.  It is a more inherent
property of the spring than the total stretch   ∆L .

The second reason is that the product  kL  is also an
inherent property of the spring.  In Chapter 15, page
15-7 of the Physics text, we saw that if you had two
identical springs of spring constant k, and attached
them together, you got a spring twice as long but
with half the spring constant.  It is the product kL that
does not change when you connect identical springs
or cut a spring in half.  Engineers would call this
inherent property kL of the spring a spring modulus.

To describe the stretched spring, we will introduce
a function y(x) that represents the displacement of a
point on the spring from its equilibrium (or initial)
position.  When we stretch a spring from a length L
to a length   L + ∆L , as shown in Figure (13), every
point on the spring moves to the right a distance y(x)
given by the formula

   
y(x)

displacement
of a point
on the spring

= x
L

∆L (78)

where x is the distance down the spring, starting at
the left end.  You can see where we got Equation
(78).  If we are at the left end where x = 0, y(x) = 0
and there is no displacement. At the right end, where
x = L, we get the full displacement

  y(L) = (L/L)∆L = ∆L.  In Equation (78) we are
assuming that the displacement increases uniformly
as we go down the spring.

T
L0 

L

Figure 1-6 (Physics 2000)
Compressional wave on a Slinky.

Figure 12
A tension T
stretches the
spring from
a length  L0
to a length L.

Figure 13
The displacement y(x) increases as we
go down the spring. With the formula

      y (x) = (x/L)∆∆L, we are assuming that
the displacement is increasing
uniformly.

T

L0 

L

∆L displacement
y(x)
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If we differentiate y(x) with respect to x we get

  dy(x)
dx

= d
dx

x∆L
L

= ∆L
L

(79)

Thus for a uniformly stretched spring,
  y′(x) = dy(x)/dx is the amount of stretch per unit

length, which we have called the strain of the spring.

If the strain is not uniform, if for example, we have
a compressional wave on the spring, the strain is still
given by

  
strain =

local stretch
per unit
length

=
dy(x)

dx (80)

To help see that    y′(x)  = dy(x)/dx  is the local amount
of stretching per unit length, note that when we
integrate the local stretching per unit length over the
total length of the spring, we get the total stretch   ∆L .

  
dy(x)

dx0

L

dx = dy(x)
0

L
= y(x)

0

L

= y(L) – y(0)

= ∆L – 0 = ∆L

(81)

where   y(L) = ∆L  the total displacement at the end.

Now go back to Equation (77)

  ∆T = kL ∆L
L

(77) repeated

which said that the change in tension in the spring is
proportional to the strain   ∆L/L .  We proved this was
true for a uniform strain   ∆L/L .  The obvious gener-
alization when the strain is not uniform is to replace
the average strain   ∆L/L  by the local strain

  y′(x) = dy(x)/dx  to get

  ∆T(x) = kL
dy(x)

dx
= kLy′(x) (82)

where   ∆T(x)  is the increase in the tension in a point x
due to the local strain   y′(x) .

This gives us as the formula for the tension T(x) at
point x

  T(x) = T0 + ∆T(x)

  T(x) = T0 + kLy′(x) (82a)

where  T0  is the equilibrium tension, and   kLy′(x) is
the change in tension caused by the displacement of
parts of the spring from their equilibrium position.

Let us now apply Equation (82a) to a short section of
spring of length   ∆x , as shown in Figure (14).  If the
tension were uniform, the tension forces would
cancel and there would be no net force on this section
of the spring.  A net force arises only if there is a
change in tension as we go from x to   x + ∆x .  This
net force will be

   net
force
on ∆x

= T(x +∆x) – T(x)

= T0 +kLy′(x +∆x) – T0 +kLy′(x)

= kL y′(x +∆x) – y′(x)

= kL∆x
y′(x +∆x) – y′(x)

∆x
(83)

We immediately see that the last quantity in the square
brackets is going to become, in the limit as   ∆x → 0 ,
the second derivative of y(x) with respect to x. Thus our
formula for the net force on a section of length   ∆x is

   net
force
on ∆x

= kL∆x
d2y(x)

dx2 (84)

If the spring has a mass per unit length of   µ kg/meter ,
the mass   ∆m  of a length   ∆x is

  ∆m = µ∆x (85)

T(x+∆x)T(x)
∆x

x+∆xx
Figure 14
There will be a net force on this short section of spring
if the tension changes as we go from x to x+∆∆∆∆∆x.
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If we allow waves on the spring, the displacement
y(x) from equilibrium depends not only on the
position x down the spring, but also on the time (t) .
Thus the displacement is described by the function
y(x,t). The acceleration  ay(x,t)  at position x on the
spring is

  
ay(x,t) =

∂2y(x,t)
∂t2 (86)

We are using the partial derivative symbol ∂  be-
cause we want to measure the change in y(x,t) with
time at a fixed position x.

In terms of partial derivatives, Equation (84) for the
net force on   ∆x  is

   net
force
on ∆x

= kL∆x
∂2y(x,t)

∂x2 (84a)

With Equations (84a), (85) and (86), Newton's sec-
ond law applied to   ∆m  gives

   net
force
on ∆m

= (∆m) ay(x,t) Newton's law
F = ma

  
kL∆x

∂2y(x,t)
∂x2 = (µ∆x)

∂2y(x,t)

∂t2 (87)

The factors of   ∆x  cancel and we are left with

  
kL
µ

∂2y(x,t)
∂x2 =

∂2y(x,t)

∂t2
(88)

We recognize Equation (88) as the wave equation

  
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2

where we can identify the wave speed as

   
v compressional

Slinky wave = kL
µ (89)

We got this same answer on page (15-8) of the
Physics text using dimensional analysis.  However,
with dimensional analysis we were not sure whether
a factor of 2 or π might be missing.  Having derived
the wave equation, we know that   kL /µ  is the
correct answer with no missing constant factors.

The Speed of Sound
The analysis of compressional sound waves in air
can be carried out along lines very similar to our
analysis of a compressional wave on a spring.  How-
ever to do this, we need to build on our discussion of
the behavior of an ideal gas in Chapters 17 and 18 of
the Physics text.  Thus we will assume that the reader
is familiar with this material, including the discus-
sion on adiabatic expansion in the Chapter 18 appen-
dix.

Consider a column of gas with a cross sectional area
A and length L as shown in Figure (15).  We can
think of the gas as being in a cylinder with friction-
less walls, but it could be a hypothetical column in
a large volume of gas.  Let the variable x measure the
distance down the column, starting at the left end,
and imagine that we have a frictionless piston at the
right end.

If we pull the piston out a small distance   ∆L , we
change the volume of the gas by an amount

  ∆V = A∆L (90)

and in so doing, decrease the pressure p.

How much the pressure changes depends upon the
way the gas is expanded.  If we expand it very slowly
so that heat has time to flow into the gas and the
temperature remains constant (this is called an isother-
mal expansion) then we have, from the ideal gas law

  pV = NRT = constant isothermal
expansion (91)

where N is the number of moles of gas in the cylinder,
R is the gas constant, and T the temperature in kelvins.

However in a sound wave, expansions and compres-
sions happen so rapidly that there is not  enough time
for heat to flow in or out, and the temperature changes.

L

x ∆x ∆Larea 
A

Figure 15
Column of gas of cross-sectional area A and length L.
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When we expand a gas with no heat flow, we call this
an adiabatic expansion. As we saw in the appendix
to Chapter 18, in an adiabatic expansion the gas
obeys the equation

   pVγ = constant adiabatic
expansion (92)

where

  γ =
cp
cv

(93)

is the ratio of the specific heat  cp  at constant
pressure to the specific heat  cv  at constant volume.
It is Equation (92) for an adiabatic expansion rather
than Equation (91) for an isothermal expansion that
we need to use to describe the relationship between
pressure and volume for a sound wave.

The quantity   γ = cp/cv  depends, as we saw at the
beginning of Chapter 18, on the number of effective
degrees  of freedom of the gas molecules.  As you
found if you did Exercise 2 of Chapter 18, for a
monatomic gas like helium or argon with no rota-
tional degrees of freedom,   γ = 1.66 (5 35 3).  For di-
atomic gases like oxygen, nitrogen, and of course
air, that have two rotational degrees of freedom,

  γ = 1.40 .  When we get to more complex structures
like  CO2  and  NH4 , then  γ  drops to 1.28.

We will now use Equation (92) for an adiabatic
expansion to calculate the change   ∆p  in pressure
when we change the volume of the gas in the
cylinder by an amount   ∆V .  Before we compress we
have

  pVγ = p0V0
γ (94)

where  p0  and  V0  are our original pressure and
volume.  After the expansion, V goes to   V0 + ∆V
and p goes to   p0 + ∆p , where we know that   ∆p  is
negative for an expansion.  Thus after the expansion
we have

  pVγ = (p0 + ∆p)(V0 + ∆V)γ (95a)

With   pVγ = p0V0
γ  = constant, we get

  p0V0
γ = (p0 + ∆p)(V0 + ∆V)γ (95b)

We can use the fact that   ∆V  is very small compared
to  V0  to get

  
(V0 + ∆V)γ = V0 1 + ∆V

V0

γ
= V0

γ 1 + ∆V
V0

γ

Using the approximation   (1 + α)γ ≈ 1 + γα  for a
small α , we have

  1 + ∆V
V0

γ
≈ 1 + γ ∆V

V0
(96)

Using (96) in (95b), with   p0 + ∆p = p0(1 + ∆p/p0),
gives

  p0V0
γ = (p0 + ∆p)(V0 + ∆V)γ

= p0 1 +
∆p
p0

V0
γ 1 +γ ∆V

V0

(97)

Multiplying this out gives

  
p0V0

γ = p0V0
γ 1 +

∆p
p0

+
γ∆V
V0

+
γ

p0V0
∆p∆V

(98)
The factors   p0V0

γ  cancel, and we can neglect the
second order term   ∆p∆V , giving

  1 = 1 +
∆p
p0

+
γ∆V
V0

After canceling the 1's and multiplying through by
 p0  we get for the pressure change   ∆p

  ∆p = – γp0
∆V
V0

(99)

If you look at the appendix to Chapter 18 in our
discussion of the adiabatic expansion, you see that
we started with the equation

  γp0∆V + ∆pV0 = 0 (18-A8)

[which is Equation (99) if we solve for   ∆p] and went
through a number of calculus steps to derive

  pVγ = constant .  What we have done in going from
  pVγ = constant  to Equation (99) is to undo the

calculus steps in that appendix.  However one typi-
cally remembers the equation   pVγ = constant  for
adiabatic expansions rather than Equation (18-A8),
and it seemed worthwhile to show how to get from

  pVγ = constant  to our formula for   ∆p .
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Now that we have Equation (99) for   ∆p , we can
follow essentially the same steps that we did earlier
to calculate the speed of a compressional wave pulse
on a spring.

If the cylinder in Figure (15) has a cross sectional
area A, length L, and we move the piston out a
distance   ∆L , we have

 V0 = AL

  ∆V = A∆L (100)

thus from Equation (99) we have

  ∆p = – γp0
∆V
V = – γp0

A∆L
AL

= – γp0
∆L
L (101)

In moving the piston out, the average displacement
of a molecule y(x) at position x will be

  y(x) = x
L

∆L (102)

which is the same as our Equation (78) for the
average displacement of a piece of spring at position
x.  Differentiating Equation (102) with respect to x
gives

  y′(x) =
dy(x)

dx
= ∆L

L
(103)

Thus we see that for a uniform displacement of the gas
molecules, the strain, the displacement per unit length,
is   y′(x) = dy(x)/dx.  We will now assume that even for
non uniform displacements such as the kind we would
have in a pressure pulse,   y′(x) represents the local
strain or displacement per unit length.  In terms of this
local strain, our formula (101) for   ∆p(x)  becomes

   
∆p(x) = – γp0y′(x)

local
pressure
change

(104)

As in our discussion of springs, we can write this
equation in the form

  p(x) = p0 + ∆p(x)

p(x) = p0 – γp0 y′( x)
(105)

where we see that variations from the static pressure
 p0  are caused by local strains   y′(x) .

Now consider a section of the cylinder of length   ∆x
located at x as shown in Figure (16). The gas external
to   ∆x  on the left, where the pressure is p(x), exerts
a right directed force of magnitude

 F(x) = Ap(x) (106)

while the gas on the right exerts a left directed force
of magnitude

  F(x + ∆x) = Ap(x + ∆x) (107)

where we have used the fact that the force is the
pressure times the area.  The net force on   ∆x  is thus

  Fnet on ∆x = F(x) – F(x + ∆x)

= A p(x) – p(x + ∆x)
(108)

Using Equation (105) for p(x) we get

  
Fnet = A p0 – γp0y′(x) – p0 – γp0y′(x + ∆x)

The  p0  terms cancel and we are left with

  Fnet = Aγp0 y′(x + ∆x) – y′(x)

We can multiply by   ∆x/∆x  to get

  
Fnet = Aγp0∆x

y′(x + ∆x) – y′(x)
∆x

(109)

As in the case of the spring, we will end up taking the
limit as   ∆x  goes to zero, so that the term in the
square brackets in Equation (109) becomes the sec-
ond derivative  d2y(x)/dx2 .

x

p(x) p(x+∆x)

∆x

area 
A

Figure 16
Pressure forces acting on a small section
of gas in our hypothetical cylinder.
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We will also let y(x) become a function of time
y(x,t), so that second derivative becomes a partial
derivative with respect to x only, and we get

  
Fnet = γp0(A∆x)

d2y(x,t)
dx2 (110)

as our final formula for the net force on the gas in   ∆x.

The next step is to calculate the mass   ∆m  of the gas in
the region   ∆x .  If the density of the gas is   ρ kg/meter3

and the volume inside   ∆x  is   (A∆x) meters3, we have

  ∆m = ρA∆x (111)

The acceleration of the gas in   ∆x  is

  
ax(t) =

∂2y(x,t)

∂t2 (112)

Using Equations (110), (111), and (112) in Newton's
second law gives

  Fnet on ∆x = ∆m ax(t)

  
γp0(A∆x)

∂2y(x,t)
∂x2 = ρ(A∆x)

∂2y(x,t)
∂t2 (113)

The factor   A∆x  cancels and we are left with

  γp0
ρ

∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (114)

and we get the wave equation

  
vwave

2 ∂2y(x,t)
∂x2 =

∂2y(x,t)
∂t2 (74) repeated

where we immediately see that the speed of the
sound wave is given by

  
vsound =

γp0
ρ (115)

In our discussion of sound waves in Chapter 15 of
the Physics text, where we used dimensional analy-
sis to predict the speed of sound, we came up with the
formula

  vsound = B
ρ (116)

where

  B ≡ ∆p
∆V/V

was called the bulk modulus of the gas.  Going back
to Equation (101), we have

  ∆p = = – γp0
∆L
L (101)

= – γp0
∆V
V

(117)

for an adiabatic expansion, and the same with a +
sign for compression.  Thus

   ∆p
∆V/V

= γp0 = B for adiabatic
compression (118)

and our old formula for the speed of sound can be
written as

  
vsound = B

ρ =
γp0
ρ (119)

which is the same result we got from the wave
equation.

Using the ideal gas law, we can re-express the
quantity   p0/ρ  in our formula for the speed of sound
in terms of the temperature T of the gas and some
other constants.  First we will write the density ρ  as

  ρ kg

meter3 =
M kg/mole × N moles

V meters3 (120)

where M is the mass of one mole of the gas (an
Avogadro's number of the gas molecules), N is the
number of moles in our cylinder, and V the volume
of the cylinder.

Next write the ideal gas law pV = NRT as

  N
V

=
p

RT
(121)

where R is the gas constant and T the temperature in
kelvins.  Combining Equations (120) and (121) gives

  ρ = MN
V

=
Mp
RT

or we have

  p
ρ = RT

M (122)

and our formula for the speed of sound becomes

  
vsound =

γp
ρ = γRT

M
(123)
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To interpret the physics of Equation (123), it is
perhaps clearer to express the answer in terms of
mass of the gas molecules involved.  We have

 
mmolecule = M

NA

kilograms/mole
molecules/mole

= M
NA

kilograms
molecule

where  NA  is Avogadro's number, and

 k = R
NA

joules /mole kelvin
molecules/mole

= R
NA

joules
kelvin

is Boltzman's constant.  Thus

 R
M =

NAk
NAmmolecule

= k
mmolecule

(124)

and in terms of the molecular mass  mmolecule we get

  
vsound =

γkT
mmolecule (125)

From Equation (125), we immediately see that for a
gas like hydrogen consisting of light molecules, the
speed of sound is considerably greater than in a gas
with heavy molecules.

Exercise 8

Calculate the speed of sound at a temperature of 300
kelvin, in hydrogen, helium, nitrogen and  CO2 .  Use
the fact that a hydrogen molecule has the mass of 2
protons, a helium atom the mass of 4 protons (with a
nucleus of 2 protons and 2 neutrons), a nitrogen
molecule the mass of 28 protons (each nucleus has
7 protons and usually 7 neutrons) and a  CO2  mol-
ecule has a mass of around 44 protons (carbon
nucleus has 6 protons and 6 or 7 neutrons, oxygen
has 8 protons and 8 neutrons, for a total of 12 + 16 +
16 = 44 nuclear particles).

Aside from its dependence on the mass of the gas
molecules, the other important feature is that the
speed of sound is proportional to the square root of
temperature.  Thus the warmer the gas the greater the
speed.  This dependence of the speed of sound on the
square root of temperature leads to a close connec-
tion between the speed of sound and the average
speed of the air molecules due to their thermal
motion.

In our discussion of the ideal gas law, we used the
fact that the temperature was a measure of the
average thermal kinetic energy of the gas, the pre-
cise relationship being

 1
2

mmoleculev
2 = 3

2
kT (126)

where  v2  is the average of the square of the speed of
the gas molecules  (v2 = vx

2 + vy
2 + vz

2) .  Writing
Equation (126) in the form

 kT
mmolecule

=
v2

3
(127)

and using this in Equation (125) gives

  
vsound =

γkT
mmolecule

=
γv2

3

  
vsound = v

γ
3

(128)

Several times we mentioned that the speed of sound
is closely related to the speed of the air molecules
due to their thermal motion.  Equation (128) gives us
the precise relationship.  For air, for example, where

  γ = 1.28  we get

 
vsound = v

1.28

3
= .65 v (129)

Sound travels over half as fast as the average speed
v  of the air molecules.
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Calculus 2000-Chapter 3
The Gradient

CHAPTER 3 THE GRADIENT

The gradient operation represents the fundamental
way that we go from a scalar field like the electric
voltage V to a vector field like the electric field E .

In this chapter, we present two distinct ways to
introduce the gradient operation. One is to use the
fact that electric fields are related to electric voltage
the same way that forces are related to potential
energy. The second, more geometrical way, is to
picture the electric voltage as being described by a
contour map, and that the electric field is described
by the lines of steepest decent in the map. We present
these two points of view as separate sections, View
1 and View 2, that can be read in either order.

We end the chapter with View 3, an application to
fluids, where we see that the pressure force   fp  acting
on fluid particles is the gradient of the pressure field
p. This represents a straightforward example of
obtaining a vector field   fp  from a scalar field p.
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A

Figure 25-12
To sketch the field lines, draw smooth lines, always
perpendicular to the equipotential lines, and maintain
any symmetry that should be there.

TWO VIEWS OF THE GRADIENT
In the Physics text, our first laboratory exercise on
electric phenomena was the potential plotting ex-
periment illustrated in Figure (25-10) reproduced
here.  Two small brass cylinders connected to a
battery were placed in a shallow tray of slightly
conducting water.  In order to measure the distribu-
tion of voltages V(x,y) at various points (x,y) in the
water, we had two probes of bent, stiff, wire attached
to blocks of wood, adjusted so that the tips of the
wire stuck down in the water.  The other end of the
wire probes were attached to a voltmeter as shown.

By leaving one probe fixed, and moving the other in
a  way that the reading on the voltmeter remained
constant, we could map out lines of constant voltage
in the water.  The results from a student lab notebook
are shown slightly cleaned up in Figure (25-11).
These lines of constant voltage are also known by
the name equipotential lines or lines of equal elec-
tric potential.  We also pointed out that these lines
were analogous to lines of equal height, the contour
lines in a contour map of the countryside.

While mapping the voltage V(x,y) at various points
in the water was a straightforward process, our
construction of the electric field lines  E(x,y)  was not
so obvious.  Our procedure was to map  E(x,y)  by
drawing a set of lines perpendicular to the equipoten-
tial lines as shown in Figure (25-12).  With this
technique we were just barely able to tell whether the
resulting field  E(x,y)  more closely resembled the
field of line charges or point charges.  Our technique
was conceptually correct, but a very crude way to
determine the electric field  E(x,y)  from a map of the
voltage V(x,y).

brass
cylinders

tap water pyrex dish

battery

V
A

B

probes

volt
meter

Figure 25-10 (from Physics text)
Simple setup for plotting fields.  You plot equipotentials
by placing one probe (A) at a given position and moving
the other (B) around.  Whenever the voltage V on the
voltmeter reads zero, the probes are at points of equal
potential.

Figure 25-11
Plot of the equipotential lines from a student project by
B. J. Grattan. Instead of a tray of water, Grattan used a
sheet of conductive paper, painting two circles with
aluminum paint to replace the brass cylinders. We used
the Adobe Illustrator® program to draw the lines
through Grattan's data points.
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After this initial experiment, we resorted to com-
puter plots, like the one shown in Figure (25-15), to
see the relationship between the electric field and a
voltage map.

The computer plots, and the models we constructed
from them, nicely illustrate the geometrical relation-
ship between a voltage map and the electric field
lines, but did not provide a convenient technique for
actually calculating the field.  The missing tech-
nique, which is the subject of this chapter, is the
mathematical procedure called the gradient, a pro-
cedure involving the partial derivatives of the volt-
age function V(x,y).

As Figure (25-15) illustrates, there is a complete
analogy between the contour map of a hilly terrain
and electric field plots from a voltage map.  We can

build our discussion of the gradient operation either
upon our knowledge of the mathematics of the
electric field, or by developing the ideas from a
discussion of the nature of a hilly terrain.  While both
approaches are equivalent, we see the subject from
two rather different points of view.  The electric field
approach is more efficient, while the hilly terrain
approach develops some concepts that we will need
later on.

As we mentioned in the introduction, we will begin
this chapter with the electric field approach, and
later discuss the hilly terrain viewpoint separately in
View 2.  You should study both approaches to see
this important topic from two points of view.  It does
not really matter which one you study first.

V = .1

V = .2

V = .3

V = .4

V = .5

V = .1

V
=

–.

1

V
=

.0

–1 +3  

Figure 25-15
Computer plot of the field lines and equipotentials for a charge distribution
consisting of a positive charge + 3 and a negative charge – 1.  These lines
were then used to construct the plywood model.
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CALCULATING THE ELECTRIC FIELD
Figure (1) shows a small section of the voltage map
of Figure (25-15) on the previous page.  The solid
lines are equipotential lines, lines of constant volt-
age spaced .1 volts apart.  We want to imagine that
we actually have a detailed map of the voltage
V(x,y) at every point (x,y), and want to mathemati-
cally determine, from that map, the electric field

 E(x,y)  at every point.

In the Physics text, we emphasized the idea that the
electric voltage V(x,y) was the electric potential
energy of a unit test charge, while the electric field

 E(x,y)  was the electric force on a unit test charge.
Thus the connection between  E  and V is the rela-
tionship between force and potential energy.

To review this relationship, imagine that I place a
unit test particle at point A in Figure (1), where the
voltage is  VA = .3 volts.  Since the voltage is the
potential energy, in joules, of a unit test charge, our test
particle at point A has a potential energy of .3 joules.

Now imagine that I move the test particle along the
dashed line from point A at .3 volts over to point B
at .4 volts.  The potential energy of the particle has
increased from .3 joules to .4 joules.  Thus to move
the particle, I must supply (.1) joules of energy to the
particle.

Imagine that I move the test particle slowly, so that
the force  Fme(x,y)  that I exert on the particle is just
enough to oppose the force  E(x,y) that the electric
field is exerting on the particle.  Thus for the entire
trip from A to B we have

 Fme(x,y) = – E(x,y) (1)

The amount of work I do in moving the particle is
given by the formula first discussed in Chapter 10 of
the Physics text (see page 10-15, Equation (10-25)).

  work I do in
moving the
test particle

= Fme⋅d
A

B
(2)

Because I am moving the particle slowly so that all
the work I do is stored as electric potential energy,
and because the increase of potential energy of the
unit test charge is  VB – VA , we have

  
Fme⋅d

A

B
= VB – VA (3)

We can get  me out of the equation by using Equation
(1) to give

  
– E ⋅d = VB – VA

A

B
(4)

Equation (4) is the integral equation that relates the
voltage V(x,y) to the electric field  E(x,y).  It is a
relationship we used extensively in the Physics text.
In the Calculus text, we will often translate from
integral to differential equations, and this chapter on
the gradient will be our first example of how this is
done.

V = .2

V = .3

V = .4

V = .5A
B

Figure 1
A small section of the voltage map, showing
equipotential lines spaced .1 volts apart. We will
calculate the amount of work required to move a
unit test charge from point A to point B.

View 1
The Gradient from a
Force – Energy Perspective
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The first step in going to a differential equation is to
focus in on a very small region of Figure (1), a region
shown in Figure (2), centered at the point  (xi,yi)  on
the path from A to B.  We have zoomed in so closely
to the point  (xi,yi)  in Figure (2), we have so greatly
magnified the plot, that the equipotential lines and
the field lines in this region are simply straight lines
at right angles to each other.

Now suppose we move our test particle from point
(1) at  (xi,yi)  over a distance   ∆  along the path to
point (2) as shown.  Equation (4) applied to this short
displacement is

  
V2 – V1 = – E(x,y) ⋅d

1

2

(5)

For this short path, we can assume that  E(x,y) is
essentially constant and replace the integral by the
product   E(xi,yi) ⋅ ∆ , giving us

  V2 – V1 = – E(xi,yi) ⋅ ∆ (6)

[You can see that in going from Equation (5) to (6)
we are essentially undoing the step we took in
Chapter (10) to derive the integral Equation (4).]

We are discussing the electric field of point charges.
This is a conservative field, which is a fancy way of
saying that the change in potential energy when we
move a particle between two points does not depend
upon the path we take.  Thus if we first go a distance

  ∆x  along the x axis to point (3), then up the y axis
a distance   ∆y  to point (2), we should get the same
change in voltage  V2 – V1  that we got by going
directly from point (1) to point (2) along   ∆ .

In going along the x axis, we have

  V3 – V1 = – E(xi,yi) ⋅ ∆x

= – Ex(xi,yi)∆x
(7)

where the dot product of  E  with the x directed
displacement   ∆x  leaves us with the x component

 Ex.  Writing out  V1  and  V3  in the form

 V1 = V(xi,yi)

  V3 = V(xi+∆x, yi)
Equation (7) becomes

  V(xi+∆x, yi) – V(xi,yi) = – Ex(xi,yi)∆x (8)

Dividing through by   –∆x gives

  
Ex(xi,yi) = –

V(xi+∆x, yi) – V(xi,yi)

∆x

When we take the limit that   ∆  goes to zero, both   ∆x
and   ∆y  will go to zero, giving

  
Ex(xi,yi) = – limit

∆x→0

V(xi+∆x, yi) – V(xi,yi)

∆x

(9)
By now you should recognize that the limit in
Equation (9) is the partial x derivative of the function
V(x,y)  evaluated at the point  (xi,yi).  Since this is
true for any point (x,y), we get

  
Ex(x,y) = –

∂V(x,y)
∂x (10)

where the symbol ∂  is used for partial derivatives.

Exercise 1
Use the above line of reasoning to show that

 Ey(x,y) = – ∂V(x,y)
∂y

(11)

Introducing the unit vectors x and y, we can combine
Equations (10) and (11) into the single vector equation

 E(x,y) = x Ex(x,y) + y Ey(x,y)

  

E(x,y) = – x
∂V(x,y)

∂x + y
∂V(x,y)

∂y (12)

Equation (12) is the differential equation we can use
to calculate the electric field  E(x,y)  at every point
from a knowledge of the voltage V(x,y).

y

y
(1)

(2)

(3)

to B

to A x

∆x

∆ i
∆y

x

E(x ,y )

i

i

i i

Figure 2
If we zoom in far enough, we reach a point where the
equipotential lines and contour lines are straight lines
perpendicular to each other.
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Interpretation

  
E(x,y) = – x

∂V(x,y)
∂x + y

∂V(x,y)
∂y (12)

To help interpret Equation (12) repeated above, let us go
back to Figure (25-15) where we started with a plot of the
equipotential lines of the voltage V(x,y) and constructed
a three dimensional plywood model of the voltage.  The
equipotential lines became the contour lines of this
model, and the perpendicular electric field lines are the
lines of steepest slope.  If you were standing on terrain
represented by this model, and the slope became slip-
pery, the field line is the direction you would start to
slide.  Ski instructors call this direction of steepest slope
the fall line.

To simplify the job of interpreting Equation (12), imagine
that we are standing at the point  A = (xA,yA)  shown in
Figure (3), where the contour line happens to be running in
the y direction.  If we move along a contour line there is no
change in height, thus the partial derivative of V(x,y) with
respect to y—the rate of change of V(x,y) in the y direc-
tion—is zero at point A.

  ∂V(x,y)
∂y x = xA

y = yA

= 0
(13)

The formula for  E(x,y)  at point A becomes

  E(x,y) x = xA
y = yA

= – x
∂V(x,y)

∂x x = xA
y = yA

(14)

To interpret Equation (14), imagine that we smooth out our
plywood model of the voltage surface, then saw the model
in two, cutting through the point A with the saw blade
oriented along the x axis, along the dotted line in Figure (3).
A side view of the upper piece is shown at the bottom of
Figure (4).  You can see that the voltage at the beginning of
the cut, point C, is somewhat greater than .1 volts, and rises
to just over .4 volts at the end, point D.  The mathematical
formula for the curve we see in Figure (4) is  V(x,yA) , and
the partial derivative with respect to x at point A  is the slope
of the curve  V(x,yA)  at  x = xA .  This is just the tangent
of the angle θ  in Figure (4).

  slope at point
A going in
x direction

=
∂V(x,yA)

∂x
x = xA

= tanθ (15)

This is the maximum slope at point A.  If we sawed through
point A, orienting the saw blade in any other direction, the
slop at point A would be less.  In particular the slope would
be zero if we oriented the saw in the y direction.

From this discussion we see that the vector  E(x,y)  points
in the direction of the maximum slope and has a magnitude
equal to that slope.  The minus sign results from the fact that
the force  E  is in the downward direction toward lower
energy, while the positive slope, or gradient as we will call
it, is in the upward direction.

Figure 3
The V = .2 volt contour line passes straight up through
the point labeled A. Imagine that the surface is
smoothed out and you walk along the dotted line.

Figure 4
The top view shows the point A and the horizontal path
through that point. The side view shows the path we
would have to climb if the surface were smooth. The
steepest slope at the point A is in the +x direction and is
the tangent of the angle labeled θθθθθ.

V
= .2

V(x,y )

.1

xA

A

DxC

V = .1

V
=

–.

1

V
=

.0

A
path through A

height of path through A θ

.4

.3

.2
A

x

V = .5V
=

.4

V = .3

top view

side view

C D

C

D

C D

y

x
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THE GRADIENT OPERATOR
The extension of Equation (12) to the case where the
voltage varies in three dimensions, where V = V(x,y,z)
is fairly obvious.  It is

  
E(x,y,z) = – x

∂V(x,y,z)
∂x + y

∂V(x,y,z)
∂y + z

∂V(x,y,z)
∂z

(16)
Until the beginning of the 20th century, research
papers and textbooks dealing with partial deriva-
tives used notation similar to Equation (16), and the
formulas could become cumbersome and difficult to
read.  It was Willard Gibbs who introduced the
gradient operation  ∇  defined by the equation

  
∇ ≡ x

∂
∂x + y

∂
∂y + z

∂
∂z

≡ x ∇ x + y ∇ y + z ∇ z (17)

where   ∇ x = ∂/∂x , etc.

We call  ∇  an operator because it does not have an
explicit meaning until it operates on something like
the voltage function V(x,y,z).

  
∇ V(x,y,z) = x

∂V
∂x + y

∂V
∂y + z

∂V
∂z

= x ∇ xV + y ∇ yV + z ∇ zV
(18)

With this notation, the formula for the electric field
 E(x,y,z)  in terms of the voltage V(x,y,z) is

  
E(x,y,z) = – ∇ V(x,y,z)

(19)

We say that the electric field  E  is minus the
gradient of the voltage V.

In the Physics text, we defined a vector field as a
quantity with a vector value at every point in space.
We began our discussion of vector fields in Chapter
23 with the velocity field rather than the electric field
because the velocity field is easier to visualize.  At
any point in space the vector is simply the velocity
vector of the fluid particle located there.  For the
electric field we first have to invent the concept of a
tiny unit test charge before we can visualize the force
vector at each point in space.

Another mathematical concept, which we did not
bother naming in the Physics text, is the scalar field.
It is a quantity that has a scalar or numerical value at
every point in space.  An example of a scalar field is
voltage, the potential energy of a unit test charge.  At
every point in space that we place the unit test
charge, we get a voltage reading.  Since energy has
a magnitude but does not point anywhere, this read-
ing has a scalar or numerical value only.

From Equation (19), we see that the gradient opera-
tor  ∇ , operating on a scalar field V creates the vector
field   E = – ∇ V .  The vector   ∇ V  has a numerical
value equal to the maximum slope of V(x,y,z), and
points opposite to the direction where the slope is
greatest.

In the remainder of this part of the chapter, we will
give examples of using the gradient operation to
calculate the electric field from the voltage.  In only
a few cases, like the example of the parallel plate
capacitor, is a Cartesian coordinate system (x,y,z)
the most convenient coordinate system to use.  In our
study of electric and magnetic phenomena, we often
dealt with point charges where there is spherical
symmetry or line charges with cylindrical symme-
try.  We will see that to handle problems with
spherical or cylindrical symmetry, it is much easier
to work with the gradient   ∇ V  expressed in spherical
or cylindrical coordinate systems.  Much of the
detailed work for the remainder of the chapter will
be to work out the formulas for the gradient in these
coordinate systems.  (You do these derivations once,
and then use the results for the remainder of your
scientific career.)

As we mentioned, we have View 2 later in the
chapter, where we look at the gradient from a more
geometrical and mathematical point of view.  We
end up with Equation (16) as the formula for the
gradient, but explicitly demonstrate that the compo-
nents   ∇ xV  and   ∇ yV  of the gradient transform
(change) the same way the components of a dis-
placement vector change when we go to a rotated
coordinate system.  Such discussions will become
very useful later on.
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THE PARALLEL PLATE CAPACITOR
We introduced the parallel plate capacitor in Chap-
ter 26, page 26-14 of the Physics text.  We dealt with
an idealized situation where we assumed that the
plate diameters were much greater than the separa-
tion. Then we could neglect edge effects and assume
that the electric field was uniform between the
plates, as shown in Figure (26-27) reproduced here.

Since  E  is the force on a unit test charge, and the
voltage V is its potential energy, we can calculate the
voltage V between the plates by calculating the amount
of work required to lift the unit charge a distance y
above the bottom plate.  Since the force  E  we have to
work against is constant, the work we do is simply the
force of magnitude E times the height y.  If we say that
the bottom plate is grounded, i.e., define the potential
energy or voltage as being zero at the bottom plate, then
the formula for the voltage between the plates is simply

V(x,y,z)  =  E y (20)

To evaluate E, we note that when we get  to the top
plate where y = d, the voltage is up to  V0 , the voltage
to which we charged the capacitor

 V0 = Ed (21)

Thus  E = V0/d , and the voltage between the plates is
given by

  
V(x,y,z) =

V0
d

y (22)

Let us now turn the problem around and use the
gradient formula   E = – ∇ V  to calculate the electric
field  E  from our voltage formula Equation (22).
Writing out all the components of   – ∇ V  as partial
derivatives, we have from Equation (16)

  
E(x,y,z) = – x ∂V

∂x + y ∂V
∂y + z ∂V

∂z (16)

The x partial derivative is

  ∂V(x,y,z)
∂x = ∂

∂x
V0 y

d
= 0 (23)

This is zero because there is no x dependence in our
formula for V.  When we take the partial derivative
with respect to x, we hold y and z constant.  Thus
nothing in the formula  V0y/d  changes when we
change x, and this partial derivative is zero.

The other partial derivatives are

  ∂V(x,y,z)
∂y = ∂

∂y
V0 y

d
=

V0
d

(24)

  ∂V(x,y,z)
∂z = ∂

∂z
V0 y

d
= 0 (25)

Using Equations (23), (24), and (25) in (22) gives us

  
E = – y

V0
d (26)

which says that  E  points down in the  –y direction,
and has a magnitude  V0/d  which we already know
from Equation (21).  We see that the calculation of

 E  from V using   E = – ∇ V  is a fairly straightfor-
ward process.
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Figure 26-26
The electric field between and around
the edge of the capacitor plates.

Figure 26-25
The parallel plate capacitor.  The capacitor is charged
up by connecting a battery across the plates as shown.

Figure 26-27
In our idealized parallel plate capacitor the field
lines go straight from the positive to the negative
plate, and the field is uniform between the plates.
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Voltage Inside a Conductor
The main idea of Chapter 26 of the Physics text was
that you cannot have a static electric field inside a
conductor if there is no flow of charge.  The equiva-
lent statement in terms of electric voltage is that the
voltage is constant inside a conductor

 V(x,y,z) inside a conductor = constant (27)

To see that this gives a zero electric field, we have

  E = –∇ Vinside a conductor = 0 (28)

All the components are zero because the partial
derivative of a constant is zero.

To provide an explicit example, suppose we turn our
parallel plate capacitor on its side and assume that it
is constructed from thick metal plates as shown in
Figure (5).  The voltage as a function of distance is
shown below the drawing of the plates.  Inside the
left plate the voltage has the constant value  V0 ,
which gives zero field inside.  Between the plates the
voltage drops uniformly. It has a constant gradient,
which gives us a constant electric field   E = – ∇ V
pointing in the direction of the downward slope.  The
voltage is again constant (V = 0) in the left hand
plate.

E

0

0

dV0

V0

Figure 5
Voltage in a parallel plate capacitor. The voltage is
constant inside the plates and, for the assumed uniform
field structure, drops uniformly between the plates.
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ELECTRIC FIELD OF A POINT CHARGE
Our first example of an electric field in the Physics
text was the field of a point charge.  If we have a
charge Q located at the origin of our coordinate
system, then the electric field at a position  r = (x,y,z)
as shown in Figure (6) is given by

  E(r) = r
Q

4πε0r2 = r
kQ
r2 (29)

where r  is a unit vector in the r  direction and
  k = 1/4πε0 .

 In the Physics text, we mentioned, but never accu-
rately derived, that the voltage V(r) of a point charge
was

  V(r) =
Q

4πε0r
=

kQ
r (30)

when we chose the zero of potential energy at
r = infinity.  What we want to do now is to show that
the formula for  E(r)  follows directly from Equation
(30) for V(r) when we use the relationship

  E = – ∇ V (14) repeated

The work is a bit messy, because we will be using a
Cartesian coordinate system to solve a problem with
spherical symmetry.  Later we will find the formula
for the gradient in spherical coordinates, and then
see that it is very easy to evaluate   E = – ∇ V  for a
point charge.

Our first step will be to write out the vector equation
  E = – ∇ V  as three component equations

  Ex = – ∂V
∂x ; Ey = – ∂V

∂y ; Ez = – ∂V
∂z

(31)
Focusing on the x component equation we have

  
Ex = – ∂V

∂x = – ∂
∂x

kQ
r

Taking the constant kQ outside the derivative we have

  Ex = – kQ ∂
∂x

1
r (32)

To go any farther, we have to express the distance r
as a function of the coordinate x.  This is done by the
three dimensional Pythagorean theorem

 r = x2 + y2 + z2

To calculate the derivative of (1/r) with respect to  x
now becomes an exercise in the use of the chain rule
for differentiation.  Let us start with

 r2 = x2 + y2 + z2

which is easy to differentiate.  We get

   ∂r2

∂x = ∂
∂x x2 + y2 + z2 = 2x (33)

Next look at

  ∂r
∂x = ∂

∂x r2 =
∂ r2

∂r2
∂r2

∂x (34)

To evaluate   ∂ r2 /∂r2 , set  y = r2  so that we have,
using   ∂yn/∂y = nyn – 1

  ∂ r2

∂r2 =
∂ y
∂y = ∂

∂y y.5 = 1
2y– .5 = 1

2r (35)

Thus using Equation (33) and (35) in (34) gives

  ∂r
∂x =

∂ r2

∂r2
∂r2

∂x2 = 1
2r

2x

  ∂r
∂x = x

r
(36)

which is a fairly simple result considering what we
went through.

x

y

z

r

r

Q

Figure 6
Out at a point given by the coordinate
vector r , we have the unit vector r .
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Finally we have

  ∂
∂x

1
r = ∂r–1

∂x = ∂r–1

∂r
∂r
∂x

= –r–2 ∂r
∂x = – 1

r2
x
r

  ∂
∂x

1
r = – x

r3 (37)

and our formula for  Ex  becomes

  Ex = – kQ ∂
∂x

1
r = – kQ – x

r3

 
Ex = kQ x

r3 (38a)

Clearly the  y and z components are
 

Ey = kQ
y
r3 (38b)

 
Ez = kQ z

r3
(38c)

To check that we got the right answer, we can go
back to Equation (29)

 E(r) = r
kQ
r2 (29) repeated

and replace the unit vector r  with its definition  r /r
giving

 r = (rx,ry,rz) = (x,y,z)

 r = r
r = 1

r (x,y,z)

 rx = x
r ; ry =

y
r ; rz = z

r (39)

Equation (39) says, for example, that the x compo-
nent of the unit vector r  has a length x/r. Thus the x
component of  E  in Equation (29) is

 Ex = rx
kQ
r2 = x

r
kQ
r2 = kQ x

r3
(40)

with similar equations for  Ey and  Ez.  Since Equations
(38) and (40) are the same, we have verified that

  E = – ∇ V  gives the correct result for V = kQ/r.

The messiness we encountered calculating the field
of a point charge from V = kQ/r resulted from our
calculating x, y, and z components of  E  when we
knew that  E  pointed in the radial direction.  If we use
what is called a spherical coordinate system, we
will find that the formula for the radial component of
the electric field is simply

  Er =
– ∂V(r)

∂r
(41)

With V(r) = kQ/r we get

  Er = – kQ ∂
∂r

1
r = – kQ – 1

r2 =
kQ
r2 (42)

and we get the final answer in a one line calculation.

To get this simple result requires, however, a fair
amount of work deriving the formula for the gradi-
ent in spherical coordinates.  First we have to define
precisely what a spherical coordinate system is,
show what the unit vectors are, and then calculate
the components of the gradient when we move in the
directions defined by the unit vectors.  When this is
all done, when we have the formula for the gradient
in spherical coordinates, we can use the formula
without ever going through the derivation again.

In the Physics text we encountered problems with
plane symmetry, like the parallel plate capacitor,
cylindrical symmetry, like the field of a line charge,
and spherical symmetry like the field of a point
charge we have just discussed.  The plane symmetry
problems are most easily handled in a Cartesian
coordinate system, the cylindrical problems in what
is called a cylindrical coordinate system, and spheri-
cal problems in a spherical coordinate system.  We
will now discuss these three coordinate systems and
develop the formulas for the components of the
gradient vector in each coordinate system.  Since we
have already done this for the Cartesian coordinate
system, that discussion will serve as a review of the
procedure we will use.
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Figure 7

The unit vectors x, y , z  out at the point   r.

GRADIENT IN THE CARTESIAN
COORDINATE SYSTEM
An example of a right handed Cartesian coordinate
system is shown in Figure (7).  Out at some
point  r = (x,y,z)  the unit vectors x, y, and z  are
parallel to the x, y, and z axis as shown.  It is called
a right handed coordinate system because the unit
vectors obey the relationship

  x × y = z (43)

when we use the right hand rule for the cross prod-
uct.  (If we used a left hand rule, the z axis would
point the other way.)

Exercise 1

Show that   y × z = x  and   z × x = y .

We will use the force/potential energy relationship
to define the gradient vector.  If I move a unit test
charge a short distance   ∆ , exerting a force  Fme = – E
to just overcome the electric field  E , the work   ∆W
I do is

  ∆W = Fme ⋅ ∆ = – E ⋅ ∆ (44)

Since this work is the change   ∆V  in the potential
energy of the unit test charge, we have

  ∆V = – E ⋅ ∆ (45)

But the voltage V is related to the field  E  by the
gradient

  E = – ∇ V (14) repeated

Using Equation (14) in (45), we can eliminate  E  and
get the relationship between the small change in
voltage   ∆V  and the voltage gradient   ∇ V

  
∆V = (∇ V) ⋅ ∆ (46)

Equation (46) will allow us to find the formula for
the gradient in the various coordinate systems.

To see how we are going to use Equation (46), we
will start with the Cartesian coordinate system and
choose   ∆  to be a short step   ∆x  in the x direction.
Explicitly we will start at a point (x,y,z) and move to
the point   (x + ∆x, y, z)  so that   ∆V ,   ∆  and

  (∇ V) ⋅ ∆  become

  ∆V = V(x + ∆x, y, z) – V(x, y, z) (47)

  ∆ = x∆x (48)

  (∇ V) ⋅ ∆ = (∇ V)x ∆x (49)

Using (47) and (49) in (46) gives

  V(x + ∆x, y, z) – V(x, y, z) = (∇ V)x ∆x (50)

Dividing through by   ∆x  and taking the limit as   ∆x
goes to zero gives

  
(∇ V)x = limit

∆x → 0

V(x + ∆x, y, z) – V(x, y, z)

∆x

(51)
which is the definition of the partial derivative.  Thus

  
(∇ V)x =

∂V(x, y, z)
∂x (52)

which is our earlier result.  This procedure does not
give us anything new for a Cartesian coordinate
system, but will give us new results for other coor-
dinate systems.

(On the next page you will find two pictures of our
model of the electric field of two point charges. We
put the pictures there so that the discussion of the
gradient in cylindrical and spherical coordinates
would each be completed on facing pages.)
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Figure 25-14 (from Physics text)
Different views of the model of the electric field of two
point charges  Q+  = +3 and  Q–  = –1.
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GRADIENT IN CYLINDRICAL COORDINATES

In a cylindrical coordinate system, we define the
location of a point p by giving the distance r  out
from the z axis, the angle θ  over from the x axis, and
the height z above the xy plane as shown in Figure
(8).  The unit vectors are r which points radially out
from the z axis, z  which points in the z direction, and
θ  which is perpendicular to the  r z  plane.  The
direction of θ  is the direction we move when in-
creasing the angle θ .  This gives us a right handed
coordinate system where the unit vectors are related
by

  r × θ = z (53)

You should check for yourself that Equation (53)
works for the unit vectors shown in Figure (8), and
that   θ × z = r  and   z × r = θ .

We will assume that in cylindrical coordinates, the
gradient vector at point p is given by the equation

  ∇ V = r (∇ V)r + θ(∇ V)θ + z (∇ V)z (54)

where   (∇ V)r,   (∇ V)θ  and   (∇ V)z are the compo-
nents of the gradient vector that we want to deter-
mine.

To calculate the first component   (∇ V)r, we will start
at the point  p  at   (r, θ, z)  and move a short distance

  ∆r  in the r  direction, to the point   (r +∆r, θ, z) .  Our
change in voltage   ∆V , displacement  ∆  and the dot
product   (∇ V) ⋅ ∆  are for this move

  ∆V = V(r + ∆r, θ, z) – V(r, θ, z) (55)

  ∆ = r ∆r (56)

  
(∇ V)⋅∆ = r (∇ V)r + θ(∇ V)θ + z(∇ V)z ⋅ r∆r

(57)

Since the unit vectors are all at right angles to each
other,   r ⋅ r = 1,   θ ⋅ r = 0 and   z ⋅ r = 0, giving us

  ∆V = (∇ V) ⋅ ∆ = (∇ V)r∆r (58)

Dividing (58) through by   ∆r , using (55) for   ∆V  and
taking the limit as   ∆r  goes to zero gives

  
(∇ V)r = limit

∆r → 0
V(r + ∆r, θ, z) – V(r, θ, z)

∆r

(59)
The right side of Equation (59) is what we will define
to be the partial derivative of   V(r, θ, z)  with respect
to r in cylindrical coordinates

  ∂V(r, θ, z)
∂r ≡ limit

∆r → 0
V(r + ∆r, θ, z) – V(r, θ, z)

∆r

(60)
This is the rate of change of the function   V(r, θ, z)
as we change the r coordinate.  With this definition,
we get

  
(∇ V)r =

∂V(r, θ, z)
∂r

(61)x
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Figure 8
The unit vectors       r , θθ , z  in cylindrical coordinates.
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Figure 9
The displacement  ∆∆  when we
increase the angle θθ by     ∇∇ θθ .

So far, our results  look very much like what we had
for Cartesian coordinates.  However, we get some-
thing new when our step  ∆  is in the θ  direction.
Suppose we are at the position   (r, θ, z) , and move to
the new point   (r, θ+∆θ, z)  where we increased the
θ coordinate angle by  ∆θ  as shown in Figure (9).
Since the angle   θ+∆θ  is measured in radians, the
arc length  ∆  that we move when going from θ  to

  θ+∆θ  is

  ∆ = r∆θ

You will notice that the vector displacement  ∆  is in
the same direction as the θ  unit vector, thus

  ∆ = θr∆θ (62)

The change in voltage   ∆V  and the dot product
  (∇ V) ⋅ ∆  are thus

  ∆V = V(r, θ+∆θ, z) – V(r, θ, z) (63)

  ∇ V⋅∆ = r(∇ V)r + θ(∇ V)θ + z(∇ V)z ⋅θr∆θ

= (∇ V)θr∆θ (64)

where we used   θ⋅θ = 1,   r ⋅ θ = z ⋅ θ = 0 .

Using (63) and (64) in our equation   ∆V = ∇ V ⋅ ∆ ,
we get

  V(r, θ+∆θ, z) – V(r, θ, z) = (∇ V)θr∆θ (65)

Dividing Equation (65) through by   r∆θ  and then
taking the limit as   ∆θ  goes to zero gives

  

(∇ V)θ = 1
r

limit
∆θ → 0

V(r, θ+∆θ, z) – V(r, θ, z)
∆θ

(66)
We define the quantity in curly brackets to be the
partial derivative of   V(r, θ, z)  with respect to the
variable θ

  ∂V(r, θ, z)
∂θ ≡ limit

∆θ → 0
V(r, θ+∆θ, z) – V(r, θ, z)

∆θ

(67)
Thus we end up with the equation

  
(∇ V)θ = 1

r
∂V(r, θ, z)

∂θ (68)

and we get a factor of 1/r in our formula for the
θ component of the gradient in cylindrical coordi-
nates.  The factor of 1/r appears because the partial
derivative with respect to θ  measures the rate of
change of V for a given change  ∆θ  in angle, while
the gradient measures the rate of change of V with
respect to a given step in distance.  When we make
a change  ∆θ  in angle, the distance we move is   r∆θ
which increases with r.  The factor of r has to be
divided out to get the rate of change of V with
distance.

Exercise 2
Following the above steps, show that

   
(∇ V)z =

∂V(r, θ, z)
∂z (69)

This should look the same as our derivation for the
Cartesian coordinate system.
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GRADIENT IN SPHERICAL COORDINATES

While the steps are fresh, let us derive the formulas
for the components of the gradient vector in spheri-
cal coordinates.  We will then return to various
applications of the new gradient formulas.

In the spherical coordinate system shown in Figure
(10), a point  p  is located by the displacement r  from
the origin, the angle θ  that the coordinate vector r
makes with the  z axis, and the angle φ  that the
projection of r  on the x,y plane makes with the x
axis.  The unit vectors are r  pointing out in the r
direction, θ  which lies in the  r z  plane pointing in
the direction of increasing θ , and φ which is per-
pendicular to the  r z  plane, in the direction of
increasing φ .  This gives us a right handed coordi-
nate system where

  r × θ = φ (70)

(Again, show for yourself that   θ × φ= r  and   φ× r = θ.)

Exercise 3
Start at the point    (r, θ, φ) and move a distance  ∆  to the
point    V(r + ∆r, θ, φ) and show that the  r  component of the
gradient in spherical coordinates is

   
( ∇ V)r =

∂V(r, θ, φ)
∂r (71)

where

   ∂V(r, θ, φ)
∂r = limit

∆r → 0
V(r + ∆r, θ, φ) – V(r, θ, φ)

∆r
(72)

It was Equation (71) that we used to show in one line that
the voltage V = kQ/r leads to the field   E = r kQ/r2.

In spherical coordinates, the radial component of the
gradient is simply the partial derivative, as we asked
you to show in Exercise 3.  We get new results when
we look at the θ  and φ  components, where the
change in distance   ∆  is not equal to  ∆θ  or  ∆φ alone.

First let   ∆  be in the θ  direction, so that we go from
the point   (r, θ, φ) to   (r, θ+∆θ, φ) .  The distance   ∆
is shown in Figure (11) where we are looking squarely
at the  rz plane.  You can see that   ∆  is in the θ
direction and has a magnitude   ∆ = r∆θ  so that

  ∆ = θr∆θ (73)

The change in voltage   ∆V  and the dot product
  ∇ V ⋅ ∆  are

  ∆V = V(r, θ+∆θ, φ) – V(r, θ, φ) (74)

  ∇ V⋅∆ = r (∇ V)r + θ(∇ V)θ +φ(∇ V)φ ⋅θr∆θ

= (∇ V)θ r∆θ (75)

where   θ⋅θ = 1,    r ⋅ θ = φ⋅ θ = 0 .

Equating   ∆V  from (74) with   ∇ V ⋅ ∆  in (75), then
dividing through by   r∆θ  and taking the limit as  ∆θ
goes to zero, gives

  
(∇ V)θ = 1

r
limit
∆θ → 0

V(r, θ+∆θ, φ) – V(r, θ, φ)
∆θ

(76)
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Figure 10
The unit vectors       r , θθ , φφ  for a
spherical coordinate system.
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Figure 11
The step   ∆∆  when we increase θθ by ∆θ∆θ.
We are directly facing the rz plane.
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Figure 12
The step  ∆∆  when we increase φφ by     ∆φ∆φ.
Note that we are out a distance       r sinθθ
from the z axis.

We define the partial derivative of   V r, θ, φ  with
respect to θ  in spherical coordinates as

  ∂V(r, θ, φ)
∂θ ≡ limit

∆θ → 0
V(r, θ+∆θ, φ) – V(r, θ, φ)

∆θ

(77)
so that we get

  
(∇ V)θ = 1

r
∂V(r, θ, φ)

∂θ (78)

as the formula for the θ  component of the gradient
vector in spherical coordinates.

Finally we will derive the φ  component of   ∇ V  by
taking a step   ∆  in the φ  direction.  The geometry
is shown in Figure (12).  The first thing to note is that
the projection of the coordinate vector r  down on
the xy plane has a length  (   r sinθ).  This is the
distance the point p is out from the z axis.  When we
rotate an angle  ∆φ  about the z axis, the arc length   ∆
out a distance (   r sinθ) is   (r sinθ)∆φ.  This distance
is in the direction of the unit vector φ, thus

  ∆ = φ(r sinθ)∆φ (79)

The change in voltage, going from   (r, θ, φ) to
  (r, θ, φ+∆φ) is

  ∆V = V(r, θ, φ+∆φ) – V(r, θ, φ) (80)

The quantity   ∇ V ⋅ ∆  is

  ∇ V ⋅ ∆ = r (∇ V)r + θ(∇ V)θ +φ(∇ V)φ ⋅ φ (r sin θ)∆φ

= (∇ V)φ (r sin θ)∆φ

(81)
because   φ ⋅ φ= 1 and   r ⋅ φ= θ ⋅ φ= 0 .

Equating   ∇ V ⋅ ∆  in Equation (81) to   ∆V  in (80)
gives

  V(r, θ, φ+∆φ) – V(r, θ, φ) = (∇ V)φ (r sin θ)∆φ

(82)
Dividing (82) through by   (r sin θ)∆φ and taking the
limit at   ∆φ  goes to zero gives

  
( ∇ V)φ = 1

r sinθ
limit
∆φ→0

V(r,θ,φ+∆φ) –V(r,θ,φ)
∆φ

(83)
We define the partial derivative with respect to φ
in spherical coordinates as

  ∂V(r, θ, φ)
∂φ = limit

∆φ →0
V(r, θ, φ+∆φ) – V(r, θ, φ)

∆φ

(84)
to get the result

  
( ∇ V)φ = 1

r sin θ
∂V(r, θ, φ)

∂φ (85)
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SUMMARY OF GRADIENT FORMULAS
We collect in one place the formulas for the gradient
in Cartesian, cylindrical and spherical coordinates.

Cartesian Coordinates

  
∇ V(x,y,z) = x∂V

∂x + y∂V
∂y + z∂V

∂z (86)

              

x

y

z
z

y

x

Cylindrical Coordinates

  
∇ V(r,φ,z) = r∂V

∂r + θ
r

∂V
∂θ + z∂V

∂z

(87)

            

x

y

z

r

r

z

θ

θ

Spherical Coordinates

  
∇ V(r,θ,φ) = r∂V

∂r + θ
r

∂V
∂θ +

φ
r sin θ

∂V
∂φ

(88)

EXAMPLES

Electric Field of a Point Charge
Let us now see explicitly how the formula for the
gradient in spherical coordinates, Equation (88),
makes it easy to calculate the electric field of a point
charge, starting from the voltage formula

 V(r) =
kQ
r (27) repeated

The formula for the gradient in spherical coordi-
nates is

  
∇ V = r ∂V

∂r
+ θ

r
∂V
∂θ +

φ
r sin θ

∂V
∂φ (88) repeat

While Equation (88) looks somewhat messy, the
thing to note is that V(r) has no dependence on the
variables θ  and φ , thus the partial derivatives with
respect to these variables are zero

  ∂V(r)
∂θ = 0 ;

∂V(r)
∂φ = 0 (89)

and all we are left with is

  ∇ V = r
∂V(r)

∂r
(90)

We have for   ∂V(r)/∂r

  ∂
∂r

kQ
r = kQ ∂

∂r (r– 1) = – 1
kQ
r2 (91)

thus we get

  
E = – ∇ V = – – r

kQ
r2 = r

kQ
r2 (92)

which is the correct answer.

The advantage of using spherical coordinates to
calculate the field of a point charge was that, two out
of three of the components of the gradient were zero,
and we had only a simple derivative for the remain-
ing component.  This is the kind of simplification
you get when you use a coordinate system that
matches the symmetry of the problem at hand.  Our
next example will be the calculation of the electric
field of a line charge.  That problem has cylindrical
symmetry, and is most easily handled using a cylin-
drical coordinate system.

x

y

θ

z

r

r

θ

φ
φ
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Figure 24-27 (repeated)
Using Gauss' law to calculate the electric field of a line
charge.  Draw the Gaussian surface around a section
of the rod.  The flux all flows out through the
cylindrical surface.

Electric Field of a Line Charge
In the Physics text, our first calculation of the elec-
tric field of an extended object was to show that the
radially directed electric field of a charged wire,
shown in Figure (24-27) repeated here, had a mag-
nitude

  E(r) = λ
2πε0r

(24-43) repeated

where λ  is the amount of charge per meter on the
wire and r is the radial distance out from the wire.  To
simplify the constants, we will set   k = 1/2πε0  so
that the vector formula for  E  is

  E(r) = r kλ
r ; k = 1

2πε0
(93)

In the Physics text we never did say what the voltage
was in the vicinity of a charged wire.  You will see why
shortly.

We can assume, because of the cylindrical symme-
try of the problem, that the voltage V depends only
on the radial distance r out from the wire.  That is,
that V = V(r).  Thus the partial derivatives with
respect to the variables θ  and z (using cylindrical
coordinates) should be zero and we should be left
with

  
E = – ∇ V = – r

∂V(r)
∂r

+
θ
r

∂V(r)
∂θ + z

∂V(r)
∂z

= – r
∂V(r)

∂r
(94)

where we used Equation (87) for the gradient in
cylindrical coordinates.

Comparing Equations (93) and (94) for  E  we get

  
E = r kλ

r = r –
∂V(r)

∂r
(95)

As a result, the voltage V(r) should obey the equa-
tion

  ∂V(r)
∂r

= – kλ 1
r (96)

The question we have now is, what function of r,
when differentiated with respect to r, gives 1/r?  The
answer, you may recall from Chapter 1 of the Calcu-
lus text, is the natural logarithm.  Explicitly

 d
dr

(ln r) = 1
r (97)

Thus the appropriate voltage V(r) is

  V(r) = – kλ ln r (98)

Going back from this V(r) to  E  we have

  ∇ V(r) = r ∂
∂r (– k λ ln r)

= r – k λ ∂ ln r
∂r = r – k λ

r
(99)

and

  E(r) = –∇ V(r) = r kλ
r (100)

This explicitly checks that the voltage   –(kλ ln r)  leads
to the electric field of a line charge.
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The logarithm ln(r) that appears in Equation (100) is
an interesting function in that it is zero at r = 1, goes
to   – ∞  at r = 0 and   + ∞  at   r = ∞   as shown in Figure
(13).  Thus, for example, at r = 0 we get

  V(r)
r = 0

= – kr ln(0) = –kr – ∞ = +∞ (101)

and the voltage becomes infinite.  This tells us that
it is not physically reasonable to put a finite charge
density λ  on an infinitely thin wire.  We had the
same problem with a point charge.  The formula  V
= kQ/r  also goes to infinity at r = 0 which tells us we
have a problem with the potential energy of a point
charge of zero radius.  (The modern theory of quan-
tum electrodynamics treats the electron as a point
charge of zero radius.  The tricky part of the theory
is to get around the infinities that result from this.)

At large distances, there is no problem with the
formula for the voltage of a point charge.  At   r = ∞ ,
the voltage V = kQ/r goes to zero, which is what we
wanted for the potential energy of a test charge
infinitely far away.  But for a line charge, Equation
(94) gives

  V(r)
r = + ∞

= – k λ ln(+ ∞) (102)

This predicts a voltage or potential energy of minus
infinity when we are infinitely far away from a line
charge!  How did this happen?

Either the mathematics is wrong, or our physical
interpretation is wrong.  The answer lies with the
physical interpretation.  What is wrong is that you
cannot get infinitely far away from a line charge.
Any real physical piece of wire must have a finite
length.  The wire may look infinitely long when you
are close to it, but as you move away, you will
eventually be able to see both ends.  The farther
away you move, the shorter the wire looks.  Move
infinitely far from the wire and the wire looks like a
point charge and the voltage it produces goes to zero.
Thus physically we will not encounter the infinity
that appears at large distances in the formula for the
voltage of a line charge.

As we have often mentioned, in any formula for
potential energy, we can arbitrarily choose the zero
of potential energy (the floor) wherever we want.
For point charges, we usually choose the zero of
potential energy out at   r = ∞ .  We have seen that we
cannot make the same choice for a line charge.  What
we have to do is write the formula for the potential
energy in the more general form

  V(r) = – k λ ln(r) + constant (98a)

and adjust the constant so that V(r) is zero at some
convenient place.  We can see how this works in the
following discussion of a coaxial cable.

0 x

0 1 2 3 4 5

–1

–2

–3

1

ln(x)

Figure 13
The function ln(x) starts out at minus infinity at x = 0,
goes through zero at x = 1, and slowly goes to plus
infinity at x = infinity.
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The Coaxial Cable
A physical example where our voltage formula
(98a) makes sense is the coaxial cable.  Suppose we
have a cable whose inner conductor has a radius ri
and the outer shield has an inside radius  r0  as shown
in Figure (14).  Assume that the inner conductor has
a charge density λ  coulombs per meter, and the
outer conductor is grounded (i.e., we say that the
voltage V(r) is zero at  r = r0 .)  What is the voltage
throughout the cable?

First of all, we know that the voltage inside a
conductor must be constant so that the field

  E = – ∇ V  inside is zero.  Since the outer conductor
is grounded, the voltage throughout the shield (for

 r > r0 ) will be zero as shown in Figure (15).  The
voltage on the inner conductor will have some
constant value  Vi (for  r < r0 ).

Between the conductors, in the region between ri
and  r0 , the voltage must have the logarithmic de-
pendence given by Equation (98a)

  V(r) = – k λ lnr + constant (103)
We can evaluate the constant by setting the voltage
equal to zero out at the grounded shield, at  r = r0 .
This gives

  V(r0) = – k λ lnr0 + constant = 0

  constant = k λ lnr0 (104)
and V(r) becomes

  V(r) = – k λ lnr + k λ lnr0 (105)

Logarithms have the peculiar property

 lna – lnb = ln a
b (106)

Thus V(r) in Equation (99) can be more compactly
written

  V(r) = k λ ln
r0
r (107)

With the constant k written out as   1/2π ε0  (see
Equation 93), we get

  
V(r) = λ

2π ε0
ln

r0
r

(108)

At the outer shield, at  r = r0, we have

 ln(r0/r) = ln(1) = 0

and the voltage goes to zero. This is what we wanted
for a  grounded shield.

As demonstrated in Exercise 4 below, Equation
(108) allows us to calculate the charge density λ  on
the inner conductor of a coaxial cable when the outer
conductor is grounded and the inner conductor is
raised to some voltage  Vi.

Exercise 4
(a) For the coaxial cable of Figure (14), find the formula
for the charge density λ  when the inner conductor is at
a voltageVi volts.

(b) Suppose  Vi = 100 volts,  ri = .5 mm,  r0 = 2 mm and
recall that    ε0 ≈ 9 × 10– 12 .  Then what is λ  in coulombs
per meter?

(c) What is the general formula for the capacitance per
meter of the coaxial cable in Figure (14)?

ri

r0

voltage constant 
inside conductor

rr0

V(r)          

Vi

i r0Figure 14
A coaxial cable, where the inner wire has a radius ri
and the outer grounded shield an inner radius r0.

Figure 15
Voltage in the coaxial cable.
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View 2
The Gradient from a
Geometrical Perspective

In the first part of this chapter, we used the relation-
ship between force and potential energy to define
what we meant by the gradient vector.  We then used
that relationship to derive the formulas for the
gradient in cylindrical and spherical coordinates.

What we want to do now is to approach the gradient
from a geometrical point of view.  This is the point of
view we began to develop when we constructed the
physical models of electric voltage like the one
shown in Figure (25-15) reproduced again here.
Once we have developed a geometrical definition of
the gradient we will check that the gradient behaves
like a vector.  To do that, we show that the compo-
nents of the gradient change or transform the same
way that the components of a displacement vector
when we rotate the coordinate system.  This idea of
testing the vector nature of a new quantity will
become particularly important when we get to a
mathematically advanced discussion of special rela-
tivity.

This discussion of the gradient is designed to be
independent of the first part of the chapter, so that
you can start from either approach.  This leads to
some repetition of definitions, but the points of view
are sufficiently different that some duplication should
not be a problem.  We, of course, end up with the
same definition of the gradient vector from the two
points of view.

CH 3 VIEW 2 THE GRADIENT FROM A GEOMETRICAL PERSPECTIVE

V = .1

V = .2

V = .3

V = .4

V = .5

V = .1

V
=

–.
1

V
=

.0

–1 +3  

Figure 25-15 (repeated)
Computer plot of the field lines and equipotentials for a
charge distribution consisting of a positive charge + 3
and a negative charge – 1.  These lines were then used
to construct the plywood model.
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SLOPE IN TWO DIMENSIONS
Imagine that you are planning a trip in a desert with
hills and valleys.  One possibility is to follow a path
that heads due east through the desert.  If you draw
the path on a contour map, and note where the path
crosses different contours, you can create a plot of
the height (h) of the path as a function of the distance
(x) of the path.  The result might look like a plot of
h(x)  shown in Figure (1).  This should at least
represent a smoothed version of the terrain you will
encounter.

Your curve  h(x)  tells you roughly how steep the
path should be at any point  x0 .  Mathematically, you
can define the steepness as the slope of the tangent
line at the point  x0 , which is equal to the first
derivative of  h(x).

  slope at x0 = h′(x0)

=
dh(x)

dx x = x0

= tan θ (1)

As long as you stay on the path, the slope at any point
is uniquely determined by Equation (1).

However the interesting part about going out in the
desert is that you do not have to follow any particular
path.  If you do not want to climb very much, you can
walk along a contour line.  If you are anxious to get
to the top of a hill and want the steepest climb
possible, you walk at right angles to a contour line,
along what we have called a field line, or what ski
instructors call the fall line.  At any point you can
choose a path whose slope ranges from zero along a
contour line to the maximum along the field line.  To
define the slope at some point, you have to state the
direction you are traveling.

To handle this new feature mathematically, we first
introduce a coordinate system (x,y), where the x
direction, for example, could be east-west and the y
direction north-south.  The terrain is then described
by a function h(x,y) giving the height of the land at
any point (x,y).

To describe the slope of a one dimensional curve
h(x) at some point  x0 , we drew a tangent line at  x0
as shown in Figure (1).  To describe slopes for a two
dimensional function h(x,y), at some point  (x0, y0)
we look at the tangent plane at that point.  This
assumes that the function h(x,y) is smooth enough
that, as we get closer and closer to the point  (x0, y0)
the landscape looks smoother and smoother.  It
assumes that when we get very close, the landscape
looks flat and we are looking at the tangent plane.

Not all functions h(x,y) are necessarily that smooth.
Curves describing real landscapes, like the shape of
a coastline, look just as rough no matter how close
we look.  Such curves are described by what is called
fractal geometry.  What we will be discussing are
curves, or surfaces that become smooth when we
look close enough.  A sufficient mathematical crite-
ria for such smoothness is that all derivatives with
respect to any variable are finite.

If the terrain h(x,y) is smooth enough to have a
unique tangent plane at every point, then our discus-
sion of the nature of slopes on a curved surface can
begin with a study of how slopes behave in a tangent
plane.  What we learn from the study of one tangent
plane can then be applied to all tangent planes in the
terrain.

Figure 1
Imagine that you are walking due east (x direction) in
the desert. We will call h(x) the height of your path. At
some point  x0, the slope of your path is dh(x)/dx
evaluated at  x0, which is the tangent of the angle θθ.

h(x)

0

θ

xx
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To visualize a tangent plane at some point  (x0, y0),
start by imagining that the point is on the surface of
a table, and construct a coordinate axis (x,y,z) whose
origin is at  (x0, y0) as shown in Figure (2).  The xy
plane is the table surface and the z axis points
straight up.  Let us assume that the x axis faces east
and the y axis north.

To represent a tangent plane, take a thin flat object
like a piece of cardboard, and place it on the table
surface, tilted at an angle θ  as shown in Figure (3).
Orient the cardboard so that the line of contact with
the table is the x axis.

It is easy to see that in our flat tilted surface, all lines
parallel to the x axis are contour lines, and that all
lines parallel to the y axis headed north are field lines
with a maximum slope.  It is also clear that the field
lines are perpendicular to the contour lines.

These features carry over to a smooth curved surface
h(x,y).  At any point  (x0, y0) construct a tangent

plane.  Unless this tangent plane happens to be
horizontal, there will be a unique horizontal line in
the plane that passes through the point  (x0, y0).  This
horizontal line corresponds to the x axis in Figure
(3).  In a region very close to the point  (x0, y0) this
horizontal line will coincide with the contour line of
h(x,y) that passes through that point.

Perpendicular to the x axis in the tangent plane will
be a line of maximum slope heading in the y direc-
tion of Figure (3).  The field line of our curved
surface h(x,y) that passes through the point  (x0, y0)
will be y oriented for a small region around  (x0, y0).
As a result, in this small region the contour lines and
the field lines of the curved surface have the same
properties as the contour and field lines in the
tangent plane.  In particular, even for curved sur-
faces, contour lines and field lines will always be
perpendicular to each other where the contour lines
are in the direction of zero slope and the field lines
in the direction of maximum slope.

Figure 2
Our coordinate system.

      y
north

x
east

z up

y

(x  , y )θ

north x
east

tangent plane 
through (x ,y )

0 0

0 0

Figure 3
The tangent plane. All lines in the tangent plane that
are parallel to the x axis are lines of equal height, or
contour lines. Lines in the perpendicular y direction
are lines of maximum slope, or field lines.
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THE GRADIENT
When you have a mathematical function h(x,y) that
describes a surface, the slope of that surface in some
direction is given by the partial derivative in that
direction.  Explicitly the slope in the x direction at
the point  (x0, y0) is given by

  slope in x
direction at
(x0, y0)

=
∂h(x,y)

∂x x = x0, y = y0

(2a)

and the slope in the y direction is

  slope in y
direction at
(x0, y0)

=
∂h(x,y)

∂y x = x0, y = y0

(2b)

What we will do now is to define a quantity we will
call the gradient, and represent it by the symbol

  ∇ h(x,y) .  Explicitly we define   ∇ h(x,y)  by the
equation

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3)

where x and y are unit vectors in the x and y
directions respectively.

The gradient   ∇ h(x,y)  looks like a vector with x and
y components equal to the slope of h(x,y) in the x and
y directions.  However a vector is more than a
quantity with some components.  We saw in Chapter
2 of the Physics text that a vector has a basic physical
significance that does not depend upon the coordi-
nate system used to define the vector.  What we need
to do for our gradient is to find the basic significance
of the quantity   ∇ h(x,y)  and then show that the
physical picture does not change when the gradient
is evaluated in a different coordinate system.

To see the physical significance of the gradient, we
will evaluate   ∇ h(x,y)  at some point  (x0, y0), using
a coordinate system where the x axis is parallel to the
contour line passing through that point.  That is the
same coordinate system we used in our discussion of
the tangent plane in Figure (3).  Since the x axis lies
along a contour line at the point of interest, there is
no change in height as we move a short distance in
the x direction, and thus the partial derivative in the
x direction is zero.

  ∂h(x,y)
∂x x = x0

y = y0

= 0
for an x axis
lying along
a contour line

(4)

What remains of the gradient is

  
∇ h(x,y) x = x0

y = y0

= y
∂h(x,y)

∂y x = x0
y = y0

for an x axis
lying along
a contour line

(5)
For this coordinate system, the gradient is purely y
oriented, which is the direction of the field line
through  (x0, y0).  Also the magnitude of the gradient
is equal to the magnitude of the steepest slope at

 (x0, y0).  As a result, physical significance of the
gradient, at least in this special coordinate system, is
that it describes both the direction and magnitude
of the steepest slope.

Thus the gradient has both a magnitude and a direc-
tion like the displacement vectors we discussed in
Chapter 2 of the Physics text.  If the components of
the gradient change (transform) in the same way as
the components of a displacement vector, then the
magnitude and direction will be preserved when we
go to a new (rotated) coordinate system.  The
components will look different, but the magnitude
and direction will be unchanged.
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To see whether the components of the gradient
transform (change) like the components of a dis-
placement vector, let us first review what happens to
a purely y oriented displacement vector  B  when we
go to a new coordinate system   (x′,y′)  that is rotated
by an angle φ  about the z axis as shown in Figure (4).
You can easily see that in the   x′,y′ coordinate
system, the components of  B  are

  Bx′ = B sin φ
By′ = B cos φ (6)

Exercise 1
(a) Show that for a purely x oriented vector A  the
components of A  in the rotated    (x′, y′) coordinate
system are

   Ax′ = A cos φ
Ay′ = –A sin φ

(7)

(b) Now show that if you start with a vector

   C = xA + yB ≡ xCx + yCy

which has components  Cx= A in the x direction and
 Cy = B  in the  y  direction, then in the rotated coordinate

system, the components of C  are

   
Cx′ = + Cx cos φ+ Cy sin φ

Cy ′ = – Cx sin φ+ Cy cos φ
(8)

(Equations (8) are the general formula for the trans-
formation of the x and y components of a vector when
we rotate the coordinate system by an angle φ  about
the z axis.)

When we go from the coordinate system (x,y) to the
rotated coordinate system   (x′,y′) , the gradient

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3) repeat

becomes

  
∇ h(x′,y′) = x ′

∂h(x′,y′)
∂x′ + y ′

∂h(x′,y′)
∂y′ (9)

To calculate the new components   ∂h(x′,y′)/∂x′  and
  ∂h(x′,y′)/∂y′  at some arbitrary point (x,y) we will

use our familiar tangent plane of Figure (3) repro-
duced here as Figure (5).  We have also drawn in the
rotated coordinate system   (x′,y′)  seen in the top
view of Figure (5).  The coordinate axes   x, y  and

  x′,y′ all lie in the table top surface, what we can call
the z = 0 plane.

The partial derivative, for example   ∂h(x,y)/∂y , rep-
resents the rate of change of the height h as we go out
along the y axis.  For the rotated coordinate system,
the partial derivative   ∂h(x′,y′)/∂x′  represents the
rate of change of the height h as we go out along the
x′ axis.  We will use these ideas to calculate the
height   ∆h  of the point A shown in Figure (5), a point
that is a distance   ∆x′  down the x′ axis.

yy'

B

x'Bsinφ

B
cosφ 

φ

φ

x

z axis up out of paper
Figure 4
When we rotate the coordinate system about the
z axis, the y directed vector B  gets components
in both thex′′ and     y ′′ directions.

Figure 5
Our tangent plane of Figure (3) showing the
rotated coordinate system x',y', and the point
A, a distance      ∆∆x′  down the x' axis.

y
y'

A
x'

∆y'

∆x
∆x'
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φ
φ
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(north)

yy'

A x'

∆y'

∆x

∆x'

φ
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top view
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There are two distinct ways to get to the point A.  One
is to go down the x′ axis directly, a distance   ∆x′ .  For
this route we get as the formula for   ∆h

  
∆h =

slope in
the x′
direction

×
distance we
go in the
x′ direction

  
∆h =

∂h(x′,y′)
∂x′ × ∆x′ (10)

The other way to get to point A is to go down the x
axis a distance   ∆x , gaining a height   ∆hx given by

  
∆hx =

∂h(x,y)
∂x ∆x (11)

and then go out a distance   ∆y  in the old y direction,
giving us an additional height   ∆hy given by

  
∆hy =

∂h(x,y)
∂y ∆y (12)

The height   ∆h  at point A will be the sum of these two
heights

  ∆h = ∆hx + ∆hy

=
∂h(x,y)

∂x ∆x +
∂h(x,y)

∂y ∆y (13)

(In our drawing of Figure (5), we have shown the x
axis as being horizontal, so that the slope

  ∂h(x,y)/∂x would be zero.  This makes the drawing
easier to interpret, but we do not need to assume the
x slope is zero for the current discussion.)

The final step in calculating the height   ∆h  of point
A from the second route is to relate   ∆x  and   ∆y  to the
distance   ∆x′  traveled along the x′ axis.  From the top
view of Figure (5) it is clear that

  ∆x = ∆x′cos φ

  ∆y = ∆x′sin φ (14)

Using these values in Equation (13) give us

  
∆h =

∂h(x,y)
∂x ∆x′cos φ +

∂h(x,y)
∂y ∆x′sin φ

(15)
We can now equate our two formulas, Equation (10)
and Equation (15) for the height   ∆h  at point A.  The
factors of   ∆x′  cancel and we are left with

  ∂h(x′,y′)
∂x′ =

∂h(x,y)
∂x (cos φ) +

∂h(x,y)
∂y (sin φ)

(16)
Comparing Equation (15) with Equation (8) for the
transformation of the  x  component of the displace-
ment vector  C

  Cx′ = Cx cos φ+ Cy sin φ (8a) repeated

we see that the x component of the gradient trans-
forms (changes) in the same way as a displacement
vector when we rotate the coordinate system by an
angle φ .

Exercise 2
Using similar arguments, show that the y′  slope

  ∂h(x′,y′)/ ∂y′  is given by

  ∂h(x′,y′)
∂y′

=
∂h(x,y)

∂x
(– sin φ) +

∂h(x,y)
∂y

(cos φ) (17)

which is the same as the transformation of the  y
component of a displacement vector.

Figure 5 repeated
Our tangent plane of Figure (3) showing the rotated
coordinate system x', y', and the point A, a distance

  ∆∆x  down the x' axis.
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Gradient as a Vector Field
What is the significance of our demonstration that
the quantity   ∇ h(x,y) , defined by

  
∇ h(x,y) = x

∂h(x,y)
∂x + y

∂h(x,y)
∂y (3) Repeat

transforms like a vector at each point (x,y) in space?
As we pointed out in Chapter 29 of the Physics text,
a vector field, which is a vector at every point in
space, is uniquely determined if we have general
formulas for the surface integral and the line integral
of the field.  There were four Maxwell's equations
because we needed formulas for the surface and the
line integrals of both the electric and magnetic
fields.

In the Physics text and the first part of this chapter,
we knew that the electric field was a vector field
because of its definition as the force vector acting on
a unit test charge.  The knowledge that forces trans-
form as vectors was sufficient to tell us that any
correct formula for  E  gave us a vector field.  In this
section with the definition of Equation (3), the
gradient is given a geometrical definition, which at
first sight might or might not make   ∇ h(x,y)  behave
as a vector field.  The demonstration that   ∇ h(x,y)
transforms as a vector means that concepts like line
and surface integrals can be applied to any gradient
fields.

As we saw in the first part of this chapter, the
extension of Equation (3) to the gradient of a three
dimensional function is

  ∇ h(x,y,z) = x ∇ xh + y ∇ yh + z ∇ zh (18)

where   ∇ x ,   ∇ y  and   ∇ z  are the partial derivatives
  ∂/∂x ,   ∂/∂y , and   ∂/∂z .  Equation (18) here is equiva-

lent to Equation (16) in the first part of the chapter
relating  E  to   ∇ V(x,y,z) .

This completes our discussion of the gradient vector
  ∇ h(x,y,z)  from a geometrical point of view.  If you

have not done so already, now is the time to look at
applications of the gradient vector to electric field
problems, starting with the discussion of the gradi-
ent vector just before Equation (16) of the first part
of the chapter.
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View 3
Pressure Force as a Gradient

We end the chapter with View 3, an application to
fluids, where we see that the pressure force   fp  acting
on the fluid particles is the gradient of the pressure
field p. This represents a straightforward example of
obtaining a vector field   fp  from a scalar field p.

PRESSURE FORCE AS A GRADIENT
In the Physics text, there were two main places
where we dealt with the concept of pressure.  The
first was in Chapters 17 and 18 on the ideal gas law,
and the second was in Chapter 23 during our discus-
sion of Bernoulli's equation.  In both cases we
mentioned that pressure had the dimensions of a
force per unit area, but was itself a scalar field
p(x,y, z) that did not point anywhere.  We pointed
out that the pressure force acting on an area   ∆A was
directed perpendicular to the area and had a magni-
tude

  ∆F = p∆A (1)

We will now use the concept of a gradient to show
that the pressure force per unit volume  fp , acting on
the fluid particles, is equal to minus the gradient of
the pressure p(x,y,z)

  fp = –∇ p(x,y,z) (2)

This is analogous to the electric field being equal to
minus the gradient of the electric voltage

  E = – ∇ V(x,y,z) (3-19)

CH 3 VIEW 3 PRESSURE FORCE
AS A GRADIENT
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which we saw back in Equation (3-19) of this chap-
ter.

To calculate the pressure force, we start with a small
volume   ∆V = ∆x∆y∆z  shown in Figure (1).  This
volume element has a left face located at z and a right
face at   z + ∆z .  The center of the faces are located at
(x, y) where the pressures are p(x,y,z) and
p(x,y,z +   ∆z) respectively.

The pressure force   ∆F 1  exerted on the left face of
  ∆V  is equal to the force per unit area  p1(x,y,z)  times

the area   ∆A1 = ∆x∆y  of that face.  The pressure
force is directed into the volume, toward the right in
the z  direction, as shown

  ∆F1 = zp(x,y,z)∆x∆y (3)

On the right side, the force is directed back into   ∆V ,
in the –z direction, and has a value

  ∆F2 = –zp(x,y,z +∆z)∆x∆y (4)

The net force on these two sides is

  ∆F1 + ∆F2

= –z p(x,y,z +∆z) – p(x,y,z) ∆x∆y

= –z
p(x,y,z +∆z) – p(x,y,z)

∆z
∆x∆y∆z

(5)
You can immediately see that when we take the limit
that   ∆V  is an infinitesimal volume and   ∆z  goes to
zero, the quantity in the square brackets in Equation
(5) becomes the partial derivative of p(x,y,z) with
respect to z.

z
z z+∆z

∆z

∆y

∆x

x

(1)
(2)

y
∆F2∆F1

Figure 1
The volume element       ∆∆x∆∆y∆∆z .

  
limit

∆z → 0

p(x,y,z +∆z) – p(x,y,z)
∆z

=
∂p(x,y,z)

∂z
(6)

Thus Equation (5) can be written in the somewhat
mixed form

  ∆F1 + ∆F2 = –z
∂p(x,y,z)

∂z ∆x∆y∆z (7)

where we will shortly think in terms of the limit that
  ∆V = ∆x∆y∆z  goes to zero.

Before we do, let us add in the pressure forces  F 3
and  F 4  acting on the bottom and top faces respec-
tively, and  F 5  and  F 6  acting on the back and front
faces to get the total pressure force   ∆Fp  acting on

  ∆V .  Following the same steps used to derive
Equation (7), we get

  ∆Fp

= ∆F1 +∆F2 +∆F3 +∆F4 +∆F5 +∆F6

= – z
∂p(x,y,z)

∂z + y
∂p(x,y,z)

∂y + x
∂p(x,y,z)

∂x ∆x∆y∆z

(8)
The quantity in the square brackets in Equation (8)
is the gradient   ∇ p  of the pressure field.  Thus we
have, after dividing both sides by   ∆V = ∆x∆y∆z

  ∆Fp

∆V
= –∇ p(x,y,z) (9)

We recognize the left side of Equation (9) as the total
pressure force acting on   ∆V  divided by the volume

  ∆V .  It is therefore the pressure force per unit
volume  f p(x,y,z)  acting in that region of the fluid,
and we get our advertized result

   
fp(x,y,z) = – ∇ p(x,y,z)

pressure
force
per unit
volume

(2) repeated
With Equation (2) we have a powerful way of
calculating pressure forces, since we can evaluate
the gradient in any of the coordinate systems we
have been discussing, such as cylindrical or spheri-
cal polar coordinates.
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Calculus 2000-Chapter 4
The Operator 

     
∇∇ 2 ≡≡ ∇∇ ⋅⋅ ∇∇

(The Laplacian)

CHAPTER 4 THE OPERATOR      ∇∇ 2 ≡≡ ∇∇ ⋅⋅ ∇∇

In our earliest discussion of vectors in Chapter 2 of
the Physics text, we were introduced to the vector
dot product

   A ⋅ B ≡ AxBx + AyBy + AzBz (1)

as having the special property of being a scalar
quantity.  That is, the quantity    A ⋅ B  had the same
value no matter what coordinate system we used to
evaluate it.  Having just seen that the gradient
operator  ∇ operating on a scalar field h(x,y,z)
produces a vector field, one might wonder what we
get when we take the dot product of two gradient
operations acting on a scalar  field. The answer is
that we get another scalar field.

The standard name for this dot product of two
gradient operators is del squared, written as

   ∇ 2 ≡ ∇ ⋅ ∇ (2)

It is often called the Laplacian operator after the
French mathematician Laplace.  This operator is
essentially an extension to three dimensions of the

second derivative we encountered in Calculus Chap-
ter 2, during our discussion of the one dimensional
wave equation. Thus we should expect   ∇ 2 to appear
when we begin to discuss three dimensional wave
equations in the next few chapters.

Fluid theory
Another area of physics where the operator   ∇ 2

plays a prominent role is in fluid dynamics.  For
common fluids like water and air, the viscous force
acting on the fluid particles turns out to be propor-
tional to the Laplacian of the velocity field, namely

   ∇ 2 v .  We will derive that result starting from an
assumption that Issac Newton made about the na-
ture of viscous forces.

As an application of the theory of viscous forces, we
will look at  the steady  flow of a viscous fluid in a
pipe. This example provides a way to measure the so
called coefficient of viscosity that appears in
Newton's  theory. It also provides an example of the
use of the operator   ∇ 2 acting on a vector field.
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Schrödinger's Equation
One of the glaring omissions in the Physics text
resulted from our inability to calculate the electron
wave patterns in the hydrogen atom. All we were
able to do is show drawings of a few of the lowest
energy wave patterns, describe the electron's en-
ergy and angular momentum in these wave patterns,
and then state that these patterns came from a wave
equation called Schrödinger's equation. We were
neither able to write down or solve the equation
itself.

To handle Schrödinger's equation as applied to the
hydrogen atom, we needed two mathematical con-
cepts we did not then have.  One is the operator

  ∇ 2 which we are introducing in this chapter, the
other is the concept of a complex variable which we
will introduce in the next chapter, Chapter 5. Once
we develop these two mathematical tools, we will be
ready to approach Schrödinger's equation in Chap-
ter 6.

When we apply Schrödinger's equation to the hydro-
gen atom, we are dealing with a system that has
spherical symmetry.  As a result it is much easier to
deal with the theory using a coordinate system that
has the same symmetry.  The problem is that the
operator   ∇ 2 , which in Cartesian coordinates is a
straightforward extension of the second derivative,
becomes quite complex when we work in other
coordinate systems like spherical polar coordinates.
The reason for the complexity is that in any coordi-
nate system except Cartesian coordinates, the unit
vectors may change direction as we move from one
point in space to another.  This change in the
direction of the unit vectors complicates the formu-
las for   ∇ 2 .

The Formulary
In the main part of this chapter we will simply state
the formula, in spherical polar coordinates,  for

  ∇ 2 acting on a scalar field  ψ .  This is the formula
we will use in Chapter 6 in our discussion of the
hydrogen atom.  In the appendix, however, we will
derive the formula, showing you exactly how the
changing unit vectors affect the results.  We have
placed this derivation in an appendix because it is
the kind of derivation you probably want to observe
only once in your life, to find out where the rather
messy results come from.

When you are actually working problems involving
quantities like   ∇ 2 in cylindrical or spherical coor-
dinates, you do not want to derive the formulas
yourself because the chances of your getting the
right answer are too small.  You are not likely to
memorize them correctly either, unless you use a
particular formula often.  Instead, the best proce-
dure is to look up the result in a table of formulas,
sometimes called a formulary.  We provide a for-
mulary at the end of this text, one adapted from a
formulary  developed by David Book of the Naval
Research Laboratory.

In our discussion of viscous forces in this chapter,
we use the formulary to find the formula in cylindri-
cal coordinates for   ∇ 2  acting on the vector field v .
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     ∇∇ 2  IN CARTESIAN COORDINATES
We will first take a careful look at   ∇ 2 = ∇ ⋅∇  in
Cartesian coordinates before we approach the spheri-
cal case.  Using the unit vector notation for  ∇  we
have

  ∇ = x ∂
∂x + y ∂

∂y + z ∂
∂z (3)

where x, y and z  are unit vectors pointing in the x,
y, and z directions respectively.  The dot prod-
uct   ∇ ⋅ ∇  acting on some function f(x,y,z) should be
given by

  ∇ ⋅∇ f(x,y,z)

= x ∂
∂x + y ∂

∂y + z ∂
∂z ⋅ x ∂f

∂x + y ∂f
∂y + z ∂f

∂z

= x ∂
∂x ⋅ x ∂f

∂x + x ∂
∂x ⋅ y ∂f

∂y + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + z ∂
∂z ⋅ z ∂f

∂z (4)

Being very careful with our differentiation, we have,
for example,

 
  

x ∂
∂x ⋅ x ∂f

∂x = x ⋅ ∂x
∂x

∂f
∂x + x ∂2f

∂x2 (5)

We have been overly careful because the unit vec-
tors x, y and z  are constant in both magnitude and
direction, thus

  ∂x
∂x = 0 (6)

and we are left with

  
x ∂

∂x ⋅ x ∂f
∂x = x ⋅ x ∂2f

∂x2 = ∂2f
∂x2 (7)

Similarly

  
x ∂

∂x ⋅ y ∂f
∂y = x ⋅ ∂y

∂x
∂f
∂y + y ∂2f

∂x∂y

= x ⋅ y ∂2f
∂x∂y = 0 (8)

because   ∂y/∂x = 0   and   x ⋅ y = 0 .

As a result, all we are left with, when we evaluate
  ∇ 2f  in Cartesian coordinates is

  
∇ 2f(x,y,z) = ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2 (9)

which is an obvious extension to three dimensions of
the second derivative   ∂2f/∂x2  that appeared in our
one dimensional wave equation in Chapter 2 of the
Calculus text.

     ∇∇ 2  in Spherical Polar Coordinates
As we mentioned, the results are not so simple when
we are working in other coordinate systems. In
spherical polar coordinates, when   ∇ 2 is acting on a
scalar function, we get the following result which is
derived in the appendix to this chapter.

  

∇ 2f = 1
r

∂2

∂r2 (rf)

+ 1
r2

1
sinθ

∂
∂θ sin θ ∂f

∂θ + 1
sin2θ

∂2f
∂φ2

(10)
where r, θ , and ϕ  are the polar coordinates shown
in Figure (1). Much of this complexity comes from
the fact that the unit vectors are not constant, and
have to be differentiated. You will see how this
works by going to the appendix.

(We should note that, in non Cartesian coordi-
nates,   ∇ 2  acting on a vector, e.g.   ∇ 2E , has an even
more complex formula, which is given in the formu-
lary at the end of the text.)

x

θ

z

r

φ

p 

Figure 1
Spherical polar coordinates.
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NEWTONIAN FLUIDS
We now move on to our example of the use of the
Laplacian operator to describe viscosity in a
Newtonian fluid.

Newton proposed that viscous effects in a fluid
resulted from the shearing motion of one layer of
fluid over another. This shearing force can be intro-
duced as follows.

Suppose we have a simple flow where all the fluid is
moving in the x direction, and the velocity is increasing
in the y direction as shown in Figure (2).

To analyze the forces involved, consider a horizon-
tal plane indicated by the dashed line labeled by
A----B.  The fluid above the plane, which is travel-
ling faster, drags the fluid below forward.  The fluid
below, which is going slower, drags the upper fluid
back.  Let   τ+  be the force per unit area exerted by the
upper fluid on the lower fluid, and   τ– , the force
exerted by the lower fluid on the upper.  In Figure (2)
we have drawn the forces   τ+ and   τ–  inside the fluids
upon which they act.

This combination of oppositely directed forces on
opposite sides of the plane is called a stress, in this
case a stress generated by the action of viscosity.  For
a so called Newtonian fluid, the stress ττ  is assumed
to be directly proportional to the rate at which the
velocity field is changing as we move up, which for
our x directed flow is

  
τ = µ

∂vx(y)
∂y

(11)

The quantity µ  is called the coefficient of viscosity

  
µ = coefficient of viscosity (12)

For a Newtonian fluid, µ  is assumed to be a constant
throughout the fluid.  In many situations, both water
and air behave as Newtonian fluids.

Figure 2
Diagram of a simple flow where the velocity field v  is
x directed and increasing in the y direction.

x

y

v

τ
A B

–

τ+
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VISCOUS FORCE ON A FLUID ELEMENT
Suppose again that we have a simple x directed
velocity field whose velocity profile is shown in
Figure (3).  Now consider a small volume element
with sides   ∆x ,   ∆y  and   ∆z , the bottom of which is
located at (y) and the top at (y +   ∆y ) is shown.  The
fluid below the plane A----B at y is dragging the fluid
above, back with a force per unit area   τ–(y)

   
τ–(y) = –µ

∂vx(y)
∂y

force per unit
area at the bottom
of volume element

(13)

The total force at the bottom is the force per unit area
  τ–(y)  times the area   ∆x∆z  upon which it is acting

  ∆F–(y) = τ–(y)∆x∆z

= –µ
∂vx(y)

∂y ∆x∆z

(14)

Up at the top of the volume element, the faster fluid
above the C----D plane at (y +   ∆y ), is pulling for-
ward the slower fluid below with a total force

  ∆F+(y+∆y) = τ+(y+∆y)∆x∆z

= +µ
∂vx(y+∆y)

∂y ∆x∆z

(15)

With Equations (14) and (15) we see that the total
viscous force on the fluid in our volume element can
be written

  ∆Fx = ∆F–(y) +∆F+(y+∆y)

= – µ
∂vx(y)

∂y
+ µ

∂vx(y+∆y)
∂y

∆x∆z

(16)
Multiplying the right side by   ∆y/∆y  gives

  

∆Fx = µ

∂vx(y+∆y)
∂y

–
∂vx(y)

∂y
∆y

∆x∆y∆z (17)

The quantity in the square brackets should be recog-
nized as the second derivative of  v x(y)  with respect
to y.  Dividing through both sides by the volume

  ∆x∆y∆z  gives us the viscous force per unit volume

   ∆Fx

∆x∆y∆z
= fνx

viscous force per unit
volume acting on
the fluid element

  
fνx = µ

∂2vx(y)
∂y2 (18)

This is the formula for the viscous force per unit
volume acting on the fluid particles when we have a
purely x directed flow of a Newtonian fluid whose
speed varies only in the y direction.  In the next
section we generalize the result to three dimensional
flows.

x

y

y+∆y

y

∆y
(y)

(y+∆y)

τ 
A B

C D

–

τ+

v

Figure 3
Calculating the viscous force on a fluid element.
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VISCOUS FORCE FOR THREE
DIMENSIONAL FLOWS
At first sight, there seems to be a rather obvious
extension of Equation (18) to three dimensional
flows.  In a chapter devoted to discussing the opera-
tor   ∇ 2 , we might expect that the generalization of
our formula for the viscous force  fν  per unit volume
should be

  fν = µ∇ 2v (19)

To check that Equation (19) reduces to our result in
Equation (18), when v is the one dimensional flow

 v x(y) , we have
  

fνx = µ∇ 2vx(y) = µ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 vx(y)

= µ
∂2vx(y)

∂y2 (20)

Thus we get the desired result for one dimensional
flows.

However, complications arise in three dimensional
flows that we did not consider in our analysis of the
simple one dimensional flow pattern.  In three di-
mensions, fluids flow around corners and x directed
flows can become y or z directed.  The definition of
viscous stress we gave in Equation (11) simply
cannot handle changes in the direction of the flow.

An effective way to deal with viscous forces in three
dimensional flows is to note that the resulting force

 fν  per unit volume must be a vector field.  That is,
 fν  must transform like a vector field when we rotate

the coordinate system.  (See the discussion of the
transformation of vector fields at the end of the
geometrical discussion of the gradient in Chapter 3.)

We will also require that  fν  be made up of some
combination of constants and second derivatives of
the velocity field.  These requirements on  fν  are
essentially what we mean by a Newtonian fluid with
constant coefficients.  If the viscous forces are more
complex, which they can be for something like a
liquid crystal, then we say that the fluid is
non Newtonian.

What we want is the most general combination we
can make out of constants, two derivatives  ∇ , and a
velocity field v.  Basically we have three vectors  ∇ ,

 ∇ , v, and we must multiply them together to get a
single vector.  To do this, we have to take the dot
product of two of them.  The possibilities are   (∇ ⋅ ∇ )v
and   ∇ (∇ ⋅v) .*  As a result, our most general for-
mula for a Newtonian fluid with constant coeffi-
cients is

  fν = µ1(∇ ⋅ ∇ )v + µ2∇ (∇ ⋅v) (21)

where   µ 1  and   µ 2  are constants.  There is no other
combination of constants and second derivatives of
the velocity field that transforms as a vector when
we rotate the coordinate system.

If we are dealing with a constant density fluid,
  ∇ ⋅v = 0  and we are left with

  fν = µ1(∇ ⋅ ∇ )v = µ∇ 2v (19a)

which is the result we guessed back in Equation (19),
with   µ 1 = µ .

Equation (21) suggests that it is possible to have a
second kind of viscosity when the fluid is compress-
ible and   ∇ ⋅v is not zero.  This has in fact been
observed, and   µ 2  is sometimes called the second
viscosity coefficient.  (Some texts use a second
viscosity coefficient defined as   λ = µ 2 – µ .)  In this
text we will only deal with incompressible fluids
where there is no second viscosity, and   f ν  is simply
given by the Laplacian operator   ∇ 2 acting on v,
namely   f ν = µ∇ 2v .

* (You might also consider vector cross products
involving  ∇ ,  ∇ , and v .  The possibilities are

  ∇ ×(∇ ⋅v) ,   ∇ ⋅ (∇ ×v) ,  and   ∇ ×(∇ ×v) . At the be-
ginning of Chapter 9, we find that the first two of
these are identically zero, and the third turns out to be

  ∇ ×(∇ ×v) = ∇ (∇ ⋅v) – (∇ ⋅ ∇ )v

which involves only the two terms we got from dot
products. Thus we get nothing new by considering
cross products. )
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Viscous Force in
Cylindrical Coordinates
Now that we have the formula for the viscous force

  f ν = µ∇ 2v , which applies to any fluid that we will
consider in this text, we are free to use general
formulas we have in the formulary for   ∇ 2  in various
coordinate systems.  We are about to study the flow
of a viscous fluid in a pipe, a problem that obviously
has cylindrical symmetry.  Thus to analyze the
viscous forces, we should work with   ∇ 2v  in cylin-
drical coordinates.

We mentioned earlier that   ∇ 2  acting on a vector
field is more complex than   ∇ 2  acting on a scalar
field in anything except Cartesian coordinates.  Thus
evaluating   ∇ 2v  in cylindrical coordinates will give
us some practice in correctly using the formulary.

From the formulary we find the following formula
for   ∇ 2  acting on a scalar field f and a vector field  A .

  ∇ 2f = 1
r

∂
∂r r ∂f

∂r + 1
r2

∂2f
∂θ2 + ∂2f

∂z2 (22)

where the coordinates r, θ , z are the unit vectors r ,
θ , z  shown in Figure (4).

Looking farther down in the formulary we find for
the components of   ∇ 2A

  (∇ 2A)r = ∇ 2Ar – 2
r2

∂Aθ
∂θ –

Ar
r2 (23a)

  (∇ 2A)θ = ∇ 2Aθ + 2
r2

∂Ar
∂θ –

Aθ
r2 (23b)

  (∇ 2A)z = ∇ 2Az (23c)

where, for example,   ∇ 2Az  means apply Equation
(22) to  Az

  
∇ 2Az(r,θ,z) = 1

r
∂
∂r r

∂Az
∂r + 1

r2
∂2Az

∂θ2 +
∂2Az
∂z2

(24)
All this looks like a terrible mess. But suppose we
have a fluid flowing smoothly along a pipe as shown
in Figure (5).  Taking the z  direction down the pipe
and r the distance out from the axis of the pipe, we
can assume, for cylindrical symmetry, that   v(r,θ,z)
is purely z  directed and depends only on the radius r.

  v(r,θ,z) = zv z(r) (25)

Now let us work out   ∇ 2v  for this simple case using
Equations (23) for   ∇ 2  in cylindrical coordinates.
Because  vr  and   vθ  are zero, we do not worry about
Equations (23a) and (23b). From (23c) we have

  (∇ 2v )z = ∇ 2vz (26)

Thus for this case we do not have to worry about the
extra stuff that comes in when we take   ∇ 2  of a
vector.

x

y

z

r

r

z

θ

θ

p 

Figure 4
Cylindrical coordinates.

z

z

R

r

z

v (r)

Figure 5
Velocity profile for the
uniform flow in a pipe.
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Next we note that  vz = vz(r) , thus we can ignore the
  ∂vz/∂θ  and   ∂vz/∂z  terms in (13a) and we are left

with
  

(∇ 2v )z = 1
r

∂
∂r r

∂vz(r)
∂r (27)

which is not such a difficult thing to work with after
all.

To get a feeling for what the viscous force looks like
for pipe flow, we look up in a fluids text what the so
called laminar (i.e., non turbulent) velocity profile
is in a pipe.  The result they give is

  
vz(r) =

V0

R2 (R2 – r2)
parabolic
velocity
profile

(28)

where R is the radius of the pipe,  V0  the flow speed
at the center, and  r  the radial distance from the axis.
This is the parabolic profile shown in Figure (5).
You can see that at the edge of the pipe, where r = R,
the velocity goes to zero. At the center where r = 0,

 vz = V0 is a maximum.

To calculate the viscous force per unit volume for
this parabolic profile, we have

  fν = µ∇ 2v (29)

  
(fν )z = µ(∇ 2v)z = µ 1

r
∂
∂r r

∂vz(r)
∂r (30)

With Equation (28) written as

 vz(r) = –
V0

R2 r2 + V0 (28a)

we easily get

  ∂vz(r)
∂r = –

2V0

R2 r

  
r

∂vz(r)
∂r = –

2V0

R2 r2 (31)

Thus   (∇ 2v )z  becomes
  

(∇ 2v )z = 1
r

∂
∂r r

∂vz(r)
∂r

= 1
r

∂
∂r –

2V0

R2 r2

= 1
r –

2V0

R2
∂r2

∂r

= 1
r –

2V0

R2 2r

(32)

The r's cancel and we are left with

  (∇ 2v )z = –
4V0

R2 (33)

The viscous force   f ν = µ∇ 2v  becomes

  
fνz = –µ

4V0

R2 (34)

We end up with the result that  fν  points in the  – z
direction (it has only a negative z component) and is
constant in magnitude throughout the pipe.  This is
a wonderfully simple result considering the stagger-
ing mess of terms we faced in Equation (23).

We will see that the physics of the parabolic laminar
flow is that this uniform  – z  oriented viscous force
is balanced by a uniform  + z oriented pressure
gradient down the tube.  Thus there is no net force on
each fluid element and the fluid moves down the
pipe without acceleration, i.e., at constant velocity.
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Measuring the Viscosity Coefficient
If we have an apparatus where we know the pressure
gradient, we can use that to measure the viscosity
coefficient µ  of the fluid.  Such an apparatus is
sketched in Figure (6), a sketch taken from the
excellent fluid dynamics text by Tritton.

Since there is essentially no viscosity acting in the
region between points (1) at the top of the fluid in the
container, and point (2) near the entrance to the pipe,
we can use Bernoulli's equation to get

  
p1 +

ρv1
2

2 + ρgh1 = p2 +
ρv2

2

2 + ρgh2 (35)

With  v 1 = 0  and  h1 – h2 = h , we get

  
p2 – p1 = ρgh –

ρv2
2

2 (36)

If we use a sufficiently long and small diameter pipe,
the pipe flow velocity will be sufficiently small that
we can neglect  v 2

2  compared to gh. Noting that
both  p3 and  p1  are both atmospheric pressure and
thus equal, we get for the pressure difference  (p2 –p3)
at the ends of the pipe

   
(p2 –p3) = ρgh

pressure difference
between ends of
the pipe

(37)

The pressure force on the fluid at the front end of the
pipe is  p2A2 = p2A  where A is the cross sectional
area of the pipe.  At the far end it is  –p3A, the minus
sign is used because the pressure force is in the
–z direction.  Thus the net pressure force  Fp  is

  Fp = z(p2A – p3A)

= z(p2 – p3)A

= zρghA

(38)

If we divide  Fp  by the volume AL of the pipe, we get
the average pressure force per unit volume  fp .

  
fp =

Fp

AL
=

z
AL

ρghA

   
fp = z

ρgh

L

average pressure
force per
unit area

(39)

As we mentioned, for steady laminar flow, the
viscous force should be exactly opposed by the
pressure force so that there is no acceleration of the
fluid.  Since the viscous force per unit volume is
uniform throughout the fluid for parabolic pipe
flow, the pressure force per unit volume should also
be uniform, with the result that Equation (39) for  f P
should apply at all points in the fluid in the pipe.
(There will always be some disturbance at the begin-
ning of the flow that we are neglecting.)

supply

P
(1)

(2)
(3)

overflow

outlet to
atmosphere

L

h

long, small diameter pipe

v

1

Figure 6
Apparatus to measure the viscosity coefficient.
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Saying that the viscous and pressure forces oppose
each other throughout the pipe flow gives us from
Equations (34) for   f ν  and (39) for  fp

  fp = – fν

  
z

ρgh
L

= – – z
4V0

R2 µ

  ρgh
L

=
4V0µ

R2 (40)

We are left with an equation involving measurable
constants and the viscosity coefficient µ .

Later in the text, we will see that the ratio   µ/ρ , which
is called the kinematic viscosity coefficient ν , is
more convenient for theoretical work.  Equation
(40) gives us for this ratio

   
ν ≡ µ

ρ =
gh
L

× R2

4V0

kinematic viscosity
determined from
parabolic pipe
flow

(41)

The only constant that may be a bit difficult to
measure directly is the stream velocity  V 0  at the
center.  This can be accurately determined by mea-
suring the flow rate which we will call  Φ (phi), and
then express  V 0  in terms of  Φ .  We have called the
flow rate  Φ  because it is simply the flux  Φ  of the
fluid through the pipe, given by our old flux formula

  Φ = v ⋅dA
area of
tube

(42)

and is measured, in the MKS system, in cubic meters
per second.

To calculate  Φ , we divide the cross sectional area
into circular bands of radius r, thickness dr, as shown
in Figure (7).  The area of a band is   2πrdr  and the
flux   dΦ  through the band is

  dΦ = 2πrv(r) dr (43)

With v(r) given by the parabolic profile
 ( V0/R2 )( R2 – r2 ) , we get for the total flux

  
Φ = dΦ

0

R

=
V0

R2

0

R

R2 – r2 2πrdr

= 2πV0 rdr

0

R

– 1
R2 r3dr

0

R

= 2πV0
r2

2
0

R

– 1
R2

r4

4
0

R

  
Φ = 2πV0

R2

2 – R2

4 =
V0
2 πR2 (44)

Since   V0(πR2)  is the flux we would get if the
velocity were a uniform  V0  across the pipe, we see
that the flow rate for a parabolic profile is half that
for a uniform flow.

With Equations (41) and (44) we can now express
the kinematic viscosity ν  in terms of the easily
measured volume flux   Φ .  From Equation (44) we
get

Figure 7
The integration area is the
area       2ππR dr of the band.

R

r

dr
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V0 = 2Φ

πR2 ; 1
V0

= πR2

2Φ

and from Equation (41) we get

  ν =
µ
ρ =

gh
L

R2

4
1

V0

=
gh
L

R2

4
πR2

2Φ

   
ν =

πghR4

8L Φ

formula for
measuring
kinematic
viscosity

(45)

Although rather a mess of constants appears in our
formula for the kinematic viscosity ν , all are quite
easily measured.  Note that by going to the kinematic
viscosity, the result is independent of the density of
the fluid.

Exercise 1

Show that the kinematic viscosity ν  has the dimensions
of  meters2/second .

The two fluids that we will most often use in any
discussion of fluid dynamics are water and air.  At
room temperature and pressure, the kinematic vis-
cosity ν  of these two fluids are approximately

  ν water = 1.0 × 10– 6meter2/second

  ν air = 1.5 × 10– 5meter2/second (46)

Intuitively you would think that air would be much
less viscous than water, but the two coefficients   νair
and   νwater  are quite close, with air having the greater
value.  What has happened is that we have divided by
the density, which brings the viscosity coefficients
much closer together.
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SPHERICAL POLAR COORDINATES
We will begin with a review of spherical coordinates
discussed in Chapter 3. In spherical polar coordi-
nates, the three unit vectors are r , θ , φ are shown in
Figure  (A1) which is Figure (3-10) repeated.  We
have a complication in evaluating   ∇ 2f  in spherical
polar coordinates because these unit vectors change
direction as we move about, and we can no longer set
the derivatives of the unit vectors to zero.  Thus we
have to evaluate derivatives of the unit vectors as
well as use the rather messy formula for   ∇ f  we
derived in Equation (3-88)

  
∇ f(r,θ,φ) = r ∂f

∂r + θ
r

∂f
∂θ +

φ
r sinθ

∂f
∂φ (3-88)

What we have to evaluate is the complete expression

  
∇ 2f(r,θ,φ) ≡ ∇ ⋅ ∇ f(r,θ,φ)

= r ∂
∂r + θ

r
∂
∂θ +

φ
r sinθ

∂
∂φ

⋅ r ∂f
∂r + θ

r
∂f
∂θ +

φ
r sinθ

∂f
∂φ

(A1)

x

r sin θ

y

θ

z

r

r

θ

φ

φ
φ

p 

Figure A1 (3-10 repeated)
Unit vectors in spherical polar coordinates.

Appendix: The Operator 
     

∇∇ 2
in Spherical Polar Coordinates

This product involves terms like

  
θ
r

∂
∂θ

⋅ r ∂f
∂r = θ

r ⋅ ∂r
∂θ

∂f
∂r + r ∂2f

∂θ∂r

= 1
r θ⋅ ∂r

∂θ
∂f
∂r + (θ⋅ r ) 1

r
∂2f

∂θ∂r
(A2)

Because the unit vectors always remain perpendicu-
lar to each other as we move around in space,

  θ⋅ r = 0  and the second term in Equation (A2) is
zero.  However, when we change the angle θ , the
unit vector r  changes direction.  For example, at

  θ = 0 , r  points straight up, but at   θ = 90° , r  is
horizontal.  Thus   ∂r /∂θ   is not zero and has to be
evaluated.

In order to evaluate Equation (A1) for   ∇ 2f , we will
first calculate all the derivatives of all the unit
vectors, and then plug the whole mess together.  We
find derivatives like   ∂r /∂θ  by evaluating the change

  ∆ r  as we make a change  ∆θ  and then taking the
limit as  ∆θ  goes to zero.  The nine derivatives are as
follows.

APPENDIX THE OPERATOR   ∇ 2IN SPHERICAL POLAR COORDINATES
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Derivatives of r

1) Change of r with r

   ∂r
∂r

= 0
because r does not
change direction as we
go out along a radius

2) Change of r with θθ
Figure (A2) shows  ∆r that we get when θ  increases
by  ∆θ .  We see that  ∆r points in the θ  direction and
has a length    ∆r = r ∆θ = 1 × ∆θ .  Thus we get

  ∆r = θ(∆θ)

  
∆r
∆θ = θ ⇒ ∂r

∂θ = θ (A3)

3) Change of r with φφ
In Figure (A3), when we go from φ  to   φ+ ∆φ , the
unit vector r  goes to the unit vector  r ′ .  The projec-
tions of r  and  r ′  in the horizontal plane have a length

  r sinφ= 1sinφ, and differ in direction by an angle
 ∆φ .  The change   ∆r = r ′ – r  points in the φ direc-

tion, and has the same length as the change in the
horizontal projections of r  and  r ′ , which from the
small triangle is seen to be   (sinφ)(∆φ) .  Thus

  ∆r = φ(sinφ)∆φ

  
∆r
∆φ

= φ(sinφ) = ∂r
∂φ (A4)

x

y

θ ∆θ

∆θ

z

r

r

r+∆r

r

∆r points in the θ direction

r+∆r

∆r = θ∆θ

x

y

Unit vectors enlarged. |r| = |r+∆r| = 1

θ

z

r

r

∆r is the change in the unit vector r 
when we increase θ by ∆θ.

θ

x
|r| sin θ

y

θ

z

r

r

r'

r'

φ
∆φ

∆φ|r| sin θ = sin θ

|r'| sin θ

|r'| sin θ = sin θ

∆r = φ (sin θ)∆φ

∆r is the change in the unit vector r 
when we increase φ by ∆φ.

Unit vectors enlarged.

Figure A2
Evaluation of       ∂∂r/ ∂∂θθ.

Figure A3
Evaluation of       ∂∂r/ ∂∂φ.
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Derivatives of θθ
4) Change of θθ with r

None of the unit vectors change direction as we go
out along the radius, thus

  
∂θ
∂r = 0 (A5)

5) Change of θθ with θθ

From Figure (A4) we see that as we increase θ  to
  θ + ∆θ , the unit vector θ  goes to   θ′ = θ + ∆θ .

From the small triangle, we see that the change  ∆θ
points in the – r  direction, and has a magnitude   ∆θ .
Thus we have

  ∆θ = (–r )∆θ

  
∆θ
∆θ = – r = ∂θ

∂θ (A6)

6) Change of θθ with φφ
From Figure (A5), we see that θ  changes to  θ′  as φ
goes to   φ+ ∆φ .  The change  ∆θ  points in the φ
direction.  To determine the magnitude of  ∆θ , note
that  ∆θ  and its projection in the horizontal plane are
the same.  Since the projections of θ  and  θ′  have a
length of   cosθ , and an angle  ∆φ  between them, the
length of  ∆θ  is   cosθ∆φ as seen in the small horizon-
tal triangle.  Thus

  ∆θ = φ(cosφ)∆φ

  
∆θ
∆φ = φcosθ = ∂θ

∂φ
(A7)

Derivatives of φφ

7) Change of φφ with r

As we noted earlier, the unit vectors do not change
with r, thus

  ∂φ
∂r = 0 (A8)

x

y

θ ∆θ

∆θ

z

r

∆θ points in the −r direction

Unit vectors 
enlarged.

∆θ is the change in the unit vector θ 
when we increase θ by ∆θ.

θ

θ

∆θ = −r ∆θ

θ'

θ'

Figure A4
Evaluation of      ∂∂θθ/∂∂θθ.

x
|θ| cos θ

y

θ

z

θ

θ'

φ ∆φ

∆φ|θ| cos θ

|θ'| cos θ

|θ'| cos θ

∆θ = φ(cos θ)∆φ

∆θ is the change in the unit vector θ 
when we increase φ by ∆φ.

|θ| = |θ'| = 1

∆θ points in the φ direction

Figure A5
Evaluation of      ∂∂θθ/∂∂φ.
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8) Change of φφ with θθ

As we can see from Figure (A6), the unit vector φ does
not change direction when we change the angle θ .

For example, when r  is in the xz plane, φ points in
the  +y  direction for all angles θ .  Thus

  ∂φ
∂θ = 0 (A9)

9) Change of φφ with φφ

Finally, we have to figure out how the unit vector φ
changes with the angle φ .  This time we will take a
top down view as shown in Figure (A7).  When we
change φ  to   φ+ ∆φ , the unit vector φ goes to  φ′ .
From the small triangle we see that the change   ∆ φ
points toward the z  axis and has a magnitude  ∆φ .

In Figure (A8), we see that a unit vector u pointing
toward the z axis is given by

  unit vector
pointing
toward
z axis

= – r sinθ – θcosθ

Thus   ∆φ = ∆φ(– r sinθ – θcosθ)  and we get

  ∆φ
∆φ

= – r sinθ – θcosθ =
∂φ
∂φ (A10)

x

y

θ ∆θ

z

r

The unit vector φ does not change 
when we increase θ by ∆θ.

φ
φ

x

y

∆φφ

∆φ

∆φ = (–u)∆φ

r

r'

φ

φ

φ'

φ'

Unit vectors enlarged. The unit 
vector –u points toward the z axis.

z axis straight up

∆φ is the change in the unit vector φ 
when we increase φ by ∆φ.

Figure A6
Evaluation of      ∂∂φφ/ ∂∂θθ .

x

r-θ plane

r

y

θ

z

θ

ru 

φ

θ

θ
z

θ

r

u 

u = (–r ) sin θ +  (–θ) cos θ 

r

u = unit vector 
pointing toward 
z axis

Figure A7
Evaluation of      ∂∂θθ/∂∂φ.

Figure A8
The unit vector we call u that points toward the z axis.
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Summary of Derivatives of Unit Vectors
In summary, we get

  ∂r
∂r = 0 ;

∂r
∂θ = θ ;

∂r
∂φ = φsinθ

  ∂θ
∂r = 0 ; ∂θ

∂θ = – r ; ∂θ
∂φ = θcosθ

  ∂φ
∂r = 0 ;

∂φ
∂θ = 0 ;

∂φ
∂φ = – r sinθ – θcosθ

(A11)

Calculation of      ∇∇ 2f

We are now ready to calculate   ∇ 2f  given again by
Equation (A1)

  ∇ 2f(r,θ,φ) ≡ ∇ ⋅ ∇ f(r,θ,φ)

= r ∂
∂r + θ

r
∂
∂θ +

φ
r sinθ

∂
∂φ

⋅ r ∂f
∂r + θ

r
∂f
∂θ +

φ
r sinθ

∂f
∂φ

  
= r ⋅ ∂r

∂r
∂f
∂r + r ∂2f

∂r2 + ∂θ
∂r

1
r

∂f
∂θ + θ ∂

∂r
1
r

∂f
∂θ

  
+

∂φ
∂r

1
r sinθ

∂f
∂φ + φ∂

∂r
1

r sinθ
∂f
∂φ

  

+ θ
r ⋅ ∂r

∂θ
∂f
∂r + r ∂2f

∂θ∂r
+ ∂θ

∂θ
1
r

∂f
∂θ + θ

r
∂2f
∂θ2

  
+ ∂φ

∂θ
1

r sinθ
∂f
∂φ + φ ∂

∂θ
1

r sinθ
∂f
∂φ

  

+ φ
r sinθ ⋅ ∂r

∂φ
∂f
∂r + r ∂2f

∂φ∂r + ∂θ
∂φ

1
r

∂f
∂θ

  
+ θ

r
∂2f

∂φ∂θ + ∂φ
∂φ

1
r sinθ

∂f
∂φ

  
+ φ 1

r sinθ
∂f2

∂φ2 (A12)

The terms in Equation (58) with a single line through
them are zero because the unit vectors are orthogo-
nal: i.e.,   r ⋅ θ = 0,   θ ⋅ φ= 0 , etc.  Next we use our
summary, Equation (57) to evaluate the following
terms.

  
r ⋅ ∂r

∂r = 0 because ∂r
∂r = 0 (A13a)

  
r ⋅ ∂θ

∂r = 0 because ∂θ
∂r = 0 (A13b)

  
r ⋅ ∂φ

∂r = 0 because
∂φ
∂r = 0 (A13c)

  
θ ⋅ ∂r

∂θ = θ ⋅ θ = 1 (A13d)

  
θ ⋅ ∂θ

∂θ = θ ⋅ (– r ) = 0 (A13e)

  
θ ⋅ ∂φ

∂θ = 0 because
∂φ
∂θ = 0 (A13f)

  
φ ⋅ ∂r

∂φ = φ⋅ (φsinθ) = sinθ (A13g)

  
φ ⋅ ∂θ

∂φ = φ⋅ (φcosθ) = cosθ (A13h)

  
φ ⋅ ∂φ

∂φ = φ⋅ (– r sinθ – θ cosθ) = 0 (A13i)

The terms in Equation (A12) for   ∇ 2f, that are zero
because of Equations (A13), have a double line
through them.  We are left with

  
∇ 2f = r ⋅ r ∂2f

∂r2 + θ
r ⋅ ∂r

∂θ
∂f
∂r

+ θ
r ⋅ θ

r
∂2f
∂θ2 +

φ
r sinθ ⋅ ∂r

∂φ
∂f
∂r

+
φ

r sinθ ⋅ ∂θ
∂φ

1
r

∂f
∂θ +

φ
r sinθ ⋅ φ

r sinθ
∂2f
∂φ2

(A14)
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Using Equations (A13), Equation (A14) becomes

  
∇ 2f = ∂2f

∂r2 + 1
r

∂f
∂r + 1

r2
∂2f
∂θ2

+ 1
r sinθ sinθ ∂f

∂r
+ 1

r sinθ cosθ 1
r

∂f
∂θ

+ 1
r2 sin2θ

∂2f
∂φ2 (A15)

This becomes

  

∇ 2f = ∂2f
∂r2 + 2

r
∂f
∂r

+ 1
r2

cosθ
sinθ

∂f
∂θ + ∂2f

∂θ2

+ 1
r2 sin2θ

∂2f
∂φ2

(A16)

In most textbooks, you will find the equivalent
formula

  

∇ 2f = 1
r

∂2

∂r2 (rf)

+ 1
r2

1
sinθ

∂
∂θ

sin θ ∂f
∂θ + 1

sin2θ
∂2f
∂φ2

(10)
which is the result we stated earlier in the chapter.

Exercise 2

Show that Equation (A15) follows from Equations (A13)
and (A14).

Exercise 3

Show that Equations (A16) and (10) are equivalent.
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Calculus 2000-Chapter 5
Introduction to Complex Variables
CHAPTER 5 INTRODUCTION TO
COMPLEX VARIABLES

A ROAD MAP
In this chapter you will see that the use of complex
variables greatly simplifies the analysis of RLC
circuits and other forms of sinusoidal behavior.
This chapter does not depend on previous chapters
of the Calculus text and may be studied directly  in
connection with the related material in Chapters 27
and 31 of  the Physics text.

This chapter is also background material for the
next chapter, Chapter 6, on the Schrödinger's equa-
tion.  The wave equations we have discussed so far
can be solved using either real variables or complex
variables.  Schrödinger's wave equation is different
in that the equation itself involves complex numbers
and cannot be handled by real variables alone.  That
is why this chapter is a prerequisite.  Also, to solve
Schrödinger's equation for the hydrogen  atom  re-
quires the use of    ∇ 2  in spherical polar coordinates,
which we discussed in the last chapter.

Once we finish Chapters 5 and 6 on complex vari-
ables and Schrödinger's equation, we return to
basic calculus operations, discussing  divergence in
Chapter 7 and curl in Chapter 8. We then apply
divergence and curl to electromagnetism in Chap-
ters 9, 10, and 11, and to fluid dynamics in Chapters
12 and 13.

INTRODUCTION
After introducing the concepts of imaginary and
complex numbers, we find that an important feature
of a complex number is that it can be expressed as a
complex exponential.  We then go on to two major
applications of complex variables that we just men-
tioned. One is the analysis of RLC circuits, which
can be handled using real variables only, but where
there is an enormous simplification if we use com-
plex variables.  Then in the next chapter, we discuss
the Schrödinger's equation where the equation itself
involves complex variables.

There are other topics involving the theory of com-
plex variables that we will not discuss in these
introductory chapters.  It is possible to construct
fascinating maps of complex functions and distort
these maps in intriguing ways (not completely unlike
the distortion of images one can create on the
computer).  Complex variables are also useful in
finding the formulas for various integrals.  These
advanced topics are usually covered in a graduate
level mathematical physics course.
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Figure 2
Plot of the complex number (4 + 3i), where the real
part is plotted along the x axis and the imaginary part
long the y axis.

r

4

3i

imaginary

real

r

x

y

Figure 1
The coordinate vector for a two
dimensional strobe photograph.

IMAGINARY NUMBERS
What number, when multiplied by itself gives (-1)?
The answer is none of the ordinary numbers.  This
number,  –1   is not one of the real numbers like 5,
–2, 3, etc.  It belongs to a completely different
system of numbers which we call imaginary num-
bers.  The number  –1  is denoted by the letter  i, and
the square root of any negative number can be
written as a real number times  i.  For example

   –7 = 7 × (– 1) = 7 × –1

= ( 7 )i

example
of an
imaginary
number

(1)

All numbers with one factor of i are imaginary.

COMPLEX NUMBERS
We can make things a bit more complicated by
adding together a real number and an imaginary
number, such as (4 + 3i).  Such a mixture with both
a  real part  (4) and an imaginary part (3i) is called
a complex number.  These two parts are distinct;
there is no way we can confuse the real and imagi-
nary parts because imaginary numbers are not part
of the real number system.

This is not the first time we have encountered a
quantity that has two distinct parts.  In our strobe

photographs showing the motion of a ball, we noted
that the position of the ball could be described by the
coordinate vector r , as shown in Figure (1).  For the
strobe photographs, which only show two dimen-
sions, the coordinate vector r  was completely speci-
fied by its (x) and (y) components.  Thus two
dimensional coordinate vectors and complex num-
bers are similar in that they both consist of two
independent components.

This similarity suggests that we can treat a complex
number in the same way we handle a two dimen-
sional coordinate vector, plotting the real and imagi-
nary parts along different axes.  It is traditional to
plot the real part along the x axis and the imaginary
part along the y axis.  Thus, for example, the com-
plex number (4 + 3i) can be represented by a point
whose coordinate vector has an x  component of 4
and a  y  component of 3 as shown in Figure (2).

In this chapter you will see that in some cases there
is considerable simplification of the mathematics
and much greater insight when we use complex
numbers.  This is illustrated in our analysis of the
RLC circuit where we will see that a sinusoidal
oscillation and an exponential decay can both be
handled by one simple complex function.
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EXPONENTIAL FORM
OF THE COMPLEX NUMBER
Once we start plotting complex numbers on x and y
axes, we will find that any complex number can be
expressed in the exponential form    reiθ.  How we get
to this rather remarkable result can be seen in the
following way.

Let us go back to Figure (2), showing the plot of the
complex number (4 + 3i).  One way to describe that
point is to give its  x and y coordinates (x = 4, y = 3i).
An equally good description, shown in Figure (2a),
is to give the distance r from the origin to the point,
and the angle θ that r  makes with the x or real axis.
From the Pythagorean theorem we have

 r2 = x2 + y2 = 42 + 32 = 16 + 9 = 25

 r = 5 (2)

The tangent of the angle θ is the opposite side y
divided by the adjacent side  x

  tan θ =
y
x = 3

4
= .75 (3)

Entering .75 in our calculator and pressing the  tan– 1

button gives 36.9°.  Thus the point is located at a
distance r = 5 from the origin at an angle   θ = 36.9°.

It is traditional to use the letter (z) to describe a
complex number.  Thus if a complex number (z) has
a real part (x) and an imaginary part (iy), we can write

   z = x + iy (4)

Now let us express z in terms of the variables r and θ
rather than x and y.  Since from Figure (2a) we see that

  x = r cos θ
  y = r sin θ (5)

we can write (z) as

   z = x + iy = rcosθ + i rsinθ

   z = r(cosθ + i sinθ) (6)

It is the function    (cosθ + i sinθ)  that we wish to
study in detail.

Let us first look at the derivative of    (cosθ + i sinθ) .
Since

  d
dθcosθ = – sinθ; d

dθ sinθ = cosθ (7)

we get

   d
dθ (cosθ + i sinθ) = – sinθ + i cosθ

Since   (– 1) = i2, this can be written

   d
dθ(cosθ + i sinθ) = i2sin θ + i cos θ

= i (cosθ + i sinθ)
(8)

To express this result more formally, let us write

   f(θ) = (cosθ + i sinθ) (9)

Then Equation (8) becomes

   d
dθ f(θ) = i f(θ) (8a)

To within a constant (i), the function   f(θ) is equal to
its own derivative.  What function that you are
already familiar with, behaves this way?  The expo-
nential function!  Recall that

 d
dx

eax = aeax (10)

Thus if we replace (x) by θ and (a) by (i) , we get

   d
dθ e iθ = ie iθ (11)

Comparing Equations (8) and (11), we see that the
function    (cosθ + i sinθ)  and the function   e iθ obey
the same rule for differentiation.

r

x

y

imaginary

real
θ

Figure 2a
Plot of the complex number (4 + 3i),
showing the angle θθ.
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When two functions    (cosθ + i sinθ)  and   e iθ have
the same derivatives, does that mean that they are the
same functions?  It will if we show that both func-
tions start off with the same value for small values of
θ. Then as we increase θ, if both functions have the
same derivative or slope, they must continue to be
the same function for all values of θ.

Small Angle Approximations
We can show that    (cosθ + i sinθ)  and   e iθ have the
same values for small θ by using the small angle
approximations for   sin θ ,   cos θ   and   e iθ.  In our
discussion of the exponential in Chapter 1 of the
Calculus text, (Cal 1, Eq. 136), we had

  ex = 1 + x + x2

2!
+ x3

3!
+ ⋅ ⋅ ⋅ (1-136)

While this expansion is true for any value of x, it is
most useful for small values of x where we do not
have to keep many terms to get an accurate answer.

Setting    x = iθ gives

   
e iθ = 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ ⋅ ⋅ ⋅ (12)

(Since our previous discussion of exponents only
dealt with real numbers, we can consider Equation
(12) as the definition of what we mean when the
exponent is a complex number).

What we did not discuss earlier were the expansions
for   cosθ  and   sinθ.  Let us state them and check their
accuracy now.  They are

  
cos θ = 1 – θ2

2!
+ θ4

4!
+ ⋅ ⋅ ⋅ (13)

  
sin θ = θ – θ3

3!
+ θ5

5!
+ ⋅ ⋅ ⋅ (14)

where θ  is in radians. Again these expansions are
valid for any value of θ , but most useful for small
values where we do not have to keep many terms.

Let us check the accuracy of these expansions for
  θ = .1  radians.  We have, keeping three terms,

  
cos (.1) = 1 –

(.1)2

2!
+

(.1)4

4!

= 1 – .01
2 + .0001

4 × 3 × 2

= 1 – .005 + .0000004166

= .995004166

(15)

Changing our calculator from degrees to radians and
taking the cos(.1) gives

  cos (.1) = .995004165 (16)

We see that we get almost a nine place accuracy by
keeping the first three terms of the expansion.

For sin(.1), keeping the first three terms, we have

  
sin (.1) = .1 –

(.1)3

3!
+

(.1)5

5!

= .1 – .001
3 × 2

+ .0001
5 × 4 × 3 × 2

= .1 – .000166666 + .000000083

= .009833417 (17)

The calculator gives

 sin (.1) = .099833416 (18)

which is again accurate to almost nine places.

If you can't figure out how to get your calculator to
work in radians, you can convert .1 radians to
degrees by using the conversion factor

  360 degrees/cycle
2πradians/cycle

= 57.29577951
degrees
radian

(19)
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Now that we have checked the expansions (13) and
(14) let us see what the expansion for    (cosθ + i sinθ)
is.  We get, replacing – signs by i2, and using

  i4 = + 1,

   
cos θ = 1 – θ2

2!
+ θ4

4!
= 1 + i2θ2

2!
+ i4θ4

4!

   
i sin θ = i θ – θ3

3!
+ θ5

5!
= iθ + i3θ3

3!
+ i5θ5

5!

(20)

Adding these gives

   
(cosθ + i sinθ) = 1 + iθ + i2θ2

2!
+ i3θ3

3!

+ i4θ4

4!
+ i5θ5

5!
+ ⋅ ⋅ ⋅

(21)
which is just the expansion we had for   e iθ in Equa-
tion (12).

Comparing Equations (20) and (21), you can see that
the expansions for   cos θ  and    i sinθ fit together to
produce the much more regular expansion of   e iθ.
We will also see that it is often much easier to work
with the complete function   e iθ than with   cos θ  and

  sin θ  separately.

In summary, if we define a complex exponential by
the series expansion of Equation (12), then we have
shown that

   
e iθ = cosθ + i sinθ (22)

Even though we checked the sin and cosine expan-
sions for a small value of θ , the fact that   e iθ and

   (cosθ + i sinθ)  have the same derivative properties
means that Equation (22) holds for all values of θ .

If we replace θ  by –θ  in Equation (22) we get

   e–iθ = cos(–θ) + i sin(–θ)

Since   cos(–θ) = cosθ,   sin(–θ) = – sinθ, this gives

   
e–iθ = cosθ – i sinθ (23)

If we add Equations (22) and (23), the   sinθ terms
cancel, and we are have, after dividing through by 2,

   
cosθ =

e iθ + e–iθ

2 (24)

Subtracting Equation (23) from (22) cancels the
  cosθ terms, leaving, after dividing through by 2i,

   
sinθ =

e iθ – e–iθ

2i (25)

If we note that

   1
i = 1

i × i
i = i

i2 = i
–1

= – i

we can write Equation (25) as
   

sin θ = (– i)
e iθ – e–iθ

2
   

sinθ = i
e–iθ – e iθ

2 (25a)

Equations (22) through (25) give a complete pre-
scription of how to go back and forth between   cosθ,

  sinθ,    e iθ and    e– iθ.

Finally returning to our complex function

   z = x + iy

= r cos θ + i r sinθ

= r (cosθ + i sinθ)

we now have

   
z = r e iθ         (26)

as the other way of expressing a complex number,
where r is the distance from the origin and θ  the angle
the coordinate vector r  makes with the x or real axis.

Exercise 1
(a) Construct a series expansion for     e– iθ.

(b) Using the series expansions for   eiθ and     e– iθ in
Equation (25a), show that you end up with the series
expansion for   sin(θ).

r

x

y

imaginary

real
θ



Cal 5-6      Calculus  2000 - Chapter 5      Complex Variables

The Complex Conjugate Z*
The complex conjugate of a complex number is
defined as the number we get by replacing all factors
of (i) by (–i) in the formula for the number.  We
generally denote the complex conjugate by placing
an asterisk after the number.  For example, if

  z = x + iy

then

  z* = x – iy (26a)

If we start with

   z = r eiθ

then

   z* = r e–iθ (26b)
The main reason for defining a complex conjugate is
that the product of a complex number z with its
complex conjugate z* is always a real positive
number, equal to the square of the distance r that the
complex point is from the origin.  For our two
examples above, we have

  z*z = (x – iy)(x + iy)

= x2 – ixy + iyx – i2y2

= x2 + y2 = r2

and

   z*z = (r e–iθ)(r eiθ) = r2 (26c)

DIFFERENTIAL EQUATIONS
FOR R, L, C CIRCUITS
One of the most convenient uses of complex vari-
ables is in the analysis of electric circuits involving
resistors, capacitors and inductors.  We will see that
using complex variables unifies the analysis and
greatly simplifies the work involved.

The RC Circuit
Let us begin with the RC circuit shown in Figure (3).
If we charge up the capacitor to a voltage  V0, and
close the switch, a current flows out of the capacitor
through the resistor, and the voltage  VC  on the
capacitor decays exponentially.

The formulas for the capacitor voltage  VC and resis-
tor voltage  VR  are

 VC =
Q
C

; VR = iR (27)

where Q is the charge on the capacitor, C the
capacitor's capacitance, (i) the current through the
resistor and R the resistor's resistance in ohms.  It is
assumed that C and R are constants and that (i) is the
rate at which charge Q is leaving the capacitor.  That is,

 i = –
dQ
dt (28a)

Setting the sum of the voltage rises around the circuit
equal to zero (see Equation 27-41 in the Physics text)
and using (28a) for i, gives us

 VC – VR = 0

 Q
C

– iR = Q
C

+ dQ
dt

R = 0 (28b)

Dividing through by R, we get

 dQ
dt

+
Q

RC
= 0 (29)

as the differential equation for the amount of charge
Q remaining in the capacitor.

r  
= x 

 + y

x

y

2

2

2

Figure 3
The RC circuit. When we walk around in the
direction shown by the circular arrow, we go
with  VC but against  VR, giving  VC–  VR as the
sum of the voltage rises.

C

switch

V  = C
Q
C

V  = iRR

i

R
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An Aside on Labeling Voltages
To avoid worrying about minus signs like the

 i = – dQ/dt  for the discharging capacitor, we will
obtain the differential equations for our L, R, and C
circuits by sketching the voltages when the rate of
change of charge in the capacitor and change of the
current in an inductor are all positive.  If we had an
increasing current running down through three cir-
cuit elements R, L, and C, all
the voltages would point up as
shown in Figure (4).  The re-
sistance voltage  VR  is always
directed opposite to the cur-
rent.  If the downward current
is increasing, then the induc-
tor opposes the increase and
points upward.  With a posi-
tive current flowing into the
capacitor, the current  is equal
to  +dQ/dt .  If the capacitor
started off with zero charge,
then the upper plate is becom-
ing positively charged by the
positive current flowing into it.

Using these conventions for
the current and voltages, we
can construct an RC circuit
from Figure (4) by pulling out the inductor and
connecting the back  side of the circuit as shown in
Figure (5).  Setting the sum of the voltages to zero
around Figure (5) gives (walking around the circuit
counterclockwise as shown by the circular arrow)

 VR + VC = 0

 iR +
Q
C

= 0 (30)

With  i = +dQ/dt , this gives

 
R

dQ
dt

+
Q
C

= 0 ;
dQ
dt

+
Q

RC
= 0 (29a)

This is just the same as Equation (29) for the dis-
charge of the capacitor.

Figure (5) appears less intuitive than Figure (3)
because we have drawn a current flowing into the
capacitor, while we know that the current actually
flows out.  But the fact that we analyzed the circuit
in Figure (5), assuming the wrong direction for the
current, does not affect the resulting differential
equation for the circuit.  When using Kirchoff's laws
to analyze a circuit, you do not have to know the
correct direction for the currents ahead of time.  If
you make the wrong guess, the resulting equations
will fix things up by giving you a minus sign.

While Figure (5) is less intuitive than Figure (3), it
is much more straightforward to stick with all posi-
tive quantities and always label our circuit element
voltages and currents as shown in Figure (4).  With
more complex circuits it is the only way to maintain
sanity and get the right differential equation.

R

L

C

i

RV  = i R

CV  = Q
C

LV  = di
dtL

i = dQ
dt

Figure 4
Direction of the
voltages for an
increasing
downward
current.

R

i

RV  = i R

C CV  = Q
C

i = dQ
dtFigure 5

The RC circuit for a
positive increasing
current i.
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Solving the RC Circuit Equation
Solving the differential equation

 dQ
dt

+
Q

RC
= 0 (29) repeated

for the capacitor discharge was quite straightfor-
ward.  We first looked at the circuit experimentally
and saw that the voltage Q/C appeared to decay
exponentially as shown in Figure (27-44c) from the
Physics text, reproduced here.  This suggested that
we try, as a guess, a solution of the form

  Q = Q0 e– αt (31)

  dQ
dt

= – αQ0 e– αt (32)

Plugging our guess into Equation (30) gives

  
– αQ0 e– αt +

Q0 e– αt

RC
= 0

The constants  Q0  and the functions   e– αt  cancel,
and we are left with

  – α + 1
RC

= 0

We can satisfy the differential equation if α  has the
value

  
α =

1
RC (33)

The formula for Q becomes

  
Q = Q0 e– t /RC

(34)
We see the time constant for the decay of the charge
Q is T = RC.  I.e., when t gets up to T  =  RC, the value
of the charge has decreased to  e– 1 = 1/e  of its
original value.

The LC Circuit
We will construct an LC circuit from Figure (4) by
taking out the resistor and connecting the back side
as shown in Figure (6).  Setting the sum of the
voltage rises around this circuit equal to zero gives

 VL + VC = 0 (35)

 Ldi
dt

+
Q
C

= 0 ; i = + dQ
dt

(36)

Writing  di/dt = d2 Q/dt2  , and dividing through by L
gives

 
d2Q
dt2 + Q

LC
= 0 (37)

Now suppose we naïvely try the same exponential
decay solution we had for the RC circuit

  Q = Q0e–αt ;      dQ
dt

= –αQ0e–αt (guess)

  d2Q
dt2 = – αQ0 –αe–αt = α2Q0e–αt (38)

Plugging our guess (38) into the differential Equa-
tion (37) gives

  
α2Q0e–αt +

Q0e–αt

LC
= 0

Again the   Q0′s and   e– αt′s cancel and we are left with

  α2 + 1
LC

= 0 (39)

The differential equation will be solved if we can set

  α2 = – 1
LC (40)

  
α = – 1

LC
– 1 (41)

T

V

R = 10K, d = 2mm

?

?

Figure 27-44c
Discharge of our aluminum plate capacitor
(separation 2mm) through a 10KΩ resistor.
The inset is the experimental data and the
solid curve is drawn from that data.

Figure 6
The LC circuit.

i

C CV  = Q
C

L LV  = di
dtL

?

?
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When we tried this in the Physics text, we noted
thatα  comes out imaginary.  We also noted that the
LC circuit oscillated rather than decayed.  Thus we
concluded that we had guessed the wrong function,
and tried a sine wave

  Q = Q0 sinω0t (42)

instead.  When you plug the guess (42) into the differ-
ential Equation (37) you end up with

  ω0
2 = 1

LC
; ω0 = 1

LC
(43)

which avoids imaginary numbers and gives a result in
agreement with experiment.  The quantity   ω0 = 1/ LC
is the resonant frequency of the LC circuit.  (If you do
not remember plugging the guess   Q = Q0 sin(ω0t)
into the LC differential equation, do so now.)

Knowing more about handling imaginary numbers, let
us see what happens if we take our guess   Q = e– αt

seriously for the LC circuit.  We still have to satisfy
Equation (40),

  α2 = – 1/LC

Writing   1/LC = ω0
2, we get

  α2 = – ω0
2 (44)

which has two solutions, namely

   α = iω0 (45a)

   α = –iω0 (45b)
You can see this by noting that both   i2 = –1 and

  (–i)2 = – 1.  Thus the possible solutions for Q are

   Q1 = Q0eiω0t (46a)

   Q2 = Q0e– iω0t (46b)

While Equations (46a, b) are both mathematical
solutions to the differential equation for the LC
circuit, both are complex functions.  But the amount
of charge Q in the capacitor must be described by a
real number.  No imaginary charge resides there.

However in Equations (24) and (25) we saw that we
could construct the real functions   cosθ and   sinθ
from the complex functions   e iθ and    e–iθ.  Replacing
θ  by   ω0t , we have

   cosω0t = 1
2

eiω0t + e– iω0t (47a)

   sinω0t = i
2

e– iω0t – eiω0t (47b)

One of the features of differential equations like the
one for the LC circuit*  is that if the equation has
more than one solution, any combination of the
solutions is also a solution of the equation.  In our
case the two solutions are    Q1 = Q0e iω0t  and

   Q2 = Q0e–iω0t.  Thus the combination

  Q = aQ1 + bQ2 a,b,constants (48)

must also be a solution, as you will check for yourself
in Exercise 2.  Choosing the constants a = 1/2,
b = +1/2 gives

  Q = Q0 cosω0t (49a)

and choosing   a = – i/2,   b = i/2 gives

  Q = Q0 sinω0t (49b)

These are both real functions which can describe the
electric charge in the capacitor.

Thus we see that for both the RC and the LC circuit,
we can use the same trial function   Q = Q0e–αt.  For
the RC circuit,  α  was a real number, which gave us
the exponential decay   Q = Q0 e– t /RC.  For the LC
circuit,  α  turned out to be imaginary which gave us
real oscillating solutions like   Q = Q0cos ω0t .  By
using complex numbers, we are able to handle both
the RC and the LC circuits with the same trial
function.  Whether  α  turns out to be real or imagi-
nary tells us whether the circuit decays or oscillates.

*This is an example of what is called a homogenous differential
equation. We will have more to say about them shortly.
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In the next section we will consider the RLC circuit,
which is an LC circuit with resistance included.
Experimentally we saw that such a circuit could
have a decaying oscillation.  When we plug the
guess   Q = Q0e–αt into the equation for the RLC
circuit,  α  will turn out in some cases to be complex,
i.e., have both a real and an imaginary part.  The
imaginary part will describe the oscillation of the
circuit while the real part will tell us how the oscil-
lation decays.  But before we get to the RLC circuit,
we need to discuss a simpler way to get real solutions
from complex solutions of differential equations.
Before that, do Exercise 2 to see that  Q = aQ1 + bQ2
is a solution of our LC equation.

Exercise 2
The differential equation for an LC circuit is

 d2Q
dt2

+ Q
LC

= 0 (37) repeated

This is called a homogenous differential equation be-
cause it contains only terms involving Q or its deriva-
tives.  An example of a non homogeneous differential
equation will be

  d2Q
dt2

+ Q
LC

= a sin ω1t (50)

This will represent an LC circuit that is being forced to
oscillate at some frequency   ω1 .  The appearance of the
term  (   a sin ω1t ) with no factor of Q makes this a non
homogeneous equation.  We will discuss this equation
shortly, to show what effect the non homogeneous term
has.  For now we will limit our discussion to homoge-
neous equations.

You have seen that     Q1 = aeiω0t  and     Q2 = be–iω0t are
both solutions to Equation (37) when a and b are
constants and    ω0 = 1/ LC .  Now explicitly plug in

    Q = aei ω0t + be–iω0t (51)

into Equation (37), and show that this is a solution for any
constant values of a and b.  This demonstrates that any
linear combination of     eiω0t and     e–iω0t is also a solution.

A FASTER WAY TO FIND REAL SOLUTIONS

When we got the complex solutions    e+iω0t  and
   e– iω0t for the LC circuit differential equation, we

were careful to construct real combinations of these
complex solutions.  You might think that it was
lucky that we just happened to know that the combi-
nation    1 21 2( eiω0t – e– iω0t ) was the real function

  cosω0t.  You might be concerned that for some other
differential equations you would not be so lucky.

Don't worry.  If you find a complex solution for a
homogeneous differential equation, you can simply
take the real part of the complex solution and throw
away the imaginary part.  This works because both
the real part and the imaginary part must separately
be solutions of the differential equation.  (You could
also keep the imaginary part without the (i) and
throw away the real part.)

To see why both the real and imaginary parts are
solutions, let us write the complex solution for Q in
the form

  Q = Qreal + iQimaginary (52)

where both  Qreal  and  Qimaginary  are real functions.
Plugging Equation (52) into the LC differential
equation gives

  d2Q
dt2 +

Q
LC

=
d2Qreal

dt2 +
Qreal
LC

+ i
d2Qimaginary

dt2 +
Qimaginary

LC

= 0 (53)

Since both  Qreal  and  Qimaginary   are real functions,
their derivatives must also be real functions, and the
quantities inside both square brackets in Equation
(53) must be real.  As a result the first square bracket
is purely real, and the second square bracket with its
factor of (i) must be purely imaginary.  The only way
you can add purely real and purely imaginary func-
tions together to get zero is for both functions to be
separately equal to zero.
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That is, we must have

 d2Qreal

dt2 +
Qreal
LC

= 0 (54a)

 d2Qimaginary

dt2 +
Qimaginary

LC
= 0 (54b)

Equations (54) tell us that both functions  Qreal  and
 Qimaginary  must be solutions of the LC differential

equation.  If we want a real solution, we can use
either  Qreal ,  Qimaginary  or any linear combination of
the two.  A similar argument applies to the solution
of any homogeneous differential equation.

As an explicit example for our LC equation, suppose
we had come up with the solution

   Q = Q0e iω0t (55)

and had not noticed that    Q = Q0e– iω0t  was also a
solution.  Instead of hunting for another complex
solution and then trying to find real combinations,
we could just break    e iω0t into its real and imaginary
parts using    e iθ = cosθ + i sinθ to get

   Q = Q 0e iω0t = Q0cosω0t + iQ0sinω0t (55a)

Then we immediately know that the real functions
  Q0cosω0t and   Q0sinω0t are solutions of the LC

differential equation.  We can use either one or some
linear combinations of the two.  (Using a linear
combination is equivalent to using an arbitrary phase
angle, like   Q = Q0sin(ω0t + φ) .  See the Physics
text, pages 15-17 or 16-31.)

THE RLC CIRCUIT
Adding a resistor to an LC circuit gives us the RLC
circuit shown in Figure (7).  If the resistance R is not
too large, we get a decaying oscillation like that
shown in Figure (31-A9) taken from the Physics text.

The equation for the RLC circuit is obtained by
setting to zero the sum of the voltage rises around the
circuit, giving

 VR + VL + VC = 0 (56)

 iR + Ldi
dt

+
Q
C

= 0 (57)

Setting

 
i =

dQ
dt

; di
dt

=
d2Q
dt2 (58)

and dividing through by L gives

  d2Q
dt2 + R

L
dQ
dt

+ Q
LC

= 0 the LRC
equation (59)

As a trial function, suggested by the decaying oscil-
lation of Figure (31-A9), we could try the solution

   Q = Q0e– αt cosωt guess (60)

R

L

C

i

RV  = i R

CV  = Q
C

LV  = di
dtL

Figure 7
The RLC circuit.

Figure 31-A9 – Ringing like a bell
We hit the RLC circuit with a square wave and the
circuit responded like a bell struck by a hammer.
We are looking at the voltage across the capacitor.

experimental data



Cal 5-12      Calculus  2000 - Chapter 5      Complex Variables

If you plug the guess (60) into Equation (59),  you get
many terms involving both   sin ωt  and   cos ωt .

   Q = Q0e– αt cosωt guess (60) repeated

 d2Q
dt2 + R

L
dQ
dt

+ Q
LC

= 0 (59) repeated

To see where the terms come from, consider

  dQ
dt

= Q0(– α ) e– α t cosωt + Q0e– α t (– sinωt)

(61)
where we had to differentiate the two terms   e– αt and

  cosωt separately.  Differentiating again we get four
terms for  d2Q/dt2 , two with a   cosωt and two with a

  sinωt.  When we plug this all back into Equation (59),
we end up with seven terms, four with   cos ωt   and three
with   sin ωt .  In order for all this to be equal to zero, you
have to separately set the   sinωt and the   cosωt terms
equal to zero.  This leads to two equations, from which
you can determine both the constants α  and  ω .  If you
are careful, your chances of getting the answer without
making a mistake may be as high as 50%.  In other
words this is the hard way to solve the problem.

Exercise 3

Try finding the coefficients α  and  ω  by using Equation
(60) as a trial solution for Equation (59).  Then check
your answer with the one we get in the next section.

The Easy Way
Working with separate sines and cosines is the
difficult way to handle the RLC circuit.  Using
complex variables which provide a unified treat-
ment of both decay and oscillation is the easy way.

For a trial solution, let us use

  Q = Q0e– at ;
dQ
dt

= – aQ0e– at

  d2Q
dt2 = a2Q0e– at (62)

It looks much easier already.  Substituting this trial
solution into the LCR differential equation gives

 d2Q
dt2

+ R
L

dQ
dt

+ Q
LC

= 0 (59) repeated

  
a2Q0e– at – aR

L
Q0e– at +

Q0e– at

LC
= 0 (63)

The function   e– at and constant  Q0  cancel and we
are left with

 a2 – aR
L

+ 1
LC

= 0 (64)

This is a standard quadratic equation of the form

 x2 + bx + c = 0 (65)

whose solution is

  
x = – b ± b2 – 4c

2
(66)

For our case, –b = R/L, c = 1/LC, thus (a) is given by

  
a = 1

2
R
L

± R2

L2
– 4

LC

= R
2L

± R2

4L2
– 1

LC
(67a)

= R
2L ± (– 1) 1

LC
– R2

4L2
(67b)

Setting   1/LC = ω0
2 , where   ω0  is the resonant fre-

quency of the undamped (R = 0) circuit, and taking
 – 1  outside the square root as a factor of (i) gives

   
a = R

2L ± i ω0
2 – R2

4L2
(68)

Figure 31-A9 (repeated)
We are looking at the voltage across
the capacitor in an RLC circuit.

?

?
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We now introduce the notation

  α = R
2L

ω = ω0
2 – R2

4L2
= ω0

2 – α2

(69)

So that

   a = α ± iω (70)
and our trial solution  Q = Q0e–at  becomes

   Q = Q0e– (α ± iω) t

   
Q = Q0e–α t e±iωt solution for the

RLC circuit (71)

where

  
α = R

2L ; ω = ω0
2 – α2 (69) repeated

For the case where   ω0  is bigger than α ,
  ω = ω0

2 – α2  is a real number, the real part of
   e iωt is   cosωt and we get the real solution

  Q1 = Q0e– α t cosωt (72)

The imaginary part of    e iωt is proportional to   sinωt ,
which gives us the other real solution

  Q2 = Q0e– α tsinωt (73)

As in the case of the LC circuit, the sine and cosine
waves can be combined as a sine wave with an
arbitrary phase angle φ  to give the general solution

   
Q = Q0e– α t sin(ωt + φ) damped oscillation

of an RLC circuit

(74)
Equation (74) represents a damped oscillation of
frequency   ω = ω0

2 – α2  and a damping time con-
stant T given by

   
T = 1

α = 2L
R

damping time
constant (75)

Imagine that we start with an RLC circuit that
initially has negligible resistance, and that we gradu-
ally increase the resistance.  When R = 0, then α = 0
and the oscillation frequency is   ω = ω0

2 = ω0 ,
where   ω0  is the undamped frequency.

As R and   α = R/2L  are increased, the oscillation
frequency   ω = ω0

2 – α2  decreases until we reach
  α = ω0 .  At that point,   ω = ω0

2 – α2 = 0 , oscilla-
tion ceases, and we have what is called critical
damping.  The time constant for decay at critical
damping is just the length of time it takes the
undamped circuit to go through one radian of oscil-
lation, or   1/2π of a complete cycle.  You can see that
result from dimensions. We have

  1
ω0

radians
second

= 1
ω0

seconds
radian (76)

and at critical damping, where   α = ω0,

  T = 1
α = 1

ω0
seconds
radian (77)

At critical damping, there is only one unique solu-
tion for the RLC circuit.  As we increase the resis-
tance beyond critical damping, when   α = R/2L  be-
comes larger than   ω0 , the solution becomes
overdamped.  For   α > ω0 , it is easiest to go back to
writing the solution in the form

 Q = Q0e– at (from Eq.62)

  
a = R

2L
± R2

4L2 – 1
LC

= α ± α 2 – ω0
2

(from Eq.67a)
and we see that we now have two exponential decay
solutions

  Q1 = Q0 e– α + α2 – ω0
2 t (78a)

  Q2 = Q0 e– α – α2 – ω0
2 t (78b)

If we increase the resistance so much that   ω0
2 is

completely negligible compared to   α2 , then the two
solutions become

  Q1 → Q0e– 2αt α2 > > ω0
2 (79a)

  Q2 → Q0e0 = Q0 (79b)

In this limit we easily see that the solution  Q1  damps
more rapidly than  Q2 .  For the  Q2  solution, we have
increased the resistance so much that no charge
leaves the capacitor and the charge remains at  Q0 .
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We can get a better insight into the solution  Q2  by
assuming that   ω0

2  is small but not quite zero.  In this
case we can write  Q2  as

  
Q2 = Q0 e–α 1 – 1 – ω0

2 α2ω0
2 α2 t (80)

Since   ω0
2 α2ω0
2 α2 << 1, we can use the approximation

formula

  1 – x ≈ 1 – x
2

x << 1

We get, for  x =   ω0
2 α2ω0
2 α2 ,

  
α 1 – 1 –

ω0
2

α2
≈ α 1 – 1 –

ω0
2

2α2

= α
ω0

2

2α2 = 1
2 ω0

2 1
α

With ω0
2 = 1/LC and α = R/2L, we get

= 1
2

× 1
LC

× 2L
R

= 1
RC

(81)

Thus for   α2 >> ω0
2 we have

  
Q2 = Q0 e– t/RC α2 >> ω0

2 (82)

This is just the solution for the decay of an RC circuit
with a time constant T = RC.

The condition   α2 >> ω0
2 can be written as

 R2

4L2
>> 1

LC
or R2C

4L
>> 1 (83)

We can meet this condition for finite values of R and
C by making L small enough.

Exercise 4
To make our study of the RLC circuit more concrete,
suppose that in the circuit you use a 0.10 microfarad
capacitor and one millihenry inductor, so that

 L = 10– 3 hy

 C = 10– 5 farads

(a) What is the resonant frequency   ω0radians/second
and f0 cycles/second, when R = 0?

(b) What is the length of time it takes the R = 0 circuit to
go through one radian of its oscillation?

(c) What value of resistance  RC should you use for
critical damping?

(d) What is the time constant for the decay at critical
damping?

(e) Suppose you raise R from its critical value  RC up to
 2RC.  What are the time constants  T1  and  T2  for the

decay of the solutions  Q1  and  Q2  respectively?  (Partial
answer:  Q2  takes twice as long as  Q1  to decay when

 R = 2RC.)
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IMPEDANCE
Circuits commonly encountered are AC circuits
where the current has a sinusoidal form

  i = i0 sin ωt (84)

For standard American households, the household
current has a frequency of 60 cycles/second, or

  ω = 2π ×60  radians/second.  In much of the rest of
the world the standard household frequency is 50
cycles per second.  World War II aircraft used a
standard frequency of 400 cycles per second which
resulted in smaller and lighter transformers.

The concept of impedance, which involves complex
variables, provides an easy way to handle the volt-
ages across R, L, and C circuit elements in an AC
circuit.  To demonstrate the advantage of the com-
plex variable approach, we will first analyze these
voltages using our standard real variables, and then
see how much the calculations are simplified by
complex variables.

Suppose we have three circuit elements, an R, L, and C,
connected in series as shown in Figure (8), and run
an AC current through them.  In the diagram we
show the formula for the voltage across each circuit
element.  What we wish to calculate is the total
voltage V across all three elements.

The individual voltages were calculated noting that

  d sin ωt
dt

= ωcosωt

  sin ωt dt = – 1
ωcosωt .

The voltage V across all three elements is just the
sum of the individual voltages

  
V = i0 R sinωt + Lωcosωt – 1

Cω
cosωt

= i0 Rsinωt + Lω – 1
ωC

cosωt

  
V = i0 [Asinωt + Bcosωt] (86)

where

  A = R; B = Lω – 1
ωC (87)

We want to express the term   [Asinωt + Bcosωt]  as
a single sine wave with an amplitude which we will
call  Z0 , and a phase angle φ

  [Asinωt + Bcosωt] = Z0 sin(ωt + φ) (88)

To do this we use the trigonometric identity

 sin (a + b) = cos b sina + sinb cos a

to write

  sin (ωt + φ) = cosφsinωt + sinφcosωt (89)

Multiplying through by  Z0  gives

  Z0 sin (ωt + φ) = (Z0 cosφ) sinωt + (Z0 sinφ) cosωt

  = Asinωt + Bcosωt (90)

where

  A = Z0 cosφ ; B = Z0sinφ (91)

  B
A

=
sinφ
cosφ

= tanφ (92)

  A2 + B2 = Z0
2(cos2 φ+ sin2 φ) = Z0

2 (93)

Figure 8
AC voltages in the R, L, and C circuit elements.

R

L

C

V = ?

(85a)

(85c)

(85b)

  i = i0sinωt

  VR = iR = i0Rsinωt

  VL = Ldi
dt

= i0Lωcosωt

  VC = Q
C

= 1
C

idt

= – i0
Cω

cosωt
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Applying Equations (91), (92), and (93) to our formula

  V = i0 [Asinωt + Bcosωt] (86) repeated
 gives

  
V = i0 Z0 sin(ωt + φ) (94)

where from Equations (92) and (87)

  
tanφ = B

A
= Lω – 1/ωC

R
(95)

and from Equation (93)

  
Z0

2 = R2 + Lω – 1
ωC

2
(96)

After a fair amount of calculation, we see that the
voltage across all three circuit elements is still propor-
tional to   sinωt.  Its amplitude  Z0  is given by
Equation (96) and there is a phase shift by an angle
φ  that is given by Equation (95).

Now let us see how much more quickly we can arrive
at the amplitude  Z0  and phase shift φ  using the
complex variables shown in Figure (9).

In Figure (9) we have a current  i  given by the formula

   i = i0 eiωt (97)

and the resulting voltage across the three circuit
elements is the sum of the individual voltages which
can easily be written in the form

   
V = i0 R + i Lω – 1

ωC
eiωt (98)

The quantity in square brackets is the complex
number    R + i( Lω – 1/ωC) graphed in Figure (10).
It can be represented by an arrow whose length is  Z0
given by the Pythagorean theorem as

  
Z0

2 = R2 + Lω – 1
ωC

2
(99)

and is oriented at an angle φ  whose tangent is

  tan φ = Lω – 1/ωC
R

(100)

Notice that the formulas for  Z0  and   tan φ are the
same as in Equations (96) and (95), which we got
after so much more work.

C

R

imaginary

real
φ

0

Lω ωC
1–

Lω

ωC
1–

Figure 10
Graph of the complex number        R + i(Lωω – 1/ωωC) .

Figure 9
AC voltages in the R, L, and C circuit
elements, using complex notation.

R

L

C

V = ?

   i = i0eiωt

   VR = iR = i0Reiωt

   VL = Ldi
dt

= L i0(iω)eiωt

    VC = Q
C

= 1
C

idt

= i0
iωC

eiωt = – i i0
ωC

eiωt
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From our earliest work with complex variables we
saw that the complex number

z = x + iy (4) repeated

could be written as the exponential

  z = reiθ (26) repeated

where z is graphed in Figure (2a) repeated here.

Thus the complex number    R + i( Lω – 1/ωC) ,
graphed in Figure (10) can also be written in the
exponential form

   R + i Lω – 1
ωC

= Z0eiθ (101)

where  Z0  is the distance from the origin and φ  the
angle above the real axis.

Using Equation (100) for the square brackets in
Equation (98) for the voltage V gives

   
V = i0 R + i Lω – 1

ωC eiωt

= i0 Z0 eiφ eiωt

   
V = i0Z0ei (ωt + φ)

(102)

  
Z0

2 = R2 + Lω – 1
ωC

2
(99) repeated

  tan φ = Lω – 1/ωC
R

(100) repeated

Equation (102) is our complex formula for the voltage
across the three circuit elements.

To find the real voltage, we simply take the real (or
imaginary) part of the complex voltage.  Choosing
the imaginary part (without the i) to get a sine wave,
we get

  
V = i0Z0sin(ωt + φ)

(103)

which is the same answer, Equation (94), that we got
from the real analysis.

The main advantage of the complex analysis is that
all the voltages had the same factor    eiωt, so that we
could simply add the voltages without using the
fairly messy trigonometric identities.  Also note that
the main result of all the work of the real analysis
was to calculate the amplitude  Z0  and the phase
angle φ .  We got  Z0  and φ  immediately in the
complex analysis, as soon as we graphed the com-
plex coefficient of    eiωt in Figure (10).

r

x

y

imaginary

real

φ

Figure 2a (repeated)
Plot of the complex number (4 + 3i),
showing the angle φφ.
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Impedance Formulas
The concept of a complex impedance which we will
now introduce, allows you to determine the ampli-
tude  Z0  and phase angle φ  by inspection, without
doing hardly any calculation at all.

In Figure (11), we have redrawn our three circuit
elements, introduced a complex current    i = i0 eiωt,
and expressed voltage in terms of i and the complex
impedances  ZR,  ZL,  ZC defined by

  ZR ≡ R (104a)

   ZL ≡ iωL (104b)

   ZC ≡ – i
ωC (104c)

In terms of these   Z′s, the voltages are

 VR = iZR

VL = iZL

VC = iZC

(105)

The sum of the three voltages V becomes

 V = VR + VL + VC

= i(ZR + ZL + ZC ) (106)

If we define the total impedance Z of the three circuit
elements connected in series by the equation

 Z = ZR + ZL + ZC (107)

then our formula for the complex voltage is

 V = iZ (108)

Comparing this with Ohm's law for a single resistor

  VR = iR Ohm's law (Physics 27-1)

we see that we can think of Equation (108) as simply
a complex form of Ohm's law.

When we graph the complex impedance Z we can
immediately read off the amplitude  Z0  and phase
angle φ , as shown in Figure (12). We have

   
Z = R + i Lω – 1

ωC
= Z0eiφ complex

impedance

(109)
where

   
Z0

2 = R2 + Lω – 1
ωC

2 magnitude of
impedance (110a)

   tan φ = Lω – 1/ωC
R

phase of
impedance

(110b)

In Equation (109), we introduced the exponential
form   Z0eiφ for the complex variable Z.

Figure 11

The voltages  VR ,  VL ,and  VC expressed
in terms of impedances Z.

Z

Z      = R

Lω ωC

real

Z        =imag
1–

φ

0

Figure 12
The complex impedance can be pictured as an arrow of
length   Z0 = Zreal

2 + Zimag
2  oriented at an angle φφ.

R

L

C

i

V

   i = i0eiωt

   VR = (i0eiωt)R = (i)ZR

   VL = (i0eiωt)Liω = (i)ZL

    VC = (i0eiωt) – i
ωC

= (i)ZC
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The Driven RLC Circuit
Our first demonstration in the physics course was the
driven RLC circuit, which could be used to measure the
speed of light without looking at light. (This was a crucial
point in our discussion of special relativity.)  In Chapter 31
we calculated the resonant frequency of an LC circuit and
wrote down some formulas for the driven RLC circuit.
But we did not derive the formulas because the work is
messy when we have to use real functions.  However with
the complex analysis we have developed in this chapter,
we get, almost by inspection, not only the formulas but
considerable insight into the behavior of the circuit.

In the lecture demonstration, we drove the LRC circuit
by wrapping a couple of turns of wire around the outside
of the inductor and attaching the wire to an oscillator.
The oscillating magnetic flux produced by these few
turns induces a voltage  Vind  in the coil and drives the
circuit to oscillate.

The important thing is that we did not put the oscillator
directly in the circuit, for the oscillator has its own
internal resistance, capacitance and inductance that could
completely alter the behavior of the circuit.  The idea is
to give the circuit a gentle voltage shove of the form

   Vind = V0eiωt (111)

as indicated in Figure (13), and see how the circuit
responds.

Setting the sum of the voltage rises to zero around
the circuit in Figure (13) gives, (walking counter
clockwise),

 VC + VL + VR – Vind = 0 (112a)

   iZR + iZL + iZC = V0eiωt (112b)

Solving for the current  i   in the circuit gives

   

i =
V0eiωt

Z (113)

where   Z = ZR + ZL + ZC = Z0eiφ is the total im-
pedance of the circuit.

Using the exponential form for Z in Equation (113)
for the current  i gives

   
i =

V0e iωt

Z0eiφ ; i =
V0

Z0
ei (ωt – φ) (114)

Equation (114) tells us that if we drive an RLC
circuit with an induced voltage    Vind = V0eiωt   the
circuit will respond with a current  i  that has an
amplitude  (V0/Z0) and a phase   (– φ) relative to the
driving voltage.  We get this result almost without
doing any calculation.  To get the same result using
real functions   sinωt  and  cosωt    would have taken
several pages of algebra and trigonometric identities.

R

L

C

i

R R

0

V  = iZ

indV    = V e 

C CV  = iZ

L LV  = iZ

iωt

Figure 13
The driven RLC
circuit. Photo is
Figure (1-10) from
the Physics text.

Figure 14
Complex impedance for an RLC circuit.

Z

R

imaginary

real

φ
0

Lω ωC
1–

Lω

ωC
1–

    Z = Z0eiφ
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Let us look at the physics contained in Equation (114).

   
i =

V0

Z0
ei (ωt – φ)

(114) repeated

For very low frequencies, for sufficiently small ω ,
the quantity   1/ωC  is much larger than either Lω  or
R, the impedance is essentially all capacitive as
indicated in Figure (15).  For this case,

  Z0 ≈ 1
ωC

; φ ≈ – 90° = – π
2

(115)

and the formula for the current in the circuit caused
by the induced voltage  Vind is

   
i = V0ωCei (ωt + π/2)

current
at low
frequencies

(116a)

   
Vind = V0eiωt

complex
induced
voltage

(116b)

Taking the real part of Equations (116) gives us the
real current for a real induced voltage

   
i = V0ωC cos (ωt + π/2)

Vind = V0 cosωt
small ω

(117)

From Equations (117), we see that at low frequen-
cies, the phase of the current is   π 2π 2 ahead of the
induced voltage, and the amplitude goes to zero as ω
goes to zero.

The other extreme, at high frequencies where ωL  is
much bigger than R or   1/ωC , we have

  Z0 ≈ Lω (118)

  φ ≈ +90° (π/2) (119)

And we get

   
i =

V0

Lω
ei (ωt – π/2)

current
at high
frequencies

(120)

Taking the real part gives us the real current

   
i =

V0

Lω
cos (ωt – π/2)

Vind = V0 cosωt
large ω (121)

We see that at high frequencies the phase of the current
is   π 2π 2 behind of the induced voltage, and the amplitude
goes to zero as ω goes to infinity.

Z

R

imaginary

realφ

0

Lω ωC
1–

Lω

ωC
1–

Z

R

imaginary

real

φ

0

Lω ωC
1–

Lω

ωC
1–

Figure 15
Z for small ωω .

Figure 16
Z for large  ωω .
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There is a special frequency, call it   ω0 , where the
capacitive impedance   ZC = – 1/ω0C just cancels the
inductive impedance   ZL = Lω0, leaving us with a
pure resistive impedance  ZR = R, as shown in Fig-
ure (17).

This happens when

 ZL = –ZC

  ω0L = + 1
ω0C

(122)

  
ω0

2 = 1
LC (123)

This special frequency is the resonant frequency
  ω0 = 1/ LC  of the RLC circuit.  We now see that

the resonance occurs when the capacitive and induc-
tive impedances cancel, leaving only the resistance
to dampen the current in the circuit.  Also note that
at this frequency the phase angle φ  is zero, and the
current  i is given by

   
i =

V0

R
ei (ω0t) current

at
resonance

(124)

Taking the real part of Equation 24 gives

   
i =

V0

R
cosω0t

Vind = V0 cosω0t
at
resonance (125)

We see that, at resonance, the current and the in-
duced voltage are in phase with each other, and the
only thing that limits the current is the actual resis-
tance R in the circuit.

Comparing Equations (117, 121, and 125), we see
that the phase of the current shifts by 180 degrees (π)
as we go from well below to well above the reso-
nance. The smaller the value of R, the sharper the
resonance, and the faster this phase shift occurs. The
shape of the resonance curves, for three different
values of R were shown in the Physics text, Figure
(14-31) repeated here.

Z
R

imaginary

real
0

Lω

ωC
1– Figure 14-31

Amplitude of the oscillation for various values of the
resistance R.  The peak occurs at ωω =  ωω0 because the
inductive and capacitive impedances cancel at the
resonant frequency  ωω0.

Figure 17
At resonance, the capacitive and inductive
impedances cancel, and we are left with only the
resistive impedance.

0 1.0 1.2 1.40.80.6
frequency

ω/ω

 
V =

V0
Z0
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TRANSIENTS
While the above discussion of the driven RLC
circuit describes what you most likely will see when
you study the circuit in the lab, it is not the whole
story.  There are other solutions for the circuit,
solutions which die out as time goes on, and thus are
called transient  solutions.  To see where the tran-
sients come from, we need to go back to the differ-
ential equation for the driven circuit.  We get the
equation from Figure (18) which is simply Figure
(13) with some labels changed.  To make the circuit
more nearly what we deal with in the lab, we are
writing the induced voltage as a real function

  V0cos ωdt , where we are now calling the driving
frequency   ωd .

Particular Solution
Setting the sum of the voltages around the circuit
equal to zero gives

 VR + VL + VC = Vind (110) repeated

  iR + Ldi
dt

+
Q
C

= V0 cosωdt (126)

This time, let us express everything in terms of the
current i rather than the charge Q, by differentiating
Equation (126) with respect to time and using

 i = dQ/dt.  We get, after dividing through by L
  
d2i
dt2 + R

L
di
dt

+ i
LC

=
–V0ωd

L
sinωdt (127)

where we used   d(cos ωdt)/dt = –ωd sinωdt .

Equation (127) is an example of a non-homoge-
neous differential equation.  It is non-homoge-
neous because of the driving term

  – V0ωd/L sin ωdt  which does not have a factor of
the variable (i) or a derivative of (i).  This is called
the inhomogeneous term.

In the previous section, we found that Equation
(127) has the solution

   
ip =

V0
Z0

ei (ωt – φ) particular
solution (114) repeat

where

  Z0
2 = R2 + ( Lω – 1

ωC
)
2

(99) repeated

  tanφ = Lω – 1/ωC
R

(100) repeated

The value of ip from Equation (113) is called the
particular solution of the differential equation (127).

Transient Solutions
To see what the other solutions are, let us look at the
homogeneous differential equation

 d2i
dt2 + R

L
di
dt

+ i
LC

= 0 (128)

which represents an RLC circuit with no driving
term. I.e., it is Equation (127) without the inhomoge-
neous  term.

As a review, let us see how quickly we can solve
Equation (128).  Using the trial solution

 
i = i0e– at ; di

dt
= – ae– at ; d2i

dt2 = a2e– at

gives

 a2 – R
L

a + 1
LC

= 0

This is a quadratic equation in a, of the form
 a2+ba +c = 0 which has the solution

  
a = –b ± b2 – 4c

2
= –b

2
± b2

4
– c

R

L

C

i

R

0

V  = i R

ind dV    = V cos ω  t

CV  = Q
C

LV  = di
dtL

i = dQ
dt

Figure 18
The driven RLC circuit again.
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With b = R/L and c = 1/LC we get
   

a = R
2L

± R2

4L2
– 1

LC

= R
2L

± i 1
LC

– R2

4L2

Thus the solution to Equation (128) is

   
iT = i0 e– α t e± iωt

so called
transient
solution

(129)

Where
  

α = R
2L

; ω = 1
LC

– R2

4L2

We can write ω in the form

  ω2 = ω0
2 – α2

where

  ω0 = 1
LC

is the resonant frequency. Equation (129) is just
Equation (71) expressed in terms of the current  i
rather than the charge Q.  We are calling this a
transient solution iT.  The reason for the name will
become apparent shortly.

Combined Solutions
Let us now go back to Equation (127) for the driven
circuit, and write  id  for the constant (   – V0ωd/L ) in
order to simplify the equation's appearence

  d2i
dt2 + R

L
di
dt

+ i
LC

= id sinωdt (127a)

Now try the solution

 inew = ip + aiT (130)

where ip is the particular solution (113), iT  is the
transient solution of Equation (129), and (a) is an
arbitrary constant.  We know that

  d2(ip)

dt2 + R
L

d(ip)
dt

+
(ip)

LC
= id sinωdt (131)

 d2(aiT)
dt2 + R

L
d(aiT)

dt
+

(aiT)
LC

= 0 (132)

Adding Equations (131) and (132) together gives

  d2(ip+aiT)

dt2 + R
L

d(ip+aiT)
dt

+
(ip+aiT)

LC

= id sinωdt (133)

and we see that  inew = (ip+aiT) obeys the same
equation as ip alone. Thus  inew is a solution of the
equation of the driven RLC circuit, for any value of
the constant (a).

This result tells us that to the driven or particular
solution ip, we can add any amount of the homoge-
neous solution iT, and we still have a solution for the
driven RLC circuit.

The solutions iT for the homogeneous equation are
fundamentally different from the particular solution
ip.  The driven solution

   ip =
V0
Z0

e i (ωt – φ) (113) repeated

goes on at a constant amplitude  V0/Z0 for as long as
the driving voltage is attached.  The transient solution

   iT = i0 e– α t e iωt (129) repeated

dies out exponentially with a time constant   T = 1/α .
Because such solutions do not last, they are called
transient solutions.

What you will observe in the lab is the following.
When you first turn on or suddenly change the
driving voltage   V0cos ωdt , you will see not only the
particular solution ip, but also some transients mixed
in.  If you wait for several time constants   T = 1/α ,
and keep the driving voltage amplitude  V0  con-
stant, the transients will die out and the pure driven
solution will appear on your oscilloscope.  If you
want to see the transient solutions, you have to look
within a time constant   1/α  of the time you changed
the driving voltage.

This finishes our discussion of the application of
complex variables to the analysis of circuits.  We
now move on to the use of complex variables to
describe wave motion.

non-homogeneous equation

homogeneous equation
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SOLUTIONS OF THE ONE
DIMENSIONAL WAVE EQUATION
In Chapter 2 of the Calculus text we discussed the
one dimensional wave equation applied to both
waves on a rope and sound waves.  Applied to waves
on a rope, the equation was

  ∂2y(x,t)

∂t2 = vwave
∂2y
∂x2 (134)

(Calculus 2-73)
where  y(x,t) represented the height of the rope
above its equilibrium position at some point x along
the rope at some time t.  (For a sound wave, replace
y(x,t) by p(x,t) where p(x,t) is the change in pressure
due to the sound wave at some point x and time t.)

(Recall that when we are working with more than
one variable, like x and t, we use the notation

  ∂f(x,t)/∂t to mean the derivative of f(x,t) with re-
spect to t, holding x constant.  This is called a partial
derivative with respect to time).

We solved Equation (134) with a trial function of the
form

  y(x,t) = A sin(kx – ωt) (135)

  ∂2y
∂x2 = – k2y ;

∂2y
∂t2 = – ω2y (136)

to get

  –ω2y = –vwave
2 k2y

  vwave
2 = ω2

k2

  
vwave = ω

k (137)

In the solution   sin(kx – ωt) , ω  is, as we have noted
many times, the angular frequency, of the number
of radians per second.  The quantity k, which is
called by the rather bland name wave number is
actually the spacial frequency or the number of
radians per centimeter.  When we take the ratio   ω/k
we get

  ω
k

radians/second
radians/centimeter

= ω
k

centimeters
second (138)

which is clearly a velocity.

As we saw in Chapter 15 of the Physics text and
Chapter 2 of the Calculus text,

   
y1 = Asin(kx – ωt)

sine wave moving
to the right at a
speed vwave = ω/k

(139)

   
y2 = Asin(kx +ωt)

sine wave moving
to the left at a
speed vwave = ω/k

(140)

If we add  y1  and  y2  we get the standing wave

   y1 + y2 = 2A sinkx cosωt standing
wave (141)

You can use the trigonometric identity
 sin(a + b) = sina cosb + cosa sinb , noting that
 sin(– b) = – sinb, and   cos(– b) = cosb  to check

Equation (141).

Rather than use the real function   sin(kx – ωt) , we
can, as a trial solution to the wave equation, use the
complex function

   y = Ae i (kx – ωt) (142)

   ∂y
∂x = ikAe i (kx – ωt) ;

∂y
∂t = (– iω)Ae i (kx – ωt)

   ∂2y
∂x2 = (ik)2Ae i (kx – ωt) = –k2y

   ∂2y

∂t2 = (– iω)2Ae i (kx – ωt) = –ω2y (143)

where   (– i)2 = –1.

We are now right back to Equation (136) and get the
same solution   vwave

2 = ω2/k2 .  In this case it is
actually easier to work with the real function

  sin(kx – ωt)  rather than the complex function
   e i (kx – ωt)  because you do not have to take the real

part of the complex function at the end.  Working
with the real variables was not difficult in this case
because the wave equation did not mix up sine and
cosine functions as the RLC equation did.
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For completeness we have

   
y1 = A ei kx – ωt =

complex sine wave
moving to the right
at a speed ω/k

(142)

   
y2 = A ei kx + ωt =

complex sine wave
moving to the left
at a speed ω/k

(143)

The standing wave solution is

   
ystanding = y1 + y2 = A e i (kx – ωt) + e i (kx + ωt)

= A e i kx e–i ωt + e i kx e i ωt

= 2Ae ikx e–i ωt + e i ωt

2

= 2Ae i kxcos ωt

= 2A(cos kx + i sinkx)cosωt

= 2Acoskx cosωt+ i 2A sinkx cosωt

(144)
The imaginary part of  ystanding  is

  (ystanding)imag
= 2A sinkx cosωt (145)

which is the standing wave solution we got using
real variables.  Using complex variables to get the
standing wave solution was not easier than using
real variables.
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In the introduction to Chapter 37 of the Physics text,
we quoted the following story from an address by
Felix Block to the American Physical Society in
1976.

“Once at the end of a colloquium I heard Debye
saying something like: ‘Schrödinger, you are not
working right now on very important problems...why
don’t you tell us some time about that thesis of de
Broglie, which seems to have attracted some atten-
tion?’ So in one of the next colloquia, Schrödinger
gave a beautifully clear account of how de Broglie
associated a wave with a particle, and how he could
obtain the quantization rules ... by demanding that
an integer number of waves should be fitted along a
stationary orbit. When he had finished, Debye casu-
ally  remarked that he thought this way of talking
was rather childish ... To deal properly with waves,
one had to have a wave equation.”

Calculus 2000-Chapter 6
Introduction to the
Schrödinger Wave Equation

As we mentioned, Schrödinger took Debye’s advice,
and in the following months devised a wave equation
for the electron wave, an equation from which one
could calculate the electron energy levels. That
wave equation is now the foundation of chemistry.

In this chapter we sketch the ideas that led
Schrödinger to formulate an equation involving
complex variables to describe the electron. We then
go on to solve that equation for the lowest energy
spherically symmetric wave functions for the elec-
tron in a hydrogen atom. This is enough to show that
the Schrödinger equation, without any extra as-
sumptions, is enough to explain the quantized en-
ergy levels of hydrogen.

CHAPTER 6 INTRODUCTION TO

SCHRODINGER'S EQUATION
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SCHRÖDINGER'S WAVE EQUATION
Schrödinger's approach to finding a wave equation
for the electron was roughly as follows.

De Broglie, suspecting that the electron, like the pho-
ton, had a wave nature as well as a particle nature, went
back to Einstein's formula for the energy of a photon

 E = hf (1)

where h is Planck's constant, (   f = c/λ ) the frequency
of the photon and λ  its wavelength. Setting  E = mc2

where m is the mass of the photon gives

  mc2 = hf = h c
λ ; m = h

λc
Since photons travel at the speed c, the photon's
momentum p should be its mass m times its speed c, or

  p = mc = h
λc

c

  
p = h

λ (2)

Equation (2) is the famous de Broglie formula for the
relationship between the wavelength and momen-
tum of any particle.  De Broglie explained the
quantization of angular momentum in the Bohr
theory by assuming that the allowed Bohr orbits
were those in which exactly an integral number of
wavelengths fit around the orbit.

Schrödinger's job was to find a wave equation based
on the two fundamental relationships  E = hf  for the
particle energy and    p = h/λ   for the particle wave-
length.  Because we have been writing wave
equations in terms of the angular frequency

 ω radians/second rather than the regular frequency
f cycles/second, and the wave number (spacial fre-
quency) k radians/cm rather than the wavelength
λ  cm/cycle, let us first re-express E and p in terms
of  ω  and k rather than f and λ .  Using dimensions
we have

  f
cycles
second

= ω radians/sec
2πradians/cycle

=
ω cycles

2πsecond

  1
λ cm/cycle

= 1
λ

cycles
cm = k

2π
radians/cm

radians/cycle

= k
2π

cycles
cm (3)

Using the standard notation

   h ≡ h
2π h "bar" (4)

we get

  E = hf = h ω
2π

= hω

  p = h
λ = h k

2π
= hk

Thus we get the very simple formulas

  
E = hω ; p = hk (5)

as the relationship between a particle's energy E and
momentum p, and its wave's frequency  ω  and wave
number k.

Schrödinger's first attempt at finding a wave equa-
tion was to start with the relativistic relationship
between the energy and momentum of a particle.
That relationship, as we saw in the section on par-
ticle accelerators,  page 28-24 of the Physics text, is

  
E2 = p2c2 + m0

2c4
relativistic
relationship
between E and p

(6)

where  m0  is the rest mass of the particle.

To see how to construct a wave equation, let us start
with the simple case of a zero rest mass particle,
namely the photon. For the photon, we have simply

  E2 = p2c2 zero rest mass
particle (7)

We will see that the one dimensional wave equation
that leads to Equation (7) is

  ∂2ψ
∂t2 = c2 ∂2ψ

∂x2 (8)

where  ψ  (psi) is a Greek letter to represent the wave
amplitude.  (For rubber rope waves   ψ = y , the wave
height.  For sound waves   ψ = p , the excess pres-
sure.) To check that Equation (8) is the correct
equation, use the trial function

   ψ = ψ0e i (kx – ωt) (9)

which, as we saw at the end of the last chapter (see
Equation 5-142), represents a wave travelling to the
right at a speed  ω/k.
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We have
   ψ = ψ0e i (kx – ωt)

   ∂ψ
∂t = – iωψ ;

∂2ψ
∂t2 = (– iω)2ψ = –ω2ψ

   ∂ψ
∂x = – ikψ ;

∂2ψ
∂x2 = (– ik)2ψ = – k2ψ

Plugging these values into Equation (8) gives

   
  ∂2ψ

∂t2 = c2 ∂2ψ
∂x2 (8) repeated

  –ω2ψ = c2(– k2)ψ

The factor   – ψ  cancels and we get

  ω2 = c2k2
(10)

Multiply through by  h2  and noting that   E = hω
and  p = hk we get

  h2ω2 = c2(h2k2)

 E2 = c2p2 (11)
which is the result we wanted.

Exercise 1
For a traveling wave, use the trial function

   ψ = ψ0sin (kx – ωt)

and show that you get the same result.

You can see that the process is quite straightforward.
For each factor of ω  you want from your differential
equation, you put a   ∂/∂t  into the equation.  For each
factor of (k), you include a   ∂/∂x .

If we set   ψ = E or B in Equation (8) we get the wave
equations

  ∂2E
∂t2 = c2 ∂2E

∂x2 (12a)

  ∂2B
∂t2 = c2 ∂2B

∂x2 (12b)

These turn out to be the differential form (in one
dimension) of the electromagnetic wave we discussed
in Chapter 32 in the Physics text. (These are Equations
(24a) and (24b) of Chapter 9 of the Calculus text, if we
set   c2 = 1/µ0ε0 .) This should not be surprising, be-
cause an electromagnetic wave just represents the
wave nature for the zero rest mass photon.

Now that we have some experience constructing
wave equations, let us go for the equation for a particle
with rest mass.  This time let us first convert the
relationship between the particle energy E and momen-
tum p into a relationship between ω  and k. We have

 E2 = p2c2 + m0
2c4

Setting   E = hω and  p = hk  gives

  h2ω2 = h2k2 c2 + m0
2 c4

Dividing through by  h2  gives

  
ω2 = c2k2 +

m0
2c4

h2 (13)

Using a   ∂/∂t  for each ω  and a   ∂/∂x  for each k
suggests the wave equation

  
∂2ψ
∂t2 = c2 ∂2ψ

∂x2 –
m0

2c4

h2 ψ
(14)

Plugging in the trial solution

   ψ = ψ0e i (kx – ωt)

  ∂2ψ
∂t2 = –ω2ψ ;

∂2ψ
∂x2 = – k2ψ

gives

  
– ω2ψ = – c2k2ψ –

m0
2c4

h2 ψ (15)

cancelling the factor of   – ψ  gives

  
ω2 = c2k2 +

m0
2c4

h2 (16)

which is the result we wanted.

Equation (14) is the one dimensional form of
Schrödinger's relativistic wave equation.  This is
the first wave equation Schrödinger found, but he
ran into trouble with it.
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Consider the case of a particle at rest, or nearly at
rest, so that we can neglect  p2c2  compared to

 m0
2c4 .  Then the square of the energy E is approxi-

mately equal to the square of the rest energy  m0c2

   E2 ≈ m0
2c4 for

small p (17)

This equation has two solutions

 
 E1 = m0c2

E2 = – m0c2
(18)

Solution (2) appears to represent a particle with a
negative rest energy, a very un-physical thing.  The
corresponding wave solutions are

   ψ1 = ψ0e i (kx – ω1t) ; hω1 = E1 (19)

   ψ2 = ψ0e i (kx – ω2t) ; hω2 = E2 (20)

When you encounter two solutions to a physical
problem, and one is nonsense, you usually throw the
bad solution out.  For example, the hypotenuse of a
right triangle is given by the equation

 c2 = a2 + b2 (21)

which has two solutions

 c1 = + a2 + b2 (22)

 c2 = – a2 + b2 (23)

Since you know that you cannot have a negative
hypotenuse, you just throw out the un-physical solu-
tion  c2 .

Schrödinger tried to throw out the un-physical solu-
tion   ψ2  of his relativistic wave equation, but ran into
the following problem.  If he started with pure   ψ1
waves for the electrons, and let the electrons inter-
act,   ψ2  waves were generated. In other words, if he
threw out the un-physical   ψ2  waves, the equations
put them back in.  We did not have this problem with
the Pythagorean theorem.

Schrödinger gave up on the relativistic wave equation
and decided to use the nonrelativistic relationship
between the kinetic energy E and momentum p of a
slowly moving particle.

That relationship is

 kinetic
energy E = 1

2
mv2 = 1

2m
(m2v2) (24)

where v is the speed of the particle, m the rest mass,
and mv = p is the momentum.  Thus E and p are
related nonrelativistically by

 
E =

(mv)2

2m
=

p2

2m
(25)

Writing   E = hω ,  p = hk , the nonrelativistic rela-
tionship between ω  and k is

   
hω = h2k2

2m

nonrelativistic
relationship
between ω and k (26)

Schrödinger went to the nonrelativistic form be-
cause the relationship  E = p2/2m  does not involve
negative rest masses.

To construct a wave equation that gives this nonrela-
tivistic relationship between ω  and k, we need one
time derivative to give the one factor of ω , and two
x derivatives to give the factor of  k2 .  What works,
as we will check, is

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2

one dimensional
Schrödinger's
equation for
a free electron

(27)

With the trial solution

   ψ = ψ0e i (kx – ωt)

   ∂ψ
∂t = – iωψ ;

∂2ψ
∂x2 = – k2ψ (28)

we get

   
ih(–iωψ) = h2

2m
k2ψ

   
– i2ωhψ = h2

2m
k2ψ (29)

The   ψ′s cancel, and with   – i2 = 1,  we are left with
the desired result

  
hω = h2k2

2m
(26) repeated

Equation (27) is the one dimensional form of
Schrödinger's equation for a free particle.
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In Chapter 2 of the Calculus text, we saw that the
equations for rope waves, sound waves, and electro-
magnetic waves all had second derivatives of both
space and time.  That is how we got the oscillating
solutions.   In our study of the RLC circuit, we saw
that the presence of a first derivative, the R term in

 d2Q
dt2

+ R
L

dQ
dt

+ Q
LC

= 0 (5-59) repeated

led to an exponential decay.

One might wonder, since there is only a first deriva-
tive with respect to time in Schrödinger's equation,
shouldn't that lead to an exponential decay with
time, of the wave amplitude  ψ ?  It did not do so
because of the explicit factor of (i) in Schrödinger's
equation.  With the trial solution    ψ = ψ0e i (kx – ωt)

the (–i) from the first derivative with respect to time
was turned into a 1 by the i in the   ∂/∂t  term.  Thus
by having an (i) in Schrödinger's equation itself, we
can get an oscillating solution with a first time
derivative.

The reason we have introduced Schrödinger's equa-
tion after a chapter on complex variables is that
factor of (i) in the equation itself.  With the other
differential equations we have discussed so far, we
had the choice of using real or complex variables.
But we cannot write, let alone solve, Schrödinger's
equation without the use of complex variables.

Exercise 2
In three dimensions, the momentum vector

 p = (px, py, pz) has a magnitude p given by the
Pythagorean theorem as

 p2 = (px
2+ py

2+ pz
2)   (30)

With  p = hk , we have

 p2 = h2(kx
2+ ky

2+ kz
2)  (31)

We got the one dimensional wave equation by replac-
ing  kx

2 by    ∂2/∂x2. This suggests that the extension of
Equation (27) to describe three dimensional plane
waves should be

     
i h ∂ψ

∂ t
= – h2

2m
∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2  (32)

As a trial solution, try the guess

    ψ = ei (k⋅x – ωt) = ei (kxx + kyy + kzz – ωt)
 (33)

and show that the guess implies

   
hω =

h2

2m(kx
2 + ky

2 +kz
2)  (34)

and
  

E =
p2
2m
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Figure 1
Spherical polar coordinates.

POTENTIAL ENERGY &
SCHRÖDINGER'S EQUATION
The relationship  E = p2/2m = mv2/2  is for a free
particle traveling at a constant speed v.  If the particle
has a potential energy  V(x), like spring potential
energy

  
V(x) = – 1

2
Kx2

spring
potential
energy (35)

where K is the spring constant, then the formula for
the total nonrelativistic energy E is

 
E = 1

2
mv2 + V(x) =

p2

2m
+ V(x) (36)

In terms of ω  and k we have

  
hω = h2k2

2m
+ V(x) (37)

and the corresponding one dimensional wave equa-
tion should be

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2 + V(x)ψ

one
dimensional
Schrödinger
equation

(38)
If you did Exercise (2), it is clear that the three dimen-
sional form of Schrödinger's equation is expected to be

   
ih

∂ψ
∂t

= – h2

2m
∂2ψ
∂x2

+
∂2ψ
∂y2

+
∂2ψ
∂z2

+V(x,y,z)ψ

(39)
In Chapter 4 of the Calculus text, we discussed the
combination of derivatives   ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

and gave them the special name

   ∇ 2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
definition
of ∇ 2 (40)

With this notation, the three dimensional form of
Schrödinger's equation can be written in the more
compact and familiar form

   
ih

∂ψ
∂t

= – h2

2m
∇ 2ψ + V(x,y,z)ψ

full
Schrödinger
equation

(41)
We can immediately get back to the one dimensional
Schrödinger's equation by replacing   ∇ 2  by   ∂2/∂x2 .

THE HYDROGEN ATOM
The reason Schrödinger developed his wave equation
was to handle the electron waves in hydrogen in a
mathematically rigorous way.  To apply Schrödinger's
equation of the hydrogen atom, you use the fact that the
electron is bound to the proton nucleus by a Coulomb
force of magnitude  e2/r2  whose potential V(r) is

  
V(r) = – e2

r
Coulomb
potential
energy

(42)

With this potential energy, Schrödinger's equation (41)
for the hydrogen atom becomes

   
h
i

∂ψ
∂t

= h2

2m
∇ 2ψ – e2

r ψ
Schrödinger's
equation for
hydrogen atom

(43)
Solving Equation (43) is not easy.  The first problem
we encounter is the fact that we have been writing

  ∇ 2 = ∂2/∂x2 + ∂2/∂y2 +∂2/∂z2  using Cartesian co-
ordinates  x, y, z, while the Coulomb potential  – e2/r
has spherical symmetry.  The best way to handle the
situation is to use a coordinate system that has the
same symmetry as the potential energy.

The coordinate system of choice is the
spherical polar coordinate system that has an inherent
spherical symmetry.  This coordinate system is de-
scribed in Chapter 4 of the Calculus text and indicated
in Figure (1).  Instead of locating a point by giving its
x, y, and z coordinates, we locate it by the  r, θ  and φ
coordinates.  The quantity r is the distance from the
origin, θ the angle down from the z axis, and φ the
angle over from the x axis, as shown.
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In the appendix to Chapter 4 of the Calculus text, we
calculated   ∇ 2  in spherical polar coordinates.  The
result was

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ) + 1

r2 sinθ
∂
∂θ

sinθ ∂ψ
∂θ

+ 1
r2 sinθ

∂2ψ
∂φ2

(44)

This surely does not look simpler than
  ∇ 2 = ∂2/∂x2 + ∂2/∂y2 +∂2/∂z2 , but it does allow

you to find solutions to Schrödinger's equation for
the hydrogen atom.

In the appendix to this chapter, we calculate some
spherically symmetric solutions to Schrödinger's
equations.  These are solutions that depend only on
r, namely   ψ = ψ(r) , so that   ∂ψ/∂θ = 0  and

  ∂ψ/∂φ= 0, which eliminates the second and third
terms in Equation (44).  The solutions we get, (we
solve one and leave the second as a homework
exercise) are

   
ψ1 = e– r /a0 e– iω1t (45)

   
ψ2 = 1 – r

2a0
e– r /2a0 e– iω2t

(46)

where  a0  has the value

  
a0 = h2

me2
Bohr radius (47)

This quantity  a0  is the Bohr radius, the radius of the
smallest orbit in the Bohr theory of hydrogen. (See
Exercise 7 in Chapter 35 of the Physics text.)

Exercise 3

Go to Appendix II of this chapter (page 6-14) and study
the steps that led to the solution   ψ1 . Then work Exercise
5 to find the solution   ψ2 . After that return here and
continue reading.

A special feature we discover when we solve
Schrödinger's equation in Appendix II,  is that in
order for   ψ1  and   ψ2  to be solutions of Schrödinger's
equation (43), the frequencies   ω1  and   ω2  have to
have the following values

  hω1 = – e4m
2h2

= – 13.6 eV (48)

  hω2 = – e4m
8h2

= – 3.60 eV (49)

You can immediately see that   hω1  is the energy of the
electron in the lowest hydrogen energy level, and   hω2
is the electron energy in the second energy level.  Just
looking at the spherically symmetric solutions begins
to tell us that Schrödinger's equation is going to explain,
in a natural way, the hydrogen energy levels.

As we mentioned in our discussion of the hydrogen
atom in Chapter 38 of the Physics text, there are many
allowed standing wave patterns for the electron in
hydrogen.  In Figure (38-1), reproduced on the next
page, we show sketches of the six lowest energy
patterns   ψn, ,m  labeled by their energy quantum num-
ber (n), angular momentum quantum number ( ) and
z projection of angular momentum quantum number
(m).  We noted that all the zero angular momentum
patterns  ( = 0)  are spherically symmetric.  By solving
Schrödinger's equation for spherically symmetric stand-
ing waves, we began to generate the  = 0  patterns.
Explicitly, the waves we got are

   ψ1,0,0 = ψ1 (of Equation 45)

   ψ2,0,0 = ψ2 (of Equation 46)

To solve for the non symmetric patterns like   ψ2,1,1 that
have angular momentum, you have to be able to handle
angular terms involving θ  and φ  in the formula (44)
for   ∇ 2 .  Differential equations involving   ∇ 2  have
been studied for well over a century, and the angular
terms, which are common to many of these equations,
have been carefully worked out with standardized
notation.  The angular dependence of the non spherical
standing waves involve what are called spherical
harmonics which are briefly discussed in  Appendix II
of this chapter.
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Figure 38-1 (page 38-3 of the Physics text)
The lowest energy standing wave patterns in hydrogen. The intensity is what you
would see looking through the wave. We have labeled      ψψ1  and      ψψ2 on the diagram.

E
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 –
13

.6
eV

n = 2,   = 0,  m = 0

  
ψ2(r) = 1 –

r

2a0
e– r /2a0

n = 3,   = 0,  m = 0

n = 2,   = 1,  m = 1

top view

side view side viewside view

There are 8 more n = 3 patterns
in addition to the one shown.
The  and m quantum numbers
are
 = 1;   m = 1, 0, –1
 = 2;   m = 2, 1, 0, –1, –2.

n = 2,   = 1,  m = 0 n = 2,   = 1,  m = –1

n = 1,   = 0,  m = 0

E
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 –
3.

40
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E
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 –
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51
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top viewtop view

(a)
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(d)

(c) (e)

(f ) (h)

(g)

(i)

  ψ1(r) = e– r /a0
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INTERPRETATION OF SOLUTIONS
TO SCHRÖDINGER'S EQUATION
Bohr's theory of the hydrogen atom, although quite
successful, was based on Newtonian mechanics with
the ad hoc assumption that angular momentum was
quantized in units of h .  De Broglie's theory suggested
that the reason for the quantization of angular momen-
tum was due to the wave nature of the electron, but he
also treated the electron wave in a rather ad hoc manner.
If one assumes that Schrödinger's equation rather than
Newtonian mechanics provides the basic theory for the
electron in hydrogen, then all the quantized energy
levels follow a direct consequence of the theory.  No
extra assumptions have to be fed in.  Schrödinger had
found the theory to replace Newtonian mechanics in
describing atoms.

But questions remained.  The electron's wave nature
was well established, but what was the meaning of the
electron wave?  The answer to that was provided a
couple of years later by Max Born, who was calculating
how electron waves would be scattered by atoms.  The
calculations suggested to him that the electron wave
should be interpreted as a probability wave, as we
discussed in Chapter 40 of the Physics text.

One of the main features of a probability wave is that
it has to be represented by a real, positive number.  You
cannot have negative probabilities or imaginary prob-
abilities.  But so far, our electron waves are described
by a complex variable  ψ , obtained from an equation
that was itself complex.  How do we get real positive
numbers from the complex  ψ ?

We ran into a somewhat similar problem in our discus-
sion of electromagnetic radiation.  Maxwell's equa-
tions predict that light waves consist of electric and
magnetic fields  E  and   B  .  Yet most of the time we are
concerned with the intensity or energy density of a light
wave.  To predict the intensity from Maxwell's theory,
we have to know how to calculate the intensity from the
vectors  E  and  B .  The answer is that the intensity is
proportional to the square of  E  and   B.  If we use the
correct units, the intensity is proportional to

  (E ⋅ E + B ⋅ B) .  These dot products   E ⋅ E  and   B ⋅ B
are always positive numbers and therefore can repre-
sent an energy density or intensity.

If we can get a positive number for a vector field by
taking the dot product of the vector with itself, what
do we do to get a positive number from a complex

 ψ ?  The answer, as we mentioned at the beginning
of Chapter 5 (see Equation 5-26), is that we get a real
positive number from a complex number by multi-
plying by the complex conjugate.  To remind you
how this works, suppose that we have separated  ψ
into its real and imaginary parts

   ψ = ψreal + iψimag (50)

where both   ψreal  and   ψimag  are real numbers.  Then
the complex conjugate, which we designate by   ψ* ,
is defined by changing (i) to (–i)

   ψ* = ψreal – iψimag (51)

To calculate the complex conjugate   ψ*  you do not
have to separate the function into real and imaginary
parts ahead of time.  You get the same result by
replacing all (i) by (–i) in the complex formula.

When you multiply a complex number  ψ  by its
complex conjugate   ψ* , the result is a real positive
number, as you can see below

   ψ*ψ = (ψreal – iψimag) (ψreal + iψimag)

= ψrealψreal + iψrealψimag

– iψimagψreal – i2ψimagψimag

The    iψrealψimag terms cancel, and with   – i2 = 1 we get

  
ψ*ψ = ψreal

2 + ψimag
2

(52)

and thus   ψ*ψ is a real, positive number.

For electron waves, the positive number   ψ*ψ repre-
sents the intensity of the wave in much the same way
that   (E ⋅ E + B ⋅ B)  represented the intensity of the
electromagnetic wave.
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Figure 2
We can use as the volume element  d 3V the spherical
shell of radius r and thickness dr.

Normalization
In describing probabilities, one usually represents a
probability of 1 as being certainty, and that the
probability of an event as being allowed to range
from zero to one.  If the wave function  ψ  is to
represent a probability wave for an electron, we have
to include the idea that the probability of something
ranges from zero to one.

The intensity   ψ*ψ is a density that varies over space.
If you have an energy density, call it E , then the total
energy E is the integral over all of space of the
energy density E .  We can write this symbolically as

  E = E (x,y,z)d3V
all space

(53)

where, if we are using Cartesian coordinates, the
volume element  d3V  would be   (dx×dy×dz) .

If we are to interpret   ψ*ψ as a probability density, then
the total probability should be the integral of the
probability density over all space.  We can write this as

  total
probability = ψ*ψ d3V

all space

(54)

The question is, this is the total probability of what?  If
we are talking about the electron wave in hydrogen, and
we think of   ψ*ψ d3V  as the probability of finding the
electron in some small volume element  d3V , then if
we sum these probabilities over all space, we should
end up with the total probability of finding the electron
somewhere in space.  If the hydrogen atom has one
electron, and you look everywhere, you should eventu-
ally find the electron with a probability (1).  Thus the
total probability should be given by the formula

  
1 = ψ*ψ d3V

all space

(55)

The wave functions   ψ1  and   ψ2  that we presented
you in Equations (45) and (46) do not have this
property.

Let us see what the integral of   ψ1
*ψ1  over all space

is.  We have

   ψ1 = e– r /a0 e– iω1t (56a)

   ψ1
* = e– r /a0 e+ iω1t (change – i to i) (56b)

so that

   ψ1
* ψ1 = e– r /a0 e+ iω1t e– r /a0 e– iω1t

  
ψ1*ψ1 = e– 2r/a0

(57)

The    e iω1t′s  cancelled and we end up with a real
positive density.

To integrate   ψ*ψ over all space, we notice that since
  ψ*ψ is spherically symmetric, we can take  d3V  as the

volume of the spherical shell shown in Figure (2), a
shell of radius r and thickness dr.  That volume is

  d3V = (4πr2)dr (58)

because   4πr2 is the area of a sphere of radius r.
Throughout the shell,   ψ*ψ has the same value

 e– 2r/a0 , thus our volume integral is simply

  
ψ*ψ d3V

all space

= e– 2r/a0 (4πr2)dr
r = 0

∞

 (59)

Being somewhat lazy, we look up in our short table
of integrals, the integral of   r2e– α r.  After some
manipulation shown in Appendix 1, we get

  
4π r2e– 2r/a0dr

0

∞
= π(a0)3 (60)

The result is that the integral of   ψ*ψ over all space
is   π(a0)3  instead of the desired value of 1.
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To fix this problem, we use a so-called normalized
wave function   (ψ1)normalized , which is simply   ψ1
multiplied by an appropriate normalization constant
C.  To find out what C should be, write

  (ψ1)normalized = Cψ1 (61a)

  (ψ1
*)normalized = C*ψ1

* (61b)

where, if we want, the normalization constant can be
complex.  Then we have

  (ψ1*)normalized(ψ1)normalized = (C*C) ψ1* ψ1

  1 = (ψ1*) normalized (ψ1)normalized d3V
all space

= C*C ψ*ψ d3V
all space

= C*Cπ(a0)3

(62)

Thus

  C*C = 1

π(a0)3
(63)

The simplest choice is to take C real, giving

   
C = 1

π(a0)3

normalization
constant for ψ1

(64)

As a result our normalized wave function becomes

  
(ψ1)normalized = 1

π(a0)3
e– 2r/a0 e– iωt

(65)

When you look at tables of wave functions, you will
see factors like 1/   π(a0)3  or    3/8π .  They are
merely the normalization constants.  In one sense,
the normalization constants just make the formulas
look complicated.  Most of the physics in our equa-
tion for   ψ1  is contained in the factor   e– r/a0 .  It tells
us that the electron wave decays exponentially as we
go out from the proton, decaying by a factor of 1/e
when we go out one Bohr radius  a0 .  The intensity,
or probability   ψ*ψ  is proportional to   e– 2r/a0  and
thus drops off by a factor  1/e2  when we are a Bohr
radius from the proton.  We also calculated the
energy levels  E1  and  E2  without worrying about
the normalization constants.  It is nice to have a table
that gives you the normalization constants, but you
get a better insight into the shape of the standing
wave patterns if you have another table without
them.

Exercise 4
At what finite radius is there zero probability of finding
an electron when the electron is in the n = 2,  = 0,
m = 0 standing wave pattern?  Explain why and sketch
the intensity   ψ2,0,0

* ψ2,0,0
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THE DIRAC EQUATION
Our story is incomplete if we stop our discussion of
particle wave equations with Schrödinger's equa-
tion.  As successful as that equation is, it still does
not handle relativistic effects.  As we saw,
Schrödinger could avoid the negative rest mass
solutions by starting with the nonrelativistic formula

 E = p2/2m  rather than the relativistic one
 E2 = p2c2 + m0

2c4 .

It appeared to Dirac that the reason Schrödinger
could avoid the nonphysical solutions is because the
nonrelativistic equation involves only the first de-
rivative with respect to time   ∂ψ/∂t , rather than the
second derivative   ∂2ψ/∂t2  that appeared in the
relativistic equation (see Equation (14).  Dirac thought
that if he could develop a relativistic wave equation
that avoided second time derivatives, then perhaps
he could avoid the un-physical negative mass solu-
tions.

By 1929, when Dirac was working on the problem,
it was known that the electron had two spin states,
spin up and spin down.  It was these two spin states,
along with the Pauli exclusion principle, that led to
an understanding of the structure of the periodic
table.  These spin states are not included in or
explained by Schrödinger's equation.

Slightly earlier, Wolfgang Pauli had introduced a
new mathematical quantity called a spinor to de-
scribe the spin state of the electron.  Spinors are
quantities, involving complex numbers, that are in a
sense half way between a scalar number and a
vector.  The existence of such a mathematical quan-
tity was unknown until its invention was required to
explain the electron.  Pauli was able to modify
Schrödinger's equation with the use of spinors to
include the effects of electron spin.

Dirac found that by using a certain combination of
spinors, he could write a relativistic wave equation
for the electron that had only a first order time
derivative   ∂ψ/∂t .  He hoped that this equation would
avoid the un-physical negative mass solutions.

Dirac's equation was successful in that it not only
included all the results of Schrödinger's and Pauli's
equations, but it also correctly predicted tiny relativ-
istic effects that could be detected in the spectra of
hydrogen.  However, Dirac soon found that his
equation also led to the apparently negative mass
solutions.

Dirac could not throw his equation away because it
successfully predicted relativistic effects that were
observed by experiment.  Instead he found a new
interpretation of the previously undesirable solu-
tions.  He found that these solutions could be reinter-
preted as the wave for a particle whose mass was
positive but whose electric charge was of the oppo-
site sign.  The equation led to the prediction that
there should exist a particle with the same rest mass
as the electron but with a positive electric charge.
That particle was observed four years later in Carl
Anderson's cloud chamber in the basement of the
physics building at Caltech.  It became known as the
positron.

We now know that any relativistic wave equation for
a particle has two kinds of waves for a solution.  One
represents matter particles, and the other, like the
wave for the positron represents antimatter.  If you
have a relativistic wave equation, even if you start
only with matter particles, the equation contains the
mechanism for particle-antiparticle pair creation.
You let the matter particles interact, and antimatter
has a finite probability of being created.  That is why
Schrödinger and Dirac could not suppress the anti-
matter waves in the relativistic equations.  However,
by going to a nonrelativistic equation, representing
situations where not enough energy is available to
create electron positron pairs, Schrödinger could
avoid the antimatter waves.
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Our normalization integral is

  
ψ*ψ d3V

all space

= 4π r2 e– 2r/a0 dr
r = 0

∞
  (59) repeat

Looking for the integral of   r2e– α r in our short table
of integrals in the formulary, we find instead

 x2e– axdx = 1
a3(a2x2 + 2ax + 2)e– ax (66)

If we set x = r and integrate from 0 to infinity, we have

  
r2e– ardr

0

∞

= 1
a3(a2r2 + 2ar + 2)e– ar

0

∞

= 1
a3(a2R2 + 2aR + 2)e– aR

R = ∞

– 1
a3(a202 + 2a×0 + 2)e– a×0

(67)

The exponential decay is so powerful that in the limit
of large R, a term of the form  Rne– aR  goes to zero
for any value of n for positive (a). Thus all terms with
a  e– aR go to 0 as R goes to infinity. With  e0 = 1, we
are left with

  
r2e– ardr

0

∞

= 2
a3 (68)

Now set  a = 1/ 2a0  and we get

  
4π r2e– 2r/a0 dr

0

∞

= 4π 2
(2/a0)3

= π(a0)3
(69)

Appendix I – Evaluation of a Normalization Integral
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APPENDIX II - An introduction to Schrödinger's
Equation Applied to the Hydrogen Atom
The Hydrogen Atom
Schrödinger's first major success with his wave
equation was to solve for the electron standing
waves in hydrogen, and to determine the electron
energies in each of the standing wave patterns.  For
an electron in hydrogen, the potential energy is
given by Coulomb's law as

 V(r) = – e2

r (42) repeated

where –e is the charge on the electron and r is the
separation of the electron and proton.  Thus the
equation Schrödinger had to solve for hydrogen is
the three dimensional equation

   
ih

∂ψ
∂t

= – h2

2m
∇ 2ψ – e2

r ψ
Schrödinger′s
equation for
hydrogen atom

(43) repeated

Quite a few steps are required to obtain solutions to
Equation (43).  The first is to look for solutions of
definite frequency  ω  or energy   E = hω  by using the
trial function

   ψ = ψ(x,y,z) e– iωt

= ψ(x) e– iωt
(70)

where we will use the bold face x to stand for (x,y,z).
Plugging this guess into Equation (43) gives

    
ih(– iω)ψ(x) e– iωt = – h2

2m
∇ 2ψ(x) e– iωt

– e2

r ψ(x) e– iωt

The factor   e– iωt  cancels and we are left with

   
hωψ(x) = – h2

2m
∇ 2ψ(x) – e2

r ψ(x) (71)

With   hω = E, this becomes

   
Eψ(x) = – h2

2m
∇ 2ψ(x) – e2

r ψ(x) (72)

The next step is to note that  it is not convenient to
handle a spherically symmetric potential  V(r) = – e2/r
using Cartesian coordinates x, y, and z.  In the Chapter
4 of the Calculus text we derived the formula for   ∇ 2  in
spherical polar coordinates  r, θ , φ  which are shown
in Figure (1) reproduced here.  In these spherical
coordinates we show, after considerable work, that

  ∇ 2ψ  is given by Equation (4-10) as

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ)

+ 1
r2sinθ

∂
∂θ

sinθ∂ψ
∂θ

+ 1
r2 sin2θ

∂2ψ
∂φ2

(4-10)

(Note: many texts write the first term as
  1/r2 ∂/∂r (r2∂ψ/∂r)  which is an equivalent but usu-

ally less convenient form.)

x

y

θ

z

r

φ

Figure 1 (repeated)
Spherical polar coordinates.
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If we look at only the spherically symmetric solu-
tions where

   
ψ(x,y,z) = ψ(r)

spherically
symmetric
wave (73)

then   ∂ψ(r)/∂θ = 0 ,   ∂ψ/∂φ= 0 , and only the radial
part of   ∇ 2ψ(r)  survives.  Schrödinger's equation for
the spherically symmetric waves of energy E becomes

  
Eψ = – h2

2m
1
r

∂2

∂r2
(rψ) – e2

r ψ (74)

Multiplying through by  2mr/h2, Equation (74) can
be written in the form

  ∂2

∂r2
(rψ) + a

r + b rψ = 0 (75)

where

 a = 2me2

h2 ; b = 2mE
h2 (76)

If we define the variable  u(r)  by

  u = rψ ; ψ = u
r (77)

our equation for u becomes

  ∂2u
∂r2 + a

r + b u = 0 (78)

Exercise 5

Derive Equation (78) starting from Equation (74).

Equation (78) is a differential equation we have not
encountered before.  Neither of our familiar guesses
for a solution, like   u = e– α r or   u = sinωr , will work,
as you can check for yourself.  What does work is the
function we will call  u1 , which is

   u1(r) = re– α r guess (79)

Plugging our guess into Equation (79) gives

  du1
dr

= e– α r – α re– α r

  d2u1

dr2
= – αe– α r – αe– α r + α2re– α r

Thus 
 d2u1

dr2 + a
r + b u = 0  becomes

  – 2αe– α r + α2re– α r + a
r re– α r + bre– α r = 0

The common factor   e– α r cancels and we are left with

  – 2α + a + r α2 + b = 0 (80)

The only way we can satisfy Equation (80) for
arbitrary values of r is to set both square brackets
separately equal to zero, giving

  2α = a ; α = a/2 (81a)

  α2 = –b (81b)

Squaring Equation (81a) gives

  α2 = a2

4
(81c)

For Equations (81b) and (81c) to be consistent, the
constants (a) and (b) must satisfy the relationship

 –b = a2

4
(82)

To see what Equation (82) implies, let us put back in
the values of (a) and (b)

  a = 2me2

h2
; a2

4
= 1

4
× 4m2e4

h4
(83a)

 –b = – 2mE
h2

(83b)

Thus Equation (82) requires

 – 2mE
h2

= m2e4

h4

or

 
E = – me4

2h2 = – 13.6 eV (84)

In our study of the Bohr theory, we found that the
lowest energy level of the hydrogen atom was

 E1 = – me4/2h2  which turns out to be –13.6 elec-
tron volts.  We now see that if the hydrogen wave
amplitude is given by the solution  u1 , or   ψ1 = u1r ,
then the energy of the electron in this wave pattern
must be the same as the lowest energy level of the
Bohr theory.  This is a prediction of Schrödinger's
wave equation without any arbitrary added assump-
tions like assuming angular momentum is quan-
tized.
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To see what the wave pattern is that corresponds to
the energy level  E1 , note that the Bohr radius  a0 , the
radius of the smallest Bohr orbit in the Bohr theory,
is given by

  
a0 = h2

me2 Bohr radius (85)

Thus our constant (a) in Equation (77) can be written

 a = 2me2

h2
= 2

a0
(86)

Thus Equation (81a) requires that

  a = 2α = 2
a0

; α = 1
a0

(87)

and the wave function   ψ1(r)  is given by

  ψ1(r) =
u1(r)

r = r e– α r
r = e– α r

  ψ1(r) = e– r/a0 (88)

The electron wave decays exponentially as we go
out from the nucleus, decaying by a factor of 1/e
when we go out one Bohr radius.  We have just used
Schrödinger's equation to solve for the ground state
wave function, the lowest energy level standing
wave pattern in hydrogen.

The Second Energy Level
In the following exercise you will find another
spherically symmetric solution for the hydrogen
atom.

Exercise 6
Try the guess

   u2(r) = (r + cr2)e– αr , u2 = rψ2 (89)

as a possible solution to Equation (78) where (c) is an
unknown constant.  Show that for (89) to be a solution,
you have to satisfy the conditions

  – 2α + 2c + a = 0 (90a)

  α2 – 4cα + ac + b = 0 (90b)

  α2c + bc = 0 (90c)

Then show that this requires    α2 = –b  as before, and that

   
– b = a2

16
⇒ – 2mE2

h2 = 1
16

×
4m2e4

h4 (91)

or

  
E2 = – 1

4
me4

2h2 =
– 13.6 eV

4 = – 3.60 eV (92)

Then show that    ψ2(r) is given by

   
ψ2 = (1 – r

2a0
)e– r/2a0

  E2 = – 3.6 eV (93)
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In the Bohr theory, the energy levels  En  are given by

 
En =

E1

n2
= – 13.6 eV

n2
(94)

The second energy level  E2  is thus

 
E2 =

E1

(2)2
=

E1
4

= – 3.6 eV

Thus the wave pattern you solved for in Exercise (8)
is the spherically symmetric standing wave pattern
in the second energy level.  It is what we have called
the  n = 2,  = 0 wave pattern.  Note that in the
solution

  ψ2(r) = 1 – r
2a0

e– r /2a0 (93) repeated

when we are at a distance

 r
2a0

= 1 ; r = 2a0 (95)

the wave pattern in Equation (93) goes to zero.  This
means that the standing wave   ψ2(r)  has a spherical
node out at a distance  r = 2a0 .  This is the spherical
node we saw in the   ψ(n = 2, = 0)   pattern shown in
the Physics text, Figure (38-1) repeated here.

If you try a guess of the form

  u3(r) = (1 + c2r + c3r2)e– α r (96)

you end up with a spherical wave pattern   ψ3(r)  that
has two spherical nodes, and has an energy

 
E3 =

E1

32 (97)

which is the third energy level.

You can now see the pattern.  We can generate all the
spherically symmetric  = 0  wave patterns by add-
ing terms like  c4r3 ,  c5r4 ,   ⋅ ⋅ ⋅ cnrn–1  to our guess for

 un(r) .  Solving for all the constants, we end up with

 
En =

E1

n2
(98)

which is the energy level structure Bohr discovered.

Figure 38-1a
Hydrogen atom
standing wave
pattern for
n = 2,  = 0.

Figure 38-1i
Wave pattern for n = 3,  = 0.

Figure 3
Tacoma Narrows
bridge in an n = 2
second harmonic
standing wave
pattern.

(Movie. Press esc to stop)
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Non Spherically Symmetric Solutions
It was fairly easy to handle the spherically symmet-
ric solutions to Schrödinger's equation for hydro-
gen, because we did not have to deal with the angular
terms involving θ  and φ  in Equation (4-10) for   ∇ 2 .
To find non spherically symmetric solutions, we
have to work with the complete equation

  
Eψ = – h2

2m
∇ 2ψ + V(r)ψ

  
∇ 2ψ = 1

r
∂2

∂r2
(rψ)

+ 1
r2sinθ

∂
∂θ

sinθ∂ψ
∂θ

+ 1
r2 sin2θ

∂2ψ
∂φ2

(99)

Differential equations involving   ∇ 2  in spherical
coordinates have been studied for a long time and
standard procedures have been carefully worked out
to handle the angular dependence of the solutions of
these equations.  As long as the equation has no other
angular terms except those that appear in   ∇ 2 , then
the solutions are of the form

  f(r,θ,φ) = Rn m(r)Y m(θ,φ) (100)

where  Rn m(r)  are functions that depend only on the
variable (r), and the   Y m(θ,φ)  are functions only of
the angles θ  and φ .  The subscripts n,  and m can
take on only integer values.

When we are dealing with Schrödinger's equation,
the solutions are of the form

  ψ(r,θ,φ) = ψn m(r)Y m(θ,φ) (101)

where each different allowed integer value of the
subscripts  n, , and m corresponds to a different
allowed standing wave pattern for the electron.

The functions   Y m(θ,φ) , which are called spherical
harmonics, start off quite simply for small , m, n,
but become more complex as  and m increase.  The
simplest are

   Y0,0(θ,φ) = 1 no angular dependence

  Y1,0 = cosθ

  Y1,1 = – 1
2

sinθ eiφ

  Y1,– 1 = 1
2

sinθ e– iφ (102)

Since  Y0,0  has no angular dependence, all solutions
of the form

  ψn,0,0 = ψn(r)Y0,0 = ψn(r) (103)

are the spherically symmetric solutions we have
already been studying.  We calculated   ψ1(r)  and
had you calculate   ψ2(r) , which corresponds to the
values n = 1 and n = 2 respectively.

When we worked out the solution   ψ1(r)  we found
that it represented an electron in the lowest, n = 1,
energy level.  You were to show that   ψ2(r)  repre-
sented an electron in the second, n = 2, energy level.
We can see that for the symmetric solutions, the
integer subscript n is the energy quantum number for
the electron.

It turns out that the integer subscripts  and m define
the amount of angular momentum the electron has in
a particular wave pattern.  When  = 0, m = 0, the
electron has no angular momentum.  Thus the sym-
metric solutions represent an electron with no angu-
lar momentum.

The quantum number  is related to the total orbital
angular momentum of the electron, and m is propor-
tional to the z component  Lz  of orbital angular
momentum.  Explicitly

 Lz = mh (104)
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The fact that the numbers , m and n have to have
integer values is simply a consequence that for any
confined wave, there is an explicit set of allowed
standing wave patterns.  The electron in the hydro-
gen atom is confined by the Coulomb force of the
proton.  When you work out the mathematics to
handle   ∇ 2  in spherical coordinates, you find that the
allowed standing wave patterns can be identified by
the integers , m and n.

There are certain rules for the possible values of ,
m and n.  When n = 1, there is only one solution
which we found.  It corresponds to  = m = 0.  For
n = 2, the possible solutions are:

n m

2 0 0                 possible values of
and m for n = 2

2 1 0

2 1 1

2 1 –1

In general, n  ranges from 1 to infinity,  can have
values from 0 up to n - 1, and m can range in integer
steps from +  down to - .  These are the rules that
define the possible standing wave patterns of the
electron in hydrogen.
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Calculus 2000-Chapter 7
Divergence

CHAPTER 7 DIVERGENCE

In the Physics text we pointed out that a vector field
was uniquely determined by formulas for the surface
integral and the line integral.  As we have mentioned
several times, that is why there are four Maxwell
equations, since we need equations for the surface
and line integral of both the electric and magnetic
fields.  The divergence and curl are the surface and
line integrals shrunk down  to an infinitesimal or
differential scale.  We will discuss divergence in this
chapter and curl in the next.
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THE DIVERGENCE
As we mentioned, the divergence is a surface inte-
gral shrunk down  to an infinitesimal or differential
scale. To see how this shrinking takes place, we will
start with the concept of the surface integral as
expressed by Gauss' law and see how we can apply
it on a very small scale.

We begin with Equation (29-5) of the Physics text

  E⋅dA
closed
surface

=
Qin
ε0

(29-5)

Equation (29-4) says that for any closed surface, the
integral of   E ⋅ dA  over the surface is equal to   1/ε0
times the total charge  Qin  inside the volume bounded
by the surface.

The interpretation we gave to this equation was to
call   E ⋅ dA  the flux of the field  E  out through the
area element  dA  .  The integral  over the closed
surface is the total flux flowing out through the
surface. We said that this net flux out was created by
the electric charge inside.  By calculating the flux of

 E  out through a spherical surface centered on a
point charge, we found that the amount of flux
created by a charge Q  was   Q/ε0 .

The fact that Equation (29-4) applies to a surface of
arbitrary shape follows from the fact that the electric
field of a point charge is mathematically similar to
the velocity field of a point source in an incompress-
ible fluid like water.  We described a point source of
a velocity field as some sort of "magic" device that
created water molecules.  The physical content of
Gauss' law applied to water was that the total flux of
water out through any closed surface had to be equal
to the rate at which water molecules were being
created inside.

Of course for a real situation there are no "magic"
sources creating water molecules, with the result
that there is no net flux of water out through any
closed surface, and the velocity field of water obeys
the equation

  v ⋅ dA
closed
surface

= 0 (1)

Equation (1) is the condition that the velocity field is
a purely solenoidal field like the magnetic field.

Back to Gauss' law, Equation (29-5). Before we
shrink the law to an infinitesmal scale, we would like
to change the right hand side, expressng the total
charge  Qin  in terms of the charge density   ρ(x,y,z)
that is within the volume bounded by the closed
surface.

We do this by considering a small volume element
  ∆Vi = (∆x ∆y ∆z)i .  If the charge density at point

(i) is   ρ(xi,yi,zi)  then the amount of charge   ∆Qi  at
  ∆Vi  is

  ∆Qi = ρ(xi,yi,zi)∆Vi (2)

Adding up all the   ∆Qi  that reside inside the surface
gives us

  Qin = ∆QiΣ
i

= ρi∆ViΣ
i

= ρ(xi,yi,zi) ∆xi ∆yi ∆ziΣ
i

(3)

Taking the limit as the   ∆x ,   ∆y  and   ∆z  go to zero
gives us the integral

  Qin = ρ(x,y,z)
volume
bounded by
closed surface

dxdydz

(4)

To shorten the notation, let V be the volume bounded
by the closed surface S, and introduce the notation

  d3V ≡ dxdydz (5)

Then Equation (4) can be written

  
Qin = ρ(x,y,z)

V

d3V (6)

Using Equation (6) in Gauss' law (29-5) gives us

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7)

Equation (7) is a more general integral form of
Gauss' law, relating the surface integral of  E  over a
closed surface S to the volume integral of ρ  over the
volume bounded by S. It is Equation (7) that we
would now like to shrink down to an infinitesmal
scale.

∆x
∆y

∆z ∆V
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We know how to go to the small scale version of the
volume integral of ρ ,  just undo the steps (2) through
(6) that we used to derive the volume integral.  In
particular we will focus our attention on one small
volume element   ∆Vi = ∆xi ∆yi ∆zi  and apply Gauss'
law to this volume

  
E⋅dA

surface
bounding
∆Vi

=
∆Qi
ε0

= 1
ε0

ρ(xi,yi,zi)∆Vi

(8)

It is clear how we got the total charge  Qin when we
added up all the   ∆Qi  inside the volume V.  But how
do we handle the surface integral of  E ?  How do we
interpret adding a bunch of surface integrals over the
small volume elements   ∆Vi  to get the surface inte-
gral over the entire surface S?

The way to picture it is to remember that the surface
integral over the surface of   ∆Vi  is equal to the flux
of  E  created inside   ∆Vi .  From this point of view,
the total flux flowing out through the surface of the
entire volume will be the sum of the fluxes created
within each volume element.  To calculate this sum,
we first have to calculate the flux flowing out of the
volume element   ∆Vi .

In Figure (1), we show the volume element   ∆Vi
located at  (xi,yi,zi) , with sides   ∆x ,   ∆y  and   ∆z .
Flowing through this volume element is the electric
field  E(x,y,z) .

Also in Figure (1) we have drawn the surface area
vectors   ∆A1 , and   ∆A2  for the left and right vertical
faces.  Recall that for a surface integral, the area
vector   ∆A  or  dA  is perpendicular to the surface,

pointing out of the surface.  Thus   ∆A2  is x directed
with a magnitude equal to the area   ∆y∆z of that side,
while   ∆A1  points in the –x direction and has the
same magnitude.

We can formally write

  ∆A1 = – x∆y∆z ; ∆A2 = x∆y∆z (9)

where x is the unit vector in the x direction.  Similar
formulas hold for the area vectors for the other four
faces of   ∆V .  For example, on the top face we have

  ∆A3 = z∆x∆y .

To calculate the total flux of  E  out of   ∆V , we have
to calculate the flux out through each of the six faces.
For the two x oriented areas   ∆A1 , and   ∆A2 , only
the x component of  E  will contribute to the dot
products   E⋅ ∆A .  Let  Ex(x,y,z)  be the average
value of  Ex  at face 1, and   Ex(x +∆x,y,z)  be the
average value of  Ex  at face 2, which is a distance   ∆x
down the x axis from face 1.  The flux out of face 2
will be

  flux out
of face 2 = Ex(x +∆x,y,z)∆A2

= Ex(x +∆x,y,z)∆y∆z
(10)

At face 1, where   ∆A1 = – x∆y∆z  , the dot product
  E⋅ ∆A  can be written

  E⋅∆A1 = (xEx+yEy+zEz)⋅(–x∆y∆z)

= –Ex(x,y,z)∆y∆z
(11)

where   x ⋅ x = 1 ,   y ⋅ x = z ⋅ x = 0.  We wrote the full
dot product in Equation (11) so that you could see
explicitly where the minus sign came from.

Combining Equations (10) and (11) for the total flux
out of the two x directed faces of   ∆V , we get

  flux out
of x
directed
faces

= Ex(x +∆x,y,z) – Ex(xy,z) ∆y∆z

(12)

∆x
∆y

∆z

z

x

y

∆A1 ∆A2

∆A3    

(x , y , z ) i i i

Figure 1
The volume element      ∆∆Vi .
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If we multiply Equation (12) by   ∆x/∆x = 1  we get

  flux out
of x
directed
faces of ∆V

=
Ex(x+∆x,y,z) –Ex(x,y,z)

∆x
∆x∆y∆z

(13)
At this point,   Ex(x +∆x,y,z)  and  Ex(x,y,z)  are the
average values of  Ex , averaged over the x directed
faces at   x + ∆x  and x respectively, while the func-
tions without averaging, namely   Ex(x +∆x,y,z)  and

 Ex(x,y,z)  are just the values of  Ex at the lower front
corners of the x oriented faces as shown in Figure
(2).  Any difference between the average values of

 Ex  and the corner values  Ex  will be due to y and z
variations of  Ex  over the area   ∆y∆z .

In Equation (13) we see that the change of  Ex , as we
move in the x direction, is going to become very
important.  It should be clear that we are going to get
a partial derivative of  Ex  with respect to x.  What we
are going to do now is say that variations of  Ex  in the
x direction are important but variations of  Ex  in the
y  and z direction are not, and as a result we can
replace the average values of  Ex  with the corner
values  Ex .

The above paragraph was intended to sound like a
questionable procedure.  If we do it, Equation (13)
immediately simplifies, as we will see shortly. But
how do we justify such a step?  The answer, which
we work out in detail in the appendix to this chapter,
is that when we take the limit as   ∆V  goes to zero,
contributions due to y and z variations of  Ex  go to
zero faster than the contribution from the x variation.
Neglecting the  y  and z variations turns out to be
similar to neglecting   α2  terms compared to α  terms
in an expansion of   (1 + α )n  when α  is a small
number.

We put this discussion in the appendix because it
takes some effort which distracts from our goal of
reducing Gauss' law to a differential equation.  How-
ever it is important to know how to figure out when
certain terms or dependencies can be neglected
when we take calculus limits.  Thus the appendix
should not be skipped.

Assuming that we can replace  Ex by  Ex  in Equation
(13), noting that   ∆x∆y∆z = ∆V , and taking the
limit as   ∆x  goes to zero gives us

  flux out of
x directed
faces of ∆V

= limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆V

(14)
The limit is clearly the partial derivative

  ∂Ex(x,y,z)/∂x  and we get

  flux out of
x directed
faces of ∆V

=
∂Ex(x,y,z)

∂x
∆V (15a)

Similar equations should apply to the y and z faces,
giving us

  flux out of
y directed
faces of ∆V

=
∂Ey(x,y,z)

∂y
∆V (15b)

  flux out of
z directed
faces of ∆V

=
∂Ez(x,y,z)

∂z
∆V (15c)

Exercise 1

Draw the appropriate sketches and reproduce the
arguments needed to derive Equation (15b) or (15c).

∆x ∆y

∆z

z

x

E  (x+∆x,y,z)xE  (x,y,z)x

(x, y, z) (x+∆x, y, z) 
Figure 2
Electric field at the lower front corners.
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When we add up the flux  out of all six faces, we get
the total flux out of   ∆V

  
total flux
out of ∆V

=
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
∆V (16)

You should spot immediately that the notation in
Equation (16) can be simplified by introducing the
partial derivative operator

  
∇ = x

∂
∂x + y

∂
∂y + z

∂
∂z

≡ (x ∇ x + y ∇ y + z ∇ z)
(17)

From the definition of the vector dot product we have

  ∇ ⋅E

= x
∂
∂x

+y
∂
∂y

+z
∂
∂z

⋅(xEx+yEy+zEz )

=
∂Ex
∂x

+
∂Ey

∂y
+

∂Ez
∂z

(18)

where we used   x ⋅ x = 1 ,   x ⋅ y = 0 , etc., and noted
that the unit vectors are constants that can be taken
outside the derivative.  For example,

  ∂
∂x

(xEx) = x
∂Ex
∂x

(18a)

Using the notation of Equation (18), we get for the total
flux out of   ∆V

  total flux
out of ∆V

= (∇ ⋅E)∆V (19)

Equation (19) applies to each   ∆Vi  at each point
 (xi, yi, zi)  within any volume V bounded by a

closed surface S.  The total flux out through the
surface S, which is the surface integral of  E , will be
equal to the sum of all the flux created inside in all
the   ∆Vi .  Thus we get

  E⋅dA
surface
bounding V

= (∇ ⋅E)∆ViΣ
i

(20)

As we take the limit at   ∆Vi  goes to zero size, the sum
becomes an integral, and we end up with

   
E⋅dA

closed surface
bounding
volume V

= ∇ ⋅E
V

d3V divergence
theorem (21)

where we are using the notation of Equation (5) that
  d3V ≡ dxdydz .

Equation (21) is known as the divergence theorem,
and the quantity   ∇ ⋅E  is known as the divergence of
the vector field  E .  We saw the same operator  ∇  in
the Chapter 3 when it acted on a scalar field f(x,y,z).
Then we had what was called a gradient

   ∇ f gradient of
a scalar field

∇ ⋅E divergence of
a vector field

(22)

You can see that  ∇  operating on a scalar field
f(x,y,z) creates a vector field   ∇ f .  In contrast, the dot
product of  ∇  with a vector field  E  creates a scalar
field   ∇ ⋅ E  that has a value at every point  in space
but does not point anywhere.

Equation (21), the divergence theorem, is an ex-
tremely useful result for it allows us to go back and
forth between a surface integral and a volume inte-
gral.  In Equation (7) reproduced here,

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7) repeated

we had a mixed bag with a surface integral over a
closed surface on the left and a volume integral over
the enclosed volume V on the right.  Back then, there
was not much more we could do with that equation.
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But now we can replace the surface integral of  E
with a volume integral of   ∇ ⋅E  to get

  E⋅dA

S

= 1
ε0

ρ(x,y,z)d3V

V

(7) repeated

  ∇ ⋅E d3V

V

= 1
ε0

ρ(x,y,z) d3V

V

(23)

Since we are integrating over the same volume V for
both integrals, we can write (23) as

  
∇ ⋅E (x,y,z) –

ρ(x,y,z)
ε0

V

d3V = 0 (24)

The next argument is one often used in physics.
Since the integral in Equation (24) has to be zero
for any volume V we choose, the only way that can
happen is if the integrand, the stuff in the square
brackets, is zero.  This gives us the differential
equation

   
∇ ⋅E(x,y,z) =

ρ(x,y,z)
ε0

Gauss'
law in
differential
form

(25)

Equation (25) is the differential equation represent-
ing Gauss' law.  When Maxwell's  equations are
written as differential equations, this will be one of
the four.

Exercise 2
Another of Maxwell's equations in integral form is

  B ⋅ dA
closed
surface

= 0

What is the corresponding differential equation?

Electric Field of a Point Charge
Until now, in both the Physics and Calculus texts,
when we obtained a new differential equation, we
illustrated its use with explicit examples.  This time
we do not yet have a good example for our new
Equation (25)   ∇ ⋅E = ρ/ε0 .  This is the differential
form of Gauss' law, and our best example for the use
of Gauss' law was in calculating the electric field of
a point charge.  The problem is that, at the point
charge itself, the field  E  and its partial derivatives
are infinite and the assumptions we made in deriving
Equation (25) do not apply.

When we are dealing with the electric field of a point
charge, the field  E  is well behaved and all partial
derivatives  are finite, except at the charge.  The way
we can handle point charges is to use Equation (25)

  ∇ ⋅E = ρ/ε0  everywhere except in a small region
around the charge.  In that region we revert to the
integral form of Gauss' law which allows us to work
just outside the point charge and avoid the infinities.

Here is an outline of the way we handle the problem
of a point charge.  We are working with Equation (25)

  
∇ ⋅E(x,y,z) =

ρ(x,y,z)
ε0

(25) repeated

and everything is going well until we come up to a
point charge located at the point  (x0,y0,z0) .  In a
small region surrounding the point charge, we inte-
grate Equation (25) over the volume, getting

  ∇ ⋅E d3V
volume
surrounding
charge

=
ρ
ε0

d3V
volume
surrounding
charge

(26)

The volume integral of the charge density ρ  over the
region of the point charge is simply the charge Q
itself, thus we can immediately do that volume
integral, giving us

  ∇ ⋅E d3V
volume
surrounding
charge

=
Q
ε0

(27)
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We still have the problem that   ∇ ⋅E  is infinite at the
charge itself.  But we can avoid this problem by
converting the volume integral of   ∇ ⋅E  to a surface
integral of  E  using the divergence theorem, Equa-
tion (21)

  ∇ ⋅E d3V
volume
surrounding
charge

= E⋅dA
surface
enclosing
charge

(21) repeated

to get

  E⋅dA
surface
surrounding
charge

=
Q
ε0

(28)

In Equation (28), which we recognize as the form of
Gauss' law we started with in the Physics text, the
electric field is evaluated only at the surface sur-
rounding the point charge, and not at the charge
itself.  Away from the charge, the field is finite and
we have no problem with Equation (28).

There is a mathematical problem with the concept of
a point charge, where a finite amount of charge is
crammed into a region of zero volume, giving us
infinite charge densities and infinite fields there.  We
have just shown how these infinities can be avoided
mathematically, at least for Gauss' law, by convert-
ing the volume integral of   ∇ ⋅E  at the charge to a
surface integral of  E  out from the charge.  Was this
just a mathematical exercise, or in physics do we
really have to deal with point charges?

The theory of quantum electrodynamics, which de-
scribes the interaction of electrons with light (with
photons), is the most precisely verified theory in sci-
ence.  It explains, for example, the very smallest
relativistic corrections observed in the spectrum of the
hydrogen atom.  This theory treats the electron as an
actual point particle with a finite amount of mass and
charge confined to a region of zero volume.  The trick
we just pulled to handle the electric field of a point
charge was quite simple compared to the tricks that the
inventors of quantum electrodynamics, Feynman,
Schwinger, and Tomonaga, had to pull to handle the
infinite mass and energy densities they encountered.
The remarkable accomplishment was that they suc-
ceeded in constructing a theory of point particles, a
theory that gave finite and correct, answers.

The question that remains unanswered, is whether
the electron is truly a point particle, or does it have
some size that is so small that we have not been able
to see the structure yet?  The important feature of
quantum electrodynamics is that it makes testable
predictions without any reference to the electron's
structure.  We get the same predictions whether the
electron has no size, or is some structure that is too
small to see.  Our handling of the electric field of a
point charge is your first example of how such a
theory can be constructed.  By converting to a
surface integral surrounding the charge, it makes no
difference whether the charge is truly a point, or
confined to some region too small to see.

By the way, in the current picture of elementary
particles, in what is often called the standard model,
the true elementary particles are all point particles.
These elementary particles are the six electron type
particles called leptons (they are the electron, the
muon, the tau particle, and three kinds of neutrinos)
and six kinds of quarks.  The standard model makes
many successful predictions but appears to have one
critical flaw.  The problem is that no one has yet
succeeded in constructing a theory for the interac-
tion of point particles with gravity, the so called
quantum theory of gravity.  Every attempt to do so
has thus far led to infinities that could not be gotten
rid of by any known mathematical technique.

This failure to develop a quantum theory of gravity
in which gravity interacts with point particles, has
led to theories such as string theory where the
elementary particles have a finite, but tiny size.
String theory appears to avoid the infinities in the
gravitational interaction, but the strings, from which
particles are assumed to be made, are predicted to be
so small that no way has been found to test whether
they actually exist or not.  It is interesting that so far
our only evidence that elementary particles actually
have structure is our failure to construct a theory of
gravity.
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THE δδ FUNCTION
When we applied the differential form of Gauss' law

  ∇ ⋅E = ρ/ε0  to the field of a point charge, we avoided
the problem of mathematical infinities by integrat-
ing the equation over a small volume surrounding
the charge.  We never did say what the charge
density   ρ(x,y,z)  was for a point charge Q, because
we knew that if we integrated   ρ(x,y,z)  over the
region of the charge, the answer would be simply Q
itself.

In physics we often run into quantities like the
charge density of a point charge where the density at
the charge looks infinite, but when we integrate the
density over the region of the charge, we get a finite,
reasonable answer.  There is a convenient way to
handle such problems by using what is called the
delta (δδ ) function.

The one dimensional δ  function is a curve with a
unit area under it, but all the area is confined to a
region of zero width.  We obtain such a curve
mathematically through the use of a limiting process.

Consider the curve shown in Figure (3) that is zero
everywhere except in the region around the point

 x0 .  In that region it is a rectangle of width   ∆x  and
height   1/∆x .  The area under this curve is

  area under
rectangle = (∆x) 1

∆x
= 1 (29)

Now take the limit as   ∆x → 0, and we end up with
a curve, whose total area remains 1, but whose width
goes to zero and height goes to infinity.  We will call
this curve   δ(x0)

  
δ(x0) ≡ lim

∆x → 0

of the curve of width
∆x and height 1/∆x,
centered at x0

(30)

Even though   δ(x0)  is infinitely high at the point  x0 ,
its integral over any region that includes the point  x0
is just the number 1

  
δ(x0)dx

x less than x0

x greater than x0

= 1 (31)

Actually the only important property of the δ func-
tion is Equation (31).  The curve does not have to be
a rectangle, it could be the limit of some smooth
curve like that shown in Figure (4).  As long as, in the
limit that   ∆x → 0, the curve becomes infinitely
high, infinitely narrow, and has a unit area under it,
it is a δ function.

In three dimensions, the δ function   δ(x0,y0,z0)  is a
quantity that is zero everywhere except at the point

 (x0,y0,z0) , but whose integral over that region is 1

  
δ(x0,y0,z0)dV

any volume
including the
point (x0,y0,z0)

= 1

(32)

An example of such a δ function is the function whose
value is zero everywhere except within a distance   ∆x
of  x0 ,   ∆y  of  y0 , and   ∆z of  z0 .  In that region the value
is   (1/∆x)(1/∆y)(1/∆z) , so that the total volume is 1.
Then take the limit as   ∆x → 0,   ∆y → 0, and   ∆z → 0 .

∆x

∆x
1

x0
Figure 3
When we take the limit as ∆∆∆∆∆x goes to zero,
we get a one dimensional delta function.

∆x

∆x
1

x0

Figure 4
We have a delta function as long as the area
remains 1, and the width goes to zero.
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We can now use the δ function to describe the
charge density of a point charge.  If a point charge
has a total charge Q and is located at the point

 (x0,y0,z0) , then the charge density   ρ(x,y,z)  is

   
ρ(x,y,z) = Qδ(x0,y0,z0)

charge density
of point charge
at x0,y0,z0

(33)

The differential form of Gauss' law applied to this
charge density is

  
∇ ⋅E =

ρ(x,y,z)
ε0

∇ ⋅E =
Q
ε0

δ(x0,y0,z0)

(34)

To handle Equation (34), we use our old trick of
going back to the integral form by first integrating
over a volume that includes the charge

  ∇ ⋅E dV
volume
including
charge

=
Q
ε0

δ(x0,y0,z0)dV
volume
including point
x0, y0, z0

(35)

Since   Q/ε0  is a constant, it can be taken outside the
integral on the right side of Equation (35), giving

  Q
ε0

δ(x0,y0,z0)dV
volume
including point
x0, y0, z0

=
Q
ε0

×1 (36)

where we used the fact that the integral of the δ
function was 1. Now convert the volume integral of

  ∇ ⋅E  to a surface integral

  ∇ ⋅E dV
volume
including point
x0, y0, z0

= E⋅dA
surface
surrounding
x0, y0, z0

(37)

Using (36) and (37) gives

  E⋅ dA
closed surface
including Q

=
Q
ε0

which is our integral form of Gauss' law.

From this example, you can see that the δ  function
allows us to write an explicit formula for the charge
density of a point charge, and you can see that the
only things we have to know about a δ  function is
that   δ(x0,y0,z0)  is zero except at  (x0,y0,z0)  and
that its volume integral around that point is 1.  As you
go farther in physics, you will encounter the δ
function more and more often.  It is rather nice in that
there is no function easier to integrate.

Exercise 3
Explain why the following mathematical relationship is
true for any continuous function f(x,y,z)

   
f(x,y,z)δ(x0,y0,z0)d3V

any volume
includingthe
point (x0,y0,z0)

= f (x0,y0,z0)

(38)
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DIVERGENCE FREE FIELDS
It may seem a bit discouraging that we did all this
work to derive the differential form of Gauss' law

  ∇ ⋅ E = ρ/ε0  , and then end up, when we want to
actually solve a problem, going back to the integral
form of the equation.  At this point, that is about all
we can do to solve for explicit field patterns  E .
However, the differential form begins to tell us
about some general features of a vector field as we
shall now see.  With a lot more practice with the
differential form of the field equations, and perhaps
a computer thrown in, one can begin to solve for
complex field shapes.  In this text we will focus on
what we can learn about general features and leave
the solution of complex field shapes to a later course.

To see what we can learn about general features of
a field, suppose that we have a velocity field  v(x,y,z) ,
whose divergence is zero, i.e., it obeys the equation

  ∇ ⋅v(x,y,z) = 0 (39)

We say that such a field is divergence free.  What can
we say about the properties of such a field?

To answer that question, we will again go back to the
integral form, by integrating Equation (1) over some
volume V to get

  ∇ ⋅v d3V = 0
volume V

(40)

Now use the divergence theorem to convert this
volume integral to a surface integral, giving

  v⋅dA = 0
closed
surface

(41)

Equation (41) is our old equation for a vector field
that has no sources or sinks.  It is the equation for an
incompressible, constant density fluid, a real one
like water where water molecules are not being
created or destroyed.  Thus the condition that a
vector field be divergence free, i.e.,   ∇ ⋅ v = 0  or

  ∇ ⋅ E = 0  or   ∇ ⋅ B = 0 , is that the field behaves like
the velocity field of an incompressible fluid.

What kind of solutions are possible for a divergence
free field?  What are the solutions to the equation

  ∇ ⋅ v = 0 ?

The answer is at least as complex as the behavior of
water.  You have seen water flow smoothly in a lazy
river.  That is called laminar flow.  Such laminar
flow is one solution to   ∇ ⋅ v = 0 .  But in a fast
flowing stream there can be complex eddies called
turbulence.  Turbulent flow is also a solution to the
equation   ∇ ⋅ v = 0 .

You can now see that the equation   ∇ ⋅ v = 0  puts a
restriction on the field v , but still allows an enor-
mous range of solutions.  Because of your familiar-
ity with the flow of water you have some insight into
what these solutions can be.
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APPENDIX — DERIVATION
OF  FLUX  EQUATION  (14)
Earlier in the chapter we had the following formula
for the flux out of the x directed faces of the small
cube   ∆V = ∆x∆y∆z

  flux out
of x directed
faces of ∆V

=
Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆x∆y∆z

(13) repeated
where   Ex(x+∆x,y,z)  and  Ex(x,y,z)  were the average
values of  Ex  on the two x directed faces of the cube.

In Equation (14) we replaced the average values  Ex
by the values   Ex(x+∆x,y,z)  and  Ex(x,y,z)  at the
lower front corners as shown in Figure (2), repeated
here giving

  flux out
of x directed
faces of ∆V

= limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)
∆x

∆V

(14) repeated
What we are doing is in going from Equation (13) to
(14) is to neglect the y and z dependence of  Ex  while
developing an equation for the x dependence.  This
step needs justification.

To see what effect the y and z dependence has, let us
start by approximating the average value of  Ex  over
the entire x faces by the average of the top and
bottom values of the front side of   ∆AX , i.e., the
average of  Ex  at points (1) and (3) on the left and
points (2) and (4) on the right as shown in Figure (5).

This is a rather crude approximation for the average
over the face, but begins to show us what the effect
of the y and z dependence of  Ex  is.

To evaluate  Ex  at   (x, y, z + ∆z) , up at point (3), we
can use a Taylor series expansion.  So far we have
discussed a Taylor series expansion only of a func-
tion of a single variable f(x).  The expansion was,
from Equation (2-44 of Calculus Chapter 2)

  
f(x–x0) = f(x0) + ∂f

∂x
(x–x0) + 1

2!
∂2f
∂x2

(x–x0)2+⋅⋅⋅

(2-44) repeated

which is good for small steps  (x–x0) .

What we are doing when we go from point (1) to
point (3) in Figure (2), is keeping the values of x and
y constant, and looking at the change in  Ex  as we
vary z.  Thus in going up, we have a function  Ex(z)
that is only a function of z, and we can use our old
Taylor series expansion to get

  Ex(x,y,z+∆z) = Ex(x,y,z)

+
∂Ex(x,y,z)

∂z
(∆z)

+ 1
2

∂2Ex(x,y,z)

∂z2
(∆z)2

+ ⋅ ⋅ ⋅

(42)

where   ∆z  is analogous to the step  (x–x0)  in the
Taylor series formula.

Because we are eventually going to take the limit as
  ∆z  goes to zero, we will be able to neglect terms of

order   (∆z)2  compared to   ∆z .  Because of that, it is
sufficient to write

  Ex(x,y,z+∆z) = Ex(x,y,z)

+
∂Ex

∂z
∆z

+ terms of order ∆z2

(42a)

∆x ∆y

∆z

z

x

E  (x+∆x,y,z)xE  (x,y,z)x

(x, y, z) (x+∆x, y, z) 

Figure 2 (repeated)
Electric field at the lower front corners.

E  (x+∆x,y,z)x

E  (x+∆x,y,z+∆z)x

E  (x,y,z)x

E  (x,y,z+∆z)

(1)

(3)
(4)

(2)

x

Figure 5
Electric field at four positions.
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When we take the average of  Ex  at points (1) and
(3), a result we will call  Ex(x)1,3 , we get

  
Ex(x)1,3 =

Ex(x,y,z) + Ex(x,y,z+∆z)
2

= Ex(x,y,z) + 1
2

∂Ex(x,y,z)
∂z

∆z + O(∆z2)
(43)

where   O(∆z2)  means terms of order   (∆z2) .

A similar argument gives the average   Ex(x+∆x)2,4
at points (2) and (4)

  
Ex(x+∆x)2,4 =

Ex(x+∆x,y,z) + Ex(x+∆x,y,z +∆z)
2

= Ex(x+∆x,y,z) + 1
2

∂Ex(x+∆x,y,z)
∂z

∆z + O(∆z2)

(44)

Using our 2 point averages in Equation (13) for the
flux out of   ∆V  gives us

  flux out of
x directed face
of ∆V for 2
point average

=
Ex(x+∆x)2,4 – Ex(x)1,3

∆x
∆V

= ∆V
∆x

Ex(x+∆x,y,z) + 1
2

∂Ex(x+∆x,y,z)
∂z

∆z

– Ex(x,y,z) – 1
2

∂Ex(x,y,z)
∂z ∆z + O(∆z2)

  
=

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
∆V

+ 1
2

∂Ex(x+∆x,y,z)
∂z

–
∂Ex(x,y,z)

∂z

∆x
∆z∆V

+ O(∆z2)∆V

(45)

When we go to the limit that   ∆x  goes to zero, we see
that we get the partial derivatives

  
limit
∆x→0

Ex(x+∆x,y,z) – Ex(x,y,z)

∆x
=

∂Ex(x,y,z)
∂x

(46)

  

limit
∆x→0

∂Ex(x+∆x,y,z)

∂z
–

∂Ex(x,y,z)

∂z
∆x

=
∂2Ex(x,y,z)

∂x∂z

(47)
Thus Equation (45) is taking on the form

  flux out of
x faces of
∆V for 2
point average

= ∆V
∂Ex
∂x +

∂2Ex
∂x∂z∆z + O(∆z2)

(48)
We see that corrections due to the z dependence of

 Ex  are of magnitude   ∆z  times the partial second
derivative   ∂2Ex/∂x∂z .  As long as all derivatives of

 Ex  are bounded, stay finite as we take the limit as
  ∆x ,   ∆y , and   ∆z  go to zero, then the   ∆z  term in

Equation (48) becomes negligently small, which
means that in the limit we can neglect the z depen-
dence of  Ex , at least in this two point approximation.

Our 2 point approximation to the average of  Ex  can
be improved by using more points.  If we included
the back points at   (y+∆y) , we would add terms to
Equation (48) of the form

  ∂2Ex
∂x∂y∆y + O(∆z2) (49)

terms which would go to zero in the limit   ∆y → 0 .
All points we add in to the average will give terms
proportional to   ∆x  or   ∆y  or some combination, and
all these terms will go to zero when we take the limit
as   ∆x ,   ∆y , and   ∆z  goes to zero.  Thus, it is an exact
result that, in the limit that   ∆v → 0 , only the x
dependence of  Ex  has to be taken into account,
provided all derivatives of  Ex  are finite.
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Calculus 2000-Chapter 8
Curl

CHAPTER 8 CURL

ABOUT THE CURL
In the Physics text, we saw that a vector field was
uniquely determined by formulas for the surface
integral and the line integral. In the last chapter, we
saw that the divergence, such as    ∇ ⋅E , represented
the surface integral shrunk down to an infinitesimal
scale. In this chapter, we study the curl, which is the
line integral shrunk down to an infinitesimal scale.
Here our emphasis will be on the application of the
curl to electric and magnetic fields. In the final
chapters of this text, Chapters 12 and 13, we develop
an intuitive picture of the curl applied to the velocity
field of fluids such as water and superfluid helium.
The curl of the velocity field is called vorticity, a
concept that plays a fundamental role in under-
standing such phenomena as quantum vortices and
turbulence.
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INTRODUCTION TO THE CURL
The partial derivative operator

  ∇ = x ∂
∂x + y ∂

∂y + z ∂
∂z

has now appeared in our formulas for the gradient of
a scalar field f(x,y,z)

  ∇ f(x,y,z) = x ∂f
∂x + y ∂f

∂y + z ∂f
∂z (1)

in the divergence of a vector field  E(x,y,z)

  
∇ ⋅ E =

∂Ex
∂x +

∂Ey

∂y +
∂Ez
∂z (2)

and in the Laplacian

  ∇ ⋅∇ f = ∇ 2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 (3)

While  ∇  is an operator in the sense that it only has a
value when operating on some field, we see that it acts
very much like a vector.  This suggests that we may
encounter other vector like operations involving  ∇ .

In our discussion of vectors in Chapter 2 of the
Physics text, we saw that there were two kinds of
vector products, the scalar or dot product

   C = A⋅B = (AxBx +AyBy +AzBz) scalar
product (4)

and the vector cross product

   C = A × B vector cross product (5)

where the formulas for the components of C were

 Cx = AyBz – AzBy

Cy = AzBx – AxBz

Cz = AxBy – AyBx

(6)

We saw that the vector   C = A × B  was oriented
perpendicular to the plane of the vectors  A  and   B ,
the choice of which direction being given by the
right hand rule as shown in Figure (1).  The magni-
tude was   C = AB sin θ  which is maximum when  A
and  B  are perpendicular and zero when parallel.

The vector cross product seems like a rather peculiar
mathematical construct, but it plays an important
role in physics, particularly in describing rotational

motion.  You will recall that the angular analogy to
Newton's second law was

  τ = dL
dt

(7)

where the torque,   τ = r × F , is what we called the
angular force, and   L = r × p  is the angular momen-
tum.  Despite the appearance of two cross products in
Equation (7), the equation led to a very successful
prediction of the motion of a gyroscope at the end of
Chapter 12 in the Physics text (see page12-18).

With this background, we see that there is one more
natural vector product involving the operator  ∇ .  It
is the cross product of  ∇  with some vector field like

 E ,  B , or v .  The cross product, for example with  B ,
is called the curl of  B .

   ∇ × B = x(∇ yBz – ∇ zBy)

+ y(∇ zBx – ∇ xBz)

+ z(∇ xBy – ∇ yBx)

curl (8)

With all these derivatives in the formula for   ∇ × B , the
concept of the curl looks rather formidable.  Later in
this chapter we will discuss the formula for the curl in
cylindrical coordinates.  That formula looks even worse
than Equation (8).  However when we apply the curl in
cylindrical  coordinates to a problem with cylindrical
symmetry, we end up with a simple, easily applied
formula (which we will see in Equation 58).

θ

C = A   B C = AB(sinθ)

C = A   B

B

B

A

A

Figure 1
Right hand rule for the cross product.
(Discussed in Physics 2000, page 2-15.)
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As we have mentioned several times now, to deter-
mine a vector field we need formulas for the surface
integral and the line integral.  In the last chapter we
saw that when we go to the small scale limit, the
volume integral becomes a divergence.  An example
was Gauss' law which in the integral form was

  E ⋅ dA =
Qin
ε0 (9)

It became the differential equation

  ∇ ⋅ E =
ρ
ε0

(10)

In this chapter we will see that the differential limit of
the line integral is the curl.  We will see, for example,
that the old form of Ampere's law (when   ∂E/∂t = 0 )

  B ⋅ d = µ0iin (11)

becomes the differential equation

  ∇ × B = µ0 i (x,y,z) (12)

where  i (x,y,z)  is the current density.

In our discussion of divergence, one of the important
results was the divergence theorem

   E ⋅ dA

S

= ∇ ⋅ E d3V

V

divergence
theorem (13)

where V is the volume bounded by a closed surface
S and  d3V = dxdydz .  The divergence theorem
allowed us to immediately go back and forth be-
tween surface integrals and volume integrals.

An important result of this chapter is what one could
call the curl theorem, but which is known as Stokes'
law. It is

   
B⋅d

around
closed path

= (∇ × B)⋅dA
area of
closed path

Stokes'
law (14)

which relates the line integral of  B  around a closed path
to an integral of the curl of  B  over any area bounded
by the closed path. An example of a closed path is the
wire loop shown in Figure (2). One of the areas
bounded by this closed path is that of the soap film.

Our discussion of the curl will proceed through the
remaining chapters of the text.  In this chapter we
will focus on deriving Stokes' theorem and applying

that theorem to the theory of electricity and magne-
tism.  This allows us to finish translating Maxwell's
equations from the integral to the differential form.

In Chapter 9 we derive a set of equations called vector
identities that simplify working with formulas involv-
ing the curl.  We will use the vector identities to show
that Maxwell's equations in empty space become the
wave equations for electromagnetic fields.

In Chapter 11 we find that the wave equation for
electromagnetic fields in the presence of electric charge
and current is considerably simplified by expressing
the magnetic field as the curl of a new kind of a vector
field called the vector potential  A .  This is a rather
technical subject, the study of which can be put off for
a while.  We placed this material where we did so that
you could see what happens to the electromagnetic
wave equation when sources are present.

In Chapter 12 we apply the curl to the velocity field v .
It is in that chapter where you can develop the best
intuitive picture of the curl.  If you want to put off  for
a while studying the wave equation for electromagnetic
fields, you can go directly from this chapter to Chapter
12 and build your intuition for curl.

In case you were wondering about Chapter 10, it deals
with the extension of the continuity equation to handle
compressible conserved flows, like the flow of electric
charge.  We discover from this work a rather remark-
able result, namely that Maxwell's equations require
that electric charge be conserved.  This is one of the
first completely new physical predictions we get by
going to the differential form of Maxwell's equations.

Figure 2
Example of a surface bounded
by a closed path (wire loop).
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STOKES' LAW
As we noted, Stokes' law, Equation (14) allows us to
convert from a line integral around a closed path to
a surface integral over the area bounded by the path.
Once we have derived Stokes' law, it will be quite
easy to use it to convert to differential equations the
two Maxwell equations involving path integrals.

To derive Stokes' law, we begin by calculating the
path integral of some vector field  B  around a small
rectangular path of sides   ∆x  and   ∆y  shown in
Figure (3). Our arguments will be somewhat similar
to those we used to derive the divergence theorem.

The line integral around the rectangle   ∆x∆y  can be
written as the four integrals

  
B ⋅d

around
∆x∆y

= B ⋅ d
1

2
+ B ⋅ d

2

3

+ B ⋅ d
3

4
+ B ⋅ d

4

1 (15)

Along the path from point (1) to point (2), along the
bottom of the rectangle, we are integrating in the x
direction, thus

  
B ⋅d

1

2
= Bxd x

1

2
(16)

The integral of  Bxd x  over the bottom side can be
written as

  
Bxd x

1

2
= Bx(x,y–∆y/2)∆x (17)

where   Bx(x,y–∆y/2)  is the average value of  Bx
along the lower edge, a  distance   ∆y/2  below the
center (x,y) of the rectangle.

The integral up the right hand side becomes

  
B ⋅d

2

3
= Byd y

2

3

= By(x+∆x/2,y)∆y
(18)

where   By(x+∆x/2,y)  is the average value of  By  along
the right side, out at a distance   ∆x/2 from the center.

On the top side, we are integrating in the –x direc-
tion, the dot product   B ⋅ d  is negative, and we get

  
B ⋅d

3

4
= –Bxd x

3

4

= –Bx(x,y+∆y/2)∆x
(19)

where   Bx(x,y+∆y/2)  is the average value of  Bx  on
the top edge.

Going back down from point (4) to point (1) we are
going in the –y direction,   B ⋅ d = – Byd y  and we
get

  
B ⋅d

4

1
= –Byd y

4

1

= –By(x–∆x/2,y)∆y
(20)

Using Equations (17) through (20) in (15) gives,
after some rearranging

  
B ⋅d

around
∆x∆y

=
By(x+∆x/2,y) – By(x–∆x/2,y)

∆x
∆x∆y

–
Bx(x,y+∆y/2) – Bx(x,y–∆y/2)

∆y
∆x∆y

(21)
As a first approximation to Equation (21), we could
replace the average values of  Bx ,  By  on the four
sides by the actual values of  Bx ,  By  at the center of
each side.  For example, since the center of the side
from (2) to (3) is at the point   (x+∆x/2,y) , we would
be making the substitution for that side of

  By(x+∆x/2,y) → By(x+∆x/2,y) (22)

I.e., we would be removing the bars over the values
of B in Equation (21).

∆x

∆y

(1) (2)

(3)(4)

B(x,y)

Figure 3
Calculating the integral of       B ⋅⋅dl around a small
rectangular path centered at the point (x,y).
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When we remove the bars and then take the limit as
  ∆x → 0  and   ∆y → 0 , the first square bracket in

Equation (21) becomes the partial derivative of  By
with respect to x

  
limit
∆x→0

By(x+∆x/2,y) – By(x–∆x/2,y)
∆x

=
∂By

∂x

(23)
and the second square bracket in Equation (21)
becomes   ∂Bx/∂y. In this approximation, Equation
(21) becomes

  
B ⋅d

around
∆x∆y

=
∂By

∂x
–

∂Bx

∂y
(∆x∆y) (24)

The approximation we made to get Equation (24),
which was replacing the average value of B  along a
line by the value at the center of the line, assumes
that variations along the line (e.g. changes in  Bx in
the x direction) are not as important as variations
perpendicular to the line (e.g. changes in  Bx in the
y direction).  This is somewhat similar to the situa-
tion we had in our derivation of the divergence
theorem where changes in the field were important
in one direction and not in the other.

In the appendix to Chapter 7 we used a Taylor series
expansion to show that as   ∆x ,   ∆y  or   ∆z  went to
zero, the variations we ignored went to zero faster
than the variations we kept.  They were proportional
to a higher power of   ∆x ,   ∆y or   ∆z , and therefore did
not contribute in the calculus limit.

We leave it as an exercise for the ambitious reader to
show, using arguments similar to those made in the
appendix to Chapter 7, that by replacing average
values  Bx  and  By  by center values  Bx  and  By , we
are making errors that go to zero faster than the terms
we keep. I.e., show that the errors are of the order

  ∆x ,   ∆y  or   ∆z  smaller than the terms we keep.

With Equation (24), we have the formula for the line
integral around one small rectangle lying in the xy
plane.  We can generalize this result by turning the
area element   (∆x∆y)  into a vector   ∆A .  An area
vector   ∆A  is perpendicular to the surface as shown
in Figure (4).  In this case, where the surface is in the
xy plane, we see that   ∆A  is purely z directed, and we

can write   ∆x∆y = (∆A)z .  With this notation Equa-
tion (24) becomes

  
B ⋅d

around
∆A

=
∂By

∂x –
∂Bx
∂y (∆A)z (25)

Next, we notice that the z component of the curl of
 B  is given by Equation (8) as

  
(∇ × B)z = (∇ xBy – ∇ yBx) =

∂By

∂x
–

∂Bx

∂y
(26)

so that Equation (25) becomes

  B⋅d
around

∆A

= (∇ × B)z(∆A)z (27)

The obvious extension of Equation (27) to the case
where our area   ∆A  does not happen to lie in the xy
plane, where the vector   ∆A  has components other
than   (∆A)z , is to recognize that in Equation (27) we
are looking at one term in the vector dot product

  B ⋅d
around

∆A

= (∇ × B)⋅∆A (28)

Exercise 1
Suppose we have an area

  ∆y∆z  as shown in Figure (5).
Write out the formula for

  B ⋅ d  around this area
(i.e., repeat the steps in
Equations 15-27 for this area).

∆x

∆y

∆A

Figure 4
Turning the area element      (∆∆x∆∆y)  into a vector      ∆∆A

∆z
∆y

∆A

Figure 5
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With Equation (28), we have the formula for the line
integral around a small rectangular area   ∆A  of any
orientation.  The final step is to determine the line
integral around a finite loop like the wire loop with
the soap film across it, shown in Figure (1).

The way we can do this is to conceptually cut the
soap film up into many tiny rectangles as shown in
Figure (6).  Think of the soap film as being replaced
by a window screen, with the rectangles being the
holes in the window screen.

At each hole, each rectangle, we have a vector   ∆Ai
that is oriented perpendicular to the surface as shown
in Figure (7).  The positive direction is determined
by noting which way we are going around the loop,
and then using the right hand rule.  For Figure (6), the
positive direction is up out of the paper.

Next we note that when two rectangles touch each
other, the part of the line integrals on the touching
sides cancel, and we are left with a line integral
around the perimeter of the two rectangles as shown
in Figure (8).

Applying this argument to all rectangles in Figure
(6), we see that when we add up the line integrals for
all the rectangles, we end up with the line integral
around the outside perimeter of the surface.  Math-
ematically we can write this as

  
B ⋅d

around
whole
surface

=
sum of the line
integrals around
each small
area ∆Ai

(29)

Using Equation (28) for the line integral around   ∆Ai
we get

  B ⋅d
around
whole
surface

= (∇ × B)Σ
i

⋅∆Ai (30)

Taking the limit as the   ∆Ai  goes to zero turns this
sum into an integral, giving

   
B⋅d

around
perimeterof
a surface S

= (∇ × B)⋅dA
over the
surface S

Stokes' law

(31)
which is Stokes' law.  It says that we get the line
integral of any vector field  B  around the perimeter
of a surface S by integrating the flux of   (∇ × B) out
through the surface.

Figure 6
Break the surface across
the closed loop into many
small surface areas, like
the holes in a window
screen.

∆Ai

Figure 7
Each small surface
area is described by
an area vector       ∆∆A i

=

Figure 8
When two rectangles touch, the line integrals on the
paths between them cancel, leaving a line integral
around the perimeter of the two rectangles.
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In the future we will shorten our notation by letting
C be some closed path, and the surface S be a surface
like our soap film, that is bounded by the path.  Then
we simply write

   
B⋅d

C

= (∇ ×B)⋅dA

S

Stokes' law

(31a)
Our use of the soap film analogy for the surface S is
important for it emphasizes the fact that there is no
one correct surface.  Just as you can change the shape
of a soap film by gently blowing on it (don't blow a
bubble), you can use different surfaces S as long as
they are bounded by the same circuit C.

We also want to emphasize that the quantity   (∇ ×B)
is itself a vector field, and that the integral of

  (∇ ×B) ⋅dA  over a surface is the flux of   (∇ ×B)
through that surface.  Thus, we should remember
Stokes' law as telling us that the line integral of  B
around the circuit C is equal to the flux of       ( ∇∇ ×× B)
through the circuit C.

AMPERE'S LAW
The original form of Ampere's law, before Maxwell's
addition of the   ∂ΦE/∂t  term, was given in Chapter
29 of the Physics text as

  B ⋅d
any closed
path

= µ0Ienclosed (29-26)

It says that the line integral of  B  around any closed
path is equal to   µ0  times the total current flowing
through that path.  Since Stokes' law tells us that the
line integral of  B  around any closed path is equal to
the total flux of   (∇ ×B)  through that path, there must
be a close relationship between the vector field

  (∇ ×B)  and the electric current.  That is the relation-
ship we want to establish.

The first step is to express the total current i through
a closed path in terms of the current density  i (x,y,z) .
The current density  i (x,y,z)  is a vector field whose
direction at each point in space is the direction of
flow on the electric current i  there, and whose
magnitude is equal to the density of current, which
has the dimensions of the number of amperes per
square meter.

Calculating the electric current through a small area
element   ∆A  is analogous to calculating the flux of
water through an area element   ∆A , a calculation we
did in Equation (3) of Chapter 29 of the Physics text.
From Figure (9), you can see that the current through

  ∆A  will be a maximum, will have the value
  i (x,y,z)∆A  when the area   ∆A  is perpendicular to

the flow.  This is when the vector   ∆A  is parallel to
 i (x,y,z) .  For any other orientation of   ∆A , the

current   ∆I  through   ∆A  will be equal to
  i (x,y,z)∆Acosθ  which is equal to the dot product

of the vectors  i (x,y,z)  and   ∆A .  Thus

  ∆I = i(x,y,z) ⋅ ∆A = current through an
area element ∆A

(32)

∆A

i(x,y,z)
θ

Figure 9
When the current flows at an angle θθ  as shown,
the total current through      ∆∆A is       i(x,y,z) ∆∆A cosθθ .
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To calculate the total current  Ienclosed  through an
entire surface S, we break the surface up into small
areas   ∆Ai  as we did in Figure (6), calculate the
current   ∆Ii  through each   ∆Ai , and add up all the   ∆Ii
to get the total.

  Ienclosed = ∆IiΣ
i

= i (xi,yi,zi)⋅∆AiΣ
i

(33)

Taking the limit as the   ∆Ai  go to zero size gives us
the surface integral

   
Ienclosed = i(x,y,z)⋅dA

surface
bounded
by path C

total current
through a
closed path C

(34)

Using our new formula for  Ienclosed  in Ampere's law,
Equation (29-26), gives

  B⋅d
any
closed
path

= µ0 i (x,y,z)⋅dA
over the area
bounded by
the closed path

(35)

Following a procedure similar to the one we used in
our discussion of Gauss' law in Chapter 7, we will
use Stokes' law to convert the line integral of  B  to a
surface integral, so that both terms in Ampere's law
are surface integrals.  With

  B⋅d
C

= (∇ ×B)⋅dA

S
(31) repeated

Equation (35) becomes

  (∇ × B)⋅dA
surface
S

= µ0 i (x,y,z)⋅dA
surface
S

(36)

where we took the constant   µ0  inside the integral.
The surfaces for the two integrals only have to have
the same perimeter C, but we are free to choose
identical surfaces, and thus combine the two inte-
grals into one giving

  
(∇ × B) – µ0 i (x,y,z) ⋅dA

any
surface
S

= 0 (37)

We then argue that  if Equation (37) is to hold for any
surface S, the only way for that to happen is to set the
integrand, the stuff in the square brackets, equal to
zero, giving

  
∇ ×B = µ0 i (x,y,z) (38)

Equation (38) is the differential form of the original
Ampere's law

  B ⋅ d = µ0Ienclosed (29-26) repeated

In Chapter 32 of the Physics text we explained why
Maxwell added a term to Ampere's law to get

  
B ⋅d

around a
closed
circuit C

= µ0Ienclosed + µ0ε0
dΦE
dt

(32-11)

where   ΦE , the electric flux through the closed
circuit is given by

  ΦE = E⋅dA
S

(39)

and S is any surface bounded by the closed circuit C.

To include the   dΦE/dt  term in our differential form
of Ampere's law, we need to evaluate

  d
dt

ΦE(t) = d
dt

E(x,y,z,t)⋅dA
S

(40)

where the field E is not only a function of space
(x,y,z) but also of time (t).

On the left side of Equation (40) we have   dΦE(t)/dt
which is simply the time derivative of some function

  ΦE(t)  of time.  That is a straightforward derivative.
On the right, we have the derivative of the integral of
a quantity  E(x,y,z,t)  which is a function of four
variables.  What we are going to do this one time, is
to be very careful about how we bring the time
derivative inside the integral, and see what we get
when we do.
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Our first step will be to write the integral over the
surface as the sum over many small but finite areas

  ∆Ai

  dΦE

dt
= d

dt
E(xi,yi,zi,t) ⋅ ∆AiΣ

i
(41)

where  (xi,yi,zi)  is the coordinate of the area element
  ∆Ai.  By working with a sum of finite terms, we can

see that the change in time of the sum will be the sum
of the changes in each term

  dΦE

dt
= d

dt
E(xi,yi,zi,t)⋅∆AiΣ

i
(42)

During this calculation, we are keeping the surface
S and all the   ∆Ai fixed. At any given   ∆Ai the only
thing that is allowed to change is the field  E  at the
point  (xi,yi,zi) .  Thus we have

  dΦE

dt
=

dE(xi,yi,zi,t)

dt
⋅∆AiΣ

i
(43)

The term in the square brackets is the change in the
variable  E(x,y,z,t)  as we change the time (t) while
holding the other three variables constant at  x = xi ,

 y = yi ,  z = zi .  This is precisely what we mean by the
partial derivative of  E(x,y,z,t)  with respect to (t).

  d
dt

E(xi,yi,zi,t) =
∂E(x,y,z,t)

∂t x = xi
y = yi
z = zi

(44)

Thus we have

  dΦE

dt
=

∂E(x,y,z,t)

∂t
x = xi
y = yi
z = zi

⋅∆AiΣ
i

(45)

We can now go back to the limit as    ∆Ai goes to zero,
giving

  dΦE

dt
=

∂E(x,y,z,t)

∂t
S

⋅dA
(46)

Writing   dΦE/dt  in Equation (46) as an integral gives

  
d

dt
E(x,y,z,t)⋅dA

fixed
surface
S

=
∂E(x,y,z,t)

∂t
⋅dA

fixed
surface
S (47)

In writing Equation (47) we placed special emphasis
on the fact that the surface S (and also the   ∆Ai's )
were fixed, did not change with time.  Later, in the
first fluid dynamics chapter, we will want to calcu-
late the rate of change of flux through a moving
surface.  (In that case it will be a surface that moves
with the fluid particles.)  When we allow the surface
S to move, then in going from Equation (42) to (43),
we get more terms representing changes in the   ∆Ai.

But with the fixed surface, Equation (47) tells us that
we can bring the time derivative inside the integral
if we change the derivative to a partial derivative
with respect to time.

Exercise 2
Start from the integral form of Ampere's law

  B ⋅ d = µ0Ienclosed + µ0ε0
dΦE
dt (32-11)

Using Equation (39) for   ΦE, and using Equation (47),
show that the corresponding differential equation is

   
∇ × B = µ0 i + µ0ε0

∂E
∂t (48)

Exercise 3
As a review, start with all of Maxwell's equations in
integral form, as summarized in Equation (32-19) of the
Physics text

   E ⋅ dA
closed surface

=
Qin
ε0

Gauss' law

B ⋅ dA
closed surface

= 0 no monopole

B ⋅ d = µ0I + µ0ε0
dΦE
dt Ampere's law

E ⋅ d =
– dΦB

dt Faraday's law

(32-19)

and show that in differential form, the equations are

   ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ ×B = µ0 i + µ0ε0
∂E
∂t Ampere's law

∇ ×E = –
∂B
∂t Faraday's law

(49)
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CURL OF THE MAGNETIC FIELD OF A WIRE

In the section after this, we will discuss the formula
for the curl in cylindrical coordinates, a rather formi-
dable looking formula. We will then apply it to the
calculation of the curl   ∇ ×B  of the magnetic field of
a straight wire.  A lot of terms are involved but, most
of them go to zero and we are left with what appears
to be a surprisingly simple result.  The result should
be no surprise however, if we first look at Ampere's
law in differential form, as applied to the field of a
wire.

The magnetic field produced by a steady current in
a wire was shown in Figure (28-14) in Chapter 28 of
the Physics text.  The current (i) is confined to the
wire, and the magnetic field travels in circles around
the wire.  If the current density is more or less
uniform in the wire, then we have a circular mag-
netic field inside the wire also (a field you calculated
in Exercise 4 of Chapter 29). The result is sketched
in Figure (10).

For a steady current, where   ∂E ∂t∂E ∂t = 0 , Ampere's
law in differential form is simply

  ∇ ×B = µ0 i (x,y,z) (38) repeated

The first thing to note about Equation (38) is that in
all places where the current density  i (x,y,z)  is zero,
the curl   ∇ ×B  must also be zero.  Since the current
is confined to the wire,   ∇ ×B  must be confined there,
and the curl of the magnetic field outside the wire
must be zero.  It will take us several pages to obtain the
same result using the formulas for the curl.

Next we note that the current density  i (x,y,z)  is not
only confined to the wire, but also directed along the
wire.  Thus   ∇ ×B  must not only be confined to the
wire, but also directed along the wire as shown in
Figure (11).  As a result we know what   ∇ ×B  must
look like before we do any calculations.

In the next sections we will go through the calculation
of the curl of this magnetic field.  When we finally get
the simple results described above, you can look upon
that as a check that the formulas for curl are correct after
all.i(x,y,z)

B

B

Figure 10
The magnetic field inside and outside
a wire carrying a uniform current.

Figure 11
The curl of that magnetic field,
determined by       ∇∇ ××B = µµ0 i (x,y,z) .
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CURL IN CYLINDRICAL COORDINATES
In our study of the gradient in Chapter 3 and of
Schrödinger's equation in Chapter 6, we saw that
when a problem had cylindrical or spherical symme-
try, there was a considerable advantage to using the
formulas in cylindrical or spherical coordinates.
Very often problems involving the curl, like the mag-
netic field of the current in a straight wire, have a
cylindrical symmetry.  For such problems it is much
easier to work with the curl in cylindrical coordinates.

Deriving formulas for curl   ∇ ×B and divergence
  ∇ ⋅E  in cylindrical or spherical coordinates is made

difficult  because of the unit vectors.  In Cartesian
coordinates, the unit vectors are constant. But in
other coordinate systems the unit vectors change as
we move around in space. When we take the partial
derivative of a vector,  we also have to include the
effects of changes in the unit vectors.

In the appendix to Chapter 4, where we calculated
  ∇ ⋅ (∇ f) = ∇ 2f  in spherical polar coordinates, most of

the calculation dealt with the changing unit vectors. In
a more closely related example, suppose we have the
vector  B  expressed in cylindrical coordinates as

  B = r Br + θBθ + zBz

where the unit vectors r , θ , and z  are shown in
Figure (12). If we make a change in the angle θ  from
θ  to   θ+∆θ , the unit vectors r  and θ  change
directions by an angle  ∆θ  as shown in Figure (13).

x

y

z

r

r

z

θ

θ

x

∆θ

y

(1)

(2)

θ

r

r '
θ

θ'

Figure 12
The unit vectors in cylindrical coordinates. Figure 13

We see that the unit vectors r  and φφ change direction
when we change the angle θθ  by      ∆∆θθ .

When we calculate the partial derivative of the
vector  B , as we change the angle θ from θ  to

  θ+∆θ , we not only have to include the change in the
value of  B  as we move from points (1) to (2) in
Figure (11), we also have to account for the fact that
the unit vectors r  and θ  have also changed. This
change mixes up the components of  B .

It is not impossible to work out the formulas for the
divergence or curl of a vector in cylindrical or
spherical coordinates, but one is not likely to do it on
the back of an envelope and get the right answer.
Any practicing physicist or engineer, who needs to use
these formulas, looks them up in a reliable reference.

What we will do is simply state the formula for curl in
cylindrical coordinates, and then check that the for-
mula gives the simple results we discussed in the last
section for the case of the magnetic field of a wire.  At
the end of this text, in the Formulary,  we summarize
all the formulas for gradient, divergence and curl, in
Cartesian, cylindrical and spherical coordinates.  Such
a summary can be a very useful thing to have.

Given a field  B  expressed in cylindrical coordinates as

  B = r Br + θBθ + zBz (50)

the formula for the curl is
  

(∇ × B)r = 1
r

∂Bz

∂θ
–

∂Bθ

∂z

(∇ × B)θ =
∂Br

∂z
–

∂Bz

∂r

(∇ × B)z = 1
r

∂
∂r

(rBθ) – 1
r

∂Br

∂θ

(51)



Cal 8-12       Calculus  2000 - Chapter 8       Curl

CALCULATING THE CURL OF THE
MAGNETIC FIELD OF A WIRE
While Equation (51) for   ∇ × B  in cylindrical coor-
dinates looks worse than the curl in Cartesian coor-
dinates, you will see a major simplification when
applied to a problem with cylindrical symmetry.
The magnetic field of a wire travels in circles about
the wire as shown in Figure (14).  We see that  B  has
only a θ  component   Bθ .  In addition, the value of

  Bθ  does not depend on, i.e., change with, the height
z  or the angle θ . Thus we can write  B  as

   
B = θBθ(r) magnetic field of

a straight wire (52)

where the only variable   Bθ  depends upon is the radius.

Outside the wire
We will first calculate  B  using the integral form of
Gauss' law, and then see what happens when we
apply the curl formula, Equation (51) to  B .  Integrat-
ing  B  around the circular path of radius r, shown by
the dotted circle in Figure (12) gives

  B ⋅ d = µ0i enclosed

  Bθ(r) × 2πr = µ0itot

  
Bθ(r) =

µ0itot

2πr (53) also (28-18)

This is the result we saw in Chapter 28 of the Physics
text.  Here  i enclosed  is equal to the total current  itot
because our path goes around the wire.

We are now ready to plug in the values

 Br = 0

  
Bθ =

µ0itot

2πr

 Bz = 0 (54)

into Equation (51) to get the value of the curl

  ∇ ×B = r (∇ ×B)r +θ(∇ ×B)θ +z(∇ ×B)z (55)

Because  Br  and  Bz  are zero, a lot of the terms in the
formula for   ∇ ×B vanish, and we are left with

  
(∇ ×B)r = –

∂Bθ

∂z

  (∇ ×B)θ = 0

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ) (56)

You should check for yourself that this is all that is
left of   ∇ ×B for the  B  of Equation (54).

We now note that   Bθ(r) = µ0itot 2πrµ0itot 2πr depends only
on the variable r and has no z dependence.  Thus

  ∂Bθ(r)

∂z
= 0 (57)

and all we are left with for the curl is

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ)

(58)

Equation (58) applies to any vector field that looks
like the magnetic field in Figure (12).  It applies to
any vector field of the form

  B = θf(r) (59)

where f(r) is any function of r.  These are the kinds
of fields we are most likely to deal with in a discus-
sion of the curl, in which case we can use the much
simpler Equation (58).

i

B

x

y

z

r

r

z

θ

θ

tot

r

Figure 14
Magnetic field of
a straight current.



Calculus  2000 - Chapter 8      Curl       Cal 8-13

Applying Equation (58) to our special value
  Bφ = µ0itot/2πr , we get

  
∇ ×B

z
= 1

r
∂
∂r

rBθ

= 1
r

∂
∂r

r
µ0itot

2πr
(60)

Notice that the r's in the square bracket cancel,
leaving us with

  
∇ ×B

z
= 1

r
∂
∂r

µ0itot

2π
(61)

We see that   µ0itot/2π  is a constant and the derivative
of a constant is zero

  ∂
∂r

µ0itot

2π
= 0 (62)

Thus we end up with the simple result

  
∇ ×B = 0 for Bθ =

µ0itot
2πr

(63)

This is what we expected from our earlier discussion
of  Ampere's law in differential form. Neglecting the

  ∂E/∂t  term, the law is

  ∇ ×B = µ0 i(x,y,z) (38) repeated

where the vector  i (x,y,z)  is the current density.
Since the current is confined to the wire, the curl

  ∇ ×B  must also be confined to the wire, and be zero
outside.

Inside the Wire
What about inside the wire where the current density
is not zero?  Equation (53) does not apply there
because the formula   Bθ = µ0itot 2πrµ0itot 2πr applies only
outside the wire.

To calculate the magnetic field inside the wire, we
have to know something about the current density.
Let us assume that we have a uniform current inside
a wire of radius R.  We will apply Ampere's law to
a circular path of radius  r  as shown in the end view
of the wire in Figure (15).

The amount of current enclosed by our path of radius
r  is, for a uniform current, simply the total current

 itot  times the ratio of the area   πr2  of the path, to the
area   πR2  of the wire

  
i enclosed = itotal

πr2

πR2 = itot
r2

R2 (64)

Using this value in Ampere's law, we get for the
magnetic field inside the wire

  B ⋅ d = µ0i enclosed

  
Bθ × 2πr = µ0itot

r2

R2 (65)

One of the r's cancels, and we are left with

  
Bθ(r) =

µ0itotal

2πR2 r (66)

where everything in the square brackets is a con-
stant.  You derived this result in Exercise (29-4) of
the Physics text.

B

B

r

R

circular
Magnetic
Field 

circular
Path of
radius r

Figure 15
Calculating the magnetic field inside the wire,
assuming a uniform current density.
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Repeating Equation (66), we had for the field inside
the wire

  
Bθ(r) =

µ0itotal

2πR2 r (66)

We see that   Bθ  increases linearly with r  until we
reach the surface of the wire at r = R, as shown in Figure
(16).  Then outside the wire,   Bθ  drops off as 1/r.

To simplify the formulas, let us write   Bθ  inside the
wire as

   Bθ(r) = kr inside
wire (66a)

where

  
k =

µ0itotal

2πR2 (66b)

The curl of this value of   Bθ is given by Equation (58)
as

  
(∇ ×B)z = 1

r
∂
∂r

(rBθ)

= 1
r

∂
∂r

(rkr)

= k
r

∂
∂r

(r2)

(67)

Since   ∂(r2) ∂r∂(r2) ∂r = 2r , we get

  (∇ ×B)z = k
r (2r) = 2k (68)

R

B(r)

r

r
r
12πR

µ i0 tot

Figure 16
The magnetic field inside and outside the wire,
for a uniform current density inside the wire.

Putting back our value for   k = µ0itot/2πR2  we get

  
(∇ ×B)z = µ0

itot

πR2 (69)

Now   itot/πR2  is the total current in the wire divided
by the area of the wire, which is the current density
i(x,y,z).  Since the current is z  directed, we can write
the current density as

  
i (x,y,z) = z

itot

πR2 (70)

and Equation (70) can be written as the vector
equation

  ∇ ×B = µ0 i (x,y,z) (38) repeated

which is the differential form of Ampere's law (for
  ∂E/∂t = 0 ).

This is the result we expected in the first place. The
fact that we got back to Ampere's law serves as a
check that the formulas for the curl in cylindrical
coordinates are working.

  ∇ ×B = µ0 i   ∇ ×B = 0



Calculus  2000 - Chapter 9       Electromagnetic Waves      Cal 9-1

Calculus 2000-Chapter 9
Electromagnetic Waves
CHAPTER 9 ELECTROMAGNETIC
WAVES

In the Physics text we had some difficulty showing
that Maxwell's equations led to the prediction of the
existence of electromagnetic  radiation.  The prob-
lem was that the integral form of Maxwell's equa-
tions are not particularly well suited for the deriva-
tion.  The best we could do was to show that the wave
pulse, shown in Figure (32-16) reproduced here,
travels out at a speed   v = 1/ µ0ε0  which turns out
to be the speed of light.

EE

B

vv
vv

λ
One wavelength l = the distance between similar crests

Electric
field

Magnetic
field

a) Electric and magnetic fields produced 
    by abruptly switching the antenna current.

b) Electric and magnetic fields produced 
    by smoothly switching the antenna current.

E

B

c c

cc

x

y

z

In discussing light waves, we made the argument
that if we started with a series of wave pulses shown
in Figure (32-23a) and smoothed them out, we could
get the sinusoidal pulse shown in (32-23b).  We
never did show that the smoothed out version was
actually a solution of Maxwell's equations, or that
the sinusoidal structure traveled at a speed

  c = 1/ µ0ε0 .  With the differential form of Maxwell's
equations, we can now do that.

Figure 32-23
Structure of electric and magnetic
fields in light and radio waves.

Figure  32-16
Electromagnetic pulse
produced by turning the
current on and then
quickly off. We will see
that this structure agrees
with Maxwell's
equations.
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VECTOR IDENTITIES
To use the differential forms of Maxwell's equa-
tions, it is convenient to first develop three formulas
known as vector identities.  These are mathematical
relationships involving curls that apply to any vector
field.  We will state these identities first and then
spend the rest of the section deriving them.  You
should go through these derivations at least once to
get a feeling for how they work and how general they
are.

Identity 1
The curl of a gradient   ∇ f  is zero for any scalar field
f(x,y,z).

  
∇ ×(∇ f) = 0

(1)

Identity 2
The divergence of a curl is zero.  That is, for any
vector field  A(x,y,z)

  
∇ ⋅ (∇ ×A) = 0

(2)

Identity 3
This identity gives us a formula for the curl of a curl.
The formula is

  ∇ ×(∇ × A) = – (∇ ⋅∇ )A + ∇ (∇ ⋅A) (3)

where   ∇ ⋅ ∇ = ∇ x∇ x + ∇ y∇ y + ∇ z∇ z  is the
Laplacian operator discussed in Chapter 4.  We will
often use the notation

  ∇ ⋅∇ ≡ ∇ 2 = ∇ x∇ x + ∇ y∇ y + ∇ z∇ z (4)

so that the vector identity can be written as

  
∇ ×(∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A)

(5)

In the special case that  A  has zero divergence, if
  ∇ ⋅A = 0 , then we get

   
∇ ×(∇ ×A) = – ∇ 2A

if ∇ ⋅A
is zero

(5a)

Proof of Identity 1
The proof of these identities relies on the fact that we
can interchange the order of partial differentiation, a
result we prove in the appendix to this chapter.  As
an example of how this is used, consider one compo-
nent of the first identity.  Using the cross product
formula

  (A × B)x = AyBz – AzBy (6)

we get

  ∇ ×(∇ f)
x

= ∇ y(∇ zf) – ∇ z(∇ yf)

= ∇ y∇ zf – ∇ z∇ yf
(7)

Interchanging   ∇ y∇ z  to get   ∇ y∇ zf = ∇ z∇ yf  imme-
diately makes this component zero.  The same thing
happens to the  y and z components of   ∇ ×(∇ f) , thus
the entire expression is zero.
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Proof of Identity 2
To prove the second identity   ∇ ⋅(∇ ×A) = 0 , we
start with the components of   ∇ × A , which are

  (∇ ×A)x = ∇ yAz – ∇ zAy

  (∇ ×A)y = ∇ zAx – ∇ xAz

  (∇ ×A)z = ∇ xAy – ∇ yAx (8)

Note that to get all three components of   ∇ × A , you do
not have to memorize all three equations.  If you
memorize only the first   (∇ ×A)x = ∇ yAz – ∇ zAy
you can get the other  two by using cyclic permutations.
That means, start with   (∇ ×A)x = ∇ yAz – ∇ zAy , and
replace the subscripts cyclically, letting

  x → y ,   y → z , and z → x .  That gives you
  (∇ ×A)y = ∇ zAx – ∇ xAz .  Do the cyclic permutation

again and you get   (∇ ×A)z = ∇ xAy – ∇ yAx  which is
the third equation.)

Now take the dot product of  ∇  with   ∇ × A  to get

  ∇ ⋅ (∇ ×A)

= ∇ x(∇ ×A)x + ∇ y(∇ ×A)y + ∇ z(∇ ×A)z

= ∇ x∇ yAz – ∇ x∇ zAy

+ ∇ y∇ zAx – ∇ y∇ xAz

+ ∇ z∇ xAy – ∇ z∇ yAx (9)

Exercise 1

Show that all the terms in Equation (9) cancel, giving
  ∇ ⋅ (∇ × A) = 0 for any A .

Proof of Identity 3
The third vector identity

  ∇ × (∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A) (5) repeat

looks worse but is not that hard to prove.  We will
start with the x  component of   ∇ × (∇ ×A)  which is

  ∇ × (∇ ×A)
x

= ∇ y(∇ ×A)z – ∇ z(∇ ×A)y

= ∇ y(∇ xAy – ∇ yAx) – ∇ z(∇ zAx – ∇ xAz)

= – ∇ y∇ yAx – ∇ z∇ zAx + ∇ x∇ yAy + ∇ x∇ zAz

(10)
where we changed the order of differentiation in the
last two terms. The trick is to add and then subtract

  ∇ x∇ xAx  to Equation (10), giving

  ∇ × (∇ ×A)
x

= – ∇ x∇ xAx – ∇ y∇ yAx – ∇ z∇ zAx

+ ∇ x∇ xAx + ∇ x∇ yAy + ∇ x∇ zAz

= – (∇ x∇ x + ∇ y∇ y + ∇ z∇ z)Ax

+ ∇ x(∇ xAx + ∇ yAy + ∇ zAz)

= – ∇ 2Ax + ∇ x(∇ ⋅A)

(11)

This is just the x component of Equation (5).  Similar
derivations verify the  y and z components of that
vector identity.
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DERIVATION OF THE WAVE EQUATION
We are now in a position to derive the wave equation
for electromagnetic waves, starting from Maxwell's
equations.  We will use Maxwell's equations for
empty space, because Maxwell's major discovery
was that electric and magnetic fields could propa-
gate through empty space in a wavelike manner, and
that these waves were light waves.

Maxwell's equations in differential form are, from
Equations (8-49) of Chapter 8

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(12)

Maxwell's Equations

where   ρ(x,y,z)  is the electric charge density in
coulombs per cubic meter, and  i (x,y,z)  is the elec-
tric current density in amperes per square meter.

In empty space, where the charge density   ρ(x,y,z)
and the current density  i (x,y,z)  are zero, we get

   ∇ ⋅E = 0 Gauss' law (13a)

    ∇ ⋅B = 0 no monopole (13b)

    
∇ × B = µ0ε0

∂E
∂t

Ampere's law (13c)

    
∇ × E = –

∂B
∂t

Faraday's law (13d)

Maxwell's Equations in Empty Space

In our discussion of vector fields in the Physics text,
we pointed out that a vector field is uniquely deter-
mined if we have general formulas for the volume
and line integrals of that field.  Now, working with
differential equations, that statement becomes the
rule that a vector field like  E  is determined if we
know the divergence    ∇ ⋅ E  and the curl    ∇ × E  at
every point in space*.  There are four Maxwell
equations because we have to specify both the diver-
gence and the curl of both  E  and  B .

Equation (10) tells us that in empty space, neither  E
nor  B  have a divergence    (∇ ⋅E = ∇ ⋅B = 0) , and
we only have to deal with the curls of these fields.

The trick we use to get a wave equation from
Equations (13) is to take the curl of Equations (13c)
and (13d).  This gives us

   
∇ × (∇ × B) = µ0ε0∇ ×

∂E
∂t (14a)

   
∇ × (∇ × E) = – ∇ ×

∂B
∂t (14b)

where we took the constants   µ0  and   ε0  outside the
derivative in Equation (14a).

*(If we have a field known only in some region of
space, like the velocity field of a fluid in a section of
pipe, we can uniquely determine the field if we know
the divergence and curl within that region, and also
the normal components of the field at the region's
surface.)
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The next step is to use the fact that we can inter-
change the order of partial differentiation to get

   
∇ ×

∂E(x,y,z,t)
∂t = ∂

∂t ∇ × E(x,y,z,t) (15)

and a similar result for    ∇ × (∂B/∂t)  to give

   ∇ × (∇ × B) = µ0ε0
∂
∂t (∇ × E) (16a)

   
∇ × (∇ × E) = –

∂
∂t (∇ × B) (16b)

Notice that the right hand sides of Equations (16)
involve    (∇ × E)  and    (∇ × B)  which are given by
Maxwell's Equations (13c) and (13d) as

   
∇ × E = –

∂B
∂t (13d) repeated

   
∇ × B = µ0ε0

∂E
∂t (13c) repeated

Thus Equations (16) can be written as

   
∇ × (∇ × B) = µ0ε0

∂
∂t –

∂B
∂t

= – µ0ε0
∂2B
∂t2

(17a)

   
∇ × (∇ × E) = –

∂
∂t µ0ε0

∂E
∂t

= – µ0ε0
∂2E
∂t2

(17b)

Notice that at this point  E  and  B  obey exactly the
same differential equation.

The final step is to use the vector identity

  ∇ × (∇ × A) = – ∇ 2A + ∇ (∇ ⋅ A) (5) repeat

Since both    ∇ ⋅ E  and    ∇ ⋅ B  are zero in empty space,
we have

   ∇ × (∇ × B) = – ∇ 2B (18)

and the same for    ∇ × (∇ × E)  to give us

  
– ∇ 2E = – µ0ε0

∂2E
∂t2 (19a)

  
– ∇ 2B = – µ0ε0

∂2B
∂t2 (19b)

Dividing through by   µ0ε0  gives

  
1

µ0ε0
∇ 2E = ∂2E

∂t2 (20a)

  
1

µ0ε0
∇ 2B = ∂2B

∂t2 (20b)
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PLANE WAVE SOLUTION
Repeating Equations (20), we have

  1
µ0ε0

∇ 2E = ∂2E
∂t2 (20a)

  1
µ0ε0

∇ 2B = ∂2B
∂t2 (20b)

To interpret these equations, let us assume that  E
and  B  have the shape more or less like that shown in
Figure (32-23b) reproduced here again.  All we need
from that picture is that both  E  and  B  vary only in
the direction of motion (call this the x direction) and
in time.  There is no change of  E  and  B  in the y and
z  directions.  Such a wave is called a plane wave,
because there are no variations within a plane.

Using the coordinate system added to Figure (32-
23b), we see that  E  is y directed (we would call this
y polarized radiation) and  B  is z  directed.  The
formulas for  E  and  B  can thus be written for this z
directed plane wave

 E = yEy(x,t) (21a)

 B = zBz(x,t) (21b)

where Equations (21a) and (21b) remind us that we are
dealing with a plane wave with no x or y dependence.

As a result

  
∇ yE = y

∂E(x,t)

∂y
= 0

and the same for   ∇ zE ,   ∇ yB  and   ∇ zB .  Thus

  ∇ 2E = (∇ x∇ xE + ∇ y∇ yE + ∇ z∇ zE)

= ∇ x∇ xE = y
∂2Ey

∂x2

(22a)

and

  
∇ 2B = z

∂2Bz

∂x2
(22b)

The time derivatives of the plane wave fields of
Equations (21) are

  ∂2E
∂t2

= y
∂2Ey(x,t)

∂t2
(23a)

  ∂2B
∂t2

= z
∂2Bz(x,t)

∂t2
(23b)

λ
One wavelength l = the distance between similar crests

Electric
field

Magnetic
field

a) Electric and magnetic fields produced 
    by abruptly switching the antenna current.

b) Electric and magnetic fields produced 
    by smoothly switching the antenna current.

E

B

c c

cc

x

y

z

Figure 32-23
Structure of electric
and magnetic fields in
light and radio waves.
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When we use Equation (22a) for   ∇ 2E  and (23a) for
  ∂2E/∂t2  in Equation (20a), the unit vectors y cancel

and we are left with

  1
µ0ε0

∂2Ey(x,t)

∂x2
=

∂2Ey(x,t)

∂t2
(24a)

We get a similar equation for  Bz , namely

  1
µ0ε0

∂2Bz(x,t)

∂x2
=

∂2Bz(x,t)

∂t2
(24b)

In our discussion of the one dimensional wave
equation in Chapter 2 of this text we had as the
formula for the wave equation

   
vwave

2 ∂2y(x,t)

∂x2
=

∂2y(x,t)

∂t2

one
dimensional
wave
equation

(2-73)

Comparing this wave equation with Equation (24),
we see that the plane wave of Figure (32-23b) obeys
the one dimensional wave equation with

  vwave
2 = 1

µ0ε0

  
vwave = 1

µ0ε0

(25)

From the wave equation alone we immediately find
that the speed of the wave is   1/ µ0ε0  which is the
speed of light.  We get this result without going
through all the calculations we did in the Physics text
to derive the speed of the electromagnetic pulse.

What we have shown in addition is that the speed of
the wave does not depend on its shape.  All we used
was that E = E(x,t) without saying what the x
dependence was.  Thus both the series of pulses in
Figure (32-23a) and the sinusoidal wave in (32-23b)
should have the same speed   1/ µ0ε0 .  This we were
not able to show using the integral form of Maxwell's
equations.

THE THREE DIMENSIONAL
WAVE EQUATION
We have seen that if  E  and  B  are plane waves, i.e.,
vector fields that vary in time and only one dimen-
sion, then Equations (20a) and (20b) become the one
dimensional wave equation for  E  and  B .  Since
Equations (20) do not single out any one direction as
being special, we would get a wave equation for a
plane wave moving in any direction, and we see that
Equations (20) are three dimensional wave equa-
tions for waves traveling at a speed   vwave

2 = 1/ µ0ε0 .
Rewriting these equations in terms of  vwave  rather
than   µ0ε0  gives us the general form of the three
dimensional wave equation

  
vwave

2 ∇ 2E = ∂2E
∂t2 (26)

and the same for  B .

The form we will generally recognize as being the
three dimensional wave equation is the trivial rear-
rangement of Equation (26),

   
1

vwave
2

∂2E
∂t2

– ∇ 2E = 0
three dimensional
wave equation
applied to E

(27)
Equation (27) is the way the wave equation is
usually written in textbooks.

So far we have only shown that plane waves are a
solution to the three dimensional wave equation.
For now that is enough.  Solutions to the wave
equation can become quite complex in three dimen-
sions, and we do not yet have to deal with these
complications.
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APPENDIX: ORDER OF PARTIAL
DIFFERENTIATION
It is worth while to show once and for all that you can
interchange the order of partial differentiation.  We
do this by going back to the limiting process, where

  ∂f(x,y)

∂x
= limit

∆x→0
f(x+∆x,y) – f(x,y)

∆x
(A-1)

and a similar formula for   ∂f/∂y .  For the second
derivative we have

  
∇ x∇ yf(x,y) = ∂

∂x
∂f(x,y)

∂y
(A-2)

Let us temporarily introduce the notation

  
fy
′ (x,y) =

∂f(x,y)

∂y
(A-3)

so that Equation (A-2) becomes

  ∇ x∇ yf(x,y) = ∂
∂x

fy
′ (x,y)

= limit
∆x→0

fy
′ (x+∆x,y) – fy

′ (x,y)

∆x

(A-4)
Now in Equation (A-4) make the substitution

  
fy
′ (x,y) = limit

∆y → 0
f(x,y+∆y) – f(x,y)

∆y
(A-5)

  
fy
′ (x+∆x,y) = limit

∆y→0
f(x+∆x,y+∆y) – f(x+∆x,y)

∆y

(A-6)
Using Equations (A-5) and (A-6) in (A-4) gives

  
∇ x∇ yf(x,y) =

limit
∆x→0
∆y→0

f(x+∆x,y+∆y) + f(x,y) – f(x+∆x,y) – f(x,y+∆y)

∆x∆y

(A-7)

Exercise 1

Show that you get exactly the same result for   ∇ y∇ xf(x,y).

You can see that our result, Equation (A-7) is com-
pletely symmetric between x and y, thus it should be
obvious that we should get the same result by revers-
ing the order of differentiation.

The only possible fly in the ointment is the order in
which we take the limits as   ∆x → 0  and   ∆y → 0 .
As long as f(x,y) is smooth enough so that f(x,y) and
its first and second derivatives are continuous, then
the order in which we take the limit makes no
difference.
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Calculus 2000-Chapter 10
Conservation of Electric Charge

CHAPTER 10 CONSERVATION OF
ELECTRIC CHARGE

In this short chapter, we obtain a very important
result.  We will see that Maxwell's equations them-
selves imply that electric charge is conserved.  In
our development of Maxwell's equations, our atten-
tion was on the kind of electric and magnetic fields
that were produced by electric charges and cur-
rents.  We said, for example, that given some electric
charge, Gauss' law would tell us what electric field
it would produce. Or given an electric current,
Ampere's law would tell us what magnetic field
would result.

Then later on, we found out that for mathematical
consistency, a changing electric field would create
a magnetic field and vice versa.  All this was summa-
rized in Maxwell's equations, which we repeat here

  ∇ ⋅ E = ρ/ε0

∇ ⋅ B = 0

∇ × E = – ∂B/∂t

∇ × B = µ0 i + µ0ε0∂E/∂t

(1)

What we did not notice in this development of the
equations for  E  and  B  is that the equations place a
fundamental restriction on the sources ρ  and i  of
the fields.  As we will now see, the restriction is that
the electric charge, which is responsible for the
charge density ρ  and current i , must be conserved.
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THE CONTINUITY EQUATION
We began our discussion of fluid dynamics in Chap-
ter 23 of the Physics text, by introducing the conti-
nuity equation for an incompressible  fluid.  For a
tube with an entrance cross sectional area  A1  and
exit area  A2 , the equation was

  v1A1 = v2A2
continuity
equation (23-3)

which says that the same volume of fluid per second
flowing into the entrance flows out of the exit.  Later
this statement that the fluid is incompressible (or
does not get lost or created) became

   v
closed
surface

⋅dA = 0 incompressible
fluid (2)

The differential form of Equation (2) is

   ∇ ⋅v = 0 incompressible
fluid (3)

as we showed in our initial discussion of divergence.
All three equations, (23-3), (2) and (3) are saying the
same thing in a progressively more detailed way.

Equation (3) is not the most general statement of a
continuity equation.  It is the statement of the conser-
vation of an incompressible fluid, but you can have
flows of  a compressible nature where something
like mass or charge is still conserved.  A more
general form of the continuity equation allows for
the conservation of these quantities.  We will now
see that this more general form of the continuity
equation naturally arises from Maxwell's equations.

CONTINUITY EQUATION FROM
MAXWELL'S EQUATIONS
To derive the continuity equation for electric charge,
we start by taking the divergence of the generalized
form of Ampere's law

  
∇ ⋅ ∇ ×B = µ0 i + µ0ε0

∂E
∂t

(4)

which becomes

  
∇ ⋅ (∇ ×B) = µ0∇ ⋅ i + µ0ε0∇ ⋅ ∂E

∂t
(5)

Using the fact that the divergence of a curl is iden-
tically zero,   ∇ ⋅ (∇ × B) = 0 , and the fact that we can
interchange the order of differentiation, we get

  0 = µ0∇ ⋅ i + µ0ε0
∂
∂t (∇ ⋅E) (6)

Divide Equation (6) through by   µ0 , and use Gauss'
law

  ∇ ⋅E =
ρ
ε0

to get

  ∇ ⋅ i + ε0
∂
∂t

ρ
ε0

= 0 (7)

The   ε0's  cancel and we are left with

   ∂ρ
∂t

+ ∇ ⋅ i = 0 continuity equation
for electric charge (8)

Equation (8) is the continuity equation for electric
charge.

You can immediately see from Equation (8) that if
the electric charge density ρ  were unchanging in
time, if   ∂ρ/∂t = 0 , then we would have   ∇ ⋅ i = 0  and
the electric current would flow as an incompressible
fluid.  The fact that a   ∂ρ/∂t  term appears in Equation
(8) is telling us what happens when ρ  changes, for
example, if we compress the charge into a smaller
region.
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Integral Form of Continuity Equation
The way to interpret Equation (8) is to convert the
equation to its integral form.  We do this by integrat-
ing the equation over some volume V bounded by a
closed surface S.  We have

  ∂ρ
∂t

V

dV + ∇ ⋅ i

V

dV = 0 (9)

Using the divergence theorem to convert the volume
integral of   ∇ ⋅ i  to a surface integral gives

  ∇ ⋅ i

volume
V

dV = i

S (surface
of V)

⋅dA (10)

Using Equation (10) in (9) we get

   
i

closed
surface S

⋅dA = –
∂ρ
∂t

volume
V inside S

dV
integral form
of continuity
equation

(11)
On the left side of Equation (11) we have the term
representing the net flow of electric current out
through the surface S.  It represents the total amount
of electric charge per second leaving through the
surface.  On the right side we have an integral
representing the rate at which the amount of charge
remaining inside the volume V is decreasing (the –
sign).  Thus Equation (38) is telling us that the rate
at which charge is flowing out through any closed
surface S is equal to the rate at which the amount of
charge remaining inside the surface is decreasing.
This can be true for any surface S only if electric
charge is everywhere conserved.

The fact that the continuity equation was a conse-
quence of Maxwell's equation tells us that if we do
have the correct equations for electric and magnetic
fields, then the source of these fields, which is
electric charge and current, must be a conserved
source.  Later, when we discuss the process of
constructing theories of fields, we will see in more
detail how conservation laws and theories of fields
are closely related.  Basically for every fundamental
conservation law there is a field associated with the
law.  In this case the law is the conservation of
electric charge and the associated field is the electro-
magnetic field.  It turns out that the law of conserva-
tion of energy is associated with the gravitational
field.
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Calculus 2000-Chapter 11
Scalar And Vector Potentials
CHAPTER 11 SCALAR AND VEC-
TOR POTENTIALS

In our first  experiment on electricity in the Physics
text we studied the relationship between voltage on
electric fields.  We constructed the lines of constant
voltage, the equipotential lines, and then constructed
the perpendicular electric field lines.  In Chapter 3
of the Calculus text we developed the more detailed
relationship that the electric field  E  was equal to
minus the gradient of the voltage

   E(x,y,z) = – ∇ V(x,y,z) (3-19)

As you study more advanced topics in science, you
sometimes encounter situations where the name or
symbol used to describe some quantity is different in
the advanced texts than in the introductory ones.
Various historical accidents are often responsible
for this change.

In introductory texts and in the laboratory we talk
about the voltage V which we measure with a volt-
meter.  The first hint that we would use a different
name for voltage was when we called the lines of
constant voltage equipotential lines, or lines of
constant potential.  Advanced texts, particularly
those with a theoretical emphasis, use the name
potential rather than voltage, and typically use the
symbol    φ(x,y,z) rather than V(x,y,z).  In this nota-
tion, Equation (3-19) becomes

   E(x,y,z) = – ∇ φ(x,y,z) (1)

This is how we left the relationship between E  and
φ in Chapter 3 on gradients.

From our discussion of divergence and curl, it does
not take long to see that there is a problem with
Equation  (1) .  If we take the curl of both sides of this
equation, we get

   ∇ × E = – ∇ × (∇ φ) (2)

However our first vector identity, Equation (9-1)
was that the curl of a divergence was identically
zero.

   ∇ × (∇ φ) = 0 (3)

Thus Equation  (1)  implies that the field  E  has zero
curl

   ∇ × E = 0 as a consequence
of Equation (1)

(4)

which is not consistent with Maxwell's equations.  In
particular, Faraday's law says that

   
∇ × E = – ∂B

∂t
Faraday's law (5)

Thus Equation  (1)  cannot be true, or at least cannot
be the whole story, when changing magnetic fields
are present, when    ∂B/∂t  is not zero.  If we only have
static charges, or even stationary currents so that  B
is zero or constant in time, then Faraday's law
becomes

   
∇ × E = 0

when
∂B/dt = 0 (6)

and then  E  can be described completely as the gradi-
ent of a voltage V or potential φ.
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Since the curl is the line integral on an infinitesimal
scale, Equation (6) is equivalent to the statement
that the line integral of  E  is zero everywhere

   
E ⋅d = 0

when
∂B/dt = 0 (6a)

In our initial discussion of the line integral in Chap-
ter 28 of the Physics text (pages 28-5,6), we pointed
out that Equation (6a) was the condition for what we
called a conservative force, a force that could be
described in terms of potential energy.  The equation

   E = – ∇ φ  (or    – ∇ V ) does exactly that, since V or
φ  is the potential energy of a unit test charge.

What we are seeing now is that for static fields,
where    ∂B/∂t  is zero,  E  is a conservative field that
can be described as the gradient of a potential
energy φ .  However when changing magnetic fields
are present, the curl of  E  is no longer zero and  E
has a component that cannot be described as the
gradient of a potential energy.

We will see in this chapter that  E  and  B  can both be
described in terms of potentials by introducing a
new kind of potential called the vector potential

  A(x,y,z) .  When combined with what we will now
call the scalar potential       φφ(x,y,z) , we not only have
complete formulas for  E  and  B , but also end up
simplifying the electromagnetic wave equation for
the case that sources like charge density ρ and
current density i are present.

The topic of the vector potential   A(x,y,z)  is often left
to later advanced physics courses, sometimes intro-
duced at the graduate course level.  There is no need
to wait; the introduction of the vector potential
provides good practice with curl and divergence.
What we will not cover in this chapter are the ways
the vector potential is used to solve complex radia-
tion problems.  That can wait.  What we will focus on
is how the vector potential can be used to simplify the
structure of Maxwell's equations.  In addition we
need the vector potential to handle the concept of
voltage when changing magnetic fields are present.

THE VECTOR POTENTIAL
It seems to be becoming a tradition in this text to
begin each chapter with a repeat of Maxwell's equa-
tions.  In order not to break the tradition, we do it
again.

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(7)

Let us now set the magnetic field  B(x,y,z)  equal to
the curl of some new vector field  A(x,y,z) .  That is,

   
B(x,y,z) ≡ ∇ ×A(x,y,z)

introducing
the vector
potential A

(8)

Equation (7) is the beginning of our definition of
what we will call the vector potential  A x,y,z .  To
begin to see why we introduced the vector potential,
take the divergence of both sides of Equation (8).
We get

  ∇ ⋅B = ∇ ⋅ (∇ ×A) = 0 (9)

This is zero because of the second vector identity
studied in Chapter 9, Equation (9-2).  There we
showed that the divergence of the curl   ∇ ⋅ (∇ × A)
was identically zero for any vector field A.

Thus if we define B as the curl of some new  vector
field A, then one of Maxwell's equations,   ∇ ⋅B = 0
is automatically satisfied.
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Our next step is to see what happens when we
introduce the vector potential into the other Max-
well equations.  Let us start with Faraday's law

  ∇ × E = – ∂B
∂t

(10)

If we replace B with   ∇ × A we get

  ∇ ×E = – ∂
∂t

(∇ ×A) (11)

Using the fact that we can change the order of partial
differentiation, and remembering that the curl is just
a lot of partial derivatives, we get

   
∇ ×E = ∇ × – ∂A

∂t
Faraday's law

in terms of A
(12)

We see that Equation (12) would be satisfied if we
could set   E = – ∂A/∂t  on the left side.

We cannot do that, however, because we already
know that for static charges,   E = – ∇ φ.  But see what
happens if we try the combination

   
E = – ∇ φ – ∂A

∂t

electric field
in terms of
potentials
φ and A

(13)

Taking the curl of Equation (7) gives

  ∇ ×E = – ∇ ×(∇ φ) – ∇ × ∂A
∂t (14)

Since   ∇ ×(∇ φ) = 0  because the curl of a gradient is
identically zero, we get

  ∇ ×E = – ∇ × ∂A
∂t

(15)

Next interchange the order of partial differentiation
to get

  ∇ ×E = – ∂
∂t

(∇ ×A) = – ∂B
∂t

(16)

which is Faraday's law.

Thus when we define the electric and magnetic
fields E and B in terms of the potentials φ and A by

  B = ∇ ×A (8) repeated

  E = – ∇ φ– ∂A/∂t (13) repeated

then two of Maxwell's equations

   ∇ ⋅B = 0 no monopole

   ∇ × E = – ∂B
∂t

Faraday's law

are automatically satisfied.

You can now see how we handle potentials or
voltages when changing magnetic fields are present.
For the field of static charges, we have   E = – ∇ φ as
before.  When changing magnetic fields are present,
we get an additional contribution to E due to the –

  ∂A/∂t term.

In Maxwell's theory of electric and magnetic fields,
in what is often called the classical theory of electro-
magnetism, you can solve all problems by using
Maxwell's equations as shown in Equation (7) and
never bother with introducing the vector potential
A.  In the classical theory, the potentials are more of
a mathematical convenience, trimming the number
of Maxwell's equations from four to two because
two of them are automatically handled by the defi-
nition of the potentials.

Things are different in quantum theory.  There are
experiments involving the wave nature of the elec-
tron that detect the vector potential A directly.
These experiments cannot be explained by the fields
E and B alone.  It turns out in quantum mechanics
that the potentials φ and A are the fundamental
quantities and E and B are derived concepts, con-
cepts derived from the equations   B = ∇ × A and

  E = – ∇ φ – ∂A ∂t∂A ∂t .
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WAVE EQUATIONS FOR φφ AND  A

The other two Maxwell's equations turn out to be
wave equations for φ and A.  There is one surprise
in store.  So far we have defined only the curl of A
through the equation   B = ∇ × A.  In general a vector
field like A can have both a divergent part  Adiv and
a solenoidal part  Asol where

 A = Adiv + Asol (17)

where the divergent part has no curl and the solenoi-
dal part has no divergence

  ∇ × Adiv = 0 (18a)

  ∇ ⋅ Asol = 0 (18b)

We saw this kind of separation in the case of electric
fields.  When the electric field was created by static
electric charges it was purely divergent, i.e., had
zero curl.  An electric field created by a changing
magnetic field is purely solenoidal, with zero diver-
gence.

As a result  our equation   B = ∇ ×A  defines only the
solenoidal part of A, namely  Asol.  We are still free
to choose  Adiv, which has not been specified yet.
We will see that we can choose  Adiv or   ∇ ⋅A in such
a way that considerably simplifies the wave equa-
tions for φ and A.  This choice is not essential, only
convenient.  Sometimes, in fact, it is more conve-
nient not to specify any choice for  Adiv, and to work
with the more general but messier wave equations.

For very obscure historical reasons, the choice of a
special value for   ∇ ⋅A is called a choice of gauge.  In
a later chapter we will look very carefully at what it
means to make different choices for   ∇ ⋅A.  We will
see that there are no physical predictions affected in
any way by changing our choice for   ∇ ⋅A.  As a
result the theory of electromagnetism is said to be
invariant under different choices of gauge, or gauge
invariant.  This feature of electromagnetism will
turn out to have extremely important implications,
particularly in the quantum theory.  For now, how-
ever, we will simply make a special choice of   ∇ ⋅A
that simplifies the form of Maxwell's equations for
φ and A.

The two Maxwell's equations that are not automati-
cally satisfied by   B = ∇ × A and   E = – ∇ φ– ∂A/∂t
are

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

Making the substitutions   E = – ∇ φ– ∂A/∂t  in
Gauss's law gives

  
∇ ⋅E = ∇ ⋅ –∇ φ– ∂A

∂t
=

ρ
ε0

(19)

Noting that   ∇ ⋅ ∂A/∂t = ∂(∇ ⋅A)/∂t  because we can
change the order of partial differentiation, and that

  ∇ ⋅ (∇ φ) = ∇ 2φ , we get

  
–∇ 2φ–

∂(∇ ⋅A)

∂t
=

ρ
ε0

  
–∇ 2φ =

ρ
ε0

+
∂(∇ ⋅A)

∂t
(20)

You can see the divergence of A, namely   ∇ ⋅A
appearing in the equation for φ.

Making the substitutions in Ampere's law gives

  
∇ × B = ∇ × (∇ ×A) = µ0 i + µ0ε0

∂E

∂t

= µ0 i + µ0ε0
∂
∂t

– ∇ φ–
∂A

∂t
(21)

Using the third vector identity of Chapter 9, namely

  ∇ × (∇ ×A) = – ∇ 2A + ∇ (∇ ⋅A) (9-3)

Equation 21 becomes

  – ∇ 2A + ∇ (∇ ⋅A)

= µ0 i – µ0ε0
∂(∇ φ)

∂t
– µ0ε0

∂2A

∂t2

(22)
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Writing   ∂(∇ φ)/∂t = ∇ (∂φ/∂t)  and moving the
  ∂2(A)/∂t2  term to the left and   ∇ (∇ ⋅A)  to the right

gives
  

– ∇ 2A + µ0ε0
∂2(A)

∂t2

= µ0 i – ∇ µ0ε0
∂φ
∂t

– ∇ (∇ ⋅A) (23)

In Equation (23) we see the wave equation for A
appearing on the left side, but we have some weird
stuff involving   ∇ ⋅A  and   ∂φ/∂t on the right.  We can
simplify things a bit by noting that both of these
terms have a factor of ∇  and writing

   
– ∇ 2A + 1

c2
∂2(A)

∂t2

= µ0 i – ∇ ∇ ⋅A + 1
c2

∂φ
∂t

Ampere's
law

(24)

where we have replaced   µ0ε0 by  1/c2, c being the
speed of light.

Equation (24) is beginning to look like a wave
equation with some peculiar terms on the right hand
side.  Equation (20) for φ does not, at least now, look
like a wave equation.  However we can make it look
like a wave equation by adding the term

  (1/c2)(∂2φ/∂t2)  to both sides, giving

  
– ∇ 2φ+ 1

c2
∂2(φ)

∂t2

=
ρ
ε0

+ 1
c2

∂2(φ)

∂t2 +
∂(∇ ⋅A)

∂t (25)

We can factor out a   ∂/∂t in the last two terms on the
right side of Equation (25) giving us

   
– ∇ 2φ+ 1

c2
∂2(φ)

∂t2

=
ρ
ε0

+ ∂
∂t

∇ ⋅A + 1
c2

∂φ
∂t

Gauss'
law

(26)

The rather messy looking Equations (24) and (26)
are Ampere's law and Gauss' law written in terms of
the scalar and vector potentials φ and A.

On the left side of each we have the beginning of a
wave equation, but somewhat of a mess on the right.
However we see that the term

  ∇ ⋅A + 1
c2

∂φ
∂t

(27)

is common to both equations.  If we could find some
way to get rid of this term, there would be a consid-
erable simplification.

We have, however, not yet specified what the value
of   ∇ ⋅A  should be.  We have only specified

  ∇ × A = B.  If we make the choice

   
∇ ⋅A = – 1

c2
∂φ
∂t

special
choice
of gauge

(28)

then the term (27) goes to zero.  Making a choice for
  ∇ ⋅A is called making a choice of gauge, and this

particular choice leads to the much simpler equa-
tions

   
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

Gauss' law (29)

   
– ∇ 2A + 1

c2
∂2A

∂t2 = µ0 i Ampere's law (30)

We get the rather elegant result that both potentials,
the scalar potential φ and vector potential A, obey
wave equations with source terms on the right hand
side.  The source for the scalar potential is the charge
density   ρ/ε0, and the source for the vector potential
is the current density   µ0 i .
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Exercise 1
The choice of gauge we made to get Equations (29) and
(30) was    ∇ ⋅A = – (1/c2)∂φ/∂t .  This gave us simple wave
equations which are convenient if we are working with
electromagnetic waves.  Sometimes another choice of
gauge is more convenient.  Derive Gauss' law and
Ampere's law in terms of φ and A, using the choice of
gauge

   ∇ ⋅A = 0 Coulomb
gauge (31)

which is called the Coulomb gauge.

Do this derivation two ways.  One by starting from
Maxwell's equations in terms of E and B, and secondly,
starting from Equations (24) and (26) where we made no
special choice of gauge.

Exercise 2
This exercise is optional, but should give some very
good practice with Maxwell's equations.  In Chapter 9
we derived the wave equation for electromagnetic
waves in empty space by first writing Maxwell's equa-
tions for empty space, Equations (9-12), and then taking
the curl of Ampere's and Faraday's law.  The results
were

   
– ∇ 2E + 1

c2
∂2E
∂t2

= 0

    
– ∇ 2B + 1

c2
∂2B
∂t2

= 0 wave equations
in empty space (9-20)

Now repeat these calculations for the case that the
charge and current densities ρ and i are not zero.  Show
that you get the following wave equations for E and B

   
– ∇ 2E + 1

c2
∂2E
∂t2

= – ∇ ρ
ε0

– µ0
∂ i
∂t (32)

   
– ∇ 2B + 1

c2
∂2B
∂t2

= µ0∇ × i (33)

You can see that we still get wave equations for E and
B, but the source terms, the stuff on the right hand side,
are much more complex than the source terms for the
wave equations for φ and A.  For example, the source
term for the A wave is simply   µ0 i , while the source term
for a B wave is the    µ0∇ × i . It is even worse for the E field.
Instead of the source term    ρ/ε0 for the φ field, we have

   (– ∇ρ /ε0 – µ0∂ i /∂t)  as a source for the E wave.

Summary
Here we collect in one place, all the forms of
Maxwell's equations.

(a) Maxwell's equations in terms of E and B

    ∇ ⋅E =
ρ
ε0

Gauss' law

∇ ⋅B = 0 no monopole

∇ × B = µ0 i + µ0ε0
∂E
∂t

Ampere's law

∇ × E = –
∂B
∂t

Faraday's law

(b) Wave equations for E and B

  
– ∇ 2E + 1

c2
∂2E
∂t2 = –

∇ ρ
ε0

– µ0
∂ i
∂t

  
– ∇ 2B + 1

c2
∂2B
∂t2 = µ0∇ × i

For the wave equations in empty space, set   ρ = 0 and
 i = 0.

(c) Scalar and vector potentials φ and A

  B = ∇ × A

  E = – ∇ φ– ∂A/∂t

These automatically satisfy

  ∇ ⋅ B = 0

  ∇ × E = – ∂B/∂t

The remaining two Maxwell's equations become

  
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

+ ∂
∂t

∇ ⋅A + 1
c2

∂φ
∂t

  
– ∇ 2A + 1

c2
∂2A
∂t2 = µ0 i – ∇ ∇ ⋅A + 1

c2
∂φ
∂t
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The terms in the square brackets can be set to zero
with the choice of gauge

   ∇ ⋅A = – 1
c2

∂φ
∂t

special choice
of ∇ ⋅ A

With this choice of gauge, Maxwell's equations
reduce to

   
– ∇ 2φ+ 1

c2
∂2φ
∂t2 =

ρ
ε0

– ∇ 2A + 1
c2

∂2A
∂t2 = µ0 i

all that is left of
Maxwell's equations



CHAPTER 12 VORTICITY

Calculus 2000-Chapter 12
Vorticity

At the beginning of Part II of the Physics text, we
used the velocity field to introduce the concept of a
vector field. It is easier to picture velocity vectors
attached to water molecules in a flowing stream
than to visualize a vector at each point in space. We
could  introduce Gauss’ law as a conservation law
for an incompressible fluid, and then show that the
electric field behaved in a similar way.

Since that early introduction, we have come a long
way in our study of the mathematical behavior of
vector fields. In this and the next chapter, we will
turn the tables on our earlier approach and apply to
the velocity field the techniques and insights we have
gained in our study of electric and magnetic fields.
This will lead to a much deeper understanding of the
behavior of fluids than we got in our old discussion
of Bernoulli’s equation.

The most important concept that carries us beyond
Bernoulli’s equation is vorticity, which is the curl of
the velocity field. Vorticity is important not only in
the study of vortex structures like vortex rings and
tornadoes, it plays a fundamental role in all aspects
of fluid motion.  In this chapter, we will develop an
intuitive picture of vorticity. In the next chapter, we
focus on its dynamic behavior.

These two chapters are designed to be an introduc-
tion to the basic concepts of fluid dynamics.  For
most of the past century, this subject has been
eliminated from the undergraduate physics curricu-
lum, despite exciting advances in the understanding
of the behavior of superfluids. One of our aims with
these chapters is to bring this subject back.
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DIVERGENCE FREE FIELDS
In the Physics text, we have often noted the similar-
ity between the magnetic field and the velocity field.
The fact that there are no magnetic charges led to the
equation

   
B ⋅dA

S

= 0 for any closed
surface S (1)

For an incompressible fluid like water, the continu-
ity equation, i.e., the fact that we cannot create or
destroy water molecules, leads to the equation

   
v ⋅dA

S

= 0 for any closed
surface S (2)

With the introduction of our differential notation, we
saw that Equation (1) for the magnetic field became

  ∇ ⋅B = 0 (1a)

The same mathematics leads to the equation for the
velocity field

   
∇ ⋅ v = 0

continuity equation
for an
incompressible fluid

(2a)

Thus we see that both the magnetic field, and the
velocity field of an incompressible fluid, are diver-
gence free fields.

Another way to see the same result is to look at the
form of the continuity equation we discussed a short
while ago in Chapter 10. We saw how Maxwell’s
equations automatically led to a continuity equation
for electric charge. That equation was

   ∂ρ
∂t + ∇ ⋅ i = 0 continuity equation

for electric charge (Cal 10-8)

When applied to a fluid of mass density ρ  and mass
current density   ρv  the continuity equation  for mass
becomes

   ∂ρ
∂t + ∇ ⋅ (ρv) = 0

continuity equation
for a fluid of
mass density ρ

(3)

If the fluid density ρ  is constant, then   ∂ρ/∂t = 0 and
  ∇ ρ = 0 .This leads to   ∇ ⋅(ρv) = ρ∇ ⋅v = 0  and we

are left with

  ∇ ⋅ v = 0 (2a) repeated

as the continuity equation for a constant density fluid.

THE VORTICITY FIELD
When we were discussing electric and magnetic
fields in the Physics text, we found that we needed
equations for both the surface integral and the line
integral in order to specify the field.  That is why we
ended up with four Maxwell’s equations in order to
describe the two fields E  and B.  In the Calculus text,
we have shrunk the surface and line integrals down to
infinitesimal size where they become the divergence
and the curl.  Thus to specify a field, we now need
equations for both the divergence and curl of the field.

As we mentioned in Chapter 9, if we have a field known
only in some limited volume of space, like the velocity
field of a fluid within a section of pipe,  then in order
to uniquely determine the field, we must know not
only the divergence and curl within that volume, but
also the perpendicular components of the field at the
volume’s surface. It is the perpendicular components
of the velocity field at the volume’s surface that tell us
how the fluid is flowing in and out.

For a constant density or incompressible fluid, we
already know that the divergence is zero.  Thus if we
know how the fluid is flowing into and out of a volume,
the only other thing we need to specify is its curl   ∇ ×v
inside.  From this point of view we see that the curl

  ∇ ×v  plays a key role in determining the nature of fluid
flows.  It should thus not be too surprising that most of
this chapter is devoted to understanding the nature and
behavior of the curl   ∇ × v.

Our first step will be to give the curl   ∇ × v a name.
We will call it vorticity and designate it by the Greek
letter  ω (omega).

   
ω ≡ ∇ × v vorticity (4)

At this point, we have a slight problem with notation.
In the Physics text we used the symbol  ω to designate
angular velocity   dθ/dt .  While there is some relation-
ship between angular velocity   dθ/dt  and vorticity

  ω = ∇ ×v, they are different quantities.  Worse yet, in
one important example, namely the rotation of a solid
body, they differ by exactly a factor of 2.  To avoid
ambiguity, we will in this chapter use  ω for vorticity

  ∇ × v, and the symbol   ωrot for angular velocity.

   
ωrot ≡ dθ

dt
angular velocity (5)



Calculus  2000 - Chapter 12       Vorticity       Cal    12-3

POTENTIAL FLOW
In the next few sections, we will develop an intuition
for the concept of vorticity by considering various
examples.  We will start with the simplest example,
namely flow with no vorticity, i.e., when   ∇ × v = 0 .
Such flows are called potential flows.  The reason
for the name is as follows.

In our early discussion of electric fields, we pointed out
that both the gravitational field, and the electric field of
stationary point charges were conservative fields.  A
conservative field was defined as one where the total
work done by the field acting on a mass or charge was
zero if we carried the particle around and came back
to the original starting point. (See page 25-5 of the
Physics text.)  For the work done by an electric field
on a unit test charge, this statement took the form

   
E⋅d = 0 condition that E

is a conservative field (6)

In our differential notation, Equation (6) becomes

   ∇ × E = 0 condition that E
is a conservative field (7)

You will recall that when E  was a conservative
field, we could introduce a unique potential energy
provided we defined the zero of potential energy.
We called the potential energy of a unit test charge
electric voltage or electric potential.

When we got to Faraday’s law, we had some problems
with the concept of electric voltage.  In our discussion
of the betatron where electrons are circling a region of
changing magnetic flux, the electrons gained voltage
each time they went around the circle.  When a chang-
ing magnetic field or magnetic flux   ΦB is present, the
voltage or electric potential is not unique because
the electric field is no longer a conservative field.
Faraday’s law in integral and differential form is

  
E ⋅d = –

dΦB
dt

(Physics 32-19)

  ∇ × E = – dB
dt (8-49)

and we see that   ∇ × E  is no longer zero.

When   ∇ × E  is zero we have a unique electric
voltage (once we have defined the zero of voltage),
and we can use the concept of the gradient, discussed
in the Calculus Chapter 3, to calculate the electric
field from the voltage.  The formula we had was

  E = – ∇ V(x, y, z) (3-19)

where  V(x, y, z)  is the voltage.

By similar arguments, if we have a conservative
velocity field v, one obeying the condition

   ∇ × v = 0 conservative
velocity field (8)

then we can introduce potential   ϕ (x, y, z)  that is
analogous to the voltage  V(x, y, z)  for the electric
field.  In terms of the potential ϕ , the velocity field
v would be given by

   
v = – ∇ ϕ velocity field derived

from a potential (9)

Because such a velocity field is derived from a
potential ϕ , the flow field is called potential flow.

As a quick check that our formulas are working
correctly, suppose we start with some potential flow

  v = – ∇ ϕ  and ask what its curl is.  We have

  ∇ ×v = ∇ × (–∇ϕ ) (10)

One of the vector identities, from Calculus Chapter
9 was

  ∇ ×(∇ f) = 0 (9-1)

where f is any scalar function.  Thus   ∇ ×(∇ ϕ )  is
identically zero, and any flow derived from a poten-
tial ϕ  has to have zero curl, or no vorticity.
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Examples of Potential Flow
If we combine the equation   v = –∇ ϕ for potential
flow with the divergence free condition   ∇ ⋅v = 0  we
get

  ∇ ⋅v = ∇ ⋅ (–∇ ϕ ) = 0
or

  ∇ 2ϕ = 0 (11)

The operator   ∇ 2 is the Laplacian operator we dis-
cussed in detail in Chapter 4. Equation (11) itself is
known as Poisson’s equation.

To find examples of potential flow, one can use
Equation (11) subject to the boundary conditions on
the velocity field at the walls of the container.  A
number of techniques have been developed to solve
this problem, both approximation techniques for
analytical solutions and numerical techniques for
computer solutions.  We are not going to discuss
these techniques because the work is hard and the
results are not particularly applicable to real fluid
flows.  We will see that almost all fluid flows involve
vorticity, and our interest in this chapter will be the
behavior of the vorticity.  When we need a potential
flow solution, we will either choose one simple
enough to guess the shape or rely on someone else’s
solution.

Potential Flow in a Sealed Container
As our first example, suppose we have a constant
density fluid in a completely sealed container.  That
means that no fluid is flowing in or out.  Now
suppose the fluid has no vorticity, that   ∇ × v = 0
inside.  The resulting flow then must be a potential
flow.

One possible solution for   ∇ × v = 0  is that the fluid
inside is at rest (assuming that the container walls are
at rest). That is,

  
v = 0

a potential flow
solution for a
sealed container

(12)

This solution clearly obeys the condition   ∇ × v = 0
and   ∇ ⋅ v = 0 , and has no normal flow at the
boundary walls.

What other potential flow solutions are there?
NONE.  Our mathematical theorem given at the
beginning of the chapter states that the vector field
v is uniquely determined if we specify   ∇ ⋅v  and

  ∇ × v within a closed volume V and the normal
components of v at the surface of V.  We have done
that.  Thus the solution  v = 0  is unique, and there is
no other potential flow solution.

This solution emphasizes the importance of vortic-
ity in the study of fluid flows.  If we have a sealed
container filled with a constant density fluid, there
can be no flow without vorticity.  In this case, the
source of all fluid motion must be vorticity.  This is
why it is so important in the study of fluid behavior
to understand the role and behavior of vorticity.
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Potential Flow in a Straight Pipe
We began our discussion of fluid motion in Chapter
23 of the Physics text, with the example of a fluid
entering a pipe at a velocity  v 1  and exiting at a
velocity  v 2  as shown in Figure (1).  We assumed
that  v 1  was uniform over the entire inlet and  v 2
over the entire exit.  The continuity equation gave

 v 1A 1 = v 2A 2 .  If the pipe is uniform, so that
 A 1 = A 2 , we get  v 1 = v 2 .

What is the potential flow solution for the uniform
pipe of Figure (1)?  One possible answer is shown in
Figure (2), namely that the velocity field is a con-
stant throughout the pipe.

  
v = v1 = constant potential

flow solution (13)

Let us check that  v = v 1 = constant  is a potential
flow solution.  It is clear that the divergence   ∇ ⋅v1
and the curl   ∇ × v 1  are both zero for a constant
vector field  v 1 .  Thus the flow  v = v 1  is potential
flow.  The solution  v = v 1  also has the correct
normal components, being  v 1  at the entrance and
exit, and no normal flow at the pipe walls.  Thus
Figure (2), with  v = v 1 = constant , is our unique
solution for potential flow in a straight pipe with
uniform entrance and exit velocities.  As we said, in
some cases we can guess the potential flow solu-
tions.

The problem with the potential flow solution of Figure
(2) is that a fluid like water cannot flow that way.  In
Figure (2), the fluid is slipping at the pipe walls.  The
first layer of atoms next to the walls is moving just as
fast as the atoms in the center of the flow.  For all normal
fluids the first layer of atoms is stuck to the wall by
molecular forces, and due to viscous effects, the fluid
velocity has to increase gradually as we go into the
fluid.  There is no potential flow solution for pipe flow
that has this property, thus all flows of normal fluids in
a pipe must involve vorticity.

A1

v1 v2

A  =2 A1

Figure 1

A fluid enters a uniform pipe at a velocity  v1 .

Figure 2
One possible solution to the potential flow problem. If
we have a uniform pipe, with a uniform inlet and
outflow velocities as shown in Figure (1), then this is
the only solution.

v1 v1 v1 v1 v1
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SUPERFLUIDS
Normal fluids like water cannot slip along the sur-
face of a pipe, but superfluids, which have zero
viscosity, can.  As a result a superfluid can have a
potential flow pattern like that shown in Figure (2).
We have good experimental evidence that in a
number of examples superfluid helium does flow
that way.

In the 1940s, the Russian physicist Lev Landau
made the prediction, based on his wave equation for
the atoms in a superfluid, that superfluid helium had
to flow without vorticity, that   ∇ × v = 0  and only
potential flow solutions would be possible.  This was
a prediction that was fairly easy to check by the
following experiment.

If you place a glass of water on a spinning turntable
and wait until the water rotates with the glass, the
surface of the water will be slightly curved, as the
water is pushed to the outside by “centrifugal forces”.
(If you choose a coordinate system that is rotating
with the glass, then in this rotating coordinate sys-
tem there is an outward centrifugal pseudo force.)
The shape of the surface of the water turns out to be
a parabola.  In fact, large modern telescopes are now
made by cooling the molten glass in a rotating
container so that the rough parabolic shape is al-
ready there when the glass hardens.

Now consider how superfluid helium should behave
when in such a rotating container.  If the container is
circular, like a drinking glass, and centered on the
axis of rotation, the container can rotate without
forcing the fluid to have any sideways motion.  Also
no fluid is flowing into or out of the bottom or top.
Thus the normal or perpendicular component of
flow is zero all around the fluid.

Superfluid helium is essentially a constant density
fluid, thus   ∇ ⋅ v = 0 within the fluid.  If Landau were
right, then   ∇ × v should also be zero inside the fluid,
and we would have to have potential flow.

We have already discussed the potential flow solu-
tion for this case.  If there is no normal flow through
the fixed boundaries of the fluid, the unique poten-

tial flow solution for a constant density fluid is
 v = 0 .  The fluid cannot rotate with the bucket.  It

cannot move at all!  We get the unique prediction
that the fluid must be at rest, and as a result the
surface of the fluid must be flat.  This prediction is
easy to test;  rotate a bucket of superfluid helium and
see if the surface is flat or parabolic.

There are a few complications to the experiment.
Above a temperature of 2.17 kelvins, liquid helium
is a normal fluid with viscosity like other fluids with
which we are familiar.  When helium is cooled to just
below 2.17 kelvins, superfluidity sets in, but in a
rather peculiar way.  The best way to understand the
properties of liquid helium below 2.17 k is to think
of it as a mixture of two fluids, a normal fluid with
viscosity and a superfluid with no viscosity.  At the
temperature 2.17 k, the helium is almost all normal
fluid.  As we cool further, we get more superfluid
and less normal fluid.  Down at a temperature of 1
kelvin, which is quite easy to reach experimentally,
almost all the normal fluid is gone and we have
essentially pure superfluid.

In Landau’s picture, the normal fluid below 2.17 k
has viscosity, is not bound by the condition   ∇ × v = 0 ,
and thus can rotate.  Only the superfluid component
must have   ∇ × v = 0  and undergo only potential
flow.  Thus if we have a rotating bucket of superfluid
helium at just below 2.17 k, it should be mostly
normal fluid and eventually start rotating with the
bucket.  We should expect to see a parabolic surface,
and that is what is seen experimentally.

However, as we cool the helium from just below
2.17 k down to 1 k, the normal fluid turns to super-
fluid.  If Landau were right, the flow should go over
to a potential flow and the surface of the liquid
should become flat even though the container keeps
rotating.  This does not happen, and something has
to be wrong with Landau’s prediction.  The curved
surface at 1 k indicates that the superfluid is moving,
and thus must contain some vorticity.  In a later
section we will see how Feynman was able to
explain the parabolic surface, while still obeying
Landau’s condition   ∇ × v = 0  almost everywhere in
the fluid.
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VORTICITY AS A SOURCE
OF FLUID MOTION
In our discussion of potential flow of a constant
density fluid in a sealed container, we saw that there
could be no flow without vorticity.  Vorticity must
be the source of any flow found there.  In this section,
we will illustrate the idea that vorticity is the source
of fluid motion by comparing the velocity field with
the magnetic field of electric currents. We will see
that vorticity is a source of the velocity field in much
the same way that an electric current is a source of
the magnetic field.

In our discussion of magnetic fields, it was clear that
magnetic fields are created by electric currents.
Before we learned about Maxwell’s correction to
Ampere’s law, the relationship between the mag-
netic field B and the current i was

   B ⋅ d = µ0i old Ampere's law (29-18)

where i was the total electric current flowing through
the closed integration loop.  Shrinking the integra-
tion loop down to infinitesimal size, i.e., going to our
differential notation, we get

  ∇ × B = µ 0 i (14)

where i  is the electric current density.  Equation
(14), which is missing the   ∂E/∂t  term of Maxwell’s
equation, applies if we can neglect changing electric
flux.

In the Physics text, we used the old form of Ampere’s
law to calculate the magnetic field of a straight wire and
of a solenoid.  In these examples it was clear that the
current i in the wire was the source of the magnetic
field.

Let us now compare the equations we have for the
magnetic field B (neglecting   ∂E/∂t  terms) and for
the velocity field v of a constant density fluid.  We
have

Velocity Field of
Magnetic field Constant Density Fluid

  ∇ ⋅B = 0   ∇ ⋅v = 0

  ∇ × B = µ 0 i   ∇ × v = ω (15)

where  ω is the vorticity field of the fluid.  If we can
interpret   µ 0 i  as the source of the magnetic field in
the equation   ∇ × B = µ 0 i , then by analogy we
should be able to interpret the vorticity  ω as the
source of the velocity field in the equation

  ∇ × v = ω.

To be more precise, we will see that the vorticity  ω
can be interpreted as the source of any additional
velocity beyond the simple potential flow we dis-
cussed earlier.  If boundary layers, vortices, turbu-
lence, or other derivations from potential flow are
present, we can say that vorticity is responsible.
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Picturing Vorticity
When we discussed the magnetic field of a current, the
current itself was quite easy to picture.  It was the flow
of electrons along the wire, and for a straight wire this
flow of charge produced a circular magnetic field
around the wire as shown in Figure (3).  We also found
from Ampere’s law that the strength of the circular
magnetic field dropped off as 1/r as we went out from
the wire.

In Figure (4) we have drawn a picture of the velocity
field of a straight vortex like the one pictured in Figure
(23-25) of the Physics text.  We observed that the fluid
travels in circles around the vortex core.  In our funnel
vortex we made the core hollow by letting fluid flow
out of the funnel, but initially the core contained fluid.
We also saw that the fluid flowed faster near the core
than far away.  The tendency for a fluid vortex is for the
velocity field to drop off as 1/r out from the core.

Since the circular velocity field of a straight vortex is
similar to the circular magnetic field of a current in a
straight wire, we should expect that both fields have
similar sources.  In Figure (3) the source of the mag-
netic field is an upward directed current density i  in the
wire.  We therefore expect that the source of the vortex
velocity field in Figure (4) should be an upward di-
rected vorticity  ω in the center of the vortex.

Outside the wire, the circular magnetic field drops off
as 1/r and has zero curl.  If the circular velocity field of
the vortex drops off as 1/r outside the core, it must have

zero curl there also.  Thus a vortex with a 1/r velocity
field outside the core must have all the vorticity  ω
concentrated inside the core, just as the current produc-
ing the magnetic field is confined to the wire.  The
vorticity must run up the core as shown in Figure (5).
We are beginning to see how the vorticity acts as a
source of the velocity field in the same way currents are
the source of magnetic fields.

i i i

i i i

i i i

B

B

B

Figure 3
A current in a straight wire produces a
circular magnetic field around the wire.

Figure 4
Circular
velocity field
around a
vortex core.

Figure 5

Vorticity field ωω  producing a circular velocity field.

ωωω

ωωω

ωωω v

v

v

v

v

v

core

Figure 23-25
Hollow core
vortex in a
funnel.

  ∇ × B = µ 0 i   ∇ × v = ω
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SOLID BODY ROTATION
Enough of analogies, it is now time to actually
calculate the vorticity field   ω = ∇ × v  of a flow
pattern.  Our example will be to calculate  ω when v
is the velocity field of a solid rotating object.

As an explicit example, imagine that you are looking
at the end of a rotating shaft shown in Figure (6).  If
the shaft has an angular velocity   ωrot , so that

  dθ
dt

= ωrot (16)

then at a point p, out at a distance r from the axis of
rotation, the velocity is in the θ  direction and given
by the formula

  v = θrωrot (17)

where the unit vectors r , θ  and z  are for a cylindri-
cal coordinate system are shown in Figure (7).

In Chapter 8 of the Calculus text, we wrote down the
formula for the curl in cylindrical coordinates. (It
can also be found in the Formulary at the end of this
text.)  Applied to the velocity field v, given by

  v = r vr + θvθ + zvz (18)

the result is

  (∇ ×v)r = 1
r

∂vz
∂θ –

∂vθ
∂z (19a)

  (∇ ×v)θ =
∂vr
∂z –

∂vz
∂r (19b)

  (∇ ×v)z = 1
r

∂
∂r (rvθ) – 1

r
∂vr
∂θ (19c)

In our example of solid body rotation, v has only a
θ  component, and this component   vθ(r)  depends
only upon the distance r out from the axis of rotation.
Thus  v r ,  v z, and   ∂vθ/∂θ  and   ∂vθ/∂z  are all zero
and we are  left with only the term

  (∇ ×v)z = 1
r

∂
∂r (rvθ) (20)

You can see that the use of cylindrical coordinates
when we have cylindrical symmetry eliminates many
terms in the formula for the curl.

Exercise 1
In the last section, we noted that the circular velocity
field of a vortex had zero curl if the velocity drops off as
1/r.  This corresponds to a velocity

  vθ = constant
r ; vr = vz = 0 (21)

Use Equation (19) or (20) to show that   ∇ × v = 0 for this
vortex velocity field.

Figure 6

End of a shaft rotating with an angular velocity      ωωrot .

Figure 7
Unit vectors for a cylindrical coordinate system.

θ

ω

v

p

rot

r

x

y

z directed up

r
θ
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For solid body rotation, we use   vθ = rωrot  to get

  (∇ ×vsolid body)
z

= 1
r

∂
∂r (rvθ)

= 1
r

∂
∂r (r2ωrot)

= 1
r (2rωrot)

  
(∇ ×vsolid body)

z
= 2ωrot

(22)

Using our notation   ∇ × vsolid body ≡ ωsolid body , we get

  (ωsolid body)
z

= 2ωrot (22a)

This is the example we mentioned earlier where the
vorticity  ω has a magnitude of exactly twice the
rotational velocity   ωrot .

(It is a challenge to find an intuitive explanation for the
factor of 2 difference between the vorticity   ω = ∇ × v
and the rotational velocity   ωrot.  The analogy is even
closer, because when we turned   ωrot into the vector

  ωrot in our discussion of gyroscopes,   ωrot pointed
down the rotational axis just as   ω = ∇ × v  does.  I have
not met this challenge. After much thought, I have
found no satisfactory intuitive explanation for the
factor of 2.  It came in when we differentiated  r2 , but
that is not good enough.)

The main result from our calculation of the curl for
solid body rotation is that the curl points along the
axis of rotation, and has the constant magnitude

      2 ωωrot  across the entire rotating surface.

Vortex Core
With our results for the vorticity of solid body
rotation, we can see an even closer analogy between
the magnetic field of a wire and the vorticity field of
a fluid core vortex.  The corresponding formulas and
field diagrams are shown again in Figure (8).

At the end of Calculus Chapter 8 we studied the
magnetic field produced by a uniform current in a wire.
We got as the formula for the field inside the wire

   B(r) = θkr inside
wire (8-66a)

where k was the collection of constants given by

  
k =

µ0itotal

2πR2 (8-66b)

Exercise 2

Show that B  in Equation (8-66) above obeys the
relationship   ∇ × B = µ 0i .

The magnetic field in Equation (8-66) has the same
form as the velocity field for solid body rotation,

  vθ = rωrot  or

   vsolid body rotation = θ(ωrot)r (23)

Thus there will be a complete analogy between the
magnetic field of a wire, and a fluid core vortex, if
the wire carries a uniform current density i and the
vortex core consists of fluid undergoing solid body
rotation.  In the magnetic field case, the source of the
magnetic field is the uniform current in the wire.  For
the fluid core vortex, the source of the velocity field
is the uniform vorticity in the solid body rotating
core.  Outside the wire and outside the core, both the
magnetic field and the velocity field are θ  directed
and drop off as 1/r, a field pattern that has zero curl.

Figure 8
Comparison of the magnetic field of a current in a wire
with the velocity field of a fluid core vortex.

i(x,y,z)

B

ω(x,y,z)

V
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STOKES’ LAW REVISITED
For quite a while now we have seen that there are
basically two kinds of vector fields.  There is what
we can call the divergent kind like the electric field
of stationary charges that has zero curl.  And then
there is the rotational kind like the magnetic field
and the velocity field of a constant density fluid that
has zero divergence.  Just as Gauss’ law played an
important role in determining the behavior of diver-
gent fields, we will see that Stokes’ law has an
equally important role in determining the shape and
behavior of the rotational kind of vector field.  In this
section we will take a closer look at Stokes’ law,
giving it a more physical interpretation than you will
find in the mathematics textbooks.

We introduced Stokes’ law in Chapter 8 of this text,
writing it essentially in the form

   v⋅d
C

= (∇ ×v)

S

⋅dA Stokes′ law (8-14)

where v is a vector field, C is some closed contour,
and S is the surface bounded by the contour C.  We
asked you to picture the contour C as being made up
of a wire loop, and S the surface of a soap film
stretched across the loop.  The point was that if you
gently blow on a soap film, it can take on various
shapes, and Stokes’ law applies no matter which
shape you consider.

Total Circulation and
Density of Circulation
Because we are going to make extensive use of
Stokes’ law, we will give special names to the terms
in the law.  The names are chosen to particularly
apply to a velocity field, but can be used in general.
First, we will call the line integral of v around a
closed path the total circulation for the path.

  
total circulation ≡ v⋅d

C

(24)

In addition, we will refer to the vorticity   ∇ × v as the
density of circulation

  
density of circulation ≡ ∇ ×v (25)

Then Stokes’ law

  v⋅d
C

= (∇ ×v)

S

⋅dA

can be stated in words that the total circulation of
the fluid around a closed path C is equal to the
density of circulation integrated over any surface
bounded by the path.

We are using the same terminology one would use in
describing a current in a wire.  You would say that
the total current carried by a wire is equal to the
current density integrated over some cross-sectional
area of the wire.  Why we have introduced this
terminology for the velocity field will become clear
as we discuss a few examples.

Figure 8-2 (repeated)
Example of a surface bounded
by a closed path (wire loop).
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Velocity Field of a
Rotating Shaft, Again
As our first example, let us apply Stokes’ law to the
velocity field of a rotating shaft, shown in Figure (6)
repeated here.  Over the area of the end of the shaft
we have solid body rotation where the velocity field
is θ  directed

  v = θrωrot (17) repeated

and the vorticity   ω ≡ ∇ × v  is directed up the axis of
the shaft and of magnitude   2ωrot

  ω = ∇ ×v = z2ωrot (22) repeated

To apply Stokes’ theorem, let the circuit C be the
circuit of radius R around the perimeter of the shaft.
We then get

  v ⋅ d

C

= vθ(d )θ (26)

At the perimeter,   vθ = Rωrot , and   (d )θ = Rdθ , to
give

  
v ⋅ d = (Rωrot)(Rdθ)

0

2π

= R2ωrot dθ
0

2π

= 2πR2ωrot

Thus the total circulation of the shaft is given by

  
total circulation
of the shaft

= πR2(2ωrot)
(27)

Stokes’ theorem states that this total circulation
should be equal to the density of circulation   ∇ × v
integrated over the area of the shaft.  We know that
for solid body rotation

  density of
circulation

= ∇ × v = ω = z2ωrot (28)

This density, of magnitude   ωz = 2ωrot , is constant
over the area of the shaft, thus the integral of the density
is simply

  
(∇ × v)⋅dA

S

= ωzdAz

S

= ωz dAz

S

= ωzπR2

= πR2(2ωrot)

(29)

Comparing Equations (27) and (29), we see that the
total circulation is, as expected, equal to the density
integrated over the area of the shaft.

Wheel on Fixed Axle
Before you think everything is too obvious, let us
consider a more challenging example.  Suppose we
have a wheel of radius R, rotating on a fixed axle of
radius  Raxle , as shown in Figure (9).  The velocity
field for this example is

  v = 0 r < Raxle

v = θrωrot Raxle < r < R
(30)

Figure 6 (repeated)
End of a shaft rotating with an angular velocity      ωωrot .

θ

ω

v

p

rot

r
ωrot

R

stationary
axle

R

axle

Figure 9
Wheel rotating on a stationary axle.
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To apply Stokes’ law again, let C be a circuit of
radius R about the perimeter of the wheel.  The total
circulation is the same as before, namely

  total
circulation

= v ⋅ d

C

= (Rωrot)(2πR)

= πR2(2ωrot)
(31)

When we measure the total circulation around the
wheel, the result is uniquely determined by the value
of v out at the circuit C.  It makes no difference
whatever whether the axle inside is turning or not.

But when we integrate the density of circulation
  ∇ ×v  over the area of the wheel, we have a problem.

Over the wheel   ∇ ×v = z 2ωrot  as  before, but
  ∇ ×v = 0  over the axle.  It appears that we have lost

an amount of circulation (   2ωrot )(   πRaxle
2 ), and that

Stokes’ law fails.

Mathematics textbooks would say that we did not
apply Stokes’ law correctly.  You will find statements
like “Stokes’ law applies only to singly connected
surfaces” or “you have to add a cut”.  Don’t believe it!
Stokes’ law applies quite generally, and you do not
need so called cuts.  What went wrong in this example
is not Stokes’ law, it is that we did not look carefully
enough.

Suppose Figure (9) represented the wheel on a
railroad car.  Look carefully at the boundary be-
tween the wheel and the axle and what do you find?
Roller bearings!  As the wheel rotates on the axle, the
roller bearings really spin.  The circulation that we lost
in the axle is now located in the roller bearings, and in
the velocity field of the oil lubricating the bearings.

You might be a bit worried about this explanation.
After all, a fixed amount of circulation, namely
(   2ωrot )(   πRaxle

2 ) was lost when we stopped the axle
from rotating.  But the space where the roller bear-
ings reside, between the axle and the wheel can be
made as thin as we want, reducing the area of the
bearings that we integrate   ∇ × v over.  If we make
the area of the bearings go to zero, can we still get a
finite amount of circulation (   2ωrot )(   πRaxle

2 ) when
we integrate over this vanishing area?

The answer is yes.  Look what happens to roller
bearings as we make the diameter of the bearings
smaller and smaller.  They have to spin faster and
faster so that they roll smoothly between the axle and
the wheel.  As we decrease the thickness of the
bearings, we increase the vorticity   ∇ × v in the
bearings in just such a way that the integral of   ∇ × v
over the bearings remains constant.  In the math-
ematical limit that the thickness of the bearings goes
to zero, we end up with a delta function of vorticity
spread around the perimeter of the axle.  This delta
function of vorticity is called a vortex sheet.  When
you correctly account for vortex sheets, you can
always make sense of Stokes’ law without caveats
relating to singly connected surfaces or cuts.

A Conservation Law for Vorticity
Imagine that our solid shaft of Figure (6) represented
a wheel and axle where the axle was rotating with the
wheel.  Then the axle would have vorticity of mag-
nitude   2ωrot  just like the wheel.  Now suppose we
grab hold of the axle to stop it from rotating, giving
us the velocity field shown in Figure (9).  By stop-
ping the axle from rotating, we did not destroy the
vorticity, we just moved it out to the roller bearings
or vortex sheet.  For a given total circulation
around the rim of the wheel, we cannot create or
destroy vorticity within, only move it around.  With
a given total circulation, we have a conserved amount
of vorticity within.  In this sense, Stokes’ law pro-
vides us with a conservation law for vorticity. (In
Appendix 2 of Chapter 13, we show you a more
general, three dimensional law for the conservation
of vorticity.)

ωrot
R

stationary
axlel

roller
bearings

R

axle

Figure 9a
Wheel with roller bearings rotating on a stationary axle.
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CIRCULATION OF A VORTEX
In an ideal straight vortex like the one we pictured in
Figure (8) more or less redrawn here as Figure (10),
the vorticity is concentrated in the core and we have
a curl free 1/r velocity field outside the core.  It is
traditional to use the Greek letter κ  (kappa) to
designate the total circulation of the vortex.

   
v ⋅ d

over any area
that includes
the vortex core

= κ
total circulation
or strength
of a vortex (32)

Evaluating the integral around a circle outside the
core gives

  v ⋅d = 2πr vθ = κ

   
vθ = κ

2πr

velocity field
of a
straight vortex

(33)

This is the formula for the velocity field of a straight
vortex, outside the core.  For shorthand, we some-
times use   κ = κ /2π just as we used   h = h/2π in
quantum mechanics, giving

   
vθ = κ

r

velocity field
of a
straight vortex

(33a)

Note that talking about the total circulation κ  of a
vortex, we know that when there is cylindrical
symmetry, the velocity field   vθ  outside the core is

  κ/r  independent of the structure of the core.  The
core can be a fluid core with solid body rotating fluid
inside, or be a hollow core vortex like the funnel
vortex of Figure (23-25).  With a solid body rotating
core the vorticity  ω is spread uniformly across the
core.  With a hollow core vortex, we can think of the
vorticity as being in a vortex sheet around the core.

We have a similar situation for the magnetic field of
a straight wire.  In a normal wire, there is a more or
less uniform current density in the wire which pro-
duces a magnetic field of strength   B θ = µ 0I total/2πr
outside.  In some superconducting wires, those made
from the so called type 1 superconductors like lead
and tin, the electric current flows very near the
surface of the wire with no current farther inside.
This surface sheet of current still produces the same
magnetic field   B θ = µ 0I total/2πr  outside.

v

vortex

κ

B

current

itot

Figure 10
The total circulation κκ of the vortex is related to
the velocity field v  the same way the total current

 i tot  is related to the magnetic field  B . (For
straight vortices, we often think of κκ  as a vector
pointing in the direction of ωω , as shown above.)
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QUANTUM VORTICES
We are now ready to deal with the failure of Landau’s
prediction that superfluid helium could only un-
dergo potential flow, with the consequence that
helium in a bucket could not rotate.  The appearance
of a parabolic surface on a rotating bucket of super-
fluid helium is experimental evidence that vorticity
is present in the fluid despite Landau’s prediction.

Feynman solved the problem by proposing that most
of the fluid in a rotating bucket of superfluid helium
was in fact undergoing potential flow, and that all
the vorticity that was responsible for the curved
surface was contained in little quantized vortices.

As we have mentioned in the Physics text, a single
quantized vortex can be pictured as a giant Bohr
atom where all the superfluid atoms taking part in
the vortex flow have one unit of angular momentum
h about the vortex core.  The angular momentum of
an atom out at a distance r from the core, moving at
a speed  vθ , is

  
L angular

momentum = mHevθr (34)

where  mHe  is the mass of a helium atom.  If we set
the angular momentum L equal to Planck’s constant
h, and solve for   vθ , we get

  L = h = mHevθr

  
vθ = h

mHer
(35)

We immediately see that the velocity field outside
the core drops off as 1/r which is potential flow.

V

helium 
atoms

vortex
core

θ

Figure 11
Each atom in a quantum vortex has one unit
of angular momentum about the vortex core.

The 1/r velocity field cannot continue in to r = 0;
there has to be a core that is not potential flow.  There
are two questions that need to be settled by experi-
ment.  One is how big is the core radius  r core , and the
second is whether the core is hollow, or filled with
rotating fluid.  The answer to the first question is
rather amazing.  Under most circumstances the core
is about as small as it can get, about one atomic
diameter.  That makes it difficult to answer the
second question; it is hard to tell what is inside a tube
only one atomic diameter across.

Circulation of a Quantum Vortex
One thing we can do immediately from Equation
(35) is to calculate the total circulation κ  of a
quantum vortex.  Remembering that   h = h/2π we
have

  vθ = h
mHer

= h
(2πr)mHe

  (2πr)vθ = h
mHe

But   2πrvθ  is simply the integral of   vθ  around a
circle centered on the core.  Thus we have

  v ⋅d = 2πrvθ = κ

   
κ = h

mHe

circulation of a
quantum vortex in
superfluid helium

(36)
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Rotating Bucket of Superfluid Helium
If you have a rotating bucket of normal fluid, the
fluid will end up rotating with solid body rotation
with constant vorticity   ω = z2ωrot .  The total circu-
lation   κ total  of all the fluid in the bucket will be

  total circulation of
fluid in rotating
bucket

= (∇ ×v) ⋅dA
bucket
surface

  κ total = (2ωrot)(πR2
bucket) (37)

For solid body rotation, this vorticity is spread
uniformly across the bucket.

Feynman proposed that a rotating bucket of super-
fluid helium would have the same total circulation

  κ total, but that the vorticity, instead of being spread
throughout the fluid, would be contained in a bundle
of quantized vortex cores.  This difference between
the classical and quantum picture is indicated in
Figure (12).

Because the core of a quantum vortex is so small,
and because all the fluid between the cores is under-
going potential flow, you can see that Landau was
almost right.  But the quantum cores allow vorticity
to be spread throughout the bucket, roughly imitat-
ing solid body rotation, and give rise to a nearly
parabolic surface.

We can easily calculate the number of quantized
vortices required to imitate solid body rotation.
From Equation (37), we saw that the total circulation
of the bucket was   κ total = (2ωrot)(πR2

bucket) .  Each
quantum vortex supplies a circulation  h/mHe .  If we
have N quantum vortices, their total circulation will
be N  h/mHe .  Equating these two numbers gives

  κ total = (2ωrot)πR2
bucket = N h

mHe

Solving for N, and then dividing by the area of the
bucket, gives us the number n of quantized vortices
per unit area.

  
n = N

πR2
bucket

=
2ωrotmHe

h

(38)

To see what the density is of quantized vortices
needed to imitate solid body rotation, let us use CGS
units where the unit area is  1cm2, and solve for an
angular velocity   ωrot  of one radian/second which is
about 1/6 of a revolution per second.  We have

  ωrot = 1

   mHe = 4 × 1.67 × 10– 24gm 4 proton masses

  h = 6.62 × 10– 27

We get for the vortex density n

  
n =

2ωrotmHe
h

= 2 × 4 × 1.67 × 10– 24

6.62 × 10– 27

= 2020 lines/cm2

If these lines were in a rectangular array, there would
be  n  lines on each side of a square centimeter

 n = 45 lines /cm

The spacing between lines would be  1 n

 1 n = .022 cm/line

= .22 millimeters /line (39)

Thus to imitate solid body rotation with an array of
quantized vortices in superfluid helium, the quan-
tum vortices have to be .22 millimeters apart when
the rotational velocity is 1 radian per second.

solid body rotation bundle of quantum
vortices

rotω = z 2ω

κ = h
Hem

Figure 12
Comparison of solid body rotation with a bundle of
quantized vortices. (We have not tried to reproduce the
exact shape of the surface when vortices are present.)
Between the vortices the flow is potential, but the
rough shape of the surface is parabolic.
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For a number of years after Feynman’s explanation
of the curved surface on a bucket of superfluid
helium, there was a considerable effort to see if
quantum vortices really exist in the superfluid.  The
most conclusive evidence for their existence, with
the predicted circulation   κ = h/m He , came from
experiments by Rayfield and Reif using charged
vortex rings.  A few years later Richard Packard at
Berkeley succeeded in actually photographing the
vortices in a rotating bucket of helium.  He did this
by loading up the vortex lines with electrons, and
then firing the electrons into a film placed at the
surface of the liquid.  The result is shown in Figure
(13) for various rotational speeds.

What Feynman and others have shown is that the
flow pattern with quantized vortices is a wave pat-
tern for the helium atoms in the bucket.  It is the
lowest energy solution of a wave equation, subject to
the boundary condition that the atoms near the
surface of the bucket are moving with a velocity
nearly equal to the velocity of the bucket.  Although
we have used the terminology of classical fluid
dynamics, we are describing a quantum mechanical
phenomenon.  What is remarkable is that we are
seeing quantum mechanical phenomena on a large
human scale, not just an atomic scale.  You can see
a separation of .22 millimeters without the use of a
microscope.

Exercise 3 - A Superfluid Gyroscope

Counting vortices in a bucket of superfluid helium can
be a sensitive way of detecting rotation.  Suppose a
bucket of helium were placed at the North Pole.  How
many vortices per  cm2  would there be in the bucket due
to the rotation of the earth?

Figure 13
Packard’s photograph of vortex lines in rotating
superfluid helium. As the rotational speed is
increased, more quantum vortices appear. Angular
velocities range up to half a radian per second. (The
camera was rotated with the helium and many
exposures were taken to build up the image. The
slight jiggling of the vortices between exposures
spread the vortex images out a bit.)
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 THE VORTICITY FIELD
So far we have described vorticity as something we
look for in a vortex core or something that character-
izes solid body rotation.  In this section we will treat
the vorticity   ω = ∇ × v  as a dynamic field that has
field lines and can behave much like the other vector
fields we have been discussing.

The singular property of vorticity is that it always
has identically zero divergence

  ∇ ⋅ω = ∇ ⋅ (∇ ×v) ≡ 0 (40)

because the divergence of a curl is identically zero.
(See the vector identities.)  This means that vorticity
is always a solenoidal field without sources or sinks.

We defined a field line of the velocity field as a small
flow tube, like those seen in Figure (23-3) repro-
duced below. Similarly, we define a vortex line as a
small flow tube of vorticity.  The total flux of
vorticity in the flow tube is by definition, the circu-
lation κ  of that tube.  As a reminder, this comes from
Stokes’ law

  flux of ω
in a vortex
tube

= ω⋅dA
surface
across
tube

= (∇ ×v) ⋅dA

S

= v⋅ d
around
tube

= κ tube
(41)

Because the vorticity  ω is solenoidal, the flux tubes
or lines of  ω cannot start or stop inside the fluid.
Vortex lines can only start or stop on the fluid
boundaries, or close on themselves within the fluid.
Two examples are the straight vortices we have been
discussing which run from the bottom of a container
to the top , and a vortex ring where the vortex lines
go around and close on themselves like the magnetic
field lines around a wire.  A smoke ring is the classic
example of a vortex ring.

Bose-Einstein Condensates
Since 1995, it has been possible to create a new kind
of superfluid, consisting of a small drop of gas
cooled to temperatures in the range of a millionth of
a kelvin. What happens to the gas atoms at these
temperatures is that they can come together and
“condense” into a single quantum mechanical wave
pattern. The process is not unlike photons condens-
ing into a single wave pattern in a laser beam. For the
gas atoms the result is a liquid-like drop with super-
fluid properties.

It is called Bose-Einstein con-
densation because back in the
1920’s, Einstein predicted this
effect, basing his ideas on the
work of the Indian physicist
Nath Bose. It turns out that at-
oms or objects that have integer
spin like to congregate into a
single quantum wave pattern if
the temperature is low enough,
i.e., if the pattern is not dis-
turbed by thermal effects. Ex-
amples of integer or zero spin
objects that do this are photons
that form laser beams, Helium
4 atoms that form superfluid
helium, and electron pairs that
become a superconductor.

In 1999, a group at the École
Normale Supérieure in Paris
succeeded in rotating a drop of
rubidium atoms and photo-
graphing the quantized vortices
as they appeared. Due to the
weak attraction between the
rubidium atoms, the vortex
cores are some 5000 times big-
ger than the core of a superfluid
helium vortex, but have the
same circulation  h/matom. Pho-
tographs of the drop, with 0, 1,
8, and 13 vortices are seen in
Figure  (14). Figure (15) is a
computer simulation of the vor-
tex core structure of a drop with
four vortices passing through the
drop, and two forming at the edge.

Figure 23-3
Flow tubes bounded by
streamlines. We define a
field line as a small flow
tube.Figure 15

Figure 14
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Figure 16
Velocity fields of two oppositely
oriented straight vortices.
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κ 
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HELMHOLTZ THEOREM
In 1858 Heinrich Helmholtz discovered a remark-
able theorem related to vortex motion.  He discov-
ered that when all the forces acting on fluid par-
ticles are conservative forces, i.e., force fields that
have zero curl, vortex lines move with the fluid
particles.  Gravity is an example of a conservative
force, viscous forces are not.  If viscosity can be
neglected and only gravity is acting on the fluid,
vortex lines and fluid particles move together.

To emphasize this point, in the absence of non
conservative forces, we can say that the fluid par-
ticles become trapped on vortex lines, or we can say
that vortex lines become stuck on and have to move
with the fluid particles.  To move vorticity onto or
off a fluid particle requires a non conservative
force like viscosity.

The Two Dimensional “Vortex Ring”
The simplest illustration of Helmholtz’s theorem is
the behavior of a vortex ring where the vortex lines
go around a circle and close on themselves.  The
most well known example of a vortex ring is the
smoke ring.

Before we discuss circular vortex rings, we will con-
sider the simpler example of two oppositely oriented
straight vortices which form what is often called a two
dimensional (2D) vortex ring.  A view down upon the
two vortices, showing their independent velocity fields,
is shown in Figure (16).  The total velocity field of these
two vortices is the vector sum of the fields from each
vortex.

Notice that the upper vortex has a forward velocity
field at the lower vortex core.  If Helmholtz’s theo-
rem is obeyed, then this upper velocity field must be
moving the vortex lines in the lower core forward.
Likewise the velocity field of the lower vortex must
move the core of the upper vortex forward.  As a
result this two dimensional vortex configuration is a
self propelled, forward moving object.

We can easily calculate the forward speed of our 2D
vortex ring.  The velocity field of a vortex of circu-
lation κ  was given by Equation (33a) as

  
vθ = κ

r ; κ = κ
2π (33) repeated

If the separation of the vortices is d, then the speed
of the fluid at the opposite core, and therefore the
speed of the ring will be

   
v2d ring = κ

d

speed of a pair
of oppositely
oriented vortices

(40)

You can see that the ring moves faster (1) if the
circulation κ  is increased, or (2) if the vortices are
closer together.
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The Circular Vortex Ring
For a circular, or 3D vortex ring, the vortex core has
the shape of a doughnut.  If we look at the velocity
field in a plane that slices through the doughnut, as
shown in Figure (17), the result is in many ways
similar to the velocity field of the 2D vortex in
Figure (16).  In particular the velocity field of the top
part of the ring moves the bottom part of the ring
forward, while the field of the bottom of the ring
moves the top forward.

In addition, the smaller the ring, the faster it moves.
If the ring has a circulation κ  and diameter d, the
speed of the ring is approximately given by the same
equation   vring = κ /d  that applied to the 2D vortex.

The actual velocity field of a vortex ring has the
same shape as the magnetic field of a circular current
loop, (provided the current density in the wire has
the same shape as the vorticity in the vortex core).  It
is a classic and rather nasty problem to calculate the
precise shape of this field.  When we get a more
accurate answer for the speed of the ring, we end up
with additional terms, one of which involves the
logarithm of the core radius.  This logarithm would
go to infinity if we tried to make the core radius zero,
but the term becomes small for reasonable core radii.
We do not need to worry about these small addi-
tional terms now.  The analogy to the behavior of the
two dimensional ring is good enough.

Smoke Rings
In several ways the smoke ring provides a superb
illustration of Helmholtz’s theorem.  In the days
when smoking was popular and thought to be harm-
less, it was a common stunt to blow a smoke ring.
Today we would rather create smoke rings using the
apparatus shown in Figure (18).  The apparatus is
simple, and the rings are better.

Start with a cardboard box, cut a fairly large hole in
the front as shown, and replace the back side with a
rubber sheet.  Fill the box with smoke, and hit the
rubber sheet with your hand.  A beautiful ring will
emerge, like the one shown in Figure (19).

(If titanium tetrachloride solution available, you can
get a denser smoke ring by squirting this liquid
around the perimeter of the hole in the box.  The
titanium tetrachloride quickly turns to titanium di-
oxide smoke and hydrochloric acid.  The titanium
dioxide is a coloring agent for white paint, and the
hydrochloric acid is obnoxious to deal with, but the
resulting rings are quite good.)

Figure 18 a,b
Front and back of apparatus for creating smoke rings.

Figure 18 c
Smoke at hole due to titanium tetrachloride.

Figure 17
Velocity field in a slice through a vortex ring.
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Figure 19
Two smoke rings after they have collided.

The most impressive feature of the smoke rings
created by our box is how stable they are.  They
move in a straight line, at constant speed, without
changing their shape, just as predicted by our analy-
sis of the two and three dimensional vortex rings.  If
you hit the rubber sheet harder, you add more circu-
lation κ  to the rings, and they travel faster.  You can
experiment with different size holes in the box,
seeing that smaller rings travel faster than larger
ones.

One of the interesting predictions that you can think
about and try to observe is the following.  If a faster
ring approaches a slower one in front of it, the
velocity field of the front ring will tend to make the
back ring smaller and thus move still faster.  Con-
versely, the velocity fields of the back ring should
expand the front ring making it move more slowly.
(Sketch the velocity fields yourself to check this
prediction.)  As a result, if the back ring is aimed
right at the front one, the smaller back ring should
shoot through the larger front ring, becoming itself
the front ring. If the rings have not bumped into each
other, tangled and destroyed themselves (the usual
case), then the new back ring will be squeezed in
size, the front ring expanded, and the process re-
peated.  This is a famous prediction, but I have not
seen it carried out very well.

While the motion of a smoke ring represents a
successful prediction of Helmholtz’s theorem, the
fact that the smoke ring is so sharply defined, escap-

ing from the amorphous cloud of smoke around the
cardboard box, is an even more dramatic prediction
of the theorem.  When we hit the back of the box to
create the ring, air was expelled out through the hole
in the front.  The vortex ring was created at the
perimeter of the hole from air that contained smoke
particles.  These smoke particles in the vortex core
become attached to the vortex lines in the core and
have to move with the core.  As the vortex ring moves
out of the box, it carries the trapped smoke particles in
its core and leaves the rest of the smoke behind.

Creating the Smoke Ring
    The reason why is as follows.  Before we hit the
rubber sheet at the back of the box, all the air in the
box was at rest and contained no vorticity.  If
Helmholtz’s theorem strictly applied, then a vortex
line could not move onto fluid particle that initially
had no vorticity.

As we mentioned earlier, Helmholtz’s theorem ap-
plied  if only conservative forces (like gravity) were
acting on the fluid.  But gravity is not the only force
acting on the particles of air in our smoke ring
apparatus.  Air is a slightly viscous fluid, and viscous
forces in a fluid are not curl free conservative forces.
Viscous forces move a vortex line onto fluid particle
and create a vortex core.
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Calculus 2000-Chapter 13
Introduction to
Fluid Dynamics

CHAPTER 13 INTRODUCTION TO FLUID
DYNAMICS

One should think of this chapter as an introduction
to fluid dynamics. In it we derive the basic equations
for the behavior of the velocity field v  and the
vorticity field  ω in a constant density fluid.  We
begin by applying Newton's second law to a fluid
particle to obtain what is known as the Navier-
Stokes equation.  This equation for the velocity field
v  serves as the fundamental equation of fluid dy-
namics.

Taking the curl of the Navier-Stokes equation gives
us the basic equation for the dynamics of the vortic-
ity field  ω.  From that equation we derive the
Helmholtz theorem, and an extension of the Helmholtz
theorem that deals with the effect of non potential
forces acting on fluid cores.  The extended Helmholtz
theorem is used in the analysis of the experiments of
Rayfield and Reif who first measured the circulation
κ  and core radius (a) of a quantized vortex in
superfluid helium.  We end the regular part of the
chapter with a discussion of the Magnus effect and
the pseudo force called the Magnus force that
appears in all the vortex dynamics literature.

There are two major appendices to this chapter.
Appendix 1 deals with the use of component notation
in vector equations. This includes the Einstein sum-
mation convention, and emphasizes the use of the
permutation tensor   εijk  for calculating vector cross
products. There we show you an easy way to derive
vector identities involving cross products.

The second appendix shows how you can interpret
the dynamical behavior of the vorticity field as a
conserved two dimensional flow of vorticity. Appen-
dix 2 begins with an intuitive derivation of that
result, a derivation that requires little mathematical
background. (It can be explained at dinner parties.)
However deriving the formula for the conserved
vortex current requires the use of the permutation
tensor   εijk , which is why we delayed this discussion
until after Appendix 1.

The use of vortex currents turns out to be a particu-
larly effective way to handle vortex motion. We use
it, for example, to derive the Magnus force equation
for curved fluid core vortices, a result that has not
been obtained any other way.
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THE NAVIER-STOKES EQUATION
When we apply Newton's second law  F = dp/dt  to a
particle like a baseball, the analysis is fairly simple.
With  p = mv for the baseball, if m is constant, the result
is  F = mdv/dt .  In particular, if  v = constant , then

 dv/dt = 0 and  F = 0 .

Applying Newton's second law to a fluid is more
complicated.  Even if we have a steady flow where

 v = constant , the fluid particles themselves will be
accelerating when the streamlines go around a corner
or the flow tubes become narrower or wider.  Some net
force acting on the fluid particles is required to
produce this acceleration.  If the flow is not steady, if

  ∂v/∂t  is not zero, an additional force is required to
produce this change in the velocity field.  The first
problem you encounter in the study of fluid mechanics
is to correctly evaluate the acceleration of the fluid
particles taking both of these effects into account.

What we will do is to consider a volume V of fluid
bounded by a closed surface  S ′ .  The surface  S ′  is
special in that it moves with the fluid particles.  As
a result the same fluid particles remain inside V as
the fluid moves about.  We will then calculate the
rate of change of the total momentum of these fluid
particles and equate that to the total force acting on
the particles within V.  Following this procedure we
will end up with a differential equation called the
Navier-Stokes equation which is very successful in
describing the behavior of fluids.

(In most textbooks you will find what looks to be a
simpler derivation of the Navier-Stokes equation.
Our derivation involves volume and surface inte-
grals, while the textbooks make what looks like
simpler arguments using what is called a substan-
tive derivative.  When the textbook arguments are
applied to non constant density fluids, you also find
some talk about what should be included inside the
substantive derivative and what should not.  It
almost seems that one  includes only those terms that
give the right answer.

By using surface and volume integrals, our focus
remains on the application of Newton's second law
to the fluid particles with no ambiguities of interpre-
tation.)

Rate of Change of Momentum
As we mentioned, we will consider a volume V of
fluid whose surface  S ′  moves with the fluid par-
ticles.  As a result the same particles remain inside
the volume V.  We then equate the rate of change of
the total momentum of these particles to the total
force acting on them.  The main problem involves
calculating the rate of change of the momentum of
the particles in a volume whose surface is moving.

Suppose we have a volume V(t) that is now, at time
(t), bounded by a surface   S ′(t) ( shown in Figure 1).
If the fluid has a density ρ  and the velocity field of
the fluid is v then the total momentum  PV(t) of the
fluid in V(t) is

  PV(t) = p( x,t)d3V

V(t)

; p = ρv (1)

At this point we are even allowing the density to vary,
so that both ρ  and v can be functions of space and time.

A short time  δt  later, the surface will have moved to
  S ′(t +δt)  and the volume becomes   V(t+δt)  as

shown in Figure (2).

At this later time, the momentum of the fluid particles
will be

surface S'(t)

volume V(t)

Figure 1
The volume V bounded by the surface  S ′  at time (t).

Figure 2
The volume V a short time  δδt  later.

S'(t+δt) 

V(t+δt) 

V(t) 

S'(t) 
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  PV(t+δt) = p(t+δt)d3V

V(t+δt)

(2)

The change   δP V  in momentum of the fluid particles as
time goes from (t) to   (t+δt)  is

  δPV = PV(t+δt) – PV(t)

= p(t+δt)d3V

V(t+δt)

– p(t)d3V

V(t)

(3)

We can do a Taylor series expansion of   p(t+δt)  to get

  
p(t+δt) = p(t) +

∂p
∂t δt + 0(δt2) (4)

This gives

  
δPV = p(t)d3V

V(t+δt)

– p(t)d3V

V(t)

+ δt
∂p
∂t d3V + 0(δt2)

V(t+δt)

(5)

From Figure (2), we see that much of the same
volume is included in both   V(t+δt)  and V(t).  Thus,
in the square brackets in Equation (5), the integral of

 p(t)  over the common volume cancels, and what we
want is an integral of  p(t)  over the volume that the
fluid has entered during the time  δt , minus the
integral of  p(t)  over the volume the fluid has left
during  δt .

In Figure (3a) we show part of the region between
  S ′(t)  and   S ′(t +δt)  where the fluid has entered

during  δt .  Consider a particle at point (1) at time t,
moving at a velocity  v1 .  In the short time  δt  it
moves a distance   v1δt  as shown.

Now let  dA1  be an element of the surface   S ′(t)  at
point (1).  The standard convention is that a surface
element  dA points perpendicularly out of a closed
surface.  Thus  dA1  points out of surface   S ′(t)  as
shown.

A time  δt  later, the surface element  dA1  will have
moved out to the surface   S ′(t +δt) , sweeping out a
volume   δV1   given by

  δV1 = (v1δt) ⋅dA1 (6)

You can see that the dot product is appropriate, for
if  v1  and  dA1  are parallel, we have a right circular
cylinder of volume   ( v1δt dA1 ) .  The volume is zero
if  v1  and  dA1 are perpendicular, and negative if
oppositely oriented.

In Figure (3b) we show part of the region between
  S ′(t)  and   S ′(t +δt)  where the fluid in   S ′(t)  has left

during the time  δt .  The diagram is the same as
Figure (3a) except that the vector  dA2  pointing out
of   S ′(t)  is pointing essentially opposite to the vector

 v 2 .  In the formula   δV2 = (v2δt) ⋅dA2 , the dot
product   v2 ⋅dA2  and therefore   δV2  is negative in the
region where the fluid is leaving.

As a result, if we calculate the integral of   p(t)δV
over both the volumes in Figures (3a) and (3b), we
get an integral of  p(t)  over the region the fluid is
entering, minus the integral of  p(t)  over the region
the fluid is leaving.  This just gives us the quantity in
the square brackets in Equation (5)

(1)

S'(t) dA1
v 1

S'(t+δt)

region fluid entering

v δt1

S'(t+δt) 

S'(t) 

region fluid leaving
(2)

dA
2

v 2

v δt2

Figure 3a
The volume element       δδV1 = vδδt ⋅⋅dA1
into which the fluid is flowing.

Figure 3b
The volume element       δδV2 = vδδt ⋅⋅dA2
out of which the fluid is flowing.



Cal 13-4      Calculus  2000 - Chapter 13      Fluid Dynamics

We get

  
p(t)d3V –

V(t+δt)

p(t)d3V

V(t)

= p(t)(δV)
over entering
and leaving
regions

= p(t)(δt v⋅dA)

S′(t)

(6)

By integrating over the entire area   S ′(t)  we have
included both the entering and leaving regions.

Using Equation (6) for the square brackets in Equa-
tion (5) gives

  δPV = δt p(t)(v⋅dA)

S′(t)

+δt
∂p(t)

∂t
d3V

V(t+δt)
(7)

plus terms of the order   δt2 .  At this point, we have
everything expressed at the time (t) except the vol-
ume of integration in the   ∂p/∂t  term.  If we inte-
grated over the volume V(t) instead of   V(t + δt) , we
would be incorrectly handling the integral of   ∂p/∂t
over the narrow difference volume of thickness   vδt .
Since the   ∂p/∂t  term already has a factor  δt , this would
lead to an error of order   δt2  which we can ignore.

Replacing   V(t + δt)  by V(t) in the volume integral,
and dividing through by  δt  gives

  δPV

δt
=

∂p
∂t d3V

V(t)

+ p(t)(v⋅dA)

S′(t)

(8)

We now have all quantities in our formula for
  δP V/δt  expressed at the time (t).

We have one more step before we are finished with
the   δP V/δt  term.  We want to convert the surface
integral to a volume integral.

We have already had some experience converting
surface to volume integrals back in Chapter 7 on
divergence.  There we derived the divergence theorem

  E⋅dA
S

= ∇ ⋅Ed3V
V

(7-21)

where E  is any vector field, and the surface S bounds
the volume V.

In Equation (8), we have something that looks more
complex than the surface integral in (7-21), because
of the presence of the extra vector p.  To handle this
let us define three fields  E 1,  E 2 and  E 3 by

 E 1 = p xv ; E 2 = p yv ; E 3 = p zv (9)

Then we get

  p(v⋅dA)
S

= x pxv⋅dA +
S

y pyv⋅dA +
S

z pzv⋅dA
S

= x E1⋅dA +
S

y E2⋅dA +
S

z E3⋅dA
S (10)

Now we can use the divergence theorem on the three
quantities  E 1,  E 2 and  E 3 to get

  
p(v⋅dA)

S

= x ∇ ⋅E1d3V +
V

y ∇ ⋅E2d3V +
V

z ∇ ⋅E3d3V
V

= x ∇ ⋅(pxv)d3V +
V

y ∇ ⋅(pyv)d3V
V

+ z ∇ ⋅(pzv)d3V
V

(11)

(A quantity like  E1 = pxv  is not really a vector field
because it does not transform like a vector when we
rotate the coordinate system. But if no rotations are
involved,  px acts like a scalar field p, and  pxv  acts
like a vector field  j = pv  in the divergence theo-
rem.)
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Einstein Summation Convention
In Equation (11) we have some fairly mixed up
vector components like

  x ∇ ⋅(pxv) = x[∇ x(pxvx) + ∇ y(pxvy) + ∇ z(pxvz)]

(12)
There is a notation, credited to Einstein, that makes it
easy to handle such terms. In Equations (13), we write
the dot product of two vectors in three different ways.

  
a ⋅b = axbx + ayby + azbz

= aib iΣ
i = x,y,z

= aib i

 (13a)

(13b)

(13c)

In (13a) we see the usual definition of the dot product
of two vectors.  In (13b), we used the index (i) to
represent the subscripts x, y, z and included a summa-
tion sign to show we are adding up the three terms.
Supposedly Einstein got tired of writing  summation
signs and introduced the notation in (13c).  He said
that if the index appears twice, then automatically
take a sum.  As an example, if you encounter  aibj ci
you would sum over the repeated index (i) to get

  aibj ci = aibjciΣ
i = x,y,z

= axbjcx + aybjcy + azb jcz

(14)

Since the index (j) is not summed over, it remains the
same index throughout.  We would say that  a ib j c i
is the (j)th component of the vector  a ib c i .

Using this notation in Equation (12), we have

  x [∇ x(pxvx) + ∇ y(pxvy) + ∇ z(pxvz)]

= x[∇ i(pxvi)] = ∇ i([ xpx]vi)
(15)

and Equation (11) can be written as

  p(v ⋅dA)

S
  = ∇ i ([xpx + ypy + zpz]vi)d3V

V

  = ∇ i(pvi)d3V

V
(16)

Using Equation (16) in Equation (8) gives

  
δPV
δt

=
∂p
∂t + ∇ i(pvi)

V(t)

d3V
(17)

This is the formula for the rate of change of the
momentum of the fluid particles inside the volume V
that moves with the particles.  It is all expressed in terms
of variables at the time (t).

Mass Continuity Equation
When we substitute   p = ρv into Equation (17) we
end up with quite a few terms.  The result can be
simplified by using the equation for the conserva-
tion of mass during the flow.  The derivation, which
is worth repeating, is similar to our derivation in
Chapter 10 of the conservation of electric charge.

Consider a volume V bounded by a fixed surface S in
a fluid of density ρ .  The rate at which mass is flowing
out of V (the mass flux) is given by the integral over S

   
– dM

dt
= (ρv)⋅dA

rate at which
mass is flowing
out across S

S

(18)

where   ρv  is the mass current.  We can use the
divergence theorem to convert this surface integral
to a volume integral, giving

  – dM
dt

= ∇ ⋅ (ρv)d3V
V

(19)

If mass is flowing out of V, there must be a decrease
in the density ρ  inside.  The rate at which the total
mass inside is decreasing is related to the change in
density ρ  by

  – dM
dt

= –
∂ρ
dt

d3V
V

(20)

Equating our two formulas for  – dM/dt  gives

  ∇ ⋅ (ρv)d3V

V

= –
∂ρ
∂t

V

d3V (21)

The two volume integrals can be combined to give

  ∂ρ
∂t + ∇ ⋅ (ρv) d3V = 0 (22)
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Since Equation (22) must hold for any volume V or
fixed surface S we can construct, the terms in the
square brackets must be zero, giving

   ∂ρ
∂t + ∇ ⋅ (ρv) = 0 mass continuity

equation (23)

Rate of Change of Momentum
when Mass is Conserved
With the continuity equation written down, let us
return to our formula for the rate of change of the
momentum of the fluid particles, replacing the mo-
mentum density p by   ρv  to get

  δPV
δt

=
∂(ρv)

∂t + ∇ i(ρvvi)

V

d3V (24)

The terms in the square bracket become

  
=

∂ρ
∂t v + ρ

∂v
∂t + v ∇ i(ρvi) + ρvi∇ iv

= ρ
∂v
∂t + vi∇ iv + v

∂ρ
∂t + ∇ ⋅ (ρv)

(25)

where we wrote   ∇ i(ρvi) = ∇ ⋅ (ρv) .

We immediately see that the second bracket is zero
by the mass continuity equation, and we are left with
our final result

  
δPV
δt

= ρ ∂v
∂t + (v⋅∇ )v

V

d3V (26)

Equation (26) holds even when the density of the
fluid is changing.

Newton's Second Law
We are now in a position to apply Newton's second
law to the fluid in our volume V.  Equation (26) gives
us the total rate of change of the momentum of the
particles within V.  We now want to equate that to the
total force  F tot  acting on the particles.  We will
calculate that by adding up the individual forces per
unit volume, which are the pressure force, the vis-
cous force, and the other forces.  Then we integrate
the sum over the volume V.

In View 3 of Chapter 3 on divergence, we found that
the pressure force per unit volume was

  f p = – ∇ p (3.3-2)

In Chapter 4 we found that the viscous force per unit
volume for a constant density Newtonian fluid was

  fν = µ∇ 2v (4-19)

Letting  f other represent all other forces per unit
volume, we get for the total force  F tot  acting on the
fluid within V

  
Ftot = –∇ p + µ∇ 2v + fother d2V

V

(27)

Equating the total force  F tot  to the rate of change of
momentum   δP V/δt , Equations (27) and (26), gives

  
F tot =

δP V
δt

  
Ftot = –∇ p + µ∇ 2v + fother d3V

V

= ρ ∂v
∂t + (v⋅∇ )v d3V

V
(28)

Putting everything under a single integral sign gives us

  
ρ∂v

∂t + ρ(v⋅∇ )v + ∇ p – µ∇ 2v – fother d3V

V

= 0 (29)
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Next we have our usual argument that Equation (29)
must hold for any volume V.  The only way we can
always get the answer zero for the integral is for the
integrand, the stuff in the square brackets, to be zero.
Thus we end up with the equation

  
ρ ∂v

∂t + (v⋅∇ )v = – ∇ p + µ∇ 2v + fother

(30)
This is one form of the Navier-Stokes equation.

It is usually more convenient to divide through by ρ ,
using

   
ν =

µ
ρ

kinematic
viscosity
coeffienct

(4-41)

where ν  is the so called kinematic viscosity de-
scribed in the pipe flow experiment of Chapter 4
(page Cal 4-9).  We will also define  g other by

   
g other =

f other
ρ

other forces
per unit mass (31)

which represents all other forces, but now as force
per unit mass, since we have divided by mass per
unit volume ρ .  We get

  
∂v
∂t + (v⋅∇ )v =

–∇ p
ρ + ν∇ 2v + gother

Navier-Stokes Equation

(32)

Equation (32) is the form of the Navier-Stokes equation
you are likely to find in the textbooks.  It represents the
basic starting point for fluid dynamics theory.

Equation (32) is quite general.  Only in the formula
  ν∇ 2v  for the viscous force have we made any

assumptions about the density being constant
(i.e.,   ∇ ⋅v = 0 ), and that the coefficient of viscosity
ν  is constant.  If we have a non constant density
fluid, or non constant coefficient of viscosity,  all we
have to do is correct the viscosity term.

In Chapter 23 of the Physics text, we began our
discussion of vector fields with the velocity field.  We
made this choice because it is easier to picture a velocity
field than an electric field, and we could immediately
derive Bernoulli's equation from some simple energy
arguments.  How things have changed in this chapter!
The derivation of the Navier-Stokes equation for the
velocity field was harder to do than deriving the wave
equations for E  and B, and the result is more complex.
We have seen terms that resemble   ν∇ 2v  and   ∂v/∂t  in
our discussion of wave equations, but we have not
encountered a term that looks anything like   (v⋅∇ )v .

Not only does   (v⋅∇ )v  have a peculiar combination of
components, it is essentially proportional to the square
of the velocity field, which makes the Navier-Stokes
equation a non linear equation.  What that means is as
follows.  The equations we have studied so far, the
wave equations for E  and B, and Schrödinger's equa-
tion for  ψ, are linear equations. This means that there
are no terms involving the square of E , B or  ψ , and as
a result we have the rule that waves add.  What this
implies is that if you have two solutions to a wave
equation, the sum of these two solutions is also a
solution.  For a non linear equation, the sum of two
solutions is not necessarily a solution.

In the case of water waves, if the amplitudes of the
waves are small, the   (v⋅∇ )v  term is not important
and waves add, as we saw in the ripple tank experi-
ments.  However, if the amplitudes become large,
the   (v⋅∇ )v  term, being proportional to  v2 , be-
comes large and we get non linear effects like the
breakers we see when ocean waves come up to the
beach.  There is no way you can get the solution
describing a breaking wave from adding up the
solutions for many small amplitude waves.  The non
linear term brings in completely new physics.

Despite the apparent complexity of the Navier-
Stokes equation, some fairly simple results can be
derived from it.  One is Bernoulli's equation which
we will discuss in the next section, the other is a
generalized Helmholtz theorem which we will de-
rive after that.  In our discussion of Bernoulli's
equation we learn more than we did in the Physics
text.  Here we will determine the conditions when
Bernoulli's equation applies, and when it does not.
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BERNOULLI'S EQUATION
There is a vector identity which allows us to change
the form of the Navier-Stokes equation so that the
terms in Bernoulli's equation begin to appear.  The
vector identity is

  
(v⋅∇ )v = ∇

v2

2
– v×(∇ ×v ) (33)

In Appendix 1 of this chapter we show you a rela-
tively easy way to derive vector identities involving
the curl.  Equation (33) is the explicit example we use.

Noting that   ∇ ×v  is the vorticity  ω, we can write
Equation (33) as

  
(v⋅∇ )v = ∇

v2

2
– v×ω (33a)

Using Equation (33a) for the   (v⋅∇ )v  term in the
Navier-Stokes equation (32) gives

  ∂v
∂t – v×ω = – ∇

v2

2 –
∇ p
ρ + ν∇ 2v + gother

(34)
Our next step is to extract the gravitational force
from   g other and display it explicitly.  The gravita-
tional force per unit volume of fluid  fg  is

   fg = ρg = ρ(– ∇ gy) (35)

where y is the upward directed coordinate and g the
acceleration due to gravity.  (Take a break and show
that   – ∇ (gy)  is equal to g, a vector of magnitude g
pointing down.)

The force terms in Equation (32) are forces per unit
mass.  We get the gravitational force per unit mass,

 g gravity  by dividing  f g  by the density ρ .

  
ggravity =

fg
ρ = – ∇ (gy) (36)

The force  g other becomes

  gother = – ∇ (gy) + g ′other (36a)

where   g ′other  represents other forces not including
gravity.

Using Equation (36a) in Equation (34) gives

  ∂v
∂t – v×ω

= – ∇
v2

2 + gy –
∇ p
ρ + ν∇ 2v + gother

′ (37)

Up to this point the only place we assumed that ρ  was
constant was in the viscosity term   ν∇ 2v . But for the
remainder of this chapter we will assume that ρ  is
constant and use that to simplify other terms. For
example, we can pull a constant ρ  inside the gradient,
giving

   
–

∇ p
ρ = –∇ p

ρ
if ρ is
constant (38)

Using Equation (38) in Equation (37) gives

  
∂v
∂t – v×ω = –∇ p

ρ +
v2

2 +gy +ν∇ 2v +g ′other

constant density fluids

(39)
It is in Equation (39) we see the Bernoulli terms

  (p/ρ + v2/2 + gy) . We can now use the equation
both to derive Bernoulli's equation and to state the
conditions under which it applies.

Suppose we have the following four conditions:
(1) constant density, (2) a steady flow so that

  ∂v/∂t = 0 , (3) that viscosity is not important so that
we can neglect the viscosity term   ν∇ 2v , and (4) that
there are no forces other than pressure and gravity
acting on the fluid so that we can set   g ′other = 0 .
These conditions are

   ρ = constant

∂v
∂t = 0 steady flow

ν∇ 2v = 0 neglect viscosity

g ′other = 0 no other forces

(40)

Under conditions (40) the Navier-Stokes equation
becomes

  

v×ω = ∇ p
ρ +

v2

2
+ gy (41)
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Applies Along a Streamline
In Chapter 23 of the Physics text, we called the
collection of Bernoulli terms the hydrodynamic
voltage.  Labeling their sum by   φH , we have

   
φH ≡ p

ρ +
v2

2
+ gy hydrodynamic

voltage (42)

With this notation, Equation (41) becomes

  v×ω = ∇ φH (43)

We used the name hydrodynamic voltage for   φH  to
stress the similarity between hydrodynamic volt-
age-drops in a fluid circuit and electric voltage-
drops in an electric circuit.

Later in the Physics text, in our discussion of electric
voltage in Chapter 25, we changed the name from
voltage to potential, and started constructing con-
tour maps of the potential φ.  Our main example was
the map of the electric potential produced by charges
+3 and –1 shown in Figure (25-15) reproduced again
here.  The lines of constant potential are the contour
lines, and the lines of steepest descent are the field lines.

In our discussion of gradient in this text, we saw that
the gradient vector  ∇ φ pointed along the field lines.
Or to say it another way, the gradient  ∇ φ was a
maximum in the direction where the slope is the
steepest, and was zero in the direction of a contour
line where the value of φ remains constant.

Our Equation (43),   v×ω = ∇ φH , is an equation
relating the gradient of the potential   φH  to what at
first looks like a rather complicated term

  v×ω= v×(∇ × v) .  But there is one thing that is
simple about   v×ω .  Because of the cross product,

  v×ω  is always perpendicular to v , i.e., always zero
in the direction of v.

In a fluid flow, the streamlines follow in the direc-
tion of the velocity field v.  Thus if we move in the
direction of a streamline, we are moving in a direc-
tion where   v×ω  and thus   ∇ φH  is zero.  But if we
move in a direction where the gradient of   φH  is zero,
we must be moving along a contour line of   φH , and
the value of   φH  must be constant.  Thus the physical
content of the equation   ∇ φH = v×ω  is that   φH  is
constant along a streamline.  Re-expressing   φH  as

  p/ρ + v2/2 + gy , we get the result
  
p
ρ + v2

2
+ gy =

constant along
a streamline (44)

when conditions (40) are obeyed.

Equation (44), with the associated conditions, is our
precise statement of Bernoulli's equation.  It tells us
both when Bernoulli's equation can be used, and
why it should be applied along a streamline.  In the
special case of potential flow where   ω = ∇ × v  is
zero everywhere, then Equation (41) becomes   ∇ φH =
0, which implies   ∇ φH =   p/ρ + v2/2 + gy = constant
throughout the fluid.  For potential flow we do not
have to apply Bernoulli's equation only along a
streamline.

Figure 25-15 (repeated)
The lines of equal height, the contour lines, are the
lines along which the potential φφφφφ is constant.
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The Viscosity Term
Although the Navier-Stokes equation is a rather
formidable equation, we are beginning to see some
fairly simple or recognizable results emerge.  A lot
can be learned by studying the nature of the terms in
the equation.  Here we will see that the viscous force
term   ν∇ 2v  can be re-expressed in a form that gives
one a better understanding of the nature of vortices.

Back in Chapter 8 on the curl, we proved the vector
identity

  ∇ ×(∇ ×A ) = –∇ 2A + ∇ (∇ ⋅A) (8-5)

If we apply this to the velocity field v  of a constant
density fluid where   ∇ ⋅v = 0 , we get

  ∇ 2v = –∇ ×(∇ ×v ) = –∇ ×ω (45)

Where   ω = ∇ ×v .  Thus the viscous force term in the
Navier-Stokes equation can be written as

   
ν∇ 2v = –ν∇ ×ω viscous force

per unit mass (46)

From Equation (46) we see that there are no viscous
forces where the vorticity  ω is zero, or even when  ω
is constant as in solid body rotation.

In our discussion of vortices in the last chapter, we
pictured an ideal vortex as one whose velocity field
v was analogous to the magnetic field of a current in
a straight wire.  If the current in the wire is uniform,
then   ∇ ×B = µ0 i  is a constant inside the wire and
zero outside.  Thus in our ideal vortex,   ω = ∇ ×v  is
uniform inside the core (representing a solid body
rotation of the fluid there), and   ω = 0  outside where
we have the θ  directed 1/r velocity field.

With our new formula   –ν∇ ×ω for the viscous
force, we see that there is no viscous force acting
inside the core where   ω = constant .  What is surpris-
ing is that there is also no viscous force acting
outside the core in the 1/r circular velocity field.  The
only place where viscous forces act in an ideal
vortex is at the boundary between the core and the
fluid outside.  The fact that viscous forces do not act
either inside or outside the core of an ideal vortex is
one reason for the permanence of the vortex structure.

Because the velocity field of a vortex ring is analo-
gous to the magnetic field of a current loop, the fact
that   ∇ ×B = µ0 i  is zero outside the wire loop,
implies that the vorticity   ω = ∇ ×v  is zero outside
the core of a vortex ring.  Thus in a vortex ring or a
smoke ring, viscous forces do not act on the fluid
outside the core.

  Fmagnus = –ρVrel×κ   acting on that vortex.  But there
is no extra mass associated with a fluid core vortex,
so one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero.  That means that there must be an external
force  Fexternal acting on the vortex to cancel the
Magnus lift force.  That is, one must have

 Fexternal + Fmagnus = 0 (108)
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THE HELMHOLTZ THEOREM
While Bernoulli's theorem may be the most famous
theorem of fluid dynamics, Helmholtz's theorem is
perhaps the most dramatic.  To see a smoke ring
emerge from an amorphous cloud of smoke and
travel across a room in a straight line has to be one
of the impressive phenomena of physics.  Yet we saw
that it was explained by Helmholtz's theorem that in the
absence of non potential forces, the fluid particles
become trapped on, and move with, the vortex lines.

In this section we will derive Helmholtz's theorem
from the Navier-Stokes equation.  As a result, all the
phenomena we have seen that are explained by
Helmholtz's theorem can be viewed as being a
consequence of the Navier-Stokes equation.

Equation for Vorticity
The first step in deriving Helmholtz's theorem is to
turn the Navier-Stokes equation into an equation for
the vorticity field  ω.  We do this by taking the curl
of both sides of Equation (39).  We have

  
∇ × ∂v

∂t – v×ω

= ∇ × – ∇ p
ρ + v2

2 + gy – ν∇ ×ω+ g ′other
(47)

where we used Equation (46) to replace   ν∇ 2v  by
  –ν∇ ×ω .

At this point you might be  discouraged by the
number of cross products that appear in Equation
(47).  But immediately there is noticeable simplifica-
tion.  Recall that the curl of a gradient is identically zero,

   ∇ ×∇ φ ≡ 0 any φ (48)

Thus the Bernoulli terms all go out in Equation (47)

  
∇ ×∇ p

ρ + v2

2 + gy = 0 (49)

which considerably shortens the equation.

Next, we note that because we can interchange the
order of partial differentiation, we get

  ∇ × ∂v
∂t = ∂

∂t (∇ ×v) = ∂ω
∂t (50)

Thus Equation (47), the curl of the Navier-Stokes
equation, becomes

  
∂ω
∂t – ∇ ×(v×ω) = ∇ ×g (51)

where g, given by

 
  

g = –ν∇ ×ω+ g ′other (52)

represents all forces per unit mass acting on the
fluid, except pressure and gravity.  Equation (51) is
the differential equation for the dynamical behavior
of the vorticity field  ω.  The only restriction is that
it applies to constant density fluids.  If we wish to
work with non constant density fluids we have to go
back and work with Equation (39) and perhaps use
a more general formula for the viscous force.

Non Potential Forces
An important simplification we obtained in going to
an equation for the vorticity field  ω was the elimi-
nation of the Bernoulli terms.  This removes the
pressure and gravitational forces from the equation
for  ω, implying that pressure and gravity have no
direct effect on the behavior of vorticity.  We saw
this result in the case of the motion of a smoke ring.
The ring moved in a straight line across the room
completely unaffected by gravity.  (Pressure and
gravity can have an indirect effect in that they affect
the velocity field v which appears in the   ∇ ×(v×ω)
term.)
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In Equation (51),

  ∂ω
∂t – ∇ ×(v×ω) = ∇ ×g (51) repeated

the only force terms that survive are those with a non
zero curl like the viscosity term.  Let us introduce the
terminology potential force   gφ  and a non potential
force  gnp .  Potential forces are those that can be
expressed as the gradient of a potential φ, and thus
have a zero curl

  gφ = –∇ φ ; ∇ ×gφ = 0 (53)

while non potential forces  gnp  have non zero curl

  ∇ ×gnp ≠ 0 (54)

and thus survive the curl in Equation (51).  As a
result we can write Equation (51) in the form

   
∂ω
∂t – ∇ ×(v×ω) = ∇ ×gnp

vortex
dynamics
equation

(55)

We will call Equation (55) the vortex dynamics
equation.

To be quite general, one might like to separate an
arbitrary force field g into its potential part   gφ  and
its non potential part  gnp , writing

  g = gφ + gnp (56)

The problem is that there is no unique separation of
an arbitrary vector field into potential and non po-
tential parts.  The only thing that is unique is the curl

  ∇ ×g = ∇ ×gnp (57)

Physically, Equation (57) is telling us that if we
accidentally included some potential terms in our
formula for  gnp , they would disappear when we
took the curl in Equation (57).

For a practical matter, the best thing to do is to
include all obviously potential forces like pressure
and gravity in   gφ , and leave all others that are not
obviously potential forces, like the viscous force

  –ν∇ ×ω , in the non potential category  gnp .

A VECTOR IDENTITY FOR A MOVING CIRCUIT

Before we obtain a really clear interpretation of the
vortex dynamics equation (55), we need a way of
understanding the impact of the rather complex look-
ing term   –∇ ×(v×ω) .  In this section, we will derive
a vector identity that will lead to a strikingly simple
interpretation of the combination of terms

  ∂ω ∂t∂ω ∂t – ∇ ×(v×ω) .  The vector identity involves the
rate of change of flux of a solenoidal field like  ω
through a circuit that moves with the fluid particles.

It takes a considerable effort to derive this vector
identity, an effort involving steps somewhat similar
to those we used to calculate the rate of linear
momentum in a moving volume.  But the resulting
simplification in the interpretation of the vortex
dynamics equation is more than worth the effort.

To emphasize the general nature of the vector iden-
tity, we will calculate the rate of change of the flux
of a vector field  A  through the circuit   C′  that moves
with the fluid particles.  The restriction on  A  will be
that it is a solenoidal field with   ∇ ⋅A = 0 .

Let the circuit   C′ (t)  shown in Figure (4) be attached
to the fluid particles through which it passes.  As
time progresses from (t) to   (t +δt) , the fluid motion
will carry the circuit from position   C′ (t)  to the
position   C′ (t +δt)  as shown.  We will also assume
that there is a divergence free vector field  A(t) in the
fluid at time (t).  At time   (t +δt)  the vector field will

have changed to   A(t +δt) .  What we wish to calcu-
late is the change in the flux of  A  through the circuit

  C′  as we go  from (t) to   (t +δt) .  We will do the

C'(t+δt) 

C'(t) 

Figure 4
The circuit C' moves with the fluid particles.



Calculus  2000 - Chapter 13      Fluid Dynamics       Cal 13-13

calculation throwing out terms of order   δt2  com-
pared to  δt .

At time t, the flux   Φ(t)  of  A through   C′ (t)  is

  Φ(t) = A(t)⋅dS

S′ (t)

(58)

where  S′ is a surface bounded by   C′ (t) . At time
  (t +δt) the flux has become

  Φ(t +δt) = A(t + δt)⋅dS

S′(t+δt)

(59)

The change in flux  δΦ  during the time  δt  is

  δΦ = A(t + δt)⋅dS

S′(t+δt)

– A(t)⋅dS

S′ (t)

(60)

Using a Taylor series expansion we can write

  A(t + δt) = A(t) + ∂A
∂t δt + 0(δt2) (61)

Thus

  δΦ = A(t)⋅dS

S′(t+δt)

– A(t)⋅dS

S′ (t)

+ δt ∂A
∂t ⋅dS

S′(t+δt)

(62)
To calculate the effect of the first two terms in
Equation (62), consider the guitar shaped volume
shown in Figure (5).  The top of the volume is
bounded by the curve   C′ (t + δt) , while the bottom
by   C′ (t) .  A certain amount of flux   Φ1

  Φ1 = A(t)⋅dS

S′ (t)

(63)

enters up through the bottom of the volume.  Some
more flux,   Φ2  flows in through the sides, and an
amount   Φ3

  Φ3 = A(t)⋅dS

S′(t+δt)

((64)

flows out through the top.

Because  A(t )  is a divergence free field [   ∇ ⋅A(t) = 0],
all the flux flowing in through the bottom,   Φ1 , and the
sides,   Φ2 ,  must flow out through the top,   Φ3 , giving

  Φ3 = Φ1 + Φ2 (65)

(Any of these fluxes could be negative, indicating  A
pointing in other directions, but all signs are cor-
rectly handled by the formalism.)

Using Equations (63) and (64), our formula (62) for
 δΦ becomes

  δΦ = Φ3 – Φ1 + δt ∂A
∂t ⋅dS

S′(t+δt)

With   Φ3 = Φ1 + Φ2  we get

  δΦ = Φ2 + δt ∂A
∂t ⋅dS

S′(t+δt)

(66)

Equation (66) tells us that the change in the flux of
 A(t)  through the moving circuit   C′ (t)  is made of

two parts.  One is due to the change   ∂A(t) /∂t  of the
field itself, the other to flux coming in from the sides.

Figure 5
Volume bounded by the curves     C′ (t + δδt )  and     C′ (t ) .
The drawing shows flux entering through the bottom
and sides, and flowing out through the top.

S'(t+δt) 

C'(t+δt) 

C'(t) 
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Our problem now is to calculate the flux   Φ2  flowing
in through the sides of our volume shown in Figure
(5).  The calculation of   Φ2  turns out not to be so hard.
In Figure (6) we show a small piece of the side of our
volume.  A fluid particle that is located at position
(1) in that diagram at time (t), moves to position (2)
during the time  δt .  The distance from (1) to (2) is
described by the displacement vector   vδt  as shown.

We also mark a short length  d  of the path   C′ (t)
starting at position (1) .  If we take the cross product
of   vδt  with  d , we get a vector  dS  that points into
the volume, perpendicular to both   vδt  and  d .  The
length of  dS  is equal to the area of the parallelogram
defined by   vδt  and  d .  Thus  dS  represents the
inward area vector for the shaded area in Figure (6).
The flux   dΦ2  of  A(t)  in through this side area  dS  is

  dΦ2 = A(t)⋅dS = A(t) ⋅ [(vδt) × d ]

= δt A(t)⋅(v×d )

(67)

In the appendix to this chapter, where we show you
an easy way to handle vector identities involving
cross products, we derive the identity

  A⋅(B×C) = (A×B)⋅C (68)

Using this identity, we can write Equation (67) in the
form

  dΦ2 = δt[A(t)×v]⋅d (69)

To calculate the total flux   Φ2  in through the sides of
our volume, all we have to do is integrate the
contributions   Φ2  around the circuit   C′ (t) .We get

  Φ2 = δt [A(t)×v]⋅d
C'(t)

(70)

Stokes' law, derived in Chapter 8 relates the integral
of a vector field B around a closed path to the flux
of   ∇ ×B through the path.  We had

  B⋅d
C

= ∇ ×B⋅dS

S

(8-31)

where S is the surface bounded by the closed curve
C. If we set   B =A(t)×v ,   C = C′ (t)  and   S = S ′ (t) ,
Equation (8-31) becomes

  [A(t)×v]⋅d
C′ (t)

= ∇ × A(t)×v ⋅dS

S′ (t)

(71)

As a result, the flux   Φ2  of  A(t)  flowing in through
the sides of our volume is

  Φ2 = δt ∇ × A(t)×v ⋅dS

S′ (t)

(72)

Using this result in Equation (66) for the change in
flux   δφ through our moving circuit gives

  δΦ = Φ2 + δt ∂A
∂t ⋅dS

S′(t+δt)

(66) repeated

       
  

= δt ∇ × A(t)×v ⋅dS

S′ (t)

+ δt ∂A
∂t ⋅dS

S′(t+δt)

(73)
At this point everything is evaluated at the time (t)
except for the integral of the flux of   ∂A(t)/∂t  at the
surface   S ′(t + δt)  .Figure 6

The area element  dSon the side of our volume.

C'(t+δt)

C'(t)

d

vδt dS

(1)

(2)
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As we have just seen, the flux of any vector field
through   S ′(t + δt)  is equal to the flux through the
end   S ′(t)  plus a term like   Φ2  representing a flow in
through the sides.  Because the flux in through the
sides is of the order  δt  smaller than the flow in
through the end, and because the   ∂A/∂t  term already
has a factor of  δt , our neglect of the flux of   ∂A/∂t  in
through the sides will be an error of order   δt2   which
may be ignored.  Thus we can replace   S ′(t + δt)  by

  S ′(t)  in Equation (73).  Dividing through by  δt , and
for later convenience replacing   A(t)×v by   –v×A(t) ,
we get

  
δΦ(A)

δt
=

∂A(t)
∂t – ∇ × v × A(t) ⋅dS

S′ (t)

(74)
Equation (74) is the general formula for the rate of
change of flux of the vector  A(t)  through a circuit

  C′ (t)  that moves with the fluid particles.  The circuit
  C′ (t)  bounds the surface   S ′(t) , and it is assumed

that  A  is a solenoidal field   (∇ ⋅A = 0) .

The Integral Form of the
Vortex Dynamics Equation
Although the derivation of Equation (74) was rather
lengthy, the result can be immediately applied to our
vortex dynamics Equation (55).  If we integrate
Equation (55) over a surface   S ′(t)  bounded by a
circuit   C′ (t)  we get

  ∂ω(t)
∂t – ∇ ×(v×ω) ⋅dS

S′ (t)

= [∇ ×gnp]⋅dS

S′ (t)
(75)

Because the vorticity  ω is always a solenoidal field,
we can replace  A(t)  by   ω(t)  in Equation (74) and
immediately recognize the left side of Equation (75)
as the rate of change of the flux of  ω through the
moving circuit   C′ (t) .  Calling this rate   δΦ(ω) δtδΦ(ω) δt ,
we have

  ∂ω(t)
∂t – ∇ ×(v×ω) ⋅dS =

S′ (t)

δΦ(ω)
δt (76)

On the right side of Equation (75), we can use
Stokes' theorem to replace the surface integral of

  ∇ ×g np  over   S ′(t)  by the line integral of  g np
around   C′ (t)  giving

  [∇ ×gnp]⋅dS

S′ (t)

= gnp⋅d
C ′(t)

(77)

Combining Equations (76) and (77) gives us the
general vortex dynamics Equation (78), a result
which assumes only that ρ  is constant.

  
the rate of change of the
flux of ω through a
circuit C′(t) that moves
with the fluid particles

δΦω
δt

= gnp⋅d
C ′(t)

                                      extended Helmholtz equation

(78)
It seems rather remarkable that an equation as com-
plex looking as the Navier-Stokes equation can be
converted, by taking the curl, to something simple
enough to be described almost completely in words.
In a sense the only calculation we have to do to apply
Equation (78), is to calculate the line integral of a
non potential force  gnp around a closed path.  For
reasons that will become clear shortly, we will call
Equation (78) the extended Helmholtz equation.
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The Helmholtz Theorem
It is an immediate step to go from Equation (78) to
Helmholtz's famous theorem of 1858.  If there are no
non potential forces acting on the fluid, i.e., if  gnp= 0,
then we get the simple statement

  
If there are no non potential forces acting
on the fluid, then there is no change in the
flux of ω through any closed circuit
C ′(t) that moves with the fluid particles

                                                        Helmholtz theorem

(79)
At this point we have reduced much of fluid dynam-
ics to a simple word equation.

Equation (79) is perhaps the most precise statement
of Helmholtz's theorem, but equivalent statements
are also enlightening.  Suppose, for example, we
define a vortex line as a small unit flux tube of     ωω .
Because  ω is solenoidal, the flux tubes or vortex
lines cannot stop or start in the fluid.  Equation (79)
tells us that, in the absence of non potential forces,
the number of vortex lines threading any circuit

  C′(t), i.e., the total flux of  ω,  remains constant as the
circuit moves with the fluid particles.  This clearly will
happen if the lines themselves move with the fluid.

Equation (79) does not actually require, in all cases, that
the vortex lines must move with the fluid particles.  As
we saw back in Chapter 12, the vorticity  ω is uniform
for solid body rotation.  Thus the flux of  ω will remain
constant through any circuit   C′(t)  moving with the
fluid, whether or not we think of the vortex lines
themselves as moving with the fluid.  With a uniform

 ω, we cannot tell if the vortex lines are moving or not.

We saw, however, that the situation is very different
when dealing with a quantum fluid where the vortic-
ity  ω, although roughly imitating solid body rota-
tion, is lumped up in the vortex cores.  In this case
Equation (79) clearly requires that the separate vor-
tex cores move around with the fluid.  We can easily
tell whether lumped up vorticity is moving.

There is, however, no harm in assuming that the vortex
lines move with the fluid for solid body rotation.  This
interpretation has the advantage that if a slight perturba-
tion is introduced into the vorticity field, we can follow
the perturbation and see that the associated lines do move.

EXTENDED HELMHOLTZ THEOREM
If the Helmholtz theorem tells us that in the absence
of non potential forces, vortex lines move with the
fluid particles, then what happens when non poten-
tial forces are present?  What is the effect on vorticity
of a force   gnp ≠ 0 ?  The answer, which we obtain
from our vortex dynamics Equation (78) is quite
simple.  It is that the non potential forces  g np  cause
a relative motion of the vortex lines and the fluid
particles.

It was the study of the behavior of quantized vortices
in superfluid helium and superconductors that led to
a more complete understanding of the effect of non
potential forces on vortex motion.  One experiment
in particular, an experiment by Rayfield and Reif
involving charged vortex rings in superfluid helium,
is what initiated this detailed study.  We will use a
discussion of the Rayfield-Reif experiment to de-
velop the ideas contained in the extended Helmholtz
theorem.

The Rayfield-Reif Experiment
Rayfield and Reif were able to create their charged
vortex rings by placing a radioactive substance in a
container of superfluid helium.  The radioactive
substance emitted charged particles, either electrons
or protons, depending on the substance.  What they
found was that the charged particle, moving through
the superfluid, would create  quantized vortex rings
in the  superfluid, and then in a process still not
perfectly understood, the charged particle would
become trapped in the core of the ring it created,
producing an electrically charged vortex ring.

The interesting part about having an electrically
charged vortex ring, is that you can apply an electric
field and exert an electric force on the core of the
ring.  We will see that this electric force acting on the
core represents a non potential force acting on the
fluid in the region of the core.  As a result, Rayfield
and Reif were able to study, in detail, the effects of
non potential forces acting on vortex lines. Their
experiments provided a superb verification of Equa-
tion (78) and the interpretation that non potential
forces cause a relative motion of the vortex lines and
the fluid particles.
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To apply Equation (78) to the Rayfield-Reif experi-
ment, consider Figure (7) where we show the cross
section of a vortex core with a force density g acting
on the fluid in the core. The force g  represents the
electric force acting on the charged fluid in the core.
Outside the core there is no force where the fluid is
electrically neutral.

On Figure (7) we have drawn three contours labeled
  C′1 ,   C′2 , and   C′3 .  The primes indicate that these

paths are moving with the fluid particles, and that we
are looking at the paths now at time (t).  If we
integrate g around contour   C′1 , we get a positive
contribution along the bottom section of the path,
and no contribution from the other sections that lie
outside the core.  Thus we get

  g ⋅ d

C′1

= positive number
(80)

For the force density g to be a conservative potential
force, we would have to have   g ⋅ d = 0  for any
possible path.  Because the integral is not zero for
circuit   C′1 , Equation (80) shows that g  is a non
potential force.

To see what a localized force like g cannot do, look
at the path   C′3  that goes completely around the core
and lies completely in a region where  g = 0 .  For this
path we get

  g ⋅ d

C′3

= 0
(81)

Thus from Equation (78) we find that there is no
change in the flux of  ω through the path   C′3 .  Since

  C′3  goes around the entire core, the flux of  ω
through   C′3  is the total circulation k of the vortex.
Thus a localized non potential force, (one where we
can draw a circuit like   C′3  that is in the fluid but
outside the force) cannot change the circulation κκ
of the vortex line.

If g cannot change the circulation κ , what does it
do?  To find out we look more closely at the paths

  C′1  and   C′2  lying above and below the line.  We saw
in Equation (80) that   g ⋅ d  was a positive number
for the upper path   C′1 .  Thus g must be causing an
increase in the flux of  ω through the upper path.

When we integrate g around the lower path   C′2 , we
get zero except where the path comes back through
the core, in a direction opposite to g, making   g ⋅ d
negative there.  As a result

  g ⋅ d

C′2

= negative number
(82)

and we find that g is causing a decrease in the flux
of  ω through the lower path.

What does it mean when we see that g is causing the
flux of  ω to decrease in the lower path, increase in
the upper path, but not change the total flux of the
core? It means that g is causing the vortex line to
move upward.  Since the paths   C′1   and   C′2  are
attached to the fluid particles, the flow of  ω from the
lower path to the upper path represents an upward
motion of the vortex line relative to the fluid par-
ticles.  Thus the non potential force g causes a
relative motion of the vortex lines and the fluid
particles, a relative motion that is absent if there are
no non potential forces acting on the fluid.

x

y
C '

g

1

C '2

C '3

Figure 7
An external force g  is applied to the fluid in the core of
a vortex. We see that the        g ⋅⋅d is positive around the
upper path      C ′′1, meaning that flux of ωω  is increasing
through that path. The integral is negative through the
lower path      C ′′2 meaning that flux of ωω  is decreasing
there. This results in an upward flow of vorticity. Since

       g ⋅⋅d = 0 for the big path surrounding the entire core,
the total flux, or total circulation κκ , is unchanged.
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This relative motion of the vortex line is sketched in
Figure (8), where we designate the relative velocity
by the vector  vrel .   Note that the motion is gyroscope
like; when we push in the x direction on a z  oriented
vortex line, the line moves, not in the direction we
push, but up in the y  direction.

Exercise 1
Use Equation (78) and Figure (9) to show that the vortex
line has no relative velocity in the direction that g pushes
on the fluid.

Exercise 2

What is the direction of the relative velocity  vrel if g is x
directed as in Figure (8), but ω points in the  – z
direction?   (I.e., what happens if we reverse ω?)  Explain
using Equation (78).

Motion of Charged Vortex Rings
Now that we have some idea of the effect of a
localized force acting on a vortex line, let us return
to our discussion of the Rayfield-Reif experiment.

As we mentioned, Rayfield and Reif created charged
vortex rings in superfluid helium by placing a radio-
active substance in the superfluid that emitted charged
particles, either an electron or a proton depending on
the substance.  They ended up with charged objects
in the superfluid, objects whose motion they could
control using electric fields, and whose speed they
could measure by timing a pulse of the particles
moving between two grids.

But how could they know that the charged objects in
the superfluid were actually vortex rings?  The
objects were tiny, carrying the charge of only one
proton or one electron.  In addition the core of a
quantum vortex is of the order of an atomic diam-
eter, so that the rings they were dealing with could be
as small as only a few tens of atomic diameters.  How
could they be sure that these objects, that were much
too small to be seen, were actually vortex rings?

The answer was in the peculiar behavior of these
objects, a behavior only exhibited by vortex rings.
The more they accelerated these objects, the harder
they pushed on them, with an electric field, the
slower they went!  The reason for this behavior
follows directly from the extended Helmholtz equa-
tion, Equation (78).

Figure 8
The relative velocity   vrel  of the vortex
caused by the non potential force g .

x
z

y

g

Vrel

g

Figure 9
Paths for determining the relative motion
of the line in the direction of the force g .
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In Figure (10) we show the cross section of a vortex
ring moving to the right, down the x axis.  This is
essentially Figure (12-15) of the last chapter, which
shows how the velocity field of the top half of the
ring pushes the bottom half forward, while the
velocity field of the bottom half pushes the top half
forward.  Because the velocity decreases as we go
away from the core, the bigger the ring becomes, the
farther the halves are apart, the slower the ring moves.

In Figure (11), we show the same vortex  ring, but
now we are assuming that there is a charged fluid in
the core, and an external x directed electric field is
pushing on this charged fluid.  It looks like we are
attempting to accelerate the ring by pushing on it in
the direction of its motion.

To see what this force does, we go back to Figure (8)
and see that the x directed force g acting on the fluid
in a  +z oriented core causes the core to move up in
the  +y   direction.  At the bottom of the ring where the
vorticity points in the opposite direction the same x
directed force causes the core to move down (see
Exercise 2).  Overall the force g is causing the entire
ring to grow in size, which results in the ring moving
more slowly.

Thus we have the peculiar phenomenon that when we
push on a ring in the direction the ring is moving, we
make the ring bigger and slow it down.  In Exercise (3),
you show that if you push opposite to the direction of
motion of the ring, you make the ring smaller and faster.

Exercise 3
Using Equation (78), show that when you push opposite
to the direction of motion of the ring you speed it up.

Conservation of Energy
At first sight you might think you have a problem
with the law of conservation of energy when it
comes to the behavior of vortex rings.  When we
push on an object in the direction that it is moving,
we are doing positive work on the object, and expect
that, in the absence of friction, the energy of the
object would increase.  But for a vortex ring, when
we push in the direction of the ring's motion the ring
slows down.  Does the ring loose energy as a result?

No.  Unlike baseballs and other objects we are familiar
with, a vortex ring's kinetic energy increases when it
slows down.  That is because its diameter increases and
thus there is more length of vortex line.  The kinetic
energy of the ring is the kinetic energy   1/2 mv2  of the
fluid particles whose motion is caused by the ring.  The
larger the ring, the more fluid involved in the vortex
motion, and the more kinetic energy associated with
the ring.  Thus pushing on a ring in the direction of
motion increases its energy, as it should.

Figure 11
An x  directed force acting on a ring moving in the
x  direction causes the ring to expand.

Figure 12
Pushing opposite to the direction
of motion of the ring.
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Figure 10
Cross section of a vortex ring. Each side of the ring
moves the other side forward. The smaller the ring, the
greater the velocity field, and the faster the ring moves.
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Measurement of the
Quantized Circulation      κκ = h/mHe
We have mentioned that Rayfield and Reif could
control and measure the behavior of their charged
vortex rings by sending pulses of the rings between
grids in the superfluid.  By timing the pulse, they
could measure the speed of the rings.  By applying
a voltage difference to the grids, they could change
the energy of the rings.  A voltage difference  V voltage
would cause an energy change of magnitude
(e  V voltage ) for each ring because each ring carried
either one proton of charge (+e)  or one electron of
charge (–e).  We will give a rough argument as to
how these two kinds of measurements allowed
Rayfield and Reif to accurately measure the quan-
tized circulation   κ = h/mHe  of the ring.

We have noted that the energy of a ring is the kinetic
energy  1/2 mv2  of the fluid particles.  Since the
velocity field of a vortex is proportional to the
vortex's circulation κ  (   v = κ /2πr  for a straight vor-
tex), the fluid kinetic energy is proportional to   κ2.
The fluid energy in a vortex ring is also proportional
to the length   2πR of line in the ring.  As a result the
fluid kinetic energy is proportional to   κ2R ring

   
Ering ∝ κ 2 Rring

kinetic energy
of a
vortex ring

(83)

Exercise 4

Show that   ρ κ2R ring has the dimensions of kinetic
energy.

We have seen that the velocity of a pair of oppositely
oriented vortices is given by the formula

  V2D ring = κ
4πRring

(12-40)

and have noted that the speed of a circular ring is
roughly the same but more complex.  In any case it
is proportional to   κ /R ring

   Vring ∝ κ
Rring

speed of
vortex ring (84)

Neither Equation (83) or (84), or an accurate calcu-
lation of these quantities, can be used to measure the
circulation κ  of the ring because you cannot see the
rings to measure their radius  R ring .  But in the

product of the two terms, the unmeasurable term
 R ring  cancels and we are left with the formula

  Ering×Vring ∝ κ 3 (85)

Equation (85) suggests that an experimental mea-
surement of   Ering×Vring  will give an experimental
value of   κ3.  A careful (and messy) calculation
shows that both  E ring and  V ring have factors of the
logarithm of the ring radius  R ring  divided by the
core diameter (a).  As a result there are factors of

 ln(Rring/a)  in a more accurate formula for the prod-
uct   Ering×Vring .  However this logarithm is quite
insensitive to the actual value of  R ring/a  (increase
the ring radius by 1000 and the logarithm  ln(Rring/a)
increases  only by an additional amount of 6.9). By
making a number of measurements of   Ering×Vring ,
Rayfield and Reif were not only able to determine κ ,
but also the core diameter (a).  That is when they
found that the core diameter was roughly the diam-
eter of a helium atom.

The Magnus Equation
In Figure (8) repeated here we show a z  directed
vortex line, subjected to an x directed force, moving
in the y direction.  This motion labeled  V rel  is the
motion of the line relative to the fluid particles due
to the non potential force g.  For the special case of
a straight vortex, it is fairly easy to calculate the
magnitude of this relative velocity  V rel .  The result
we will call the Magnus equation, named after a
person who first studied sideways motion due to
vortex effects.

x
z

y

g

Vrel

Figure 8 (repeated)
The y directed motion of a z oriented vortex
line subject to an x directed force.
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For this calculation, assume that we have a core of
diameter D, with a uniform z  directed vorticity  ω
and an x directed force inside, as shown in Figure
(13).  We have drawn two paths   C′1(t) and   C′2(t)
attached to the fluid particles. The circuits nearly
touch each other so that half of the flux of  ω goes
through   C′1  and half through   C′2  at the time (t).

A little time  δt  later, the core has moved upward a
distance   δy relative to the fluid particles as shown in
Figure (13b).  To keep the calculation simple, we
will assume that the force g is strong enough to
move the core up a reasonable distance   δy before the
fluid has moved the circuits   C′1  and   C′2  noticeably.
(The more accurate calculation in Appendix 2 does not
make this assumption, but gets the same answer.)

Because the vorticity is moving up relative to the
fluid particles, and thus up relative to the circuits

  C′1  and   C′2 , by the time   (t+δt)  we have an addi-
tional band of flux of area   (Dδy)  through circuit

  C′1 .  Thus the increase   δΦ1  of flux in circuit   C′1 ,
as we go from (t) to   (t+δt) , is

  δΦ1 = ω(Dδy) (86)

Applying our vortex dynamics Equation (78) to the
upper circuit   C′1 , we have

  δΦ1
δt

= g⋅d
C′1

rate of increase
of flux of ω
through C′1

(87)

Looking at Figure (13a) we see that the only contri-
bution we get to   g⋅d  around   C′1  is through the
center of the core, where g acts for a distance D, giving

  g⋅d
C1′

= gD
(88)

Thus

  δΦ1
δt

= gD ; δΦ1 = gDδt (89)

Equating the values of   δΦ1  from Equations (86) and
(89) gives

  δΦ1 = ωDδy = gDδt (90)

The D's cancel, and we are left with

  g = ωδy
δt

= ωVrel (91)

where  V rel  is the relative velocity of the vortex core
and the fluid particles.

Equation (91) can be put in a more useful form if we
multiply both sides by ρ , converting the force g  per
unit mass to   ρg = f , the force per unit volume.  Then
integrate f over the area of the core, giving us the
force per unit length acting on the core.  We get,
using Equation (91)   g = ωVrel ,

  
Fe = ρgdA

area of
core

= ρ (ωVrel)dA
area of
core

= ρVrel ωdA
area of
core

(92)

But the integral of ω over the area of the core is κ ,
the total circulation of the core.  Thus Equation (92)
becomes

  F e = ρκV rel (93)

The final step is to turn Equation (93) into a vector
equation. We let the vector   κ = zκ  point in the direc-
tion of the vorticity  ω.  The force  Fe  points in the x
direction and  V rel  is y directed. Using the right hand
rule, we see that the cross product   Vrel×κ  points in the
x direction like  Fe .  Thus we have the vector equation

   
Fe = ρVrel × κ Magnus

equation (94)

which is a remarkably simple result for what looked
like a complex situation.

g ω(t+δt)

δy
D

C' (t+dt)2C' (t)2

C' (t+dt)1C' (t)1

a) b)

Figure 13
As the core moves up relative to the fluid
particles, and thus up relative to the paths

  C1′  and   C2′  attached to the fluid particles,
we get at time     (t + δt )  an additional band
of flux of area       (D δδy)  in circuit   C1′ .

x
z

y
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In Appendix 2 to this chapter, we derive an equation
for the effect of non potential forces on curved fluid
core vortices.  The result looks exactly like Equation
(94), but it tells us how to define  V rel  when we have
a curved vortex.

  Fe = ρVrel × κ (94) repeated

When the exact formula is applied to a straight
vortex in a two dimensional flow, the terms in
Equation (94) have the following meaning.  If z  is
the direction perpendicular to the flow, then  Fe  is the
x-y component of the total force per unit length
acting on the fluid in the core region.  The compo-
nent  (Fe)z parallel to the vortex has no effect.  The
circulation κ  is the total flux of  ω in the core, and is
z  oriented.

The relative velocity  V rel  is given by the formula

 V rel = V vortex – V fluid (95)

where the vortex velocity  V vortex  is the velocity of
the center of mass of the vorticity   ωz , and the fluid
velocity  V fluid is the weighted average of the fluid
velocity v in the core region, given by the integral

  Vfluid = 1
κ ωzvdxdy (96)

With these definitions, Equation (94) is an exact equa-
tion for a straight fluid core vortex.  The result is
independent of the shape of the core or the force density
g, as long as both are confined to a localized region.

The derivation of the exact Magnus equation, which
we do in Appendix 2, is obtained by going back to
Equation (55) and rewriting that equation as a con-
tinuity equation for the flow of vorticity.  In some
ways the continuity equation is simpler to derive and
use than the Helmholtz theorem approach.  But the
continuity equation involves the quantity   ε ijk  which
we introduce and use in Appendix 1 to derive vari-
ous vector identities.  Thus it seemed appropriate to
delay a discussion of the continuity equation until
after the reader has studied Appendix 1.

(The beginning of Appendix 2 gives a complete
physical explanation of the continuity equation ap-
proach with virtually no mathematics and can be
read at any time.)

Figure 14

Relative directions of ωω ,  Fe, and  Vrel .
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IMPULSE OF A VORTEX RING
Although we have discussed the Magnus equation

  F = ρV rel × κ  as applied to a straight vortex, the
same ideas can be used for a curved vortex as long
as the radius of curvature of the vortex is large
compared to the core radius.  When we apply the
Magnus equation to a vortex ring, we get a simple
formula relating the total force on the ring to the rate
of change of the area of the ring.  Introducing the
concept of the impulse of a vortex ring, we can write
this formula so that looks a lot like Newton's law for
vortex rings.

In Figure (15) we again show the cross section of a
vortex ring, now showing the force  Fe  per unit
length acting on each section of the core, and the
relative velocity  V rel  causing the ring to expand.
For simplicity let  Fe  be in the direction of the motion
of the ring, so that the Magnus equation implies

  Fe = ρκVrel (94a)

The velocity  Vrel  is just the rate  dRring/dt  that the
ring radius is increasing.  Thus Equation (94a)
becomes

  
Fe = ρκ

dRring

dt (97)

The  Fe  in Equation (97) is the force per unit length of
the ring.  The total length of the ring is its circumference

  2πRring, thus the total force  F total is   2πRringFe, giving

  
Ftotal = 2πRringFe = 2πρκ Rring

dRring

dt (98)

However

 RdR
dt

= 1
2

d
dt

(R2) (99)

Thus Equation (98) can be written in the form

  Ftotal = ρκ d
dt

(πRring
2 ) (100)

But   πRring
2  is just the area  Aring  of the ring, thus we get

  Ftotal = d
dt

(ρκAring) (101)

Let us define the vector  Aring  as a vector of magni-
tude   πRring

2 , pointing in the direction of the motion
of the ring. Then since the total force  Ftotal  also
points in the same direction, we can write Equation
(101) as the vector equation

  Ftotal = d
dt

(ρκAring) (102)

Of course we have derived Equation (102) only for
the special case that  Ftotal  points in the direction the
ring is moving.  It becomes an interesting exercise
with the vector form of the Magnus equation to show
that Equation (102) applies for any direction of  Ftotal .

Equation (102) seems to look a lot like Newton's
second law relating the total force F  acting on a
particle to the particle's momentum p

  
F =

dp
dt

Newton's second law

Equation (102) suggests that the quantity   ρκAring
plays a role for vortex rings similar to the role of
momentum for particles.  As a result it has become
traditional to give   ρκAring  a special name, the
 impulse I  of the ring

   
I ≡ ρκAring

impulse of a
vortex ring (103)

With Equation (103) the formula for  Ftotal  becomes

  Ftotal = dI
dt

impulse
equation (104)

A common error one can make is to associate the
impulse I  of a vortex ring with an actual fluid momen-
tum.  Suppose, for example, you have a vortex ring in
a sealed container.  If you integrate   ρv  for that ring over
the entire fluid, the answer is zero!  In other words
vortex rings do not carry linear momentum.  The
impulse I  is a separate quantity with its own special
properties.  One important property is that it makes it
easy to predict the behavior of a ring subject to external
forces.  But it is not the momentum of the ring.

Figure 15
An external
force pushing
on the ring in
the direction of
motion causes
the ring to
expand.
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THE AIRPLANE WING
In the fluid dynamics Chapter 23 of the Physics text, we
used Bernoulli's equation to provide a qualitative view
of why airplanes fly and sailboats can sail into the wind.
In this section we will first look at the flow pattern of the
fluid past an airplane wing, and see that for there to be
lift, there has to be a net circulation of the fluid around
the ring.  This means that there is a vortex surrounding
the wing.  We then use the Magnus equation (95) to
obtain a formula relating the weight of the airplane to
the forward speed of the airplane and the circulation κ
of the vortex about the wing.

Figure (16) is a sketch of the streamlines we might
expect for the flow of a fluid past an airplane wing.  Our
Bernoulli equation argument was that because the fluid
was flowing faster over the top of the wing (where the
streamlines are closer together) and slower under the
wing, the pressure must be higher under the wing than
on top so that the sum of the terms   (p + ρv2/2)  be
constant.  (The   ρgy term is too small to worry about for
a fluid like air.)  This higher pressure below suggests
that the fluid is exerting a lift force on the wing.  In
Figure (16) we have drawn a circuit   C′  around the
wing.  When we calculate the integral   v⋅d  around
this circuit, we get a big positive contribution from the
high speed fluid at the top, and a smaller negative
contribution from the slow fluid at the bottom.  Thus
there is a net positive circulation κ  surrounding the
wing.  In Figure (16), the circulation κ  points in the  +z
direction.  If there were no net circulation, if the fluid
had the same speeds above and below the wing, there
would be no lift.

Here is where we will adopt a rather unconventional
view in order to directly apply the Magnus equation
(94) to the airplane wing.  We will picture the wing
as being made of frozen fluid of the same density as
the air flowing over it.  This way we can think of the
wing itself as part of the fluid, giving us a constant
density, fluid core vortex to which we can apply
Equation (95).  Because the Magnus equation in-
volves only the total circulation κ  and not the details
of the structure of the core, it makes no difference
that our core now consists of a vortex sheet around
the surface of the wing rather than the solid-body
like rotation we assumed in our other vortex cores.

The purpose of the wing is to support the weight  mg
of the airplane.  If we divide  mg  by the total length
L of the wings, we get the downward,  – y directed
force  F g  per unit length acting on the wings, and
thus on the core of the wing vortex.

Here is the unconventional part of the argument.  If you
exert a downward,  –y directed force on a z  oriented
vortex, you will get an x directed relative velocity of
the core as shown in Figure (17).  (Figure (17) is just
Figure (8) rotated 90°.)  Comparing Figures (16) and
(17), we can say that the downward gravitational force
on the wing, i.e., on the core of the vortex around the
wing, is causing the wing vortex to move forward
relative to the fluid through which the airplane is
flying.  The Magnus equation, with  Fe = Fg  is

  Fg = ρVrel×κ (104)

This gives us an explicit formula relating the down-
ward gravitational force  F g  per unit length, the
circulation κ  of the wing vortex, and the forward
speed  V rel  of the airplane.

Figure 16
Flow pattern past an airplane wing.

Figure 17
Motion of a vortex subject to a localized force g .
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The first thing this equation tells you is that there must
be a vortex around the wing of an airplane for the
airplane to fly.  In addition, the vortex cannot stop at the
end of the wing because vortex lines, being solenoidal

  (∇ ⋅ω = 0), cannot stop in the fluid.  Instead the vorti-
ces trail back behind the airplane and are sometimes
very visible during takeoff on a misty morning.

Equation (94) also tells us that for a given speed  V rel ,
the heavier the airplane, i.e., the greater  F g  is, the
greater the circulation κ  has to be.  To lift the airplane,
the circulation has to be particularly strong during
takeoff where the forward velocity  V rel  of the airplane
is small.  As a result the massive jumbo jets have strong
wing tip vortices trailing after them, strong enough to
flip small airplanes taking off behind them.  Pilots of
small aircraft are warned to stay clear of the jumbo jets.

We have just presented the rather different picture
that the forward motion of an airplane is caused by
the gravitational force acting down on the core of the
wing vortex.  When this point of view was presented
in a science  journal article, a reviewer replied that it
was the airplane motors which pulled the airplane
forward.  Our response to that was—what about a
glider that flies without motors?  The main role of the
motors in level flight is to overcome the viscous drag
on the wings and fuselage.

Although it works well, our picture is still unconven-
tional.  When we used the Bernoulli argument in
Chapter 23 of the Physics text, we were using the
conventional picture that the fluid is exerting a lift
force on the wing.  The conventional derivation of
the lift force involves calculating the momentum
transfer between the fluid and the solid object.  This
is a  somewhat messy calculation involving integra-
tion of pressure forces over the surface of the object.
When you finish, you find that the lift force is
proportional to the total circulation κ  about the wing
and the velocity  V rel  of the wing relative to the fluid
through which it is moving.  Such a lift force on a
moving vortex is called the Magnus Force.

The Magnus Lift Force
We are in a position to write down the formula for the
lift force on an airplane wing without doing any pres-
sure force integrations.  Start with Equation (104)

  Fg = ρVrel×κ (104) repeated

which relates the gravitational force  Fg  per unit
length to the circulation κ  and the relative velocity

 Vrel  of the vortex.  If the plane is in level flight, then
the downward gravitational force  Fg  must be ex-
actly balanced by the upward lift force  Flift  for the
plane not to rise or fall.  Thus we have

 Flift = –Fg (105)

which gives us

  Flift = –ρVrel×κ (106)

In addition to airplane wings, spinning objects gen-
erally have a vortex around them.  If the object is
moving through the fluid at a velocity  V rel , it will
experience a sideways lift force given by Equation
(106).  This sideways lift force on a spinning object
is called the Magnus force  F magnus after G. Magnus
who studied the sideways motion of spinning ob-
jects in 1852*.  The Magnus lift force formula found
in textbooks is

   
Fmagnus = –ρVrel×κ

Magnus
lift force
formula

(107)

* "On the deviation of projectiles; and on a remark-
able phenomenon of rotating bodies." G. Magnus,
Memoirs of the Royal Academy, Berlin(1852). En-
glish translation in Scientific Memoirs, Lon-
don(1853)., p.210. Edited by John Tyndall and Wil-
liam Francis.
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The Magnus Force and Fluid Vortices
The extended Helmholtz theorem, Equation (78)
and its application to the motion of vortex lines
through a fluid, was developed in the 1960s to help
understand vortex behavior in the Rayfield-Reif
experiment.  Before that, and still in most textbooks,
the motion of vortices through a fluid is explained in
the following way.

The Magnus force formula    Fmagnus = –ρVrel×κ
tells us the lift force on a solid object moving through
a fluid at a velocity  Vrel , when there is a circulation
κ  about the object.

If one has a fluid core vortex moving relative to the
fluid, one says that there must be a lift force

  Fmagnus = –ρVrel×κ   acting on that vortex.  But there
is no extra mass associated with a fluid core vortex,
so one must treat the vortex as a massless object,
with the result that the net force on the vortex must
be zero.  That means that there must be an external
force  Fexternal acting on the vortex to cancel the
Magnus lift force.  That is, one must have

 Fexternal + Fmagnus = 0 (108)

Using the Magnus formula (107) in (108) gives

  Fexternal = –Fmagnus = ρVrel×κ (109)

This is just our Equation (95) relating the relative
motion of a vortex to the localized, non potential
force on the core of the vortex.

What we have shown, by deriving Equation (109)
directly from the Navier-Stokes equation, which
itself came from Newton's second law, is that we can
describe vortex motion without any reference what-
soever to a Magnus lift force.  The Magnus force is
a pseudo  force, which like the centrifugal force,
may be very useful for calculation, but which has no
place in a basic description of the motion of the fluid
itself.
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Appendix for Chapter 13
Part 1
Component Notation and
the Functions 

     δδij and 
  εijk

In our derivation of the Navier-Stokes equation we
ran into the term   ∇ i(pvi)  which we could not handle
very well with vector notation like   ∇ ⋅v  or   ∇ φ.  To
handle this term we resorted to component notation

  ∇ i  and  vi , and introduced the Einstein summation
convention.  Here we will briefly review the summa-
tion convention, and then discuss two quantities   δij
and   εijk  that play basic roles when we work with dot
and cross products in component notation.  These
quantities also become extremely useful when we
are working out vector identities, like the relation-
ship

  
(v⋅∇ ) v = ∇ v2

2
– v×(∇ ×v) (13-33)

which we used to get the  v2/2  term in Bernoulli's
equation.

CH 13 APP 1 COMPONENT NOTATION



Cal 13 A1 - 2      Calculus  2000 - Chapter13      Appendix 1

THE SUMMATION CONVENTION
In Equation (12) of this chapter we wrote the dot
product of two vectors   a ⋅b  in the following three
forms

  a ⋅ b = axbx + ayby + azbz

= aib iΣ
i = x,y,z

= aib i

(13-12)

With the summation convention, when we have
repeated indices like  aib i , it is understood that we
are to sum over all values of the repeated index i.  We
gave as an example

 aib jci = axb jcx + ayb jcy + azb jcz

where we summed over the repeated index i, but the
single index j was not summed.  In mixed index-
vector notation,  aib jci  could be written

 (aibci) j = aib jci (1)

THE DOT PRODUCT AND      δδij
We will see that the quantity   δij , defined by the
simple relationship

  δij = 1 if i = j

= 0 if i ≠ j
(2)

is closelly related to the dot product in component
notation. Consider the term

  δijaib j (3)

Here both indices i and j are repeated, so that we have
to sum over both to get

  δijaib j = δxxaxbx + δxyaxby + δxzaxbz

+ δyxaybx + δyyayby + δyzaybz

+ δzxazbx + δzyazby + δzzazbz

(4)

In Equation (4), the only non zero   δij  terms are   δxx ,
  δyy  and   δzz, leaving

  δijaib j = δxxaxbx + δyyayby + δzzazbz (5)

Since   δxx = δyy = δzz = 1 , we get

  δijaia j = axbx + ayby + azbz = a ⋅b (6)

In component notation this can be written

  
δijaib j = ajb j = a ⋅b (7)

You can see that the function   δij turns the product of
two vectors  ai  and  b j  into a dot product.

Another way of handling   δijaib j  is to first work out
the effect of   δij  acting on  ai .  Setting the index j to
x we have

  δixai = δxxax + δxyay + δxzaz = ax

Similarly we get

  δiyai = ay

  δizai = az

Thus for any value of j,   δijai  is equal to  a j

  
δijai = aj (8)

Then when we want to evaluate the product   δijaib j

we can write

   (δijai)b j = (a j )b j = a ⋅b (9)
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THE CROSS PRODUCT AND      εεijk
We just saw that   δij turned the product of two vectors

 ai  and  b j  into a dot product   a ⋅b.  We will now see that
a slightly more complex function   εijk  turns the product
of two vectors  a jbk  into a cross product   a ×b

The cross product   a ×b  of two vectors  is given by

  (a × b)x = aybz – azby

(a × b)y = azbx – axbz

(a × b)z = axby – aybx

(10)

We will see that this can all be written as the one
equation

 
  

(a × b)i = εijka jbk (11)

where the function   εijk  has the values

   εijk = 0 if any two indices are equal

εxyz = 1

εxzy = – 1

εzxy = + 1

⋅ ⋅ ⋅

(12)

What we are indicating by the dots is that if you
permute (interchange) any two neighboring indices,
you change the sign.

For example, what is the sign of   εzyx?  To find out we
do the following permutations starting with   εxyz = + 1

  εxyz = + 1

εxzy = – 1

εzxy = + 1

εzyx = – 1

(13)

It does not matter how you do the permutation you
always come out with the same answer.  For example

  εxyz = + 1

εyxz = – 1

εyzx = + 1

εzyx = – 1

(13a)

Because of this permutation property,   εijk  is often
called the permutation tensor.  (A tensor is a vector
like object with more than one index.)

Now we have to check that Equation (11), using   εijk
for the cross product, gives the correct result.  Using
the summation convention and crossing out terms
like   εxxk  which are zero, we have

  (a ×b)x = εxjka jbk

= εxxkaxbk + εxykaybk + εxzkazbk

= εxyxaybx + εxyyayby + εxyzaybz

                   + εxzxazbx + εxzyazby + εxzzazbz

  (a × b)x = εxyzaybz + εxzyazby (14)

With   εxyz = +1,   εxzy = –1 (one permutation), we get

  (a × b)x = aybz – azby (15)

Which is the correct answer.

Exercise 1
Check that

  (a × b)y = eyjkajbk
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As an example of the use of the   εijk , let us prove the
vector identity

  A⋅ (B×C) = (A×B)⋅C (13-68)

which we used in the derivation of the Helmholtz
theorem.  We have

  A⋅ (B×C) = Ai(B×C)i

= AiεijkBjCk

  
A⋅ (B×C) = εijkAiBjCk (16)

  (A×B)⋅C = (A×B)iCi

= εijkA jBkCi

  
(A×B)⋅C = εijkA jBkCi (17)

To show that Equation (17) is equivalent to (16), we
will first rename the indices in Equation (16).  We
will do this in two steps to avoid any possible errors.
Changing   i → r ,   j → s ,   k → t  in Equation (16)
gives

  εijkAiBjCk = εrstArBsCt (16a)

We can do this because it does not matter what letter
we use for a repeated index.  Now we wish to rename
the indices again so that the vector components in
Equation (16) match those in (17).  If we substitute

  r →j ,    s → k ,    t → i , Equation (16a) becomes

  εrstArBsCt = ε jkiA jBkCi (16b)

which when combined with (17a) gives

  εijk AiBjCk = ε jkiA jBkCi (16c)

With some practice, you will not bother going through
steps (16a) and write (16b) directly.

We now have

  A⋅ (B×C) = ε jkiAjBkCi (16d)

  (A×B)⋅C = εijk A jBkCi (17) repeated

The vector components now match, and what we
now have to do is see how   ε jki  compares with   εijk .
We will start with   εijk  and see how many permuta-
tions it takes to get to   ε jki .  We have

  ε jik = – εijk

  ε jki = – ε jik = – (–εijk)

Two permutations are required, we have   ε jki = εijk ,
and thus the terms in (16) and (17) are equal, which
proves the identity.

While these steps may have looked a bit complex the
first time through, with some practice they are much
easier, faster, and more accurate than writing out all
the x, y, and z components of the cross products.
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Handling Multiple Cross Products
To work out vector identities involving more than
one cross product, there is a special identity that is
worth memorizing.  It is

  
εijkεklm = δilδjm – δimδjl (18)

First of all, note that Equation (18) has the correct
symmetry.  It must change sign on the right if you
permute (interchange) i and j or l and m, because that
is what   εijk  and   εklm  do on the left side.  This
combination of δ  functions has that property.

Before we try to prove Equation (18), we will give
an example of how useful it is.  Consider the rather
messy set of cross products   a × (b × c) .  Using the

  εijk  notation for cross products, we have

  a × (b × c)
i

= εijka j(b × c)k

= εijka jεklmblcm

= (εijkεklm)a jb lcm

(19)

Using Equation (18) we get

  a × (b × c)
i

= (δilδjm – δimδjl ) a jb lcm (20)

We will get some practice with the use of the δ
functions   δij .  We have for example

  δilb l = bi ; δjmcm = cj (21)

So that

  δilδjma jb lcm = ajbic j

and

  – δimδjla jb lcm = – ajb jci

We get the result

  
a × (b × c)

i
= ajb ic j – ajb jci (22)

To apply Equation (22) to the problem we had with
the Navier-Stokes equation, let

  a = v ; b = ∇ ; c = v (23)

giving

  v × (∇ × v)
i

= vj∇ iv j – vj∇ jvi (24)

By not changing the order of the vectors in Equation
(22), the equation can be used when one or more of
the vectors are the gradient vector  ∇ .

To get Equation (24) into the form we want, consider

 

  1
2

∇ iv
2 = 1

2
∇ i(vx

2 + vy
2 + vz

2)

= 1
2

(2vx∇ ivx + 2vy∇ ivy + 2vz∇ ivz)

= vj∇ ivj

(25)

Thus Equation (24) can be written

  
v × (∇ × v)

i
= ∇ i

v2

2 + vj∇ jvi (26)

To put this in pure vector notation, notice that
Equation (26) is the (i)th component of the vector
equation

  
v×(∇ ×v) = ∇ v2

2
+ (v⋅∇ )v (27)

Equation (27) is equivalent to

  
(v ⋅∇ )v = – ∇ v2

2
+ v×ω (28)

which we used to get the Bernoulli term   –∇ (v2/2)
into the Navier-Stokes equation.
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Proof of the   εε  Identity
We will use a rather brute force method to prove the
identity

  εijkεklm = δilδjm – δimδjl (18) repeated

Let us consider the special case i = x and j = y.  Then
for the δ  functions we get

  δilδjm – δimδjl = δxlδym – δxmδyl (29)

If l = x, m = y,   get +1 from   δxlδym (30a)

If l = y, m = x,   get –1 from   – δxmδyl (30b)

All other values of l and m give zero (30c)

For this case i = x and j = y, the product of   ε's ,
becomes

  εijk εklm = εxykεklm (31)

The only non zero value for k is z giving

  εxykεklm = εxyzεzlm (32)

The only value of l and m that give a non zero result
are l = x, m = y and l = y, m = x.  For l = x , m = y,
we get   εxyzεzxy .  Two permutations give

  εzxy ⇒ –εxzy ⇒ ε xyz = +1

Thus

  εxykεklm = +1       for l = x, m = y (33a)

which agrees with Equation (30a).

For the case l = y,  m = x, we get

  εxykεklm = εxyzεzyx

Now

   εzyx ⇒ –εzxy ⇒ ε xzy ⇒ –εxyz = –1

thus

   εxyzεzyx = (+1)(–1) = (–1)

and we have

  εxykεklm = –1       for l = y, m = x (33b)

which agrees with Equation (30b).  All other values
of l and m give zero, in agreement with (30c).

You can see that Equation (18) is correct for the
special case i = x, j = y.  In a few more pages of
essentially identical work you can, if you want,
show that Equation (18) works for any values of i
and j.  For practice, perhaps you might try a case like
i = z, j = y.
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Appendix for Chapter 13
Part 2
Vortex Currents

In the main part of Chapter 13, we derived the
following equation that describes the behavior of
vorticity in a constant density fluid.

  ∂ω
∂t – ∇ × (v × ω) = ∇ × gnp (13-55)

It turns out that there are two rather different ways
to handle this equation.  The one we used in the main
part of the chapter was to show that

   δΦ(ω)
δt

= ∂ω
∂t – ∇ ×(v×ω) ⋅dA

S′

=
rate of change of the flux
of ω through a circuit S ′
that moves with the fluid

(13-74)
Thus if   gnp = 0 , there is no change in the flux and we
have Helmholtz's theorem.  If there is a change in
flux, we have the relative motion of the vortex lines
and fluid particles that we discussed in detail.

The other approach, which we discuss in this appen-
dix, is to turn Equation (13-55) into a continuity
equation for the flow of the vorticity field  ω .  The
physical idea of how we get a continuity equation is
very straightforward.  The mathematics requires a
fairly extensive use of the tensor    εi jk  that we dis-
cussed in Appendix 1.  That is why we have delayed
the discussion of the flow of vorticity and vortex
currents until this appendix.

Of the two approaches, the continuity equation ap-
proach is the more powerful. As we mentioned, it
leads to an exact Magnus formula for curved fluid
core vortices, a result that had not been obtained any
other way.  And the flow of vorticity, in the form of a
vortex current tensor, appears to be playing a role in
recent approaches to string theory.

CH 13 APP 2 VORTEX CURRENTS
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In Figure (1a) we have also drawn a plane that cuts
through these vortices.  This is an arbitrary plane,
slicing the fluid in any way we want.  After drawing
the plane, we then align the axis of our coordinate
system so that the z axis is perpendicular to the
plane.  Thus we call this the z  plane.

Where a vortex tube or line comes up through the plane,
we have drawn a white circle, and where it goes down
through—a black circle.  Because the flux tubes of a
solenoidal field cannot start or stop in the fluid, the
circles in the z  plane cannot appear or disappear one at
a time.  What can occur is that a loop may pull out of the
plane as may be happening in the lower right hand
corner.  When this happens, a white circle and a black
circle annihilate each other.  If a loop enters the plane,
we have the creation of a white circle-black circle pair.

If the plane extends well out beyond the region of the
vortex lines, then we have a conservation law.  The
number of white circles minus the number of black
circles is a constant.

We can go a step farther, and note that the circulation
κ  of each vortex tube is given by the formula

  κ = ω⋅dA

S′

= ωzdAz
area of
intersection

(1)

We get the same result for κ  no matter what z  plane
we use for integrating   ωz , as long as the z  plane cuts
through the entire tube.  As a result the white circles
in Figure (1a) represent a net circulation   +κ  and the
black circles   –κ .  If all the flux tubes of  ω  have the
same circulation κ , then the total flux of  ω  through
the plane is simply κ  times the net number  of
circles, i.e., the number of white circles minus the
number of black circles.

If the fluid is bounded, or the plane does not extend
out beyond the region of the vortex lines, then the net
number of circles can change by having vortex lines
move in or out across the edges.  Thus the more
general conservation law is that the rate of change
of the net number of circles in a given region of the
plane is equal to the rate at which circles are
flowing in or out across the edges of the region.
This is a verbal statement of a continuity equation
for the flow of the black and white circles.

CONSERVED TWO
DIMENSIONAL CURRENTS
Before we go through any mathematical steps, let us
look at the physical ideas of why we should expect
to find a conserved flow of vorticity, and why
working with a conserved flow might give us a simple
way to handle the dynamics of the vorticity field.

In Figure (1a) we have sketched several vortices of
rather arbitrary shape that we imagine are moving
around in a constant density fluid.  When we originally
drew this diagram, we were thinking of quantized
vortex lines moving around in superfluid helium.  But
it turns out that our analysis applies to tubes of flux for
any solenoidal field, i.e., any field like  ω  that has zero
divergence.  The significance of a solenoidal field is
that the flux tubes cannot stop or start in the fluid.  The
tubes have no free ends in the fluid.

Figure 1
If you slice the solenoidal vortex lines with an arbitrary
xy plane, the circles, representing the intersection of
the lines and the plane, form the objects of a conserved
two dimensional current. When a loop pulls out of the
plane,  as in the lower right corner, two circles of
opposite orientation annihilate each other. Circles can
be created or annihilated only in pairs, or come in
through the edges.
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CONTINUITY EQUATION FOR VORTICITY

To obtain the mathematical continuity equation for the
flow of   ωz , we start with the dynamic equation for
vorticity, given by Equation (55) of Chapter 13 as

  ∂ω
∂t – ∇ ×(v × ω) = ∇ ×(gnp) (13-55)

which obviously is equivalent to

  ∂ω
∂t = ∇ ×(v×ω+ gnp) (13-55a)

In component notation this can be written as

  ∂ωj

∂t = ε jik∇ i(v×ω+ gnp)
k

(2)

where   εi jk  is the permutation tensor used in Appen-
dix 1 to handle cross products.  Using the fact that

  ε jik = –εi jk , we get

  ∂ωj

∂t = –∇ i εi jk (v×ω+ gnp)
k

(3)

Rather than try to deal with all the components in
Equation (3), let us look at the z component of the
equation, which becomes

  ∂ωz
∂t = – ∇ i εizk(v × ω+ gnp)

k
(4)

Defining the vector   j (ωz)  by the equation

  
j(ωz)i = εizk(v×ω+ gnp)

k
(5)

we get the equation

  
∂ωz
∂t = – ∇ ⋅ j (ωz) (6)

which has the form of a continuity equation if we
interpret   j (ωz)  as the current vector for   ωz .

This current vector   j (ωz)  has the very special
property that it is two dimensional; it has no z
component.  The formula for the z component is

  j(ωz)z = εzzk(v×ω+ gnp)
k

= 0 (7)

This is zero because   εzzk = 0 .  Thus Equation (6)
is the continuity equation for the two dimensional

flow of   ωz , which is exactly what we expected from
our discussion of Figure (1b).

The formula for   j (ωz)  still needs some simplifica-
tion.  The first step is to write   v×ω in component
notation to get

  εizk(v×ω)k = εizkεklmvlωm

Next, use the relationship we proved in Appendix 1

  εijkεklm = δilδjm – δimδjl (A1-18)

to get

  εizk(v×ω)k = (δilδzm – δimδzl)vlωm

= viωz – vzωi

(8)

The other simplification comes from noting that

  (z×gnp)
i
= εijkz j(gnp)

k
= εizk(gnp)

k
(9)

where we set   εijkz j = εizk  because the unit vector z
has only a z component.

In Equation (5) using Equation (8) for   εizk(v×ω)k
and Equation (9) for   εizk(gnp)

k
to get

  j(ωz)i = viωz – vzωi + (z×gnp)
i

(10)

We can simplify the interpretation by introducing
the notation

  v = (vz , v||); ω = (ωz , ω||) (11a)

where the vectors  v||  and   ω||  are vectors represent-
ing the components of v  and  ω  parallel to the flow
of   ωz , i.e., components that lie in the z  plane.

Since the current vector   j (ωz)  has no z  component,
it has only a parallel component

  j (ωz) = j||(ωz) (11b)

With this notation, we can let the index i be the
parallel component in Equation (10), giving

  
j (ωz) = v||ωz – vzω|| + z×gnp (13)

Equation (13) is our final equation for the two
dimensional current or   ωz  in the z  plane.
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Roughly speaking, the terms in Equation (13), re-
peated below, have the following interpretation.

  j (ωz) = v||ωz – vzω|| + z×gnp (13) repeated

The   v||ωz  term clearly represents the convection of

  ωz  due to the fluid motion  v||  in the plane.  The
  z × gnp  term which we call the Magnus term, gives

us the sideways motion of the vortex when a non
potential force is acting on the fluid.  For example,
if we have an x  directed force g  acting on the core
of a z  directed vortex, we end up with a y  directed
flow of vorticity as indicated in Figure (2), a diagram
we have seen before.

The   – vzω||  term is more of a problem to interpret.
We note, however, that for a two dimensional flow
with straight vortices, we can orient the z  plane to
cut the vortex perpendicular to the core so that   ω||  is
zero and the term vanishes.  We will see that for three
dimensional fluid flow with a curved vortex, this
term can be made to go away by choosing a properly
oriented z  plane.  From this point of view, the

  – vzω||  term tells us which z  plane to use.

A SINGLE VORTEX LINE
To help  interpret the equations for vortex motion,
we will apply Equation (13)  to the motion of a single
vortex line. We cut the line with a z  plane as shown
in Figure (3a) and look at the behavior of   ωz  in that
plane, as seen in Figure (3b). The main result is that
we end up with a formula for the motion of the center
of mass of   ωz . This result is a consequence of their
being a conserved two dimensional current of   ωz .

Figure 2
 Motion of a vortex line subject to an x directed force.

Figure 3a
Cut the vortex line with a z  plane.

x
z

y

g

j  = z  gy

ω

z

x

ω

y

z plane

Vcom

z

Figure 3b
We will study the motion of   ωωz  in the z  plane.
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Center of Mass Motion
Our first step is to show that if we have an isolated
vortex where both   ωz  and non potential forces  gnp
are confined to a core region, then the vortex veloc-
ity  Vvortex, defined by

  Vvortex ≡ 1
κ j (ωz)dAz

core
area

= VCOM (14)

is the velocity of the center of mass of   ωz  in the z
plane.

To show this, we begin with Figure (4) where we
show the localized core area of a vortex as it passes
through the z  plane.  We are assuming that the
dotted rectangle from  xa  to  xb , and  ya  to  yb  lies
outside the core area where both   ωz  and   j (ωz)  are
zero.

We define the area   ∆A(yi), seen in Figure (4), as a
band of thickness   ∆y  that goes from  xa  to  xb , and
from  yi  to   yi+∆y .  The total vorticity   ∆κ i  in this
band is

  
∆κ i = ∆y ωz(x,yi)dx

xa

xb

(15)

The formula for the center of mass coordinate  RCOM
of a collection of masses  mi  is (see page 11-3 of the
Physics text)

  MRCOM = r imiΣ
i

(16)

where M is the total mass.

Replacing M by the vortex total circulation κ , and
 mi  by   ∆κ i , the equation for the y component of the

center of mass of the vorticity,  YCOM , becomes

  κYCOM = yi∆κ iΣ
i

(17)

Differentiating Equation (17) with respect to time,
noting that the total circulation κ  does not change
with time, gives

  
κ ∂YCOM

∂t
= κVyCOM = yiΣ

i

∂∆κ i
∂t (18)

Our problem now is to calculate the rate of change of
the circulation   ∆κ i  in our   ∆y  band.  We do this by
calculating the net rate of flow of vorticity into the
band due to the vortex current   j(ωz) , indicated in
Figure (5).

Along the line  y = yi , the net current into the band
is

  
Jy(yi) = jy(x, yi )dx

xa

xb

current in
from below (19)

where   jy = jy(ωz) .

Up at   yi+∆y , the component   jy(ωz)  flows up out of
the band, so that the net inward current up there has
a minus sign

  Jy(yi+∆y)inward = –Jy(yi+∆y)

= – jy(x, yi+∆y)dx

xa

xb

(20)

Figure 4
Calculating the center of mass of   ωωz .

x

y

xa xb

ya

yb
i

∆y

∆A(y )

yi

ωz

xa xb

j (y ) y i

j (y +∆y) y i

∆yyi

Figure 5
Flow of vorticity into band.
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The total rate   ∂∆κ i/∂t  at which vorticity is flowing
into the band is thus

  ∂∆κ i

∂t
= – Jy(yi+∆y) + Jy(yi) (21)

Using Equation (21) in Equation (18) for  VyCOM
gives

  
κVyCOM = – yi∆yΣ

i

Jy(yi+∆y) – Jy(yi)

∆y
(22)

where we multiplied the right hand side by   ∆y/∆y .

In the limit   ∆y → 0 , the square brackets become the
derivative   ∂Jy(y)/∂y , evaluated at y =  yi

  
κVyCOM = – yiΣ

i

∂Jy(y)

∂y y = yi

∆y (23)

This sum    ∆yΣ
i

 then becomes an integral from  ya  to
 yb , giving

  

κVyCOM = – y
∂Jy(y)

∂y
dy

ya

yb

(24)

The next step, which is called integration by parts,
is a simple way to handle the factor y that appears in
Equation (24).  We note that, by the rules of differ-
entiation

  ∂
∂y

yJ(y) =
∂y
∂y

J(y) + y
∂J(y)

∂y (25)

With   ∂y/∂y = 1  we get

  
y

∂J(y)

∂y
= ∂

∂y
yJ(y) – J(y) (26)

Substituting (26) into (24) gives

  
κVyCOM = – ∂

∂y yJy(y) dy +

ya

yb

Jy(y)dy

ya

yb

(27)

We can explicitly carry out the first integral because
the integral of a derivative is simply the function
itself

  
– ∂

∂y yJy(y) dy

ya

yb

= yJy(y)
ya

yb

= ybJy(yb) – yaJy(ya)

= 0

(28)

We get zero because both  ya  and  yb  lie outside the
core region, where  Jy  is zero.

Thus we are left with
  

κVyCOM = Jy(y)dy

ya

yb

=

ya

yb

xa

xb

jy(x,y)dxdy
(29)

where we used Equation (19) to express  Jy(y)  in
terms of the vortex current density  jy(x,y) .

Because we are assuming that  jy(x,y)  is non zero
only over the core area,  Equation (29) can be written
in the more compact form

  κVyCOM = jy(ωz)dAz
core
area

(30)

where  dAz = dxdy .

Similar arguments give

  κVxCOM = jx(ωz)dAz
core
area

(31)

Combining Equation (30) and (31), and dividing
through by κ  gives

  VCOM = 1
κ j (ωz)dAz

core
area

≡ Vvortex

(14) repeated
which is the result we wanted to show.



Calculus  2000 - Chapter13      Appendix 2       Cal 13A2 - 7

MAGNUS FORMULA FOR CURVED VORTICES

We are now ready to use Equation (13) to derive the
Magnus effect formula for curved fluid core vorti-
ces.  As a reminder, Equation (13) was

  j (ωz) = v||ωz – vzω||+ z × gnp (13) repeated

Slicing a curved vortex with a z  plane as shown in
Figure (3), integrating Equation (13) over the area of
the core, and dividing through by κ  gives

  1
κ j(ωz)dAz

core
area

= 1
κ ωzv||dAz (32a)

  + 1
κ –vzω||dAz (32b)

  + 1
κ z × gnpdAz (32c)

We already know that the left side of Equation (32)
is the vortex velocity  Vvortex .  The first term on the
right, which we will call  Vfluid

  Vfluid = 1
κ ωzv||dAz (33)

is the weighted average of the velocity field  v||  in the
core region.

As we mentioned earlier, the third term, the integral
of   vzω||  tells what z  plane to use for the calculation.
There will be some plane, more or less perpendicular
to the core, which gives a zero value for the integral
of   vzω||  over the core.  We will assume that we are
using that z  plane.

For this example, let us assume that  gnp  is an
external force  ge  acting on the fluid in the core, as
sketched in Figure (2) repeated below.  Multiplying
this force per unit mass by ρ  gives   fe = ρge  as the
force per unit volume acting on the core.  When  fe
is integrated over the core, we get  Fe , the external
force per unit length acting on the vortex.

With this notation the last term in Equation (32)
becomes

  1
κ z × gnpdAz

core
area

= 1
ρκz × ρgnpdAz

core
area

= 1
ρκz × fedAz

core
area

=
z × Fe

ρκ

(34)

Assuming we have chosen the correct z  plane to
eliminate the integral of   vzω|| , we get using Equa-
tions (14), (33) and (34) in Equation (32)

  Vvortex = Vfluid + 1
ρκz × Fe (35)

The Helmholtz equation is now obtained by setting
 Fe = 0  giving

 
  

Vvortex = Vfluid

Helmholtz
equation for
Fe = 0

(36)

In detail, Equation (36) says that when we choose
the z  plane correctly, the center of mass motion of
the vortex core is equal to the weighted average of
the fluid velocity in the core region.

Figure 2 (repeated)
 Motion of a vortex line subject to an x directed force.

x
z

y

g

j  = z  gy
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When  Fe  is not zero and we have a relative motion
of the vortex line and the fluid, we can define the
relative motion vector  Vrel  as

  Vrel ≡ Vvortex – Vfluid (37)

and Equation (35) can be written

  Vvortex = Vfluid + 1
ρκz × Fe (35) repeated

  z × Fe = ρκVrel (38)

We can get further insight from Equation (38) by
writing  Fe  as

  Fe = (Fez + Fe⊥ ) (39)

where  Fez  is the component of  Fe  parallel to the
z  axis, and   Fe⊥  perpendicular to the z axis.  Because
z  cross a vector parallel to z  is zero,   z × Fez = 0  and
we get

  z × Fe = z × Fe⊥ (40)

Thus our final result for the Magnus equation is

   
z × Fe⊥ = ρκVrel

Magnus
equation (41)

and we see that only the component of the external
force perpendicular to the z axis, has an effect on the
vortex motion.  This reminds us why it is important,
for a curved vortex, to find the correct z  plane using
the condition that the integral of   vzω||  be zero.

If we apply Equation (41) to a two dimensional flow
in the xy plane, then the vorticity is automatically z
directed and we can turn κ  into a z  directed vector
κ .  If the flow is to remain two dimensional, then the
external force  Fe  must be in the xy plane, because a
z component of  Fe  would create a z  directed flow.
Thus  Fe  must be   Fe⊥ .  With these restrictions,
Equation (33) is equivalent to

  Fe = ρVrel × κ (13-95)

which is our Equation (13-95) discussed in the
regular part of the chapter.  (Check for yourself that
both Equations (41) and (13-95) predict that an x
directed force  Fe  acting on a z  directed vortex
causes a y  directed relative motion of the vortex.)

What we have learned from deriving the exact
Magnus equation for curved vortices, that we cannot
predict from a two dimensional derivation, is what
component of  Fe  is important and exactly how  Vrel
is defined.
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CREATION OF VORTICITY
So far our emphasis has been on how non potential
forces cause a relative motion of vortex lines and the
fluid particles.  But the vorticity we find in a fluid has
to have been created somehow.  Non potential forces
do that, and we want to end this appendix with a brief
discussion of how.  The discussion is brief, because
it is very incomplete.  The creation of vorticity,
which leads to turbulence, is not only a subject for an
entire fluid dynamics textbook, it is also an active
subject of current research.  Here we will just indi-
cate how the topic begins.

Non potential forces, at least in a constant density
fluid like water, can create vorticity in two ways.
One way is to pull it out of the walls of the container.
Near the wall, where the velocity field rapidly goes
to zero, we get a boundary layer where the non
potential viscous forces are important.  These vis-
cous forces, if they are acting at the wall, will move
vorticity out of the wall into the fluid.  For example,
this is how the vorticity in the smoke ring demon-
stration was created.  Viscous forces acting on the
high speed fluid at the perimeter of the hole in the
box pulled a ring of vorticity in from the perimeter.

It turns out to be a tricky question of how viscous
forces behave in a boundary layer.  For laminar pipe
flow, there are viscous forces acting at the wall
continually pulling vorticity into the stream.  In
contrast, for a boundary layer solution called the
Blasius profile, the viscous forces act in the bound-
ary layer but not at the wall.  In that theory, the
vorticity is all created upstream and all the viscous
forces do is move the vorticity farther into the fluid,
thickening the boundary layer.  The velocity profiles
near the wall look nearly the same for both laminar
pipe flow and the Blasius profile, but the viscous
effects are quite different.  This indicates the kind of
problem one has to deal with when working with
boundary layers and the effects of viscosity.

Non potential forces can also create vorticity in the
fluid away from the walls by creating vortex rings.
In a sense, this is the way vorticity is created in the
Rayfield-Reif experiment.  To give you a rough
classical picture of how a charged particle moving

C

g

1

C2

C3 x

z

y

external force acting
on a spherical region

'

'

'

Figure 6
External force creating a vortex ring.

through a fluid could create a vortex ring, imagine
that the charged particle, moving in what we will call
the z  direction exerts a local, more or less spherical
shaped external force g  on the fluid as shown in
Figure (5).  This looks much like the figure we have
drawn so many times, except that there is no vortex
line for g  to push on.  Thus g  cannot be causing a
relative motion of the line and the fluid.  What it is
doing instead is creating a vortex ring around the
region.

We can see the ring creation by applying the ex-
tended  Helmholtz equation (12-78) to the circuits

  C′1 ,   C′2  and   C′3  shown in Figure (6).  These
circuits are moving with the fluid particles, and
Equation (78) tells us that the rate of change of flux
of  ω  through any of them is equal to   g ⋅ d
around the circuit.  With this in mind, we see that the
flux of  ω  through   C′1  is increasing because   g ⋅ d
is positive there, and it is decreasing through   C′2
where   g ⋅ d  is negative.  Since   g ⋅ d  is zero
for   C′3 , there is no change in the flux of  ω  there.

What does it mean that g  is decreasing the flux
through the lower circuit   C′2  when there is no flux
there to decrease?  It means that g  is creating
negative flux of  ω  through   C′2  while at the same
time it is creating positive flux through   C′1 .  What
it is doing is creating a band of flux of  ω  around the
spherical region, a band of flux that is becoming the
core of a vortex ring.

Once vorticity has been introduced into the fluid, an
effective method of introducing more vorticity is the
stretching of existing vortex lines.  How vortex line
stretching affects fluid flows is a topic that has been
studied for a long time by fluid engineers.
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ENERGY DISSIPATION IN FLUID FLOW
While a derivation of the Magnus formula for curved
vortices demonstrates how mathematically effec-
tive the concept of a vortex current   j (ωz)  is, (the
result has not been obtained any other way), the most
important use so far of the concept is in studying the
relationship between energy dissipation in a stream
and the flow of vorticity across the stream.  This
relationship, discovered by Phillip Anderson in 1966,
applies to such diverse situations as turbulent flow in
a channel, and the motion of quantized vortices in
both superfluids and superconductors.  In the case of
superconductors, the phenomenon is now involved
in the legal definition of the electric volt.

We leave this topic for a later text, because one of the
most interesting parts is to show how similar the
vortex dynamics equations are for charged and neu-
tral fluids.  One can make the equations look identi-
cal by incorporating the magnetic field  B  in the
definition of  ω , and including the electric field  E  in

 gnp .  If you want to see this topic now, look at the
article "Vortex Currents in Turbulent Superfluid
and Classical Fluid Channel Flow . . .", Huggins,
E.R., Journal of Low Temperature Physics, Vol. 96,
1994.

The 1852 article by Magnus is "On the deviation of
projectiles; and on a remarkable phenomenon of
rotating bodies." G. Magnus, Memoirs of the Royal
Academy, Berlin (1852). English translation in Sci-
entific Memoirs, London (1853), p.210. Edited by
John Tyndall and William Francis.
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Formulary
For Vector Operations

When you are working problems involving quantities
like   ∇ 2 in cylindrical or spherical coordinates, you do
not want to derive the formulas yourself because the
chances of your getting the right answer are too small.
You are not likely to memorize them correctly either,
unless you use a particular formula often.  Instead, the
best procedure is to look up the result in a table of
formulas, sometimes called a formulary.

In this formulary we summarize all the formulas for
gradient, divergence and curl, in Cartesian, cylindri-
cal and spherical coordinates. We also include inte-
gral formulas, formulas for working with cross prod-
ucts, and with tensors. The formulary was adapted
from one developed by David Book of the Naval
Research Laboratory.

We have also added a short table of integrals, and
summarize some of the series expansions we discussed
in the text.

Formulary

ContentsContentsContentsContentsContents
Cylindrical Coordinates Formulary - 2

Divergence Formulary - 2
Gradient Formulary - 2
Curl Formulary - 2
Laplacian Formulary - 2
Laplacian of a vector Formulary - 2
Components of   (A ⋅ ∇ ) B Formulary - 2

Spherical Polar Coordinates Formulary - 3
Divergence Formulary - 3
Gradient Formulary - 3
Curl Formulary - 3
Laplacian Formulary - 3
Laplacian of a vector Formulary - 3
Components of   (A ⋅ ∇ ) B Formulary - 3

Vector Identities Formulary - 4

Integral Formulas Formulary - 5

Working with Cross Products Formulary - 6
The Cross Product Formulary - 6
Product of e's Formulary - 6
Example of use Formulary - 6

Tensor Formulas Formulary - 7
Definition Formulary - 7
Formulas Formulary - 7
Div. (Cylindrical Coord.) Formulary - 7
Div. (Spherical Coord.) Formulary - 7

Short Table of Integrals Formulary - 8

Series Expansions Formulary - 9
The Binomial Expansion Formulary - 9
Taylor Series Expansion Formulary - 9
Sine and Cosine Formulary - 9
Exponential Formulary - 9



Formulary-2

CYLINDRICAL COORDINATES
Divergence

  ∇ ⋅ A = 1
r

∂
∂r (rAr) + 1

r
∂Aθ
∂θ +

∂Az
∂z

Gradient

  (∇ f)r = ∂f
∂r

  (∇ f)θ = 1
r

∂f
∂θ

  (∇ f)z = ∂f
∂z

Curl

  
(∇ × A)r = 1

r
∂Az
∂θ –

∂Aθ
∂z

  
(∇ × A)θ =

∂Ar
∂z –

∂Az
∂r

  
(∇ × A)z = 1

r
∂
∂r (rAθ) – 1

r
∂Ar
∂θ

Laplacian

  
∇ 2f = 1

r
∂
∂r (r∂f

∂r ) + 1
r2

∂2f
∂θ2 + ∂2f

∂z2

Laplacian of a vector

  
(∇ 2A)r = ∇ 2Ar – 2

r2
∂Aθ
∂θ –

Ar

r2

  
(∇ 2A)θ = ∇ 2Aθ + 2

r2
∂Ar
∂θ –

Aθ
r2

  (∇ 2A)z = ∇ 2Az

Components of   (A ⋅ ∇∇ ) B

  
[(A ⋅ ∇ )B]r = Ar

∂Br
∂r +

Aθ
r

∂Br
∂θ + Az

∂Br
∂z –

AθBθ
r

  
[(A ⋅ ∇ )B]θ = Ar

∂Bθ
∂r +

Aθ
r

∂Bθ
∂θ + Az

∂Bθ
∂z +

AθBr
r

  
[(A ⋅ ∇ )B]z = Ar

∂Bz
∂r +

Aθ
r

∂Bz
∂θ + Az

∂Bz
∂z

x

x

y

y

top view 
looking 
down

z

r

r

r

z

θ

θ

θ

r

θ

p 

x

y

z

r

z

y

x

p 

Cartesian Coordinates

Cylindrical Coordinates
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SPHERICAL POLAR COORDINATES
Divergence

  
∇ ⋅ A = 1

r2
∂
∂r (r2Ar) + 1

r sinθ
∂
∂θ (Aθsinθ) + 1

r sinθ
∂Aφ
∂φ

Gradient

  (∇ f)r = ∂f
∂r

  (∇ f)θ = 1
r

∂f
∂θ

  (∇ f)φ = 1
r sinθ

∂f
∂φ

Curl

  (∇ × A)r = 1
r sinθ

∂
∂θ (Aφsinθ) – 1

r sinθ
∂Aθ
∂φ

  
(∇ × A)θ = 1

r sinθ
∂Ar
∂φ – 1

r
∂
∂r (rAφ)

  
(∇ × A)φ = 1

r
∂
∂r (rAθ) – 1

r
∂Ar
∂θ

Laplacian

  ∇ 2f = 1
r

∂2

∂r2 (rf) + 1
r2sinθ

∂
∂θ sinθ ∂f

∂θ + 1
r2sin2θ

∂2f
∂φ2

Laplacian of a vector

  
(∇ 2A)r = ∇ 2Ar – 2

r2
∂Aθ
∂θ –

2Aθcotθ
r2 – 2

r2sinθ
∂Aφ
∂φ

  
(∇ 2A)θ = ∇ 2Aθ + 2

r2
∂Ar
∂θ –

Aθ
r2sin2θ

– 2 cos θ
r2sin2θ

∂Aφ
∂φ

  
(∇ 2A)φ = ∇ 2Aφ–

Aφ

r2sin2θ
+ 2

r2sinθ
∂Ar
∂φ + 2 cos θ

r2sin2θ

∂Aφ
∂φ

Components of   (A ⋅ ∇∇ ) B

  
[(A ⋅ ∇ )B]r = Ar

∂Br
∂r +

Aθ
r

∂Br
∂θ +

Aφ
r sin θ

∂Br
∂φ –

AθBθ + AφBφ
r

  
[(A ⋅ ∇ )B]θ = Ar

∂Bθ
∂r +

Aθ
r

∂Bθ
∂θ +

Aφ
r sin θ

∂Bθ
∂φ +

AθBr
r –

AφBφcotθ
r

  
[(A ⋅ ∇ )B]φ = Ar

∂Bφ
∂r +

Aθ
r

∂Bφ
∂θ +

Aφ
r sin θ

∂Bφ
∂φ +

AφBr
r +

AφBθcotθ
r

x

r sin θ

y

θ

z

r

r

θ

φ

φ
φ

p 

Spherical Polar Coordinates
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VECTOR IDENTITIES
Notation: f, g, etc., are scalars;  A  and  B , etc. are vectors

 (1)    A ⋅ B × C = A × B ⋅ C = B ⋅ C × A = B × C ⋅ A = C ⋅ A × B = C × A ⋅ B

 (2)    A × (B × C) = ( A ⋅ C) B – (A ⋅ B) C

 (3)    A × (B × C) + B × (C × A) + C × ( A × B) = 0

 (4)    (A × B) ⋅ (C × D) = (A ⋅ C) (B ⋅ D) – (A ⋅ D) (B ⋅ C)

 (5)    (A × B) × (C × D) = (A × B⋅ D) C– (A × B ⋅ C) D

 (6)    ∇ (fg) = ∇ (gf) = f ∇ (g) + g∇ (f)

 (7)    ∇ ⋅ (fA) = f ∇ ⋅ A + A ⋅∇ f

 (8)    ∇ × (fA) = f ∇ × A +∇ f × A

 (9)    ∇ ⋅ (A × B) = B ⋅ ∇ × A – A ⋅ ∇ × B

(10)   ∇ × (A × B) = A (∇ ⋅ B) – B (∇ ⋅ A) + (B ⋅ ∇ ) A – (A ⋅ ∇ ) B

(11)   ∇ (A ⋅ B) = A × (∇ × B) + B × (∇ × A) + (A ⋅ ∇ ) B + (B ⋅ ∇ ) A

(12)   ∇ 2f = ∇ ⋅ ∇ f

(13)   ∇ 2 A = ∇ (∇ ⋅ A) – ∇ × ∇ × A

           ∇ × (∇ × A) = ∇ ( ∇ ⋅A) – ∇ 2 A

(14)   ∇ × ∇ f = 0

(15)   ∇ ⋅ ∇ × A = 0

Let  r = i x + j y + kz  be the radius vector of magnitude r, from the origin to the point x, y, z.  Then

(16)   ∇ ⋅ r = 3

(17)   ∇ × r = 0

(18)   ∇ r = r /r

(19)    ∇ (1/r) = – r /r3

(20)   ∇ ⋅ ( r /r3) = 4πδ( r )
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INTEGRAL FORMULAS
If V is the volume enclosed by a surface S and  dS = ndS where n is the unit normal outward from V

(22)   ∇ f d3V
V

= f dS
S

  (23) ∇ ⋅A d3V

V

= A⋅dS

S

  (24) ∇ ×A d3V

V

= dS×A

S

  (25) (f ∇ 2g – g∇ 2f ) d3V

V

= (f ∇ g – g∇ f )

S

⋅ dS

(26) 
  

A ⋅ ∇ ×(∇ ×B) – B ⋅ ∇ ×(∇ × A) d3V

V

= B×(∇ ×A) – A×(∇ ×B)

S

⋅dS

If S is an open surface bounded by the contour C of which the line element is  d

(27)   dS × ∇ f

S

= fd

C

(28)    (∇ × A) ⋅ dS
S

= A ⋅ d
C

Stokes'
law

(29)   (dS × ∇ ) × A

S

= d × A

C

(30)   (∇ f × ∇ g) ⋅ dS

S

= fdg

C

= – gdf

C
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WORKING WITH CROSS PRODUCTS
Use of the permutation tensor   εijk  to work effectively with the cross products.
(Reference: Appendix I in Chapter 13.)

The cross product

  (A × B)i = εijkA jBk

Product of εε's

  εijkεklm = δilδjm – δimδjl

Example of use

  ∇ × (∇ × A)
i

= εijk∇ j(∇ × A)k

= εijkεklm∇ j∇ lAm

= (δilδjm – δimδjl) ∇ j∇ lAm

= ∇ j∇ iA j – ∇ j∇ jAi

= ∇ i∇ jA j – ∇ j∇ jAi

= ∇ (∇ ⋅A) – ∇ 2A
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TENSOR FORMULAS

Notation: f, g, etc., are scalars;  A  and  B , etc. are vectors;  T  is a tensor

Definition
If  e1 ,  e2 ,  e3  are orthonormal unit vectors, a second-order tensor  T  can be written in the dyadic form

  T = Tijeie jΣ
i,j

In Cartesian coordinates the divergence of a tensor is a vector with components

  (∇ ⋅ T)i = (∂Tji/∂xj)Σ
j

Formulas

  ∇ ⋅(AB) = (∇ ⋅A)B + (A⋅∇ )B

  ∇ ⋅( f T ) = ∇ f ⋅T + f ∇ ⋅T

  ∇ ⋅T d3V

V

= dS⋅T
S

Divergence of a tensor (cylindrical coordinates)

  (∇ ⋅ T)r = 1
r

∂
∂r (rTrr) + 1

r
∂
∂θ (Tθr) +

∂Tzr
∂z – 1

r Tθθ

  
(∇ ⋅ T)θ = 1

r
∂
∂r (rTrθ) + 1

r
∂Tθθ
∂θ +

∂Tzθ
∂z + 1

r Tθr

  
(∇ ⋅ T)z = 1

r
∂
∂r (rTrz) + 1

r
∂Tθz
∂θ +

∂Tzz
∂z

Divergence of a tensor (spherical coordinates)

  
(∇ ⋅ T)r = 1

r2
∂
∂r (r2Trr) + 1

r sinθ
∂
∂θ (Tθr sinθ) + 1

r sinθ
∂Tφr

∂φ –
Tθθ + Tφφ

r

  
(∇ ⋅T)θ = 1

r2
∂
∂r (r2Trθ) + 1

r sinθ
∂
∂θ (Tθθ sinθ) + 1

r sinθ
∂Tφθ
∂φ +

Tθr
r

– cot θ
r

Tφφ

  
(∇ ⋅ T)φ = 1

r2
∂
∂r (r2Trφ) + 1

r sinθ
∂
∂θ (Tθφsinθ) + 1

r sinθ
∂Tφφ
∂φ +

Tφr

r + cot θ
r Tφθ
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SHORT TABLE OF INTEGRALS
In these integrals, (a) is a constant, and (u) and (v) are
any functions of x.

 1. dx = x

 2. au dx = a u dx

 3. (u + v) dx = u dx + v dx

  4. xm dx = xm + 1

m + 1(m ≠ – 1)

 5. dx
x = ln |x|

 6. u dv
dx

dx = uv – v du
dx

dx

 7. exdx = ex

 8. sin x dx = – cos x

 9. cos x dx = sin x

 10. sin2x dx = 1
2x – 1

4sin 2x

 11. e– axdx = – 1
a e– ax

 12. xe– axdx = – 1
a2 (ax + 1)e– ax

 13. x2e– axdx = – 1
a3 (a2x2 + 2ax + 2)e– ax

  
14. xne– axdx =

0

∞
n!

an + 1

  
15. x2ne– ax2dx =

0

∞
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n – 1)

2n + 1an
π
a

 
16. dx

(x2 + a2)3 / 2 = x
a2 x2 + a2
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SERIES EXPANSIONS

The binomial expansion
(Ch 2, page 6)

  (1 + α)n = 1 + nα +
n(n – 1)

2!
α2 + ⋅ ⋅ ⋅ (2-22)

which is valid for any value of α  less than one, but
which gets better as α  becomes smaller.

Taylor series expansion
(Ch 2, page 8)

  f(x – x0) = f(x0) + f ′ x0 (x – x0)1

+ 1
2!

f″(x0)(x – x0)2

+ 1
3!

f ′′′ (x0)(x – x0)3+ ⋅ ⋅ ⋅

This can be written in the compact form

   
f(x – x0) =

fn(x0)
n!Σ

n = 0

∞
(x – x0)n

Taylor
series
expansion

(2-44)
where we used the notation

  
fn(x0) ≡ dnf(x)

dxn
x = x0

(2-45)

Sine and cosine
(Ch 5, page 4)

  
cos θ = 1 – θ2

2!
+ θ4

4!
+ ⋅ ⋅ ⋅ (13)

  
sin θ = θ – θ3

3!
+ θ5

5!
+ ⋅ ⋅ ⋅ (14)

where θ  is in radians. These expansions are valid for
any value of θ, but most useful for small values where
we do not have to keep many terms.

Exponential
(Ch 1, page 28 and Ch 5, page 4)

  ex = 1 + x + x2

2!
+ x3

3!
+ ⋅ ⋅ ⋅ (1-136)

While this expansion is true for any value of x, it is most
useful for small values of x where we do not have to
keep many terms to get an accurate answer.

Setting    x = iθ gives

   
e iθ = 1 + iθ + i2θ2

2!
+ i3θ3

3!
+ ⋅ ⋅ ⋅ (5-12)

(Since our previous discussion of exponents only
dealt with real numbers, we can consider Equation
(12) as the definition of what we mean when the
exponent is a complex number).



Physical Constants in CGS Units
speed of light   c = 3×1010cm/sec = 1000 ft /µsec = 1 ft /nanosecond
acceleration due to gravity
at the surface of the earth  g = 980 cm/sec2 = 32 ft/sec2

gravitational constant   G = 6.67×10– 8cm3/(gm sec2)
charge on an electron   e = 4.8×10– 10esu
Planck's constant   h = 6.62×10– 27erg sec (gm cm2/sec )
Planck constant / 2π    h = 1.06×10– 27erg sec (gm cm2 / sec )

Bohr radius    a0 = .529×10– 8cm

rest mass of electron   me = 0.911×10– 27gm
rest mass of proton   Mp = 1.67×10 – 24gm
rest energy of electron   mec2 = 0.51 MeV ( ≈ 1 / 2 MeV)
rest energy of proton   Mpc2 = 0.938 BeV ( ≈ 1 BeV)
proton radius   rp = 1.0×10– 13cm
Boltzmann's constant   k = 1.38×10 – 16ergs/ kelvin
Avogadro's number   N0 = 6.02×10 23molecules/mole

absolute zero =  0°K = –273°C
density of mercury =  13.6 gm / cm3

mass of earth =   5.98×10 27gm
mass of the moon =   7.35×10 25gm
mass of the sun =   1.97×10 33gm
earth radius =   6.38×10 8cm = 3960 mi
moon radius =   1.74×10 8cm = 1080 mi
mean distance to moon =   3.84×10 10cm
mean distance to sun =   1.50×10 13cm

 mean earth velocity in orbit about sun = 29.77 km / sec

Conversion Factors
1 meter = 100 cm  (100 cm/meter)
1 in. = 2.54 cm  (2.54 cm/in.)
1 mi = 5280 ft  (5280 ft/mi)
1 km (kilometer) =  105cm (105cm / km)
1 mi = 1.61 km =   1.61×105cm (1.61×105cm/mi)

   1 A° (angstrom ) = 10 – 8cm (10 – 8cm / A° )
1 day = 86,000 sec   (   8.6×104sec / day )
1 year =   3.16×107sec (3.16×107sec/year)

  1 µ sec (microsecond ) = 10 – 6sec (10 – 6sec / µ sec )
1 nanosecond =  10 – 9sec (10 – 9sec /nanosecond )
1 mi/hr = 44.7 cm/sec
60 mi/hr = 88 ft/sec
1 kg (kilogram) =  10 3gm (10 3gm / kg)
1 coulomb =    3×109esu (3×109esu/coulomb)
1 ampere =    3×109statamps (3×109statamps/ampere)
1 statvolt = 300 volts    (300 volts/statvolt)
1 joule =  107ergs (107ergs / joule )
1 W (watt) =  107ergs/ sec (107erg / W)
1 eV =    1.6×10– 12ergs (1.6×10– 12ergs/eV)
1 MeV =  106eV (106eV /MeV)
1 BeV =  109eV (109eV /BeV)

  1 µ (micron ) pressure = 1.33 dynes / cm2

1 cm Hg pressure =   104 µ
  1 atm = 76 cm Hg = 1.01×106dynes/cm2
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